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It is well-known that degree two finite field extensions can be equipped with a Hermitian-like structure similar to the extension of the complex field over the reals. In this contribution, using this structure, we develop a modular character theory and the appropriate Fourier transform for some particular kind of finite Abelian groups. Moreover we introduce the notion of bent functions for finite field valued functions rather than usual complex-valued functions, and we study several of their properties.

INTRODUCTION

The most simple Hermitian structure is obtained from the degree two field extension of the complex numbers over the real numbers. It has many applications and in particular provides the usual theory of characters for finite Abelian groups and the existence of an associated Fourier transform. Given a degree two extension GF(𝑝 2𝑛 ) of GF(𝑝 𝑛 ), the Galois field with 𝑝 𝑛 elements where 𝑝 is a prime number, we can also define a "conjugate" and thus a Hermitian structure on GF(𝑝 2𝑛 ) in a way similar to the relation ℂ/ℝ. In particular this makes possible the definition of a unit circle 𝒮(GF(𝑝 2𝑛 )) which is a cyclic group of order 𝑝 𝑛 + 1, subgroup of the multiplicative group GF(𝑝 2𝑛 ) * of invertible elements. The analogy with ℂ/ℝ is extended in this paper by the definition of GF(𝑝 2𝑛 )-valued characters of finite Abelian groups 𝐺 as group homomorphisms from 𝐺 to 𝒮(GF(𝑝 2𝑛 )). But 𝒮(GF(𝑝 2𝑛 )) does obviously not contain a copy of each cyclic group. Nevertheless if 𝑑 divides 𝑝 𝑛 + 1, then the cyclic group ℤ 𝑑 of modulo 𝑑 integers embeds as a subgroup of this particular unit circle. It forces our modular theory of characters to be applied only to direct products of cyclic groups whose order divides 𝑝 𝑛 + 1. In addition we prove that these modular characters form an orthogonal basis (by respect to the Hermitian-like structure GF(𝑝 2𝑛 ) over GF(𝑝 𝑛 )). The definition of an appropriate notion of Fourier transform for GF(𝑝 2𝑛 )-valued functions, rather than ℂ-valued ones, defined on 𝐺, is then possible as their decompositions in the dual basis of characters. In this contribution we largely investigate several properties of this modular version of the Fourier transform similar to classical ones. As an illustration of our theory of modular characters one introduces and studies the corresponding cryptographic notion of bent functions in this setting.

CHARACTER THEORY: THE CLASSICAL APPROACH

In this paper 𝐺 always denotes a finite Abelian group (in additive representation), 0 𝐺 is its identity element. Moreover for all groups 𝐻, 𝐻 * is the set obtained from 𝐻 by removing its identity. As usual ℕ * = ℕ\{ 0 }.

The characters are the group homomorphisms from a finite Abelian group 𝐺 to the unit circle 𝒮(ℂ) of the complex field. The set of all such characters of 𝐺 together with point-wise multiplication is denoted by 𝐺 ̂ and called the dual group of 𝐺. A classical result claims that 𝐺 and its dual are isomorphic (essentially because 𝒮(ℂ) contains an isomorphic copy of all cyclic groups). The image in 𝐺 ̂ of 𝛼 ∈ 𝐺 by such an isomorphism is denoted by 𝜒 𝛼 . The complex vector space ℂ 𝐺 of complex-valued functions defined on 𝐺 can be equipped with an inner product defined for 𝑓, 𝑔 ∈ ℂ 𝐺 by

〈𝑓, 𝑔〉 = ∑ 𝑥∈𝐺 𝑓(𝑥)𝑔(𝑥) (1) 
where 𝑧 denotes the complex conjugate of 𝑧 ∈ ℂ. With respect to this Hermitian structure, 𝐺 ̂ is an orthogonal basis, i.e.
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for 𝛼, 𝛽 ∈ 𝐺 2 . We observe that in particular (replacing 𝛽 by 0 𝐺 ),

∑ 𝑥∈𝐺 𝜒 𝛼 (𝑥) = { 0 if 𝛼 = 0 𝐺 , |𝐺| if 𝛼 = 0 𝐺 .
(3) Definition 1. Let 𝐺 be a finite Abelian group and 𝑓: 𝐺 → ℂ. The Fourier transform of 𝑓 is defined as

𝑓 ̂: 𝐺 → ℂ 𝛼 ↦ ∑ 𝑥∈𝐺 𝑓(𝑥)𝜒 𝛼 (𝑥) . (4) 
The Fourier transform of a function 𝑓 is its decomposition in the basis 𝐺 ̂. This transform is invertible and one has an inversion formula for 𝑓,

𝑓(𝑥) = 1 |𝐺| ∑ 𝛼∈𝐺 𝑓 ̂(𝛼)𝜒 𝛼 (𝑥) (5) 
for each 𝑥 ∈ 𝐺. More precisely the Fourier transform is an algebra isomorphism from (ℂ 𝐺 , * ) to (ℂ 𝐺 , . ) where the symbol "." denotes the pointwise multiplication of functions, and * is the convolution product defined by

𝑓 * 𝑔: 𝐺 → ℂ 𝛼 ↦ ∑ 𝑥∈𝐺 𝑓(𝑥)𝑔(-𝑥 + 𝛼) (6) 
Since the Fourier transform is an isomorphism between the two algebras, the trivialization of the convolution product holds for each (𝑓, 𝑔) ∈ (ℂ 𝐺 ) 2 and each 𝛼 ∈ 𝐺, i.e., (𝑓 * 𝑔) ̂(𝛼) = 𝑓 ̂(𝛼)𝑔 ̂(𝛼) .

