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Pairings are mathematical tools that have been proven to be very useful in the construction of many cryptographic protocols. Some of these protocols are suitable for implementation on power constrained devices such as smart cards or smartphone which are subject to side channel attacks. In this paper, we analyse the efficiency of the point blinding countermeasure in pairing based cryptography against side channel attacks. In particular,we show that this countermeasure does not protect Miller's algorithm for pairing computation against fault attack. We then give recommendation for a secure implementation of a pairing based protocol using the Miller algorithm.

Introduction

Pairings are bilinear maps defined on the group of rationals points of elliptic or hyper elliptic curves [START_REF] Washington | Elliptic curves, number theory and cryptography[END_REF]. Nowadays, more and more protocols using pairings are proposed in the literature [START_REF] Dutta | Pairing-based cryptography : A survey[END_REF][START_REF] Joye | Identity-based Cryptography[END_REF][START_REF] Boneh | Identity-Based Encryption from the Weil pairing[END_REF]. Among these protocols, only those constructed on the identity based model involve a secret which is one of the argument during the computation of a pairing. The implementation of a pairing based protocol is efficient enough to allow the use of pairing based cryptography on power constrained device such as smart cards and mobile phones [START_REF] Scott | Implementing cryptographic pairings on smartcards[END_REF][START_REF] Kawahara | Efficient implementation of Tate pairing on a mobile phone using java[END_REF][START_REF] Iyama | Efficient implementation of pairing on brew mobile phones[END_REF]. Smart cards are by nature sensitive to side channel attacks. Side channel attacks are powerful attacks that use the implementation of a protocol to obtain information on the secret. They are divided into two families: invasive and non invasive attacks. Invasive attacks are based on the model of fault attacks. The execution of a protocol is disturbed, the result is then a faulty one and the analysis of this faulty result can provide information on the secret. In non invasive attacks, the information can be leaked by the time of execution, the electric consumption or the electromagnetic emission of the device. Several works have investigated the robustness of identity based cryptography to side channel attacks. They are mainly focused on fault attacks [START_REF] Page | A fault attack on Pairing-Based Cryptography[END_REF][START_REF] Whelan | The importance of the final exponentiation in pairings when considering Fault Attacks[END_REF][START_REF] Mrabet | What about vulnerability to a fault attack of the Miller algorithm during an Identity Based Protocol?[END_REF][START_REF] Bae | Instruction fault attack on the Miller algorithm in a pairingbased cryptosystem[END_REF]. Few works consider differential power analysis attack [START_REF] Page | A fault attack on Pairing-Based Cryptography[END_REF][START_REF] Mrabet | Differential Power Analysis against the Miller algorithm[END_REF][START_REF] Blömer | Improved side channel attacks on pairing based cryptography[END_REF]. As the secret during an identity based protocol can be recovered by side channel attacks, several countermeasures were proposed. Those countermeasures are the same for invasive and non invasive attacks [START_REF] Mrabet | Fault attacks on pairing-based cryptography[END_REF]. In [START_REF] Roy | Fault attack and countermeasures on pairing based cryptography[END_REF], Ghosh, Mulhopadhyay and Chowdhury proposed an analysis of countermeasures to fault attack presented in [START_REF] Page | A fault attack on Pairing-Based Cryptography[END_REF]: the new point blinding method and the alliterating point blinding method. They concluded that the countermeasures are not sufficient and proposed new one. However, their explanations on the non efficiency of the countermeasure are not convincing. Later, Park et al. [START_REF] Park | Fault attack on a point blinding countermeasure of pairing algorithms[END_REF] clearly exposed the weaknesses of the point blinding technique against fault attacks described by Page and Vercauteren [START_REF] Page | A fault attack on Pairing-Based Cryptography[END_REF].

In this article we analyze and extend the work in [START_REF] Roy | Fault attack and countermeasures on pairing based cryptography[END_REF][START_REF] Park | Fault attack on a point blinding countermeasure of pairing algorithms[END_REF] on the efficiency of the point blinding countermeasure in pairing based cryptography. Especially, we generalize the attack of Park et al. [START_REF] Park | Fault attack on a point blinding countermeasure of pairing algorithms[END_REF] and expose its failure to protect the Miller algorithm, main tool in pairing computation. As the most efficient pairings are constructed on the model of the Tate pairing, we focus on the Miller algorithm, used for the Tate pairing considering Weierstrass elliptic curve. Obviously, this analysis is the same for the (optimal ) Ate, twisted Ate or pairing lattices; and for every model of elliptic curve or coordinates.

The rest of this paper is organized as follows: The Section 2 presents brief concepts on pairings that are useful to understand this work. In Section 3 we present side channel attacks with emphasis on fault attacks in pairing based cryptography. In Section 4 we explicitly demonstrate that the point blinding countermeasure fails to protect the Miller algorithm against fault attack. Finally we conclude the work in Section 6.

