
HAL Id: hal-01197178
https://hal.science/hal-01197178

Submitted on 11 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Multiplication over Extension Fields
Nadia El Mrabet, Nicolas Gama

To cite this version:
Nadia El Mrabet, Nicolas Gama. Efficient Multiplication over Extension Fields. WAIFI 2012, Jul
2012, Ghent, Belgium. �10.1007/978-3-642-31662-3_10�. �hal-01197178�

https://hal.science/hal-01197178
https://hal.archives-ouvertes.fr

Efficient Multiplication over Extension Fields

Nadia EL MRABET1 and Nicolas GAMA2

1 LIASD - Université Paris 8
2 Université de Versailles - PRISM - CNRS

Abstract. The efficiency of cryptographic protocols rely on the speed
of the underlying arithmetic and finite field computation. In the litera-
ture, several methods on how to improve the multiplication over exten-
sions fields Fqm , for prime q were developped. These optimisations are
often related to the Karatsuba and Toom Cook methods. However, the
speeding-up is only interesting when m is a product of powers of 2 and 3.
In general cases, a fast multiplication over Fqm is implemented through
the use of the naive school-book method. In this paper, we propose a
new efficient multiplication over Fqm for any power m. The multiplica-
tion relies on the notion of Adapted Modular Number System (AMNS),
introduced in 2004 by [3]. We improve the construction of an AMNS ba-
sis and we provide a fast implementation of the multiplication over Fqm ,
which is faster than GMP and NTL.

1 Introduction

The efficiency of an algebraic cryptosystem is directly related to the speed of
the underlying arithmetic computation over finite fields Fq and their extensions
Fqm , wherein q is a prime number and m an integer. Depending on the mathe-
matics required for the cryptosystem, the prime q is either 2, 3 or a large prime
number. For cryptographic applications, the NIST provides recommendations
for the appropriate size of q and m [2,1], for elliptic curves cryptography [16,7],
for pairing based cryptography [5,6] or torus based cryptography [21,26].

For a large prime number q the arithmetic over Fqm is rather expensive and
several methods to improve it are described in the literature [27]. In characteristic
2, different optimizations of the multiplication are described in [14,25], when the
field F2m is defined modulo a cyclotomic polynomial, or as the evaluations of
polynomials over a root of unity. Usually, the finite field is embedded in a larger
field using the cyclotomic polynomials, and the multiplication is then optimized
via the Fast Fourier Transform. When the characteristic of the finite field is
different from 2, classical optimizations depend on the value ofm. For extensions
of degree 2, the Karatsuba method is the most efficient [27], while the Toom-Cook
method is recommended for extensions of degree 3 [27]. Consequently, when m
is the product of a power of 2 with a power of 3 (m = 2i3j), the multiplication
is done by recursive applications of the Karatsuba and Toom Cook methods
[4,9]. When m is a very large power of 2, the Fast Fourier Transformation (FFT)
can be used to improve the multiplication over Fq2n , with q being a prime and

n being an integer such that the number q2
n

has several thousand digits [27].
In [18], Montgomery proposed efficient multiplications for extensions of small
degrees m =5, 6 and 7. The case of degree 5 has been recently improved in [19].

For other extension degrees m, very few improvements have been proposed.
In [10], El Mrabet and Nègre proposed an efficient multiplication for sev-

eral values of m. This multiplication is based on the Discrete Fourier Transform
(DFT) scheme [27]. One multiplication using the DFT scheme costs (2m − 1)
multiplications in Fq and O(m2) multiplications by a root of unity in Fq. In a
classical representation of the field Fq, multiplication by a root of unity or by a
random element of Fq would both have the same complexity. Consequently, the
O(m2) multiplications by a root of unity in Fq would be very expensive. In [10],
the authors use an original representation of finite fields: the Adapted Modular
Number System (AMNS) introduced by Bajard et al. in [3]. The main advan-
tage of the AMNS representation is that all multiplications by a root of unity
correspond to cyclic shifts, and become very cheap. This novel representation
was designed in order to improve the multiplication over Fq when q is a pseudo
Mersenne prime. In [8], a new class of specific moduli for cryptography was in-
troduced, the more generalized Mersenne numbers. In [3], Bajard et all extend
the work of [8] with the definition of the AMNS representation. The AMNS can
in fact be applied for every prime q, and as well when q is a power of prime.
Furthermore, the AMNS representation can be used to improve the arithmetic
for the protocol RSA or more generally for a set Z/qZ.

We improve the result of [10] and we propose an efficient implementation
of the multiplication for the extensions of field of prime degree. Our article is
organized as follows. In Section 2 we recall the definition of the AMNS repre-
sentation. In Section 2.2 we review the arithmetic and the multiplication in Fqm
with the AMNS representation, and we propose a simplified multiplication. In
Section 3 we improve the multiplication in Fqm by an efficient construction of
an AMNS basis. In Section 4 we describe the first implementation of an AMNS
representation. We use it in order to implement an efficient multiplication over
Fqm , then we compare our results with the GMP implementation. We conclude
in Section 5.