Proposition 1. Let G be a finite Abelian group and 𝑓, 𝑔 ∈ ℂ 𝐺 . We have

∑ 𝑥∈𝐺 𝑓(𝑥)𝑔(𝑥) = 1 |𝐺| ∑ 𝛼∈𝐺 𝑓 ̂(𝛼)𝑔 ̂(𝛼) (Plancherel formula), (8) 
∑ 𝑥∈𝐺 |𝑓(𝑥)| 2 = 1 |𝐺| ∑ 𝛼∈𝐺 |𝑓 ̂(𝛼)| 2 (Parseval equation) (9)
where |𝑧| is the complex modulus of 𝑧 ∈ ℂ.

HERMITIAN STRUCTURE OVER FINITE FIELDS

In this section are recalled some results about an Hermitian structure in some kinds of finite fields. This section is directly inspired from [START_REF] Dobbertin | Construction of Bent Functions via Niho Power Functions[END_REF] and is generalized to any characteristic p.

Let p be a given prime number and q an even power of 𝑝, i.e., there is 𝑛 ∈ ℕ * such that 𝑞 = 𝑝 2𝑛 , and in particular q is a square.

Assumption 1. From now on the parameters 𝑝, 𝑛, 𝑞 are fixed as introduced above.

By GF(𝑞) is meant the finite field of characteristic 𝑝 with 𝑞 elements and by construction GF(√𝑞) is a subfield of GF(𝑞). The field GF(𝑞), as an extension of degree 2 of GF(√𝑞), is also a vector space of dimension 2 over GF(√𝑞). This situation is similar to the one of ℂ and ℝ. As GF(𝑞) plays the role of ℂ, the Hermitian structure should be provided for it. Again according to the analogy ℂ/ℝ, we then need to determine a corresponding conjugate. In order to do this we use the Frobenius automorphism Frob of GF(𝑞)

Frob: GF(𝑞) → GF(𝑞) 𝑥 ↦ 𝑥 𝑝 (10) 
and one of its powers, Frob 𝑘 : GF(𝑞) → GF(𝑞)

𝑥 ↦ 𝑥 𝑝 𝑘 . (11) 
In particular Frob 1 = Frob.

Definition 2. The conjugate of 𝑥 ∈ GF(𝑞) over GF(√𝑞) is denoted by 𝑥 and defined as

𝑥 = Frob 𝑛 (𝑥) = 𝑥 𝑝 𝑛 = 𝑥 √ 𝑞 . (12) 
In particular, for every 𝑛 ∈ ℤ, 𝑛1 = 𝑛1. The field extension GF(𝑞)/GF(√𝑞) has amazing similarities with the extension ℂ over the real numbers in particular regarding the conjugate.

Proposition 2. Let 𝑥 1 , 𝑥 2 ∈ GF(𝑞) 2 , then 𝑥 1 + 𝑥 2 = 𝑥 1 + 𝑥 2 , -𝑥 1 = -𝑥 1 , 𝑥 1 𝑥 2 = 𝑥 1 𝑥 2 , 𝑥 1 = 𝑥 1 .
Proof. The three first equalities come from the fact that Frob 𝑛 is a field homomorphism of GF(𝑞). The last point holds since for each 𝑥 ∈ GF(𝑞), 𝑥 𝑞 = 𝑥. QED

The relative norm with respect to GF(q)/GF(√q) is defined as

norm(𝑥) = 𝑥𝑥 (13) 
for 𝑥 ∈ GF(𝑞), and it maps GF(𝑞) to GF(√𝑞). We observe that norm(𝑥) ∈ GF(√𝑞) because norm(𝑥) √ 𝑞 = (𝑥𝑥) √ 𝑞 = 𝑥 √ 𝑞 𝑥 𝑞 = 𝑥 √ 𝑞 𝑥 = 𝑥 1+ √ 𝑞 = norm(𝑥) and norm(𝑥) = 0 if, and only if, 𝑥 = 0. The unit circle of GF(𝑞) is defined as the set

𝒮(GF(𝑞)) = { 𝑥 ∈ GF(𝑞): 𝑥𝑥 = 1 } (14)
of all elements having relative norm 1. By construction 𝒮(GF(𝑞)) is the group of (√𝑞 + 1)-th roots of unity, and therefore it is a (multiplicative) cyclic group of order √𝑞 + 1 since GF(𝑞) * is cyclic and √𝑞 + 1 divides 𝑞 -1. In what follows, 𝒮(GF(𝑞)) will play exactly the same role as 𝒮(ℂ) in the classical theory of characters.

CHARACTERS OVER A FINITE FIELD

Because 𝒮(GF(𝑞)) is a cyclic group of order √𝑞 + 1, for each nonzero integer d that divides √𝑞 + 1, there is a unique (cyclic) subgroup of 𝒮(GF(𝑞)) of order 𝑑, and this is the unique kind of subgroups. As a character theory is essentially used to faithfully represent an abstract group as an isomorphic group of functions, a copy of such group must be contained in the corresponding unit circle. Then our character theory in GF(𝑞) will only apply on groups for which all their factors in a representation as a product direct group of cyclic subgroups have orders that divide √𝑞 + 1.

Assumption 2. From now on 𝑑 always denotes an element of ℕ * that divides √𝑞 + 1. Definition 3. (and proposition) The (cyclic) subgroup of 𝒮(GF(𝑞)) of order 𝑑 is denoted by 𝒮 𝑑 (GF(𝑞)). In particular, 𝒮(GF(𝑞)

) = 𝒮 √ 𝑞+1 (GF(𝑞)). If 𝑢 is a generator of 𝒮(GF(𝑞)) then 𝑢 √𝑞+1 𝑑
is a generator of 𝒮 𝑑 (GF(𝑞)).