Background on pairings

In this section, we briefly recall basics on pairings and on the Miller algorithm [START_REF] Miller | The Weil pairing and its efficient calculation[END_REF], main tool for an efficient computation of pairings. Let E be an elliptic curve defined over a finite field F q , with q a prime number or a power of a prime. The neutral element of the additive group law defined on the set of rational points of E is denoted P ∞ . Let r be a large prime divisor of the group order E(F q ) and k the embedding degree of E with respect to r, i.e. the smallest integer k such that r divides q k -1. The integer k is also the smallest integer such that E F q [r] ⊂ E(F q k ), where E F q [r] = {P ∈ E F q : [r]P = P ∞ } with [r]P = P + P + . . . + P r times and F q is the algebraic closure of F q .

In general , the sizes of r, q and k are dependent from the security level and the currently recommendations are at least r > 2 160 and q k > 2 2024 [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF]. The recent results for the discrete logarithm problem [START_REF] Joux | A new index calculus algorithm with complexity l(1/4+o(1)) in small characteristic[END_REF][START_REF] Barbulescu | A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic[END_REF] imply that the number q must be a large prime number. The security recommendations allow the choice of k to be a product of power of 2 and 3. A consequence of the fact that k ≡ 0 mod 2 is the use of a twist representation for the point Q. This representation using a twisted elliptic curve allow the denominator elimination optimization [START_REF] Koblitz | Pairing-based cryptography at high security levels[END_REF].

Definition of a twisted elliptic curve. We explain here the concept of twist of elliptic curve in the context of Weierstrass elliptic curve. This will help us to understand the choice of the coordinates of points in Section 4. The quadratic twist of the elliptic curve E :

y 2 = x 3 + ax + b over F p k is the elliptic curve Ẽ : 1 ν y 2 = x 3 + ax + b
where {1, ν} is a basis of F q k as F q k/2 vector space. The two curves are isomorphic via

ψ : Ẽ(F q k/2 ) -→ E(F q k ) (x, y) -→ (x, y √ ν).
This isomorphism is particularly useful since it enables to take the point

Q ∈ E(F q k ) in the following manner Q = ψ(Q ) where Q = (x Q , y Q ) with x Q , y Q ∈ F q k/2
. This ensures an efficient computation since many computations will be consequently done instead in the subfield F q k/2 and more interestingly, it enables to avoid the inversions in the Miller algorithm. This elimination is the denominator elimination [START_REF] Koblitz | Pairing-based cryptography at high security levels[END_REF].

Indeed, if P 1 (x 1 , y 1 ) and P 2 (x 2 , y 2 ) are two points of the elliptic curve in Weierstrass form E : y 2 = x 3 + ax + b then the function h P 1 ,P 2 with divisor Div(h P 1 ,P 2 ) = (P 1 ) + (P 2 ) -

(P 1 + P 2 ) -(P ∞ ), is h P 1 ,P 2 = P 1 ,P 2 v P 1 +P 2
where P 1 ,P 2 is the straight line defining P 1 +P 2 and v P 1 +P 2 is the corresponding vertical line passing through P 1 + P 2 . Explicitly, we have

h P 1 ,P 2 (x, y) = y -λx -α x -x 3 ,
where x 3 is the first coordinate of

P 1 + P 2 and λ = y 2 -y 1 x 2 -x 1 if P 1 = P 2 , λ = 3x 2 1 + a 2y 1 if P 1 = P 2 and α = y 1 -λx 1 .
In the particular case of doubling (P 1 = P 2 ), a straightforward computation gives, after changing to Jacobian coordinates (

x 1 = X 1 Z 2 1 , y 1 = Y 1 Z 3 1 ) h P 1 ,P 1 (Q) = h P 1 ,P 2 (x Q , y Q √ ν) = 2Y 1 Z 3 1 y Q √ ν -2Y 2 1 -(3X 2 1 + aZ 4 1 )(x Q Z 2 1 -X 1 ) 2Y 1 Z 3 1 (x Q -x 3 )
,

We then remark that the denominator of the previous expression is an element of F q k/2 and consequently will be equal to 1 during the final exponentiation. So the main expression that will be used in the Miller algorithm is:

h P 1 ,P 1 (Q) = h P 1 ,P 2 (x Q , y Q √ ν) = 2Y 1 Z 3 1 y Q √ ν -2Y 2 1 -(3X 2 1 + aZ 4 1 )(x Q Z 2 1 -X 1 ) (1) 
The expression given by equation 1 is used in algorithms 1 and 2 and will be particularly useful in Section 4 to illustrate our attack.