2 AMNS

The efficiency of the arithmetic in a field Fq relies on the representation of its
elements. Usually the representation of a finite field is based on a positional
number system representation. An element a of a field Fq is decomposed in the

base β as a =

`−1∑
i=0

aiβ
i, with ai ∈ [0;β−1]. The element β is such that βl ≥ q. As

an example, we can cite the binary decomposition (β =2), or the hexadecimal
(β = 8) and decimal (β = 10) decomposition. The Adapted Modular Number
System (AMNS) was introduced by Bajard et al. in [3]. Initially, this represen-
tation was described for pseudo Mersenne primes, but it was extended to any
group Z/qZ.

2.1 Definition of an AMNS representation

The AMNS representation relies on the decomposition of numbers as a combina-
tion

∑
aiγ

i of powers of a base γ, but with more drastic constraints on γ and on
the size of the coefficients ai. Namely, given an integer n, the base γ of an AMNS
representation verifies that γn equals a very small number λ modulo q, for ex-
ample λ = ±1, ±2 mod q. The coefficients ai in an AMNS representation are
all bounded by |ai| ≤ ρ for some parameter ρ ≈ q1/n. The AMNS representation
is defined as follow.

Definition 1. A basis B of an AMNS representation is a tuple (q, n, γ, ρ, λ)
such that: γn = λ mod q ; ρ is a covering radius such that for each element

a ∈ Fq, it exists a polynomial a(X) =

n−1∑
i=0

aiX
i of degree < n and ‖a‖∞ ≤ ρ

such that a(γ) = a mod q.
Then for each polynomial p ∈ Zn[X], we say that p is an AMNS represen-

tation of p(γ) mod q when ‖p‖∞ = maxi=1...n |pi| ≤ 2nλρ2 and that it is a
reduced AMNS representation when ‖p‖∞ ≤ ρ.

Note that in general, the smallest covering radius ρ will be a small multiple of
q1/n. Also, a good basis for an AMNS representation should for efficiency be
designed so that the largest entries fits into raw integer types (namely 2nλρ2

should be smaller than 263 on a classical 64-bit processors).

Example 1. Let q = 19, an AMNS basis for Fq is B = (q = 19, n = 3, γ = 7, ρ =
2, λ = 1). Each element of Fq in signed representation is a polynomial in γ = 7,
of degree at the most 2, and with coefficients in [−1, 0, 1]. We can check that
γ3 ≡ 1 mod q. The decomposition of Fq is given in Table 1

Table 1. Decomposition of Fq

1 2 3 4 5 6
1 −X2 −X + 1 X2 −X − 1 X2 −X −X2 −X + 1 X − 1

7 8 9 10 11 12
X X + 1 −X2 + 1 X2 − 1 X2 X2+1

13 14 15 16 17 18
−X + 1 −X2 +X − 1 −X2 +X −X2 +X + 1 X2 +X − 1 -1

We could note that the evaluation of the polynomial −1 − X + X2 in γ is
3 mod q and that

∥∥−1−X +X2
∥∥
∞ = 1 < 2. Since ‖ai‖∞ < ρ, it follows that

the multiplication of two coefficients is efficient. This consideration leads to an
efficient multiplication in AMNS systems where the prime q is a pseudo Mersenne
number. For general primes, we will use a Montgomery’s like multiplication.

Remark 1. When q is not a prime but is a prime power, the construction of an
AMNS basis presented in [3] is not efficient. Indeed, we have to find an nth−root
of λ. Or, in a field Fpt for p a prime and t an integer greater than 2; finding
an nth−root of λ is difficult because it is equivalent to find the factorisation of
q − 1, which is a difficult issue for a large value of q.

Remark 2. We could note that the AMNS representation of an integer is redun-
dant. For example, 12 can be seen as X2+1 or −X. If the protocol needs to
compare two elements we can either go back to classical representation (we can
use the Horner scheme to efficiently evaluate the polynomial.), or we can use
Babai nearest plane algorithm to test whether the difference is in the lattice.

Both are indeed costly, but this cost can be amortized if the scheme requires
a great number of aritmetic operations before being evaluated.

2.2 Arithmetic in AMNS representation

As the AMNS representation is quite original, we could wonder if the arith-
metic in AMNS representation is more or less efficient than with a a classical
representation. In [20], Nègre and Plantard present an efficient multiplication in
the AMNS representation. This multiplication is constructed over Montgomery’s
scheme, and works for a prime q or for a prime power.

In order to give a simple explanation, we can say that the arithmetic in
AMNS representation is based on these three primitives:

1. Addition and substraction of two elements a and b (denoted respectively by
a + b and a − b) is performed term by term on the AMNS representation,
and the norm of the result is bounded by ‖a‖∞ + ‖b‖∞.

2. Multiplication of a and b (denoted by a×b) is performed by multiplying the
two polynomials and reducing modulo (Xn − λ). This leads to an element
of norm at the most n(λ+ 1) ‖a‖∞ ‖b‖∞.

3. Division by the constant parameter φ is used to reduce the size of coefficients.
Given a representation a of norm |a|∞ ≤ 2nλρ2, Algorithm 1 outputs a
representation of a(δ)× φ−1 of norm ≤ ρ.

