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On an article by S. A. Barannikov

François Laudenbach

Abstract. Given a Morse function f on a closed manifold M with distinct critical values, and
given a field F, there is a canonical complex, called the Morse-Barannikov complex, which is
equivalent to any Morse complex associated with f and whose form is simple. In particular, the
homology of M with coefficients in F is immediately readable on this complex. The bifurcation
theory of this complex in a generic one-parameter family of functions will be investigated.
Applications to the boundary manifolds will be given.

Here is an expanded version of the lectures given in the Winter school organized in La
Llagonne by the University Paul Sabatier in Toulouse (January 2013)1. There are three parts:

I) The Morse-Barannikov complex (after C. Viterbo),
II) Bifurcations,
III) The non-empty boundary case.

1. The Morse-Barannikov complex

We adopt a presentation which is a mix of the presentation given by S. Barannikov in [1]
and a more abstract one given by C. Viterbo in his joint work with D. Le Peutrec and F. Nier
[7] which we slightly simplify.

We are given a closed manifold M , a Morse function f : M → R whose critical values are
distinct, and a field F. For each integer k the critical points of index k are numbered in the
increasing order of the critical values: f(p1) < f(p2) < . . . (the function is just generic and it
is not assumed to be ordered). We shall often identify the set of critical points and the set of
critical values.

For defining the Morse complex it is necessary to have two extra data:
- A (decreasing) pseudo-gradient, that is, a vector field on M which satifies X · f < 0 out
of the critical points, and some non-degeneracy condition for the vanishing of X at each
critical point; therefore, the zeroes of X are hyperbolic. As a consequence, each critical
point p has a stable manifold W s(p) and an unstable manifold W u(p). This pseudo-
gradient is chosen Morse-Smale, a generic property meaning that the stable manifolds
are transverse to the unstable manifolds.

- An orientation of the unstable manifolds.

2000 Mathematics Subject Classification. 57R19.
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1This text was written in February 2013. It replaces the previous version posted by error.
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The Morse complex C∗(f,X) is made as follows. In degree k the module Ck(f,X) is the
free Z-module generated by the critical points of index k and the differential ∂k : Ck(f,X) →
Ck−1(f,X) counts the signed number of connecting orbits. Observe that, for (p, q), a pair of
critical points of respective index k and k − 1, W u(p) ∩W s(q) is made of a finite number of
connecting orbits. SinceW s(q) is co-oriented by the orientation ofW u(q), each orbit descending
from p to q gets a sign. Define aqp to be the signed number of the connecting orbits and define
the Morse differential Ck(f,X) by

∂k(p) =
∑

aqpq .

Theorem 1.1. (Milnor [6], Th. 7.2). The Morse complex is a chain complex: ∂ ◦ ∂ = 0.
Moreover, H (C∗(f,X)) ∼= H∗(M ;Z). A fortiori, H (C∗(f,X);F) ∼= H∗(M ;F).

Definition 1.2. A chain complex C∗ with coeffcients in F is said to be F-equivalent to C∗(f,X)
if it has the same generators and if its differential δ is made from ∂ by conjugating in each degree
by an invertible upper triangular matrix T with coefficients in F:

Ck+1(f,X)⊗ F

T
��

∂ // Ck(f,X)⊗ F ∂ //

T
��

Ck−1(f,X)⊗ F

T
��

Ck+1
δ // Ck

δ // Ck−1

Here, Ck(f,X)⊗ F is a vector space equipped with its canonical ordered basis.

Remark 1.3. When changing the pseudo-gradient or the orientations of the unstable manifolds
the Morse complex is changed by Z-equivalence. Conversely, if dimM > 1 and if the level sets
of f are connected (or f has one local minimum and one local maximum only, i.e. f is polar in
Morse’s terminology) every Z-equivalence is realizable by such changes. When the coefficients
are in a field an F-equivalence has no longer such a geometrical meaning in general. But, an
F-equivalence keeps the memory of the filtration by the sub-level sets of the function f . This
fact will be used in the last step of the proof of Barannikov’s theorem.

Theorem 1.4. (Barannikov [1]) The Morse complex C∗(f,X) is F-equivalent to a simple
complex (C∗, ∂B), that is, for every generator p, ∂B(p) is 0 or a generator and ∂B(p) 6= ∂B(p′)
if p 6= p′ and ∂B(p) 6= 0. Moreover, (C∗, ∂B) is unique and depends only on C∗(f,X) ⊗ F for
any pseudo-gradient X.

This complex is called the Morse-Barannikov complex associated with the Morse function f ;
it depends on the field F.

Corollary 1.5. The homology H∗(M ;F) is graded isomorphic to the sub-space generated by the
critical points having the homological type, in the sense given below: ∂B(p) = 0 and p /∈ Im ∂B.

One important point in the statement is the coupling of some critical points, the unpaired
generators being “isolated” in the complex. This fact plays a deep rôle in the work by Y.
Chekanov & P. Pushkar [4]. When the Morse complex is concentrated in two degrees, the
statement amounts to the fact that the double coset GL(n,Z)/T (n)×T (n) is isomophic to the
symmetric group Sn, a fact which was important in Cerf’s work on pseudo-isotopy (here, T (n)
denotes the sub-group of invertible upper triangular matrices) [3].
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In Barannikov’s paper the proof of existence follows more or less from Gauss’ algorithm. The
proof of uniqueness remains mysterious. It is clarified by C. Viterbo in [7].

Viterbo’s important remark is that the critical points of the given Morse function f are
divided in three types: upper, lower and homological, depending of the place of a zero map in
the diagram below of F-vector spaces and F-linear maps, in which c denotes a critical value of
index k + 1 and, for brevity, c+ ε stands for the sub-level set f c+ε := f−1

(
(−∞, c+ ε]

)
:

F

0 // Hk+1(c− ε) // Hk+1(c+ ε)
J // Hk+1(c+ ε, c− ε)

∼=

OO

∆ //

I
��

Hk(c− ε) // Hk(c+ ε) // 0

Hk+1(+∞, c− ε)
∆′

66

The horizontal line is an exact sequence. The critical point p such that f(p) = c is said to be of
upper type when J = 0, implying ∆ injective. It is said to be of lower type when J is surjective
and I = 0. It is said of homological type when I is injective and ∆ = 0. Clearly, since F is a
field, all possibilities are covered, making a partition of the critical points.

The type of a critical point p of f is readable on the Morse complex with coefficients in F,
that is C∗(f,X) ⊗ F. For instance, p is of lower type if there is an F-linear combination of
critical points higher than p whose boundary is p ; this property does not depend on the chosen
pseudo-gradient X.

The coupling of critical points. If p is a critical point of index k+ 1, the local unstable
manifoldW u

loc(p) is unique up to isotopy and orientation. Set [p] := [W u
loc(p)] ∈ Hk+1(c+ε, c−ε)

where c = f(p). If p is of upper type, one defines

λ(p) := inf
σ

max(f |σ)

where σ runs among the k-cycles of the sub-level set f c−ε representing ∆([p]); it is a critical
value λ(p) = f(q) where q is a critical point of index k. By identifying critical point and critical
value, we set q := λ(p).

Lemma 1.6. The critical point q := λ(p) is of lower type.

Proof. Denote