The Tate pairing. Consider a point P ∈ E(F q )[r], the principal divisor D = r(P ) -r(P ∞ ) and a function f r,P with divisor Div (f r,P ) = D. Let Q ∈ E(F q k )[r]/E(F q ) and µ r be the group of r-th roots of unity in F * q k . The reduced Tate pairing e r is a bilinear and non degenerate map defined as

e r : E(F q )[m] × E(F q k )[r] → µ m (P, Q) → f r,P (Q) q k -1 r
The value f r,P (Q) can be determined efficiently using Miller's algorithm [START_REF] Miller | The Weil pairing and its efficient calculation[END_REF]. More information on pairings can be found in [START_REF]Handbook of elliptic and hyperelliptic curve cryptography[END_REF]. In order to obtain the result of the Tate pairing, the output of Miller's algorithm must be raised to the power q k -1 r , this operation is called the final exponentiation. 

: P ∈ E(Fq)[r], Q ∈ E(F q k )[r], m = (1, mn-2, ....m1, m0)2. Output: fm,P (Q) 1: Set f ← 1 and T ← P 2: For i = n -2 down to 0 do 3: f ← f 2 • hT,T (Q),
with hT,T the Equation (1) of the tangent to E at point T 4:

T ← 2T 5:

if mi = 1 then 6:

f ← f • hT,P (Q), with hT,P the equation of the line (P T ) 7:

T ← T + P 8:

end if 9: end for 10: return f We call a Tate-like pairing any pairing constructed on the following model: an execution of the Miller algorithm followed by a final exponentiation. Every Tate-like pairing was an improvement of the previous. The ate pairing [START_REF] Hess | The Eta Pairing Revisited[END_REF] was an improvement of the Tate pairing [START_REF] Scott | Computing the Tate pairing[END_REF], the twisted ate pairing [START_REF] Hess | The Eta Pairing Revisited[END_REF] an improvement of the ate pairing, the notion of optimal pairings [START_REF] Vercauteren | Optimal pairings[END_REF] an improvement of the ate and twisted ate pairing and finally the pairing lattices [START_REF] Hess | Pairing lattices[END_REF] another way to deal with optimal pairings. The algorithmic difference between the Tate pairing and a Tate-like pairing is principally the number of iterations, sometimes it could also be the role playing by P and Q. In Algorithm 1, we describe the Miller algorithm. In order to keep our explanations general , the number of iterations in the Miller algorithm is indexed over m. The integer m would be r for the Tate pairing, or smaller than r for a Tate-like pairing. We describe the attack considering that we are computing a pairing using f m,P (Q), for m the integer giving the number of iterations of the pairing. Obviously, the discussion can be straightforward adapted for the computation of f m,Q (P ).

Obviously, the system of coordinates influences the equations of the Miller algorithm, but if the attack is efficient over one model of elliptic curve for one system of coordinates, then the same attack will be efficient over any other model of elliptic curve and considering any other system of coordinates.

Side channel attacks on Pairing-Based cryptography and Countermeasures

In this section we briefly recall and describe existing side channel attacks and countermeasures in the context of pairing-based cryptography. Especially, we analyse the point blinding countermeasure presented in [START_REF] Page | A fault attack on Pairing-Based Cryptography[END_REF] and its weakness exposed in [START_REF] Park | Fault attack on a point blinding countermeasure of pairing algorithms[END_REF].

Background on side channel attacks

The first analysis of side channel attacks against a pairing was proposed by Page and Vercauteren [START_REF] Page | A fault attack on Pairing-Based Cryptography[END_REF]. They attack the Duursma and Lee algorithm used to compute a pairing over super singular elliptic curves. Page and Vercauteren described a new fault attack model and mention without development the differential power analysis against pairings. The fault model consists in the modification of the number of iterations of an algorithm. The fault attack was adapted by further works on the Miller algorithm [START_REF] Whelan | The importance of the final exponentiation in pairings when considering Fault Attacks[END_REF][START_REF] Mrabet | What about vulnerability to a fault attack of the Miller algorithm during an Identity Based Protocol?[END_REF][START_REF] Bae | Instruction fault attack on the Miller algorithm in a pairingbased cryptosystem[END_REF]. Whelan et Scott [START_REF] Whelan | The importance of the final exponentiation in pairings when considering Fault Attacks[END_REF] highlighted the fact that pairings without a final exponentiation are more sensitive to a sign change fault attack. They analyzed the Weil, the Tate and Eta pairing. They used a simplified version of Page and Vercauteren attack. After that, El Mrabet [START_REF] Mrabet | What about vulnerability to a fault attack of the Miller algorithm during an Identity Based Protocol?[END_REF] generalized the attack of Page and Vercauteren to the Miller algorithm used to compute all the recent optimizations of pairings. El Mrabet considered only the Miller algorithm and did not take into account the final exponentiation. The target of El Mrabet's attack is the loop counter in the Miller algorithm. The final exponentiation was attacked by Lasherme et al. [START_REF] Lashermes | Inverting the final exponentiation of Tate pairings on ordinary elliptic curves using faults[END_REF]. They used three faults to inverse the final exponentiation of the Tate pairing, which is the same for Ate and twisted ate pairing. Recently, an attack against a whole pairing, i.e. the Miller algorithm together with the final exponentiation, was published by Blömer et al. in [START_REF] Blömer | A practical second-order fault attack against a real-world pairing implementation[END_REF]. The attack consists in modifying the clock of the device and as a consequence, the device returns intermediary results that allow to recover the secret. Few works consider differential power analysis. In [START_REF] Mrabet | Differential Power Analysis against the Miller algorithm[END_REF] El Mrabet et al. highlight the fact that without protection the Miller algorithm is sensitive to a differential power analysis attack. Their work was recalled in [START_REF] Blömer | Improved side channel attacks on pairing based cryptography[END_REF]. In practice, the efficiency of side channel attacks does not lay on the choice of the characteristic, neither on the choice of the elliptic curve, nor on the choice of the coordinates. To each attack, several countermeasures were proposed. The countermeasures rely on the bilinearity of pairings, or on the homogeneity of the coordinates [START_REF] Mrabet | Fault attacks on pairing-based cryptography[END_REF].