Algorithm 1 Division by φ in AMNS
Require: An AMNS basis B , a polynomial m and its inverse m′ mod φ, and an element

a of norm ≤ 2nλρ2.
Ensure: A reduced AMNS representation of a(γ)× φ−1 of norm ≤ ρ.
1: Compute a′ = a×m′ mod φ having all its coefficients in [−φ/2, φ/2].
2: Return 1

φ
(a− a′ ×m) . the division is exact

By applying successively the last two primitives, one obtains an efficient
Montgomery’s like multiplication between any two reduced AMNS representa-
tions a and b. Like in the classical Montgomery’s multiplication, the result is not

exactly a× b mod q but a× b× φ−1 mod q. Note that the whole process per-
forms only three multiplications of polynomials with small coefficients modulo
(Xn − λ), which makes the AMNS arithmetic efficient. The Montgomery’s like
multiplication is resume in Algorithm 2.

Algorithm 2 Montgomery’s like multiplication in AMNS
Require: a and b in an AMNS basis B = (q, n, γ, ρ, λ) , φ ≥ 2nλρ, a polynomial m

and its inverse m′ mod (Xn − λ) mod φ.
Ensure: The element t ∈ B such that t(γ) = a(γ)× b(γ)× φ−1 mod q.
1: Compute c = a× b mod (Xn − λ)
2: Compute q = c×m′ mod (Xn − λ) mod φ
3: Return t = 1

φ
(c+m′) mod (Xn − λ) . the division is exact

The third primitive requires the preprocessing of a valid parameters φ and
two polynomials m and m′ which are inverse to each other modulo (Xn − λ)
mod φ.

Lemma 1. If φ is larger than 4nλρ2 and the polynomials m and m′ satisfy the
conditions

m(γ) ≡ 0 mod q,

‖m‖∞ ≤ ρ/n,
m×m′ ≡ 1 mod (Xn − λ) mod φ,

then for any input AMNS representation a of norm ≤ 2nλρ2, Algorithm 1 out-
puts a reduced AMNS representation (of norm ≤ ρ) of a(γ)/φ.

Proof. The division by φ in the last line of Algorithm 1 is exact, because a′×m =
a×m×m′ mod φ which is by definition equal to a mod φ. When taken modulo
q, the evaluation in γ of φ−1 × (a− a′ ×m) is a(γ)/φ because m(γ) ≡ 0 mod q.
Finally, the norm of a′ is ‖a′‖∞ = φ/2, so the norm of ‖a′ ×m‖∞ is smaller than
φρ/2 , i.e. (‖a′ ×m‖∞ ≤ φρ/2) and

∥∥∥ 1
φ (a− a′ ×m)

∥∥∥
∞
≤ (2nλρ2+φρ/2)/φ ≤ ρ.

The coefficients of the polynomials are smaller than ρ and φ. The execution of the
algorithm needs to perform two different reductions. One reduction is performed
modulo the polynomial (Xn−λ), and one is an integer reduction modulo φ. The
polynomial (Xn−λ) is sparse, thus the polynomial reduction consists essentially
in additions and shifts.

In the same way as in [20], the integer φ must be larger than 2nλρ, and
m must be a polynomial with very small coefficients, which admits γ as a root
modulo Fq and which is invertible mod φ. Unfortunately, the algorithm pro-
posed in [20] to generate m requires to approximate the shortest vector problem
in a n-dimensional lattice within a constant factor, which can be difficult in high
dimension. Furthermore, since a lot of integer divisions by φ occur in the Mont-
gomery’s like multiplication algorithm, in practice it would be ideal to have φ

equal to a power of 2 in order to speed-up those divisions. But once again, the
construction of [20] does not guarantee that φ can be even.

In the next sections, we propose a polynomial time construction of all pa-
rameters which is inspired from the key generation algorithm used by Gentry et
al. for the fully Homomorphic Encryption scheme challenges in [13].

2.3 Efficient multiplication in Fqm using AMNS

In [10], El Mrabet and Nègre use the AMNS representation of Fq to improve the
multiplication in an extension Fqm . They combine the Discrete Fourier Transform
(DFT) multiplication with the AMNS representation. The DFT multiplication
needs several multiplications by roots of unity. In a classical representation, a
root of unity can be any element of Fq and consequently a multiplication by
roots of unity is equivalent to a random multiplication in Fq. The advantage of
the AMNS representation is that the element γ chosen to construct the base can
be a root of unity.

The extension Fqm of Fq is defined as the quotient Fq[Y]/(P (Y)Fq[Y]), where
P (Y) is an irreducible polynomial of degree m over Fq and Fq[Y] represente the
polynomial in Y and with coefficients in Fq. An element of Fqm is a polynomial
in Y of degree smaller than m and with coefficients in Fq,

Fqm = {R(Y) ∈ Fq[Y] such that deg(R(Y)) < m}.

We resume the combination of the DFT multiplication of two polynomials
U(Y) and V (Y) with the AMNS representation. We denoteW (Y) = U(Y)×V(Y).

Let l be an integer such that we can define α to be a 2lth−root of unity in
Fq, and let αi = αi for i = 0, . . . , 2l − 1.

The DFT multiplication is the composition of three steps:

1. The evaluation of the polynomials U and V in the αis,
2. The 2l multiplications U(αi)× V (αi), in order to find the evaluation in the
αis of W (Y),

3. The interpolation of W (Y) = U(Y)× V (Y).

The evaluation and interpolation steps can be performed with a matrix vector
product. The evaluation corresponds to the product Ω ×t U and Ω ×t V , where
U = [u0, u1, . . . , ul−1] and V = [v0, v1, . . . , vl−1] are the vectors of the coefficients
of U(Y) and V (Y). The interpolation step is composed by the product Ω−1×tW ,
where Ω−1 is the matrix inverse of Ω.