A character of a finite Abelian group 𝐺 with respect to GF(𝑞) (or simply a character) is a group homomorphism from 𝐺 to 𝒮(GF(𝑞)). Since a character 𝜒 is 𝒮(GF(𝑞))-valued, 𝜒(-𝑥) = (𝜒(𝑥)) -1 = 𝜒(𝑥), norm(𝜒(𝑥)) = 1 and 𝜒(0 𝐺 ) = 1 for each 𝑥 ∈ 𝐺. By analogy with the traditional version, we denote by 𝐺 ̂ the set of all characters of 𝐺 that, as in the ordinary setting, we call its dual. With the point-wise multiplication, 𝐺 ̂ turns to be a finite Abelian group. Thus the multiplication is defined as

∀𝜒, 𝜒 ′ ∈ 𝐺 ̂, 𝜒𝜒 ′ : 𝑥 ↦ 𝜒(𝑥)𝜒 ′ (𝑥). (15) 
As already mentioned in the Introduction, we focus on a very special kind of finite Abelian groups: the additive group of modulo d integers ℤ d which is identified with the subset {0, … , 𝑑 -1} of ℤ.

Theorem 1. The groups ℤ 𝑑 and ℤ 𝑑 ̂ are isomorphic.

Proof. The parameter 𝑑 has been chosen so that it divides √𝑞 + 1. Then there is a unique (cyclic) subgroup 𝒮 𝑑 (GF(𝑞)) of 𝒮(GF(𝑞)) of order 𝑑. Let 𝑢 𝑑 be a generator of this group. Then the elements of ℤ 𝑑 ̂ have the form, for 𝑗 ∈ ℤ 𝑑 ,

𝜒 𝑗 : { ℤ 𝑑 → 𝒮 𝑑 (GF(𝑞)) 𝑘 ↦ (𝑢 𝑑 𝑗 ) 𝑘 = 𝑢 𝑑 𝑗𝑘 . ( 16 
)
Actually the characters are 𝒮 𝑑 (GF(𝑞))-valued since for each 𝑥 ∈ ℤ 𝑑 and each character 𝜒, 𝜒(𝑥) ∈ 𝒮(GF(𝑞)) by definition, and satisfies 1 = 𝜒(0) = 𝜒(𝑑𝑥) = (𝜒(𝑥)) 𝑑 and then 𝜒(𝑥) is a 𝑑-th root of the unity. Then to determine a character 𝜒 ∈ ℤ 𝑑 ̂, we need to compute the value of 𝜒(𝑘) = 𝜒(𝑘1) for 𝑘 ∈ {0, … , 𝑑 -1}, which gives

𝜒(𝑘) = 𝑢 𝑑 𝑗𝑘 . (17) 
In this equality, we have denoted 𝜒(1) by 𝑢 𝑑 𝑗 for 𝑗 ∈ {0, … , 𝑑 -1}

since 𝜒( 1) is a d-th root of the unity in 𝒮(GF(𝑞)). Then the character 𝜒 belongs to { 𝜒 0 , … , 𝜒 𝑑-1 }. Conversely, we observe that for 𝑗 ∈ {1, … , 𝑑 -1}, the maps 𝜒 𝑗 are group homomorphisms from ℤ 𝑑 to 𝒮(GF(𝑞)) so they are elements of ℤ 𝑑 ̂. Let us define the following function.

Ψ: ℤ 𝑑 → ℤ 𝑑 ĵ ↦ 𝜒 𝑗 . ( 18 
)
We have already seen that it is onto. Moreover, it is also one-to-one (it is sufficient to evaluate 𝜒 𝑗 = 𝛹(𝑗) at 1) and it is obviously a group homomorphism. It is then an isomorphism, so that ℤ 𝑑 ̂ is isomorphic to ℤ 𝑑 . QED

Proposition 3. ℤ 𝑑 1 × ℤ 𝑑 2 and (ℤ 𝑑 1 × ℤ 𝑑 2 ) ̂ are isomorphic.
Proof. The proof is easy since it is sufficient to remark that

(ℤ 𝑑 1 × ℤ 𝑑 2 ) ̂ and ℤ 𝑑 1 ̂× ℤ 𝑑 2
̂ are isomorphic. We recall that 𝑑 1 and 𝑑 2 are both assumed to divide √𝑞 + 1, thus ℤ 𝑑 1 ̂ and ℤ 𝑑 2 ̂ exist and are isomorphic to ℤ 𝑑 1 and ℤ 𝑑 2 respectively. Let 𝑖 1 be the first canonical injection of ℤ 𝑑 1 × ℤ 𝑑 2 and 𝑖 2 the second (when ℤ 𝑑 1 × ℤ 𝑑 2 is seen as a direct sum). The following map

𝛷: { (ℤ 𝑑 1 × ℤ 𝑑 2 ) ̂→ ℤ 𝑑 1 ̂× ℤ 𝑑 2 χ ↦ (𝜒 ∘ 𝑖 1 , 𝜒 ∘ 𝑖 2 ) ( 19 
)
is a group isomorphism. It is obviously one-to-one and for

(𝜒 1 , 𝜒 2 ) ∈ ℤ 𝑑 1 ̂× ℤ 𝑑 2 ̂, the map 𝜒: (𝑥 1 , 𝑥 2 ) ↦ 𝜒 1 (𝑥 1 )𝜒 2 (𝑥 2 ) is an element of (ℤ 𝑑 1 × ℤ 𝑑 2 ) ̂ and 𝛷(𝜒) = (𝜒 1 , 𝜒 2 ). Then (ℤ 𝑑 1 × ℤ 𝑑 2 ) ̂ is isomorphic to ℤ 𝑑 1 × ℤ 𝑑 2 since 𝑍 𝑑 𝑖 ̂ and ℤ 𝑑 𝑖 are isomorphic (for 𝑖 = 1,2). QED From proposition 3 it follows in particular that ℤ 𝑑 𝑚 ̂ is isomorphic to ℤ 𝑑
𝑚 . This result also provides a specific form to the characters of ℤ 𝑑 𝑚 as follows. We define a dot product, which is a ℤ d -bilinear map from (ℤ 𝑑 𝑚 ) 2 to ℤ 𝑑 , by 