Description of Fault Attack

In an Identity Based Encryption scheme [START_REF] Boneh | Identity-Based Encryption from the Weil pairing[END_REF], one argument of the pairing is secret. So fault attacks can be performed to reveal the secret. We describe the attack against the Miller algorithm. As stated in the introduction, fault attack on pairing algorithm tries to corrupt the loop bound (which is log(m)) of the Miller algorithm. The attacker injects fault repetitively in such a way that he can obtain two consecutive loop bounds log(m -s) and log(m -s) + 1 and the corresponding pairings e m-s (P, Q) and e m-s+1 (P, Q), for a certain integer s. It has been shown in [START_REF] Mrabet | What about vulnerability to a fault attack of the Miller algorithm during an Identity Based Protocol?[END_REF] that it is possible to obtain such consecutive integers in a finite number of fault injections.

The clock glitch attack described in [START_REF] Blömer | A practical second-order fault attack against a real-world pairing implementation[END_REF] highlights the fact that in practice a modification of the glitch can make the device stop and return intermediary results, such as internal results of Miller's algorithm. In order to explain how the attacker can obtain the secret point from the erroneous pairings e m-s (P, Q) and e m-s+1 (P, Q) we consider the two following situations.

First situation: Excluding the final exponentiation. Instead of obtaining the values e m-s (P, Q) and e m-s+1 (P, Q) after the final exponentiation, the attacker tries to get the final values obtained after log(m-s) and log(m-s)+1 iterations, just before the final exponentiation. A method to obtain those intermediary values is the use of a clock glitch attack [START_REF] Blömer | A practical second-order fault attack against a real-world pairing implementation[END_REF]. We denote these values by f m-s,P (Q) and f m-s+1,P (Q). Depending of the last bit corresponding to each iteration, we have four possibilities for the expression of f m-s,P (Q) and f m-s+1,P (Q).

Without lost of general ity, we can consider the case when

f m-s+1,P (Q) = (f m-s,P (Q)) 2 × h [j]P,[j]P (Q),
with j the integer composed by the log 2 (m -s) most significant bits of m.

Consequently, the attacker knows

S = f m-s+1,P f 2 m-s,P (Q) = h [2j]P,[2j]P (Q).
The trick of the attacker is now to use the representation of S and h [2j]P,[2j]P (Q) ∈ F q k in a basis of F q k /F q in order to obtain by identification, a system of linear or non-linear equations. The resolution of this system leads to the obtention of the coordinates of the secret point. A successful such attack has been mounted against the Miller algorithm [START_REF] Mrabet | Fault attack against Miller's algorithm[END_REF]. We briefly recall the attack and refer to [START_REF] Mrabet | What about vulnerability to a fault attack of the Miller algorithm during an Identity Based Protocol?[END_REF] for a complete description of this attack.