The matrix Ω and Ω−1 are the following

Ω =



1 1 1 . . . 1
1 α α2 . . . αl−1

...
...

...
...

...
1 αi (αi)j . . . (αi)(l−1)

...
...

...
...

...
1 α(l−1) α2(l−1) . . . α(l−1)(l−1)


, Ω−1 =

1

l



1 1 1 . . . 1
1 α−1 (α−1)2 . . . (α−1)(l−1)

...
...

... . . .
...

1 (α−i) (α−i)2 . . . (α−i)(l−1)

...
...

...
...

...
1 α−(l−1) α−2(l−1) . . . α−(l−1)(l−1)


.

The complexity of the DFT multiplication is the sum of the complexity of 3
matrix vector products and the 2l products in Fq. In an AMNS representation
defined by B = (q, n, γ, ρ, λ), we can choose the parameters such that the matrix-
vector products are composed only with shifts and additions in Fq. Indeed the
matrix-vector products are only composed with multiplications of the αis with
the coefficients of U(X) and V (X). If we choose l = 2n, γ and λ in the AMNS
base B to be such that λ = −1 and then γn ≡ −1 mod q. With this choice, γ is
an l−root of unity in Fq and can be use to define the matrix Ω. As a consequence,
the multiplications by powers of γ consist only in shifts and additions in Fq, as
explained in the following lemma.

Lemma 2. Let ui be the ithcoefficient of U(Y), ui ∈ Fq and ui is decomposed
in the AMNS basis B = (q, n, γ, ρ, λ). Let ui be a representation of ui in B. Then
the product ui × γj = ui ×Xj and

ui × γj = (

n−1∑
k=0

uki Y
k)× Y j mod (Y n + 1) =

j−1∑
k=0

un−j+ki Xk +

n−1∑
k=j

uk−ji Xk.

Proof. The proof consists in writing down the equation and use the fact that we
work modulo the polynomial (Xn + 1). ut

Remark 3. We can notice that the Lemma 2 is writen for λ = −1, but it is very
easy to obtain the same result for a more generic value of λ. The important
point is that λ must be choosen such that the multiplication by λ are for free.
For example, λ can be ±1, or ±2d with d being a small integer.

An important consequence of Lemma 2 is the fact that a multiplication by a
power of γ is a very easy operation, which preserves the norm. Indeed, multiply-
ing a vector u by a power of γ consists only in a permutation of the coefficients
of u, which is only linear in the bit-length.

Lemma 3. The use of the DFT multiplication on powers of γ in an AMNS
representation leads to an efficient multiplication over an extension field.

Indeed, the evaluation of a polynomial in AMNS representation in a power of
γ consists in multiplications by power of γ and additions. A multiplication by
a power of γ in the AMNS representation is a mere shift in the representation.
As a consequence, the evaluation of a polynomial in power of γ costs only O(n)
additions instead of O(n) multiplications. The dual operation of interpolating a
function from its values on powers of γ is also easy. Indeed, both operations can
be viewed as a multiplication by a Lagrange matrix containing only powers of γ.

Multiplication of two polynomials f, g can therefore be performed in a DFT
manner by evaluating f and g, pairwise multiplying the evaluations, interpolating
the result, and reducing modulo P . Overall, this requires O(n) multiplications
in Fq instead of O(n log n) or O(n2) for classical algorithms. ut

The above multiplication algorithm has the drawback that a multiplication
requires 4n evaluations of the input polynomial on the roots of unity. Instead, it is

preferable to directly represent a polynomial P (Y) in a Lagrange representation,
by its evaluations (P (γ0), . . . , P (γ2m−1)) rather than by its coefficients. Once
again, the multiplication we propose is a Montgomery like algorithm, because
the result of the product of U(Y) times V (Y) is (m/φ3)×UV . The multiplication
in Lagrange representation is described in Algorithm 3.

Algorithm 3 AMNS-Multiplication in Fqm
Require: Two reduced Lagrange-AMNS representations

(
U(γ0), . . . , U(γ2m−1)

)
and(

V (γ0), . . . , V (γ2m−1)
)
of polynomials U, V ∈ Fq[Y] of degree ≤ m− 1.

Ensure: The reduced Lagrange-AMNS representation (W (γ0), . . . ,W (γ2m−1)) of the
product W ≡ (m/φ3).UV mod Y m − α of degree ≤ m− 1

1: Compute A = UV × φ−1 = (U(γi) × V (γi) × φ−1)i=0,...,2m−1 using the AMNS
Montgomery’s product

2: Compute the coefficients of (a0, . . . , a2m−1) of m · A[Y] =
∑2m−1
i=0 aiY

i in AMNS
representation using the inverse DFT

3: Reduce the polynomial modulo Y m −α and divide it by φ to obtain B =

m−1∑
i=0

biY
i

with bi = (ai + αai+m)× φ−1.
4: Return B × φ−1 as (B(γ0)× φ−1, . . . , B(γ2m−1)× φ−1) using DFT

If the integer n is a power of 2, the multiplication by the Fast Fourier Trans-
form (FFT [27]) method can be an improvement of the DFT method. The FFT
method is very interesting because it consists in factoring the computation in or-
der to not to compute twice the same operation. In our case, this is very efficient,
and the operations in the FFT method are only composed with multiplications
by powers of γ. We recall here the major steps of the FFT multiplication.