𝑥 ⋅ 𝑦 = ∑ 𝑚 𝑖=1 𝑥 𝑖 𝑦 𝑖 ∈ ℤ 𝑑 ( 
where for each 𝑖 ∈ {1, … , 𝑁}, 𝑢 𝑑 𝑖 is a generator of 𝒮 𝑑 𝑖 (GF(𝑞)). In particular for each 𝛼, 𝑥 ∈ 𝐺 2 , we also have 𝜒 𝛼 (𝑥) = 𝜒 𝑥 (𝛼).

Assumption 3. From now on, each finite Abelian group 𝐺 considered is assumed to be isomorphic to a group of the form ∏ 𝑁 𝑖=1 ℤ 𝑑 𝑖 𝑚 𝑖 where for each 𝑖 ∈ {1, … , 𝑁}, 𝑑 𝑖 divides √𝑞 + 1.

The dual 𝐺 ̂ of 𝐺 is constructed and is shown to be isomorphic to 𝐺. We may also be interested into the bidual 𝐺 ̂ of 𝐺, namely the dual of 𝐺 ̂. Similarly to the usual situation of complex-valued characters, we prove that 𝐺 and its bidual are canonically isomorphic. It is already clear that 𝐺 ≅ 𝐺 ̂ (because 𝐺 ≅ 𝐺 ̂ and 𝐺 ̂≅ 𝐺 ̂). But this isomorphism is far from being canonical since it depends on a decomposition of 𝐺, and of 𝐺 ̂, and choices for generators of each cyclic factor in the given decomposition.

We observe that the map 𝑒: 𝐺 → 𝐺 ̂ defined by 𝑒(𝑥)(𝜒) = 𝜒(𝑥) for every 𝑥 ∈ 𝐺, 𝜒 ∈ 𝐺 ̂ is a group homomorphism. To prove that it is an isomorphism it suffices to check that e is one-to-one (since 𝐺 and 𝐺 ̂ have the same order). Let 𝑥 ∈ ker(𝑒). Then, for all 𝜒 ∈ 𝐺 ̂, 𝜒(𝑥) = 1. Let us fix an isomorphism 𝛼 ∈ 𝐺 → 𝜒 𝛼 ∈ 𝐺 ̂ as in the formula (22). Then, for every 𝛼 ∈ 𝐺, 𝜒 𝛼 (𝑥) = 1 = 𝜒 𝑥 (𝛼) so that 𝑥 = 0 𝐺 . Thus we have obtained an appropriate version of Pontryagin-van Kampen duality (see [START_REF] Hewitt | Abstract Harmonic Analysis[END_REF]). Let us recall that according to the structure theorem of finite Abelian groups, for any finite Abelian group 𝐺, there is a unique finite sequence of positive integers, called the invariants of 𝐺, 𝑑 1 , ⋯ , 𝑑 ℓ 𝐺 such that 𝑑 𝑖 divides 𝑑 𝑖+1 for each 𝑖 < ℓ 𝐺 . Let us denote by 𝐴𝑏 √ 𝑞+1 the (full sub)category of all finite Abelian groups 𝐺 such that 𝑑 ℓ 𝐺 divides √𝑞 + 1. From the previous results, if 𝐺 is an object of 𝐴𝑏 √ 𝑞+1 , then 𝐺 ≅ 𝐺 ̂. Moreover, (⋅) ̂ defines a contravariant functor (see [START_REF] Mclane | Categories for the working mathematician[END_REF]) from 𝐴𝑏 √ 𝑞+1 to itself. Indeed, if 𝜙: 𝐺 → 𝐻 is a homomorphism of groups (where 𝐺, 𝐻 belongs to 𝐴𝑏 √ 𝑞+1 ), then 𝜙 ̂: 𝐻 ̂→ 𝐺 ̂ defined by 𝜙 ̂(𝜒) = 𝜒 ∘ 𝜙 is a homomorphism of groups. Then, we have the following duality theorem.

Theorem 2 (Duality). The covariant (endo-)functor (⋅) ̂: 𝐴𝑏 √ 𝑞+1 → 𝐴𝑏 √ 𝑞+1 is a (functorial) isomorphism (this means in particular that 𝐺 ≅ 𝐺 ̂).

ORTHOGONALITY RELATIONS

The characters satisfy a certain kind of orthogonality relation. In order to establish it we introduce the natural "action" of ℤ on any finite field GF(𝑝 𝑙 ) of characteristic 𝑝 as 𝑘𝑥 = 𝑥 + ⋯ + ⏟ 𝑘 times 𝑥 for (𝑘, 𝑥) ∈ ℤ × GF(𝑝 𝑙 ). This is nothing else than the fact that the underlying Abelian group structure of GF(𝑝 𝑙 ) is a ℤ-module.

In the remainder we identify 𝑘1 with 𝑘 mod 𝑝 or in other terms we make explicit the identification of GF(𝑝) and ℤ 𝑝 .

Lemma 1. Let 𝐺 be a finite Abelian group. For 𝜒 ∈ 𝐺 ̂,

∑ 𝑥∈𝐺 𝜒(𝑥) = { 0 if 𝜒 = 1 , (|𝐺|mod 𝑝) if 𝜒 = 1 . ( 23 
)
Proof. If 𝜒 = 1, then ∑ 𝑥∈𝐺 1 = (|𝐺|mod𝑝) since the characteristic of GF(𝑞) is equal to 𝑝. Let us suppose that 𝜒 = 1. Let 𝑥 0 ∈ 𝐺 such that 𝜒(𝑥 0 ) = 1.