We recall that the point Q is public, the point P is secret and R is random in E(F q k ). For efficiency reasons, the embedding degree k is smooth and at least divisible by 2, or 4 or for the best cases by 6. A smooth integer is a number that admits a factorisation into small prime numbers. This condition on k enables efficient computation of pairings and the denominator elimination thanks to the twist of the elliptic curve. A consequence is that the points Q and R are seen as images of points belonging to the twist. The coordinates of R are composed by at most k values in F q k/d , where d is the degree of the twist. The point P could be given in affine, projective or Jacobian coordinates. The choice will depend on the most efficient computation for the pairing. Whatever the choice is, the coordinates of point P will always count as 2 unknown values X P and Y P . This is obvious if P is given in affine coordinates. If P is given in projective or Jacobian coordinates, P would be characterized and gives improvement of the pairing computations by 3 unknown values X P , Y P and Z P . But, using the homogeneity of projective and Jacobian coordinates, we could consider that the point P is in fact X P , Y P and 1. Indeed, we know that for Z = 0 in projective coordinates (X, Y, Z) ∼ = (X/Z, Y /Z, 1) and in Jacobian coordinates (X, Y, Z) ∼ = (X/Z 2 , Y /Z 3 , 1).

Putting all together one obtains a system of k + 2 polynomial equations in k + 2 unknown values. This system admits solutions as it is derived from a constructive algorithm. The points P and R are defined by construction. So, we can use the Gröbner basis [START_REF] Buchberger | An algorithm form finding the basis elements of the residue class ring of a zero dimensional polynomial ideal (phd thesis 1965[END_REF] for instance to solve the system and find the coordinates of the point P . If the secret is the point Q, the attack is easier and successful [START_REF] Mrabet | What about vulnerability to a fault attack of the Miller algorithm during an Identity Based Protocol?[END_REF].

Second situation: Including the final exponentiation. In this situation we consider the values e m-s (P, Q) and e m-s+1 (P, Q) obtained after the final exponentiation. Then

e m-s+1 e 2 m-s = h [2j]P,[2j]P (Q) (q k -1) r
The aim here is, since it has been easy to obtain e m-s (P, Q) and e m-s+1 (P, Q) contrary to situation 1, to reverse the exponent (q k -1) r , such that an application of the method in situation 1 may lead to the obtaining of the secret. In secured pairing based protocols, it has been shown that the exponent (q k -1) r is difficult to reverse mathematically [START_REF] Scott | On the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves[END_REF][START_REF] Lashermes | Inverting the final exponentiation of Tate pairings on ordinary elliptic curves using faults[END_REF]. So the attack in this situation requires a fault model that would neutralize the final exponentiation, which is possible experimentally. One possibility can be to combine two fault models to neutralize the final exponentiation. For instance use a fault attack to reduce the number of iterations as in [START_REF] Mrabet | What about vulnerability to a fault attack of the Miller algorithm during an Identity Based Protocol?[END_REF] and a fault attack to reverse the exponentiation as in [START_REF] Lashermes | Inverting the final exponentiation of Tate pairings on ordinary elliptic curves using faults[END_REF]. Another way would be to use a fault model that modifies the time of execution as modification of the glitch or under voltage attack [START_REF] Blömer | A practical second-order fault attack against a real-world pairing implementation[END_REF].

Remark 1. In the case of super singular elliptic curves, the final exponentiation can be reversed by mathematical considerations, the form of the exponent combined with a sparse decomposition in the basis of F p k allow this operation [START_REF] Page | A fault attack on Pairing-Based Cryptography[END_REF]. This is specific to pairings over supersingular elliptic curves and cannot be applied to ordinary elliptic curves.

The Point Blinding countermeasure and weaknesses

In [START_REF] Roy | Fault attack and countermeasures on pairing based cryptography[END_REF], Ghosh, Mulhopadhyay and Chowdhury proposed an analysis of countermeasures to fault attack presented in [START_REF] Page | A fault attack on Pairing-Based Cryptography[END_REF]. They analyze what they called the new point blinding technique: e(P, Q) = e([x]P, [y]Q) for random x, y such that xy ≡ 1 mod (r) and the altering traditional point blinding:

e(P, Q) = e(P, Q + R) e(P, R) ,
for R a random point in E(F q ) such that the pairings e(P, Q) and e(P, R) are defined. They conclude that these two countermeasures are not sufficient against the fault attack described in [START_REF] Page | A fault attack on Pairing-Based Cryptography[END_REF]. However their analysis was not convincing. Concerning the new point blinding method, they claim that the intermediary steps of a pairing computation are bilinear which is not the case. The ratio obtained in the attack depends on the coordinates of the points [x]P and [y]Q, with x and y unknown to the attacker. They do not explain how they can recover the value of the secret point used during the pairing computation. Concerning the altering traditional point blinding method, their analysis was not clear enough. In [START_REF] Roy | Fault attack and countermeasures on pairing based cryptography[END_REF] the explanation did not take into account the randomness induced by the point R. We demonstrate in the next section that this countermeasure is not efficient with a precise approach and we develop the corresponding equation.

In [START_REF] Park | Fault attack on a point blinding countermeasure of pairing algorithms[END_REF] Park et al. exposed the weaknesses of the point blinding technique against fault attacks of Page and Vercauteren [START_REF] Page | A fault attack on Pairing-Based Cryptography[END_REF]. They presented an attack where they omit the last iteration of the Duursma and Lee algorithm. We generalize their approach to the Miller algorithm and for every iteration not only the last one.