Let U(Y) be a polynomial that we want to evaluate for the DFT multipli-
cation. The FFT method is a divide and conquer scheme. Let γ be a root of unity.

The FFT method consists in dividing the polynomial U(Y) in two parts:

U1 =

n/2−1∑
k=0

u2kY
2k,

U2 =

n/2−1∑
k=0

u2k+1Y
2k, such that U = U1 + Y U2.

We denote Û = [U(1), U(γ), . . . , U(γn−1)] and Ûj = [Uj(1), Uj(γ), . . . , Uj(γ
n−1)]

for j = 1, 2. The element Û [i] is the ith coefficient of Û . The evaluation of U in
a power of γ can be expressed as follow

for i ∈ [0;n/2[

Û [i] = Û1[i] + γiÛ2[i],

Û [i+ n/2] = Û1[i]− γiÛ2[i].

We use the fact that γi+n/2 = −γi, which is evident since γ is a root of unity.
Since n is a power of 2, when we apply the FFT method, we can recursively use
this formula.

In [3], the AMNS representation was proposed randomly and the polynomial
m was not inversible for each construction. We propose below an efficient way to
construct an AMNS representation and to assure the fact that the polynomial m
is invertible. We split the analyse in two parts. First, we analysis in Section 3.2,
the simultaneous generation of m and q, which can be done very efficiently even
for large dimensions. Then in Section 3.3, we consider cases where q is fixed in
advance, and the goal is to generate m accordingsly. This second case, which
occurs in pairing based cryptography, is much harder than the previous one, but
can still be achieved in practice for extensions of degree ≈ 100. these cases occur
for example in pairing based cryptography.

3 Theory

We propose a new construction of the AMNS parameters by adapting the key
generation algorithm used by Gentry [13] in the fully homomorphic encryption
scheme. Given as input an extension of degree n, the procedure generates a
polynomial m and a prime number q. This is for instance the case of almost
all Elliptic Curve Cryptography scheme based on Diffie Hellman. However, this
does not work for pairings, which have strong external constraints on q.

3.1 Some theory about lattices

The approach of [20] to generate AMNS parameters can be viewed as follow:
given q a prime number, and γ such that γn = λ mod q is small, one construct
the lattice L of all polynomials having the root γ modulo q.

L = {a(X) ∈ Z[X], such that deg(a) < n and and a(γ) = 0}.

The polynomial m must simply be a short vector of L. However, it remains
an open problem to efficiently construct this short vector for a large n. Once
we identify the coefficients vectors (a0, . . . , an−1) ∈ Zn with the corresponding
polynomial a(X) =

∑n−1
i=0 aiX

i ∈ Z[X], the lattice L is the set of all linear
combinations of rows of its Hermite normal form basisM.

M =



q 0 0 0 . . . 0
−γ 1 0 0 . . . 0
−γ2 0 1 0 . . . 0
... 0 0

. . . 0
...

−γn−2 0 0
... 1 0

−γn−1 0 0 . . . 0 1



← q
← X − γ
← X2 − γ2
...
← Xn−2 − γn−2
← Xn−1 − γn−1

The parameter m which is used in Algorithm 1, and which is necessary for the
Montgomery’s multiplication in [20], must be a vector of L of norm ‖u‖∞ ≈ q1/n.
On one hand, the existance of such short vector is guaranteed by a variant of
Minkowski’s theorem [17] for the ‖ · ‖∞. In [20], the authors experimentally used
the LLL algorithm [15] in small dimension to reduce the lattice and produce a
good m. In medium dimensions (n ≤ 115), one could still use extreme pruning as
described in [12] to find m. But for larger dimensions, no polynomial algorithm
is known to produce such short vector: All known lattice reduction algorithm
(either polynomial or practical) outputs vectors exponentially larger than the
optimum in practice (namely, ‖m‖2 would be ≥ 1.01nq1/n see [11]).

Now suppose that we overcome this hardness and obtain a very short vector
m of L, we still need to ensure that it is invertible mod φ. Note that when m
has a non-constant GCD with Xn − λ, this fails for all values of φ. Therefore,
whenever the resultant of m and Xn − λ is even, φ cannot be chosen as a power
of 2. Since Algorithm 1 involves a lot of exact divisions by φ, being able to take
φ equal to a power of two would have a strong impact on the efficiency of the
AMNS multiplication.

In the next subsection, we propose several solutions to overcome these prob-
lems, depending on how much freeness we have for the choice of the prime number
q.

3.2 Construction when we can choose q

In ECC cryptography, for example the Diffie Helman protocol, we can freely
choose the prime q, the only condition is that q must be large enough considering
the security level we want to reach. We propose in that case an efficient way
to construct an AMNS representation of the finite field Fq. We adapt the key
generation of the last challenges of Gentry’s fully homomorphic cryptosystem,
published in [13].

The method is a reversal construction of an AMNS representation of a finite
field, in a sense that the lattice is built around a chosen short vector m, which
satisfies the most favorable properties. The expensive lattice reduction step is
not needed any more. Furthermore, we can ensure that the resultant of m and
Xn − λ is odd, which enables us to set φ as a power of 2, and ensures that the
AMNS multiplication in Fq is efficient.

The generation algorithm we propose in Algorithm 4 takes as input the di-
mension n and a boundary s on the expected norm of m. First, we choose λ = −1.