Then we have

𝜒(𝑥 0 ) ∑ 𝑥∈𝐺 𝜒(𝑥) = ∑ 𝑥∈𝐺 𝜒(𝑥 0 + 𝑥) = ∑ 𝑦∈𝐺 𝜒(𝑦), (24) 
so that (𝜒(𝑥 0 ) -1) ∑ 𝑥∈𝐺 𝜒(𝑥) = 0 and thus ∑ 𝑥∈𝐺 𝜒(𝑥) = 0 (because 𝜒(𝑥 0 ) = 1). QED Definition 4. Let 𝐺 be a finite Abelian group. Let 𝑓, 𝑔 ∈ GF(𝑞) 𝐺 . We define the"innerproduct"of𝑓 and 𝑔 by

〈𝑓, 𝑔〉 = ∑ 𝑥∈𝐺 𝑓(𝑥)𝑔(𝑥) ∈ GF(𝑞). ( 25 
)
The above definition does not ensure that 〈𝑓, 𝑓〉 = 0 implies that 𝑓 ≡ 0 as it holds for a true inner product. Indeed, take 𝑞 = 2 2𝑛 , and let 𝑓: ℤ 2 → GF(2 2𝑛 ) be the constant map with value 1. Then, 〈𝑓, 𝑓〉 = 0. Thus, contrary to a usual Hermitian dot product, an orthogonal family (with respect to 〈⋅,⋅〉) of GF(𝑞) 𝐺 is not necessarily GF(𝑞)-linearly independent.

Let 𝐺 be a finite Abelian group. For all (𝜒 1 , 𝜒 2 ) ∈ 𝐺 ̂2 then the orthogonality relations holds

〈𝜒 1 , 𝜒 2 〉 = { 0 if 𝜒 1 = 𝜒 2 , |𝐺|mod 𝑝 if 𝜒 1 = 𝜒 2 . ( 26 
)
Proof. Let us denote 𝜒 = 𝜒 1 𝜒 2 -1 = 𝜒 1 𝜒 2 . We have

〈𝜒 1 , 𝜒 2 〉 = ∑ 𝑥∈𝐺 𝜒(𝑥). (27) 
If 𝜒 1 = 𝜒 2 , then 𝜒 = 1 and if 𝜒 1 = 𝜒 2 , then 𝜒 = 1. The proof is obtained by using the previous lemma 1. QED Remark 1. The term orthogonality would be abusive if |𝐺|mod 𝑝 = 0, because then ∑ 𝑥∈𝐺 𝜒(𝑥) = 0 for all 𝜒 ∈ 𝐺 ̂. Nevertheless from the assumption 3 all the 𝑑 𝑖 's divide √𝑞 + 1 = 𝑝 𝑛 + 1. In particular, 𝑑 𝑖 = 1 mod 𝑝 and therefore |𝐺| = ∏ 𝑖 𝑑 𝑖 𝑚 𝑖 is co-prime to 𝑝, and the above situation cannot occur, so |𝐺| is invertible modulo 𝑝.
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FOURIER TRANSFORM OVER A FINITE FIELD

Let 𝑢 be a generator of 𝒮(GF(𝑞)). Let 𝐺 be a finite Abelian group and 𝑓: 𝐺 → GF(𝑞). We define the following function.

𝑓 ̂: 𝐺 ̂→ GF(𝑞)

𝜒 ↦ ∑ 𝑥∈𝐺 𝑓(𝑥)𝜒(𝑥) .

Since 𝐺 = ∏ 𝑁 𝑖=1 ℤ 𝑑 𝑖 𝑚 𝑖 , we define, by the isomorphism between 𝐺 and its dual,

𝑓 ̂: 𝐺 → GF(𝑞) 𝛼 ↦ ∑ 𝑥∈𝐺 𝑓(𝑥)𝜒 𝛼 (𝑥) = ∑ 𝑥∈𝐺 𝑓(𝑥) ∏ 𝑁 𝑖=1 𝑢 (√𝑞+1)𝛼 𝑖 ⋅𝑥 𝑖 𝑑 𝑖 (29) 
Let us compute 𝑓 ̂. Let 𝛼 ∈ 𝐺. We have

𝑓 ̂(𝛼) = ∑ 𝑥∈𝐺 𝑓 ̂(𝑥)𝜒 𝛼 (𝑥) = ∑ 𝑥∈𝐺 ∑ 𝑦∈𝐺 𝑓(𝑦)𝜒 𝑥 (𝑦)𝜒 𝛼 (𝑥) = ∑ 𝑥∈𝐺 ∑ 𝑦∈𝐺 𝑓(𝑦)𝜒 𝑦 (𝑥)𝜒 𝛼 (𝑥) = ∑ 𝑦∈𝐺 𝑓(𝑦) ∑ 𝑥∈𝐺 𝜒 𝛼+𝑦 (𝑥) = (|𝐺|mod 𝑝)𝑓(-𝛼) (30) 
The last equality holds since

∑ 𝑥∈𝐺 𝜒 𝛼+𝑦 (𝑥) = { 0 if 𝑦 =-𝛼 , (|𝐺|mod 𝑝) if 𝑦 = -𝛼 .
Now if we assume that (|𝐺|mod 𝑝) = 0, then it follows that the function 𝑓 ↦ 𝑓 ̂ is non invertible but this situation cannot occur since from the assumption 3, |𝐺| is invertible modulo 𝑝. Therefore we can claim that the function (⋅) ̂ that maps 𝑓 ∈ GF(𝑞) 𝐺 to 𝑓 ̂∈ GF(𝑞) 𝐺 is invertible. It is the Fourier transform of 𝑓 (with respect to GF(𝑞)) and its inversion formula is

𝑓(𝑥) = (|𝐺| mod 𝑝) -1 ∑ 𝛼∈𝐺 𝑓 ̂(𝛼)𝜒 𝛼 (𝑥) (31) 
where (|𝐺|mod 𝑝) -1 is the multiplicative inverse of (|𝐺|mod 𝑝) in ℤ 𝑝 (this inverse exists according to the choice of 𝐺). 