Attack against the point blinding countermeasure during Miller's algorithm

In this section, we first explain how the Miller algorithm can be implemented with the point blinding technic. As far as we know, this is the first time that an algorithm is proposed for the implementation of this counter measure. The aim of point blinding method is to add randomness to the known entry of the pairing computation. Indeed, a side channel attack is successful principally because the attacker knows the value of data combined with the secret. The point blinding countermeasure is made to blind the knowledge of the attacker. As the point R is random, the point Q + R is also random. This countermeasure is considered as sufficient to prevent any side channel attack against a pairing implementation.

We then show how this countermeasure does not really protect the algorithm against fault attack.

Implementation of the countermeasure

We discuss here the possible ways to implement the Miller algorithm using the point blinding countermeasure: e(P, Q) = e(P,Q+R) e(P,R) .

Case 1: We consider that the secret is the point P ∈ E(F q ). The point Q ∈ E(F q k ) is public. The countermeasure consists in adding randomness to the point Q, expecting that it would be then impossible to perform the fault attack. The randomness is the choice of a point R such that the pairings e(P, R) and e(P, Q + R) are defined.

In practice, for optimization reason, k is smooth. In order to simplify the explanation, we consider that k ≡ 0 mod 2. The point Q is represented as the image of a point Q belonging to the twisted elliptic curve E of E and defined over

F q k/2 . The coordinates of Q are Q = (x Q , y Q √ ν)
, for a quadratic twist. If another twist is used, the scenario is the same, but the equation must be adapted in consequence.

The device is implemented to compute e(P,Q+R) e(P,R) . For efficiency reasons, as these two pairing computations are performed during the scalar multiplication of the point P , the two computations e(P, Q + R) and e(P, R) would be done in parallel. In order to compute only one exponentiation on the elliptic curve. The inversion in the field F q k and the final exponentiation are expensive operations. So, once obtained the results f m,P (Q + R) and f m,P (R), it will be more efficient to perform the inversion followed by the final exponentiation instead of two final exponentiations followed by an inversion. In practice, the discussion about inverting the final exponentiation is the same for the altering point blinding countermeasure and the classical Miller algorithm recalled in Section 3.2. Given these efficiency considerations, the Miller algorithm that would be used for the point blinding countermeasure would likely to be as presented in Algorithm 2. For clarity of explanations, we add the inversion at the end of Miller algorithm (step 14), it could be performed outside the Miller algorithm and that would not change our discussion.

Algorithm 1: Miller's Algorithm with the point blinding countermeasure

Input : P ∈ E(Fq)[r], Q ∈ E(F q k )[r] \ E(Fq)[r], m = (1, mn-2, ....m1, m0)2. Output: f m,P (Q+R) f m,P (R) 1: Choose R randomly in E(F q k )[r] \ E(Fq)[r] 2: If R = -Q, go to 1. 3: Set f ← 1, g ← 1 and T ← P 4: For i = n -2 down to 0 do 5: f ← f 2 • hT,T (Q + R) 6: g ← g 2 • hT,T (R) 7: T ← 2T 8: if mi = 1 then 9: f ← f • hT,P (Q + R) 10:
g ← g • hT,P (R) 11:

T ← T + P 12:

end if 13: end for 14: return f g Fig. 2. The modified Miller algorithm Case 2: We consider that the point P ∈ E(F q ) is public and the secret is the point Q ∈ E(F q k ). The randomness, considering the point blinding countermeasure would be added to the point P . The device would be implemented in order to compute e(P +R,Q) e(R,Q) . The implementations of the two Miller algorithms would then be done either in parallel or consecutively. The choice would highly depend on the target for the implementation. On a multiple processor device the parallel solution would be preferred. On a constrained device, as a smart card, the computation would be done one after the other, or delegated to a more powerful device. Considering this hypothesis we do not try to give a general way to perform the computation. Indeed, either the same counter will be used and if it is modified once, it will be for the two computations. Either two counters will be used and then two faults would be necessary to modify them. The case of a delegation of the computation would require a whole article. We do not describe it here.

Description of the attacks

We describe here the fault attack against the Miller algorithm implemented using the point blinding countermeasure e(P, Q) = e(P,Q+R) e(P,R) .

Case 1: when the secret is the point P . We consider that the secret is the point P , we can freely choose the point Q and the randomness is the point R such that the pairings e(P, R) and e(P, Q + R) are defined. The device is implemented to compute e(P,Q+R) e(P,R) using the modified Miller algorithm described in the Algorithm 2.