This ensures the existance of 2n-th roots of unity, and most of all, this removes
the negative impact of all |λ| in the bounds of Lemmas 2 and 1. Then we pick
a short vector m at random, with coefficients of s bits, and test whether its re-
sultant with Xn+1 is either a prime number, or contains a large prime factor q
if one just needs to represent a ring Z/qZ instead of a field. Note that in Gen-
try’s challenges [13], the condition was more restrictive, since the resultant itself
had to be prime. However, in all cases, it is only necessary to repeat a polyno-
mial number of times the process in order to get a valid polynomial m and its
associated modulus q. All other parameters (ρ,φ, m′,γ) are easy to deduce:

Theorem 1. Given a polynomial m of odd resultant r with Xn − λ and q a
divisor of r, one deduces a valid AMNS representation basis B = (q, n, γ, ρ, λ)
and additional parameters m,m′ and φ needed by Algorithm 1 as follows:

– ρ = nλ ‖m‖∞ is a valid covering radius,
– φ is set to the smallest power of 2 larger than 4nλρ, and m′ the inverse of

m mod Xn − λ mod φ exists,
– γ is a n-th root of λ, which can be extracted from the Hermite Normal Form

of the circulant lattice basis

HNF



m0 m1 m2 · · · mn−1

λmn−1 m0 m1
. . . mn−2

λmn−2 λmn−1 m0
. . .

...
...

. m1

λm1 · · · λmn−2 λmn−1 m0


=


r 0 · · · 0

−γ 1
. . .

...
... 0

. . . 0
−γn−1 0 0 1



Proof. The rows of the above circulant matrix generate the lattice formed by
coefficient vectors of all algebraic multiples of m modulo Xn − λ. By definition,
the determinant of this lattice is exactly r, which is also the resultant of m and
Xn−λ. This means that they share a common root γ such that m(γ) = 0 mod r
and Xn = λ mod r. The right side HNF basis codes all polynomials which zero
on γ modulo r: it contains the previous lattice, and has the same determinant r,
so the generated lattices are equal. Therefore the right side HNF is the hermite
normal form of the circulant basis, and allows to compute a root γ of λ even
when the factorization of q is unknown. From the circulant basis, we see that
a sublattice contains n independent vectors of euclidean norm ≤ λ ‖m‖2, so the
covering radius of the lattice is ≤

√
nλ ‖m‖2 ≤ nλ ‖m‖∞. Therefore we can

choose ρ = nλ ‖m‖∞.

The algorithm is sumarized in Algorithm 4.
The advantage of this construction is that we do not have to proceed to an

LLL reduction in order to generate the parameters for the AMNS basis. Further-
more the vector m is invertible mod (PB, φ) by construction. This algorithm
returns the parameters of an AMNS basis, also the vector m and its inverse mI
modulo PB and φ.

Algorithm 4 Generate AMNS parameters
Require: A dimension n, a size s, and a small integer λ
Ensure: An AMNS parameter set B = (q, n, λ, γ, ρ) and (m,m′, φ)
1: repeat
2: Choose a vector (m0, . . . ,mn−1) with all coefficients ∈ [−2s, 2s]
3: Compute the resultant q′ of m =

∑n
i=0miX

i and PB(X) = Xn − λ.
4: until q′ is prime or has a large prime factor q
5: Chose ρ = λn ‖m‖∞ and φ = 2d4nλρe

6: Compute the common root γ of Xn − λ and m modulo q (using a gcd or an HNF
algorithm)

7: Compute the inverse m′ of m modulo φ
8: Return the parameter set B = (q, n, λ, γ, ρ) and (m,m′, φ)

In cases where Gentry’s construction cannot be used. Typically, in pairing
based cryptography, where the prime q is imposed by the choices of the param-
eters. We have to construct an efficient base AMNS dealing with a fixed value
of the prime q.

3.3 Construction when we cannot choose q

In pairing based cryptography, the prime q, the fields Fq and the extensions Fqm
are fixed during the construction of the elliptic curve. We do not have enough
freedom to use the Gentry-like algorithm of Section 3.2 to generate the AMNS
basis.

Of course, selecting another elliptic curve would produce another prime q.
This fact can be used to tune q until 2m divides q−1. This ensures the existence
of 2m roots of unity, and allows to set λ = −1. However, once q is chosen, the
only way to generate m is to find a short vector of the lattice spanned by

B =



q 0 0 0 . . . 0
−γ 1 0 0 . . . 0
−γ2 0 1 0 . . . 0
... 0 0

. . . 0
...

−γn−2 0 0
... 1 0

−γn−1 0 0 . . . 0 1


.

This lattice reduction phase already existed in [3]. It can be performed using
the LLL algorithm. Here, we prove that after these steps, we can choose the
small vector m having an odd resultant with Xm + 1. This allows φ to be a
power of 2.

Lemma 4. Let L be the lattice of the AMNS representation, generated by the
basis B above. Let M be another basis of L. Then, for any φ = 2k a power
of 2, there exist at least one vector m of M such that m is invertible modulo
mod (PB, φ)

Proof. First, note that a polynomial m is invertible mod (PB, φ) as soon as
the evaluation of m over all integers are odd. By interpolation arguments, it is
enough to verify that m(x) is odd on at least n integers ∈ [0, φ−1]. In the public
basis B, this is the case of the constant polynomial b0 = q. All the other rows
can be put on the form bk = Xk−αk where αk is odd (by adding q if necessary).
Of course, b1, . . . bk−1 are not invertible since their evaluations on 1 are always
even.