The group-algebra GF(𝑞) [𝐺] of 𝐺 over GF(𝑞) is the GF(𝑞)-vector space GF(𝑞) 𝐺 equipped with convolution. The Fourier transform (⋅) ̂ is an algebra isomorphism from the group-algebra GF(𝑞) [𝐺] to GF(𝑞) [𝐺] with the pointwise product. Moreover, let (𝛿 𝑥 ) 𝑥∈𝐺 be the canonical basis of GF(𝑞) 𝐺 (as a GF(𝑞)-vector space). It is easy to see that 𝛿 ̂𝑥 = 𝜒 𝑥 . Because (⋅) ̂ is an isomorphism, this means that (𝜒 𝑥 ) 𝑥∈𝐺 is a basis of GF(𝑞) 𝐺 over GF(𝑞), and it turns that the Fourier transform 𝑓 ̂ of 𝑓 ∈ GF(𝑞) 𝐺 is the decomposition of 𝑓 into the basis of characters (even if a family of elements of GF(𝑞) 𝐺 is orthogonal with respect to the inner-product 〈⋅,⋅〉 of GF(𝑞) 𝐺 this does not ensure linear independence because 〈⋅,⋅〉 is not positive-definite).

Proposition 6 (Plancherel formula). Let 𝑓, 𝑔 ∈ GF(𝑞) 𝐺 . Then,

∑ 𝑥∈𝐺 𝑓(𝑥)𝑔(𝑥) = (|𝐺|mod 𝑝) -1 ∑ 𝛼∈𝐺 𝑓 ̂(𝛼)𝑔 ̂(𝛼). (35) 
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Proof. Let us define the following functions with ℎ: 𝐺 → GF(𝑞),

𝐼 𝐺 : 𝐺 → 𝐺 𝑥 ↦ -𝑥 and ℎ: 𝐺 → GF(𝑞) 𝑥 ↦ ℎ(𝑥). (36) 
Then (𝑓 * 𝑔 ∘ 𝐼 𝐺 )(0 𝐺 ) = ∑ 𝑥∈𝐺 𝑓(𝑥)𝑔(𝑥).

By the inversion formula: 

(𝑓 * 𝑔 ∘ 𝐼 𝐺 )(0 𝐺 ) = (|𝐺|mod 𝑝) -1 ∑ 𝛼∈𝐺 (𝑓 * 𝑔 ∘ 𝐼 𝐺 ) ̂(𝛼) = (|𝐺|mod 𝑝) -1 ∑ 𝛼∈𝐺 𝑓 ̂(𝛼)(𝑔 ∘ 𝐼 𝐺 ) ̂(𝛼). (37 
Then we obtain the equality that ensures the correct result

(𝑓 * 𝑔 ∘ 𝐼 𝐺 ) = (|𝐺|mod 𝑝) -1 ∑ 𝛼∈𝐺 𝑓 ̂(𝛼)𝑔 ̂(𝛼) . QED (39) 
Lemma 2. Let 𝑓: 𝐺 → GF(𝑞). We have (𝛼, 𝛽) ∈ 𝐺 2 \{(0 𝐺 , 0 𝐺 )} ∑ (𝑥,𝑦)∈𝐺 2 𝑑 (𝛼,𝛽) 𝑓(𝑥, 𝑦) = 0 and then according to theorem 3 this implies that 𝑓 is bent.

1. ∀𝑥 ∈ 𝐺 * , 𝑓(𝑥) = 0 ⇔ ∀𝛼 ∈ 𝐺, 𝑓 ̂(𝛼) = 𝑓(0 𝐺 ). 2. ∀𝛼 ∈ 𝐺 * , 𝑓 ̂(𝛼) = 0 ⇔ 𝑓 is constant.

Definition 5 .(

 5 Let 𝐺 be a finite Abelian group. Let 𝑓, 𝑔 ∈ GF(𝑞) 𝐺 . For each 𝛼 ∈ 𝐺, we define the convolution product of 𝑓 and 𝑔 at 𝛼 by of the convolution product). Let 𝑓, 𝑔 ∈ GF(𝑞) 𝐺 . For each 𝛼 ∈ 𝐺, (𝑓 * 𝑔) ̂(𝛼) = 𝑓 ̂(𝛼)𝑔 ̂(𝛼) . (33) Proof. Let 𝛼 ∈ 𝐺. We have (𝑓 * 𝑔) ̂(𝛼) = ∑ 𝑥∈𝐺 (𝑓 * 𝑔)(𝑥)𝜒 𝛼 (𝑥) = ∑ 𝑥∈𝐺 ∑ 𝑦∈𝐺 𝑓(𝑦)𝑔(-𝑦 + 𝑥)𝜒 𝛼 (𝑥) = ∑ 𝑥∈𝐺 ∑ 𝑦∈𝐺 𝑓(𝑦)𝑔(-𝑦 + 𝑥)𝜒 𝛼 (𝑦 -𝑦 + 𝑥) = ∑ 𝑥∈𝐺 ∑ 𝑦∈𝐺 𝑓(𝑦)𝑔(-𝑦 + 𝑥)𝜒 𝛼 (𝑦)𝜒 𝛼 (-𝑦 + 𝑥) = 𝑓 ̂(𝛼)𝑔 ̂(𝛼) . QED

  )Let us compute (𝑔 ∘ 𝐼 𝐺 ) ̂(𝛼) for 𝛼 ∈ 𝐺.