The target of the fault attack is the counter given the number of iterations in the modified Miller algorithm. The aim of the fault is to reduce the number of iterations performed during the execution of the Miller algorithm. For instance, the fault can be induced by a laser [START_REF] Anderson | Tamper resistance -a cautionary note[END_REF][START_REF] Trichina | Multi fault laser attacks on protected CRT-RSA[END_REF] or a modification of the glitch [START_REF] Blömer | A practical second-order fault attack against a real-world pairing implementation[END_REF]. The probability to obtain two shortened Miller algorithms with consecutive number of iterations is high enough to made this hypothesis realistic [START_REF] Mrabet | What about vulnerability to a fault attack of the Miller algorithm during an Identity Based Protocol?[END_REF]. So, we suppose that we have obtained the results of the modified Miller algorithm after the m th and the (m + 1) th iterations, for m an integer smaller than m the original number of iterations. We exactly know what happens during the (m + 1) th iteration.

Let f m and g m denote the results stored in f and g at the m th iteration, let m i be the value of the corresponding bit. Then, in order to express f m +1 and g m +1 we must consider two possibilities, either the m i is 0, or 1. in F q k . We could be tempted to follow the scheme of the attacks described in [START_REF] Page | A fault attack on Pairing-Based Cryptography[END_REF][START_REF] Mrabet | What about vulnerability to a fault attack of the Miller algorithm during an Identity Based Protocol?[END_REF], i.e. compute the exact value in F q k of the ratio

If m i = 0, then f m +1 = f 2 m ×h T,T (Q+R) and g m +1 = g 2 m ×h T,T (R), with T = [1m n-1 . . . m i+1 m i ]P . If m i = 1 then f m +1 = f 2 m × h T,T (Q + R) × h 2T,P (Q + R) and g m +1 = g 2 m × h T,T (R) × h 2T,P (R).
f m +1 g m +1 f m g m 2 , use its theoretical decomposition (if m i = 0 it is h T,T (Q+R) h T,T (R) or if m i = 1 it is h T,T (Q+R)×h 2T,P (Q+R) h T,T (R)×h 2T,P (R)
) and after use the identification in the basis of F q k in order to obtain k equations depending on the coordinates or P , Q and R. The equation of the elliptic curve gives two more equations as P and R are on the curve.

But be careful! The point R is randomly chosen at each execution of the Algorithm 2. So in practice, we obtain f m g m (P, Q, R 1 ) and

f m +1 g m +1 (P, Q, R 2 ), for R 1 and R 2 two random points in E(F q k )[r] \ E(F q )[
r]. In this case, the theoretical decomposition of the ratio

f m +1 g m +1 (P,Q,R 2 ) f 2 m g 2 m (P,Q,R 1 )
would not admit any simplification and the previous description inspired from [START_REF] Page | A fault attack on Pairing-Based Cryptography[END_REF][START_REF] Mrabet | What about vulnerability to a fault attack of the Miller algorithm during an Identity Based Protocol?[END_REF] is no longer possible. We have to describe a more painful and awful attack.

In this attack, we need only one faulty result f m g m (P, Q, R), for P secret, Q chosen and R random. After one iteration of the Miller algorithm, assuming that the corresponding bits of m are 0, we have f 1 = h P,P (Q + R) and g 1 = h P,P (R). After two iterations, f 2 = h [2]P, [START_REF] Bae | Instruction fault attack on the Miller algorithm in a pairingbased cryptosystem[END_REF]P (Q + R) × (h P,P (Q + R)) 2 and g 2 = h [2]P, [START_REF] Bae | Instruction fault attack on the Miller algorithm in a pairingbased cryptosystem[END_REF]P (R) × (h P,P (R)) 2 . We can express the equation of h P,P and h [2]P, [START_REF] Bae | Instruction fault attack on the Miller algorithm in a pairingbased cryptosystem[END_REF]P in terms of the coordinates of P . The evaluation of these functions at the points Q + R and R will give a polynomial expression in the coordinates of P and R.

The theoretical description of the coordinates of R will admit a decomposition in the basis of F q k . If we are able to obtain the result of the Miller algorithm after m iterations (denoted λ 0 + λ 1 √ ν, with λ 0 and λ 1 ∈ F q k/2 ), we have on one hand the theoretical description and on an other the value in F q k of this description:

f m (P, Q, R) g m (P, Q, R) = λ 0 + λ 1 √ ν. (2) 
We know the value of λ 0 , λ 1 and the theoretical description of f m (P, Q, R) and g m (P, R). Exactly like at the end of the attack described in [START_REF] Mrabet | What about vulnerability to a fault attack of the Miller algorithm during an Identity Based Protocol?[END_REF], by identification in the basis of F p k , we obtain a system of k polynomial equations with coordinates of P and R as unknown. The degree of the polynomial depends on the number of iterations. That is why an important step of the attack is to minimize the number of iterations that are executed by the Miller algorithm.