Let M = [m0,m1, . . . ,mn−1] be another basis of L, it is obtained by left
multiplication of B = [b0, b1, . . . , bn−1] by a unimodular matrix. Consequently,
there exists an index i such that mi = u0b0 + · · · + un−1bn−1 where u0 is odd.
Then by construction, mievaluates to an odd number on every odd integer, and
therefore, it is invertible mod (PB, φ). ut

By this lemma, once a lattice reduction algorithm (like LLL [15], BKZ [23],
or better, HKZ [22]) has been run on B, this property implies that we always
have a vector inM invertible mod (PB, φ). We can choose this vector for the
Montgomery’s like multiplication, together with φ = 2k. Even if this is not the
first vector ofM, the norm of m remains short.

4 Implementation and results

16384

32768

65536

131072

262144

524288

1.04858e+06

2.09715e+06

4.1943e+06

8.38861e+06

1.67772e+07

3.35544e+07

0 200 400 600 800 1000 1200 1400 1600

Multiplication in Fqm

m=32

m=64

m=16

m=8

(amns-fft)

(N
TL
)

(NT
L)

(amns-fft)

(amns-fft)

(amns-fft)

(NT
L)

(N
TL
)

Base field size (bits of q)

m
u
lt
ip

li
ca

ti
o
n
 t

im
e

(c
y
cl

es
)

Fig. 1. Running time in cycles of multiplication in Fqm , AMNS with FFT versus NTL
ZZ_pE

In order to illustrate our approach, we implemented the AMNS arithmetic
for Fqm where q had between 150 bits and 1500 bits, and for various extensions

m = 8, 16, 32 and 64 with a FFT. Other small non-power-of-two extensions, like
m = 17 use the DFT. Both algorithms are given in Section 2.

Our implementation is written in C++ language, and is tested on an In-
tel Core i5 laptop with a 32-bit Linux platform1. The AMNS parameters are
chosen such that the representation can fit on 32-bit integers, and during the
computation, temporary variables are stored on 64-bit integers, so that they can
store products without overflow. Note that on 64-bit platforms, the size of the
parameters can be doubled, so that AMNS vectors fit on 64-bit integers and
temporaries on 128-bit long integers.

By construction, the complexity of the arithmetic in AMNS representation
only depends on the dimension n and the extension degree m ≤ n. When these
two dimensions are fixed, the running time does not depend on the bit-size of
the corresponding base field q, as soon as there exist AMNS parameters for Fq
(basically, 2n|q − 1 and and q = O(ρn)).

Note that the AMNS arithmetic requires some precomputations, for instance
of the polynomial m. In order to make a fair comparison, we chose to compare
our results with the NTL 5.4.2 [24]2 version of arithmetic on the same field ex-
tensions using the ZZ_pE module. This is the fastest module of NTL to perform
arithmetic in a fixed field extension Fq[X]/P , and allows for instance NTL to
preprocess some data, based on q and P , in order to speed-up all operations. Of
course, the arithmetic in the base field of NTL is performed by GMP, which is
also highly optimized in assembly.

Figure 1 provides the reader with a comparison between the computational
time required by our AMNS library and NTL for multiplication over Fqm .

The running time of a multiplication in cycles of AMNS and NTL based
multiplications. We restricted the AMNS parameters to the case m = n, and the
results are obtained with the -O9 -static -funroll-all-loops -masm=intel -ftree-
vectorize -msse3 optimization flags of g++.

For m = 8, our AMNS implementation is more efficient than NTL for q
smaller than 180 bit. For m = 16, our AMNS implementation less efficient than
NTL. However, for larger extension degrees, according to the results reported in
Figure 1, our implementation of AMNS multiplication is faster than NTL for
large q, like extension degree m = 32 and q ≥ 300 bits, or m = 64 and q ≥ 800
bits.

5 Conclusion

We revised the study of AMNS bases in order to improve the arithmetic over
finite field extensions. We propose new efficient routines to efficiently construct
AMNS bases. An easy one, when the characteristic can be freely chosen, is de-
rived from Gentry’s algorithm. Else, when the prime number q is constrained by
1 Ubuntu precise 12.04, with kernel 3.2.0-21-generic-pae, 4Gb RAM, and compiler
g++ version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu3)

2 libntl-dev, as packaged by default on ubuntu 11.10. It is statically linked with
GMP 4.3.2 for large integer operations.

other parameters of the protocol, we develop an explicit construction of efficient
AMNS bases. We also propose the first software implementation of the AMNS
arithmetic over fields extensions, which runs faster than GMP over large fields. It
could be interesting to compare an implementation of a pairing based protocole
in AMNS representation with an implementation in a classical representation.

Open problems:

– As mentionned in Remark 2 the equality test in the AMNS representation is
not straightforward. It would be interesting to compare the different methods
to compare a number in the AMNS representation.

– According to the protocol, it could be interesting to find an efficient method
to implement the division in the AMNS representation.

– We compare the multiplication in an extension field in the AMNS repre-
sentation with the classical multiplication implemented in NTL. This work
can be completed with the comparaison of the implementation of a crypto-
graphic protocol over finite field in classical representation and in the AMNS
representation.

Acknowledgments

The authors would like to thank Jean Luc Beuchat, Thomas Plantard, and Peter
Schwabe for their invaluable comments and helpful suggestions on our prelimi-
nary manuscript, and the anonymous reviewers for their numerous suggestions
and remarks which have enables us to substantially improve the paper.

References

1. NIST Key Length Recommendations. http://www.keylength.com/.
2. Recommendations for Key Management. Special Publication 800-57 Part 1, 2007.
3. J.C. Bajard, L. Imbert, and T. Plantard. Modular number systems: beyond the

Mersenne family. In Selected Areas in Crytography: 11th International Workshop,
SAC 2004, volume 3357 of LNCS, pages 159–169. Springer-Verlag, 2004.

4. M. Bodrato. Towards Optimal Toom-Cook Multiplication for Univariate and Mul-
tivariate Polynomials in Characteristic 2 and 0. In WAIFI 2007, volume 4547 of
Lecture Notes in Computer Science, pages 116–133. Springer, 2007.

5. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing.
CRYPTO ’01, pages 213–229, London, UK, 2001. Springer-Verlag.

6. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
In Journal of Cryptology, volume 17 of Lecture Notes in Computer Science, pages
297–319, 2004.

7. E. Brier and M. Joye. Fast point multiplication on elliptic curves through isogenies.
In M. P. C. Fossorier, T. Høholdt, and A. Poli, editors, AAECC, volume 2643 of
Lecture Notes in Computer Science, pages 43–50. Springer, 2003.

8. J. Chung and A. Hasan. More Generalized Mersenne Numbers: (extended ab-
stract). In M. Matsui and R. J. Zuccherato, editors, Selected Areas in Cryptogra-
phy, volume 3006 of Lecture Notes in Computer Science, pages 335–347. Springer,
2003.

9. A. J. Devegili, C. Ó hÉigeartaigh, M. Scott, and R. Dahab. Multiplication and
squaring on pairing-friendly fields. Cryptology ePrint Archive, Report 2006/471,
2006. http://eprint.iacr.org/.

10. N. El Mrabet and C. Nègre. Finite field multiplication combining AMNS and
DFT approach for pairing cryptography. In ACISP ’09: Proceedings of the 14th
Australasian conference on Information Security and Privacy, volume 5594, pages
422–436, London, UK, 2009. Springer-Verlag.

11. N. Gama and P. Q. Nguyen. Predicting Lattice Reduction. In proceedings of
Eurocrypt’08, LNCS, Springer Verlag, pages 31 – 51, 2008.

12. N. Gama, P. Q. Nguyen, and O. Regev. Lattice Enumeration using Extreme Prun-
ing. In proceedings of Eurocrypt 2010, LNCS, Springer Verlag, 2010.

13. C. Gentry and S. Halevi. Implementing Gentry’s Fully Homorphic Encryption
Scheme. In proceedings of Eurocrypt 2011, LNCS 6632, Springer Verlag, pages 129
– 148, 2011.

14. R. Katti and J. Brennan. Low Complexity Multiplication in a Finite Field Using
Ring Representation. IEEE Transactions on Computers, 52(4):418–427, 2003.

15. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with
rational coefficients. Mathematische Ann., 261:513–534, 1982.

16. V. Miller. Use of elliptic curves in cryptography. Advances in Cryptology-Crypto
85, 218:417–426, LNCS 1986.

17. H. Minkowski. Geometrie der Zahlen. Leipzig und Berlin, Druck und Verlag von
B.G. Teubner, 1910.

18. P. L. Montgomery. Five, six, and seven-term Karatsuba-like formulae. IEEE
Transactions on Computers, 54(3):362–369, 2005.

19. N. El Mrabet, A. Guillevic, and S. Ionica. Efficient multiplication in finite field
extensions of degree 5. In Proceedings of Africacrypt 2011. Springer, LNCS, 2011.

20. C. Nègre and T. Plantard. Efficient modular arithmetic in adapted modular
number system using Lagrange representation. In ACISP ’08: Proceedings of the
13th Australasian conference on Information Security and Privacy, pages 463–477,
Berlin, Heidelberg, 2008. Springer-Verlag.

21. K. Rubin and A. Silverberg. Torus-Based Cryptography. In D. Boneh, editor,
Advances in Cryptology CRYPTO 2003, volume 2729, pages 349–365. Springer,
2003.

22. C-P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Theo-
retical Computer Science, 53:201–224, 1987.

23. C-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algo-
rithms and solving subset sum problems. Math. Programming, 66:181–199, 1994.

24. V. Shoup. Number Theory Library, http://www.shoup.net/ntl, 1996.
25. J. H. Silverman. Rings of low multiplicative complexity. In Finite Fields and Their

Applications, volume 6 of Academic Press, pages 175–191, 2000.
26. M. van Dijk, R. Granger, D. Page, K. Rubin, A. Silverberg, M. Stam, and

D. Woodruff. Practical cryptography in high dimensional tori. In Advances In
Cryptology eurocrypt 2005, volume 3494 of Lecture Notes in Computer Science,
pages 234–250. Springer Verlag, 2005.

27. J. Von ZurGathen and J. Gerhard. Modern Computer Algebra. Cambridge Uni-
versity Press, New York, NY, USA, 2003.