  𝑓 ̂(𝛼) = ∑ 𝑥∈𝐺 𝑓(𝑥)𝜒 𝛼 (𝑥) = 𝑓(0 𝐺 )𝜒 𝛼 (0 𝐺 ) = 𝑓(0 𝐺 ), ⇐ According to the inversion formula,𝑓(𝑥) = (|𝐺|mod 𝑝) -1 ∑ 𝛼∈𝐺 𝑓 ̂(𝛼)𝜒 𝛼 (𝑥) = 𝑓(0 𝐺 )(|𝐺|mod 𝑝) -1 ∑ 𝛼∈𝐺 𝜒 -𝑥 (𝛼) = 0 for all 𝑥 = 0 𝐺 . (46) 2. ⇒ 𝑓(𝑥) = (|𝐺|mod 𝑝) -1 ∑ 𝛼∈𝐺 𝑓 ̂(𝛼)𝜒 𝛼 (𝑥) = 𝑓 ̂(0 𝐺 )(|𝐺|mod 𝑝) -1 , ⇐ 𝑓 ̂(𝛼) = ∑ 𝑥∈𝐺 𝑓(𝑥)𝜒 𝛼 (𝑥) = constant ∑ 𝑥∈𝐺 𝜒𝛼 (𝑥) = 0 for all = 0 𝐺 . QED Lemma 3. Let 𝑓: 𝐺 → 𝐺𝐹(𝑞). Let us define its autocorrelation function as 𝐴𝐶 𝑓 : 𝐺 → GF(𝑞), 𝛼 ↦ ∑ 𝑥∈𝐺 𝑑 𝛼 𝑓(𝑥) . (47) Then, for all 𝛼 ∈ 𝐺, 𝐴𝐶 𝑓 ̂(𝛼) = norm(𝑓 ̂(𝛼)). ,𝛽) 𝑓(𝑥, 𝑦) = 𝑓(𝛼 + 𝑥, 𝛽 + 𝑦)𝑓(𝑥, 𝑦) = 𝜒 𝛼+𝑥 (𝛽 + 𝑦)𝑔(𝛽 + 𝑦)𝜒 𝑥 (𝑦) 𝑔(𝑦) = 𝜒 𝛼 (𝛽 + 𝑦)𝜒 𝑥 (𝛽 + 𝑦)𝑔(𝛽 + 𝑦)𝜒 𝑥 (𝑦) 𝑔(𝑦) = 𝜒 𝛼 (𝛽)𝜒 𝛼 (𝑦)𝜒 𝑥 (𝛽)𝜒 𝑥 (𝑦)𝑔(𝛽 + 𝑦)𝜒 𝑥 (𝑦) 𝑔(𝑦) = 𝜒 𝛼 (𝛽)𝜒 𝛼 (𝑦)𝑔(𝛽 + 𝑦)𝑔(𝑦)𝜒 𝑥 (𝛽) = 𝜒 𝛼 (𝛽)𝜒 𝛼 (𝑦)𝑔(𝛽 + 𝑦)𝑔(𝑦)𝜒 𝛽 (𝑥) (53) because 𝜒 𝑥 (𝛽) = 𝜒 𝛽 (𝑥). So for (𝛼, 𝛽) ∈ (𝐺 2 ) * = 𝐺 2 \{(0 𝐺 , 0 𝐺 )}, we obtain ∑ (𝑥,𝑦)∈𝐺 2 𝑑 (𝛼,𝛽) 𝑓(𝑥, 𝑦) = ∑ (𝑥,𝑦)∈𝐺 2 𝜒 𝛼 (𝛽)𝜒 𝛼 (𝑦)𝑔(𝛽 + 𝑦)𝑔(𝑦)𝜒 𝛽 (𝑥) sum ∑ 𝑥∈𝐺 𝜒 𝛽 (𝑥) is equal to 0 if 𝛽 = 0 𝐺 and |𝐺|mod p if 𝛽 = 0 𝐺 (according to lemma 1). Then the right member of the equality (54) is equal to 0 if 𝛽 = 0 𝐺 and (|𝐺|mod p)𝜒 𝛼 (𝛽) ∑ 𝑦∈𝐺 𝜒 𝛼 (𝑦)𝑔(𝛽 + 𝑦)𝑔(𝑦) if 𝛽 = 0 𝐺 . So when 𝛽 = 0 𝐺 , ∑ (𝑥,𝑦)∈𝐺 2 𝑑 (𝛼,𝛽) 𝑓(𝑥, 𝑦) = 0. Now let us assume that 𝛽 = 0 𝐺 , then because (𝛼, 𝛽) ∈ 𝐺 2 \{(0 𝐺 , 0 𝐺 )}, 𝛼 = 0 𝐺 , we have ∑ (𝑥,𝑦)∈𝐺 2 𝑑 (𝛼,0 𝐺 ) 𝑓(𝑥, 𝑦)= (|𝐺|mod p)𝜒 𝛼 (0 𝐺 ) ∑ 𝑦∈𝐺 𝜒 𝛼 (𝑦)𝑔(0 𝐺 + 𝑦)𝑔(𝑦)

  𝑢 𝑑 is a generator of 𝒮 𝑑 (GF(𝑞)). In particular for each 𝛼, 𝑥 ∈ ℤ 𝑑 𝑚 , 𝜒 𝛼 (𝑥) = 𝜒 𝑥 (𝛼). The following result is obvious.

	for 𝑥, 𝑦 ∈ ℤ 𝑑 𝑚 . Then the character that corresponds to 𝛼 ∈ ℤ 𝑑 𝑚 can be defined
	by	𝜒 𝛼 : ℤ 𝑑 𝑚 → 𝒮 𝑑 (GF(𝑞)) 𝑥 ↦ 𝑢 𝑑 𝛼⋅𝑥	(21)
	where Corollary 1. Let 𝐺 ≅ ∏ 𝑁 𝑖=1 ℤ 𝑑 𝑖 𝑚 𝑖 be a finite Abelian group for which each
	integer 𝑑 𝑖 divides √𝑞 + 1. Then 𝐺 and 𝐺 ̂ are isomorphic.	
	If 𝐺 = ∏ 𝑁 𝑖=1 ℤ 𝑑 𝑖 𝑚 𝑖 satisfies the assumption of the corollary 1, then for 𝛼 =
	(𝛼 1 , … , 𝛼 𝑁 ) ∈ 𝐺 one has	
		→ 𝒮(GF(𝑞)) 𝑥 = (𝑥 1 , … , 𝑥 𝑁 ) ↦ ∏ 𝑁 𝜒 𝛼 : 𝐺 𝑖=1 𝑢 𝑑 𝑖 𝛼 𝑖 ⋅𝑥 𝑖	
			20)
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(40)

In particular, if 𝑓 is 𝒮(GF(𝑞))-valued, then ∑ 𝛼∈𝐺 norm(𝑓 ̂(𝛼)) = (|𝐺|mod 𝑝) 2 .

(41)

BENT FUNCTIONS OVER A FINITE FIELD

In the traditional setting, i.e., for complex-valued functions defined on any finite Abelian group 𝐺, bent functions [START_REF] Carlet | Highly nonlinear mappings[END_REF][START_REF] Dillon | Elementary Hadamard difference sets[END_REF][START_REF] Logachev | Bent functions on a finite Abelian group[END_REF][START_REF] Nyberg | Constructions of bent functions and difference sets[END_REF][START_REF] Rothaus | On bent functions[END_REF] are those maps 𝑓: 𝐺 → 𝒮(ℂ) such that for each 𝛼 ∈ 𝐺,

This notion is closely related to some famous cryptanalysis namely the differential (Bilham and Shamir, 1991) and linear (Masui, 1994) attacks on secret-key cryptosystems. We translate this concept in the current finitefield setting as follows.

Definition 6. The map 𝑓: 𝐺 → 𝒮(GF(𝑞)) is called bent if for all 𝛼 ∈ 𝐺, norm(𝑓 ̂(𝛼)) = (|𝐺|mod 𝑝).

(43)

7.1. Derivative and Bentness.

Propositon 7. [START_REF] Logachev | Bent functions on a finite Abelian group[END_REF].

Let 𝑓: 𝐺 → 𝒮(ℂ). The function 𝑓 is bent if, and only if, for all 𝛼 ∈ 𝐺 * ,

Now let 𝑓: 𝐺 → GF(𝑞). For each 𝛼 ∈ 𝐺, we define the derivative of 𝑓 in direction α as 𝑑 𝛼 𝑓: 𝐺 → GF(𝑞)

Theorem 3. The function 𝑓: 𝐺 → 𝒮(GF(𝑞)) is bent if, and only if, for all 𝛼 ∈ 𝐺 * , ∑ 𝑥∈𝐺 𝑑 𝛼 𝑓(𝑥) = 0.

Dual Bent Function

Again by analogy to the traditional notion Carlet andDubuc, 2001, Kumarm Scholtz and[START_REF] Kumar | Generalized bent functions and their properties[END_REF], it is also possible to define a dual bent function from a given bent function. Actually, as we see it below, |𝐺| must be a square in GF(𝑝) to ensure the well-definition of a dual bent. So by using the law of quadratic reciprocity, we can add the following requirement (only needed for proposition 8). In all cases we denote by (|𝐺|mod 𝑝) 1 2 the chosen square root of |𝐺|mod 𝑝. Since |𝐺|mod 𝑝 = 0, then it is clear that this square root also is non-zero. Its Harmonic analysis and a bentness-like notion in certain finite Abelian groups over some finite fields
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inverse is denoted by (|𝐺|mod 𝑝) -1 2 . Finally it is clear that (|𝐺|mod 𝑝) -1 2 ) 2 = (|𝐺|mod 𝑝) -1 . Proposition 8. Let 𝑓: 𝐺 → 𝒮(GF(𝑞)) be a bent function, then the following function 𝑓 ̃, called dual of 𝑓, is bent.

Proof. Let us first check that f ̃ is 𝒮(GF(q))-valued. Let α ∈ G. We have

Let us check that the bentness property holds for 𝑓 ̃. Let 𝛼 ∈ 𝐺. We have 

Construction of Bent Functions

We present a simple version of the well-known Maiorana-McFarland construction [START_REF] Dillon | Elementary Hadamard difference sets[END_REF][START_REF] Mcfarland | A family of difference sets in non-cyclic groups[END_REF] for our bent functions.

Let 𝑔: 𝐺 → 𝒮(GF(𝑞)) be any function. Let f be the following function.

𝑓: 𝐺 2 → 𝒮(GF(𝑞)) (𝑥, 𝑦) ↦ 𝜒 𝑥 (𝑦)𝑔(𝑦) .

(

Then 𝑓 is bent. We observe that the fact that f is 𝒮(GF(𝑞))-valued is obvious by construction. So let us prove that f is indeed bent. We use the combinatorial characterization obtained in theorem 3. Let 𝛼, 𝛽, 𝑥, 𝑦 ∈ 𝐺.