As illustration we have for one iteration, f m (P, Q, R) = h P,P (Q + R) and g m (P, R) = h P,P (R). The equation 2 gives h P,P (Q + R) = (λ 0 + λ 1 √ ν) × h P,P (R) which is a degree 3 polynomial in X P , a degree 2 in Y P , a degree 6 for Z P and a degree 1 polynomial in x R . We give the equations of h P,P (Q + R) and h P,P (R) (see section 2 for details) in order to illustrate an idea of the system. P = (X P , Y P , Z P ), X P , Y P , Z

P ∈ F q Q + R = (x Q+R , y Q+R √ ν), x Q+R , y Q+R ∈ F q k/2 R = (x R , y R √ ν), x R , y R ∈ F q k/2 h P,P (Q + R) = 2Y P Z 3 P y Q+R √ ν -2Y 2 P -(3X 2 P + aZ 4 P )(x Q+R Z 2 P -X P ) h P,P (R) = 2Y P Z 3 P y R √ ν -2Y 2 P -(3X 2 P + aZ 4 P )(x R Z 2 P -X P )
The equation of the elliptic curve in P and R gives us 2 more equations and we still have k +2 unknown values in F q . To conclude the attack, we will use the Gröbner basis. In order to ensure the fact that the solution will be in F q , we have to add the equation ξ p ≡ ξ mod p for each unknown value. We therefore obtain a system of 2k + 2 polynomial equations for k+2 unknown values. The Gröbner basis is the perfect tool for solving this system, that admits solutions by construction.

Obviously for a greater number of iterations, by hand it is difficult to develop the theoretical expression without any mistake. We do not describe it even for one iteration. Fortunately, we have mathematical softwares that can help us, like PariGP [START_REF]PARI/GP, version 2.7.0[END_REF], Sage [START_REF] Stein | Sage mathematics software (version 4.8)[END_REF], Magma [START_REF] Bosma | The Magma algebra system I. the user language[END_REF] or Maple [START_REF] Michael | Maple 10 Programming Guide[END_REF].

If we consider that each iteration raise the degree of the polynomials in the system by a power of 2, than after µ iterations, the degree of the polynomial would be 2 µ in the coordinates of P . In practice, the evaluation of the degree is more complex. The degree of h P,P (R) is 6 in Z P . After 2 iterations, the degree of g 2,P (R) will be at the most 6 × 2 + 6 for Z P and 3 for the coordinates of R. (The degree of g and f are the same, we choose to describe it for g for clarity.

The degree of f depends on the coordinates of Q + R.) For n iterations, n > 2, we can estimate the degree of the polynomial with the formulas: where deg(n, Z P ) represents the degree of the polynomial system after n iterations in the unknown value Z P and deg(n, R) is the degree in the coordinates of R. The degree of the polynomial for X P and Y P is smaller than the degree for Z P .

The interesting question is how many iterations can we deal with? What would be the maximum degree of the polynomial system that can be solved by Gröbner basis in a reasonable time? We refer to [START_REF] Buchberger | An algorithm form finding the basis elements of the residue class ring of a zero dimensional polynomial ideal (phd thesis 1965[END_REF] for more details on Gröbner basis.

Case 2: when the secret is the point Q. We consider that the secret is the point Q, we can freely choose the point P , the randomness is the point R such that the pairings e(P + R, Q) and e(R, Q) are defined. The device is implemented to compute e(P +R,Q) e(R,Q) using a modified version of the Miller algorithm. If the same counter is used to perform the computation it would be modified once and used for both computations. If two counters are used, as in [START_REF] Trichina | Multi fault laser attacks on protected CRT-RSA[END_REF] we need two faults to modify the counters. After that, the scheme of the attack is the same. Once we obtain the intermediate results f m g m (P, R, Q), for P public, R random and Q secret. The theoretical expression of R, P + R and h T,T (Q) depending on the coordinates of P , R and Q combined with the value of f m g m (P, R, Q) will give a polynomial system in the unknown coordinates of R and Q. This polynomial system would be solved using the Gröbner basis.
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Conclusion

In this paper we analysed the efficiency of the point blinding countermeasure in pairing based cryptography considering fault attacks in Miller's algorithm. We describe a theoretical fault attack. We highlighted the fact that the point blinding countermeasure alone is not a protection in the case of pairing based cryptography. Whenever the secret is the first or the second parameter, a fault attack gives the coordinates of the secret.

In our opinion, we believe that the only way to provide a secure implementation of the pairing relies on the discrete logarithm problem. The computation of e(P, Q), should be e([a]P, [b]Q), with a and b integers such that ab ≡ 1 mod r. Of course, the computation of [a]P and [b]Q should be secured.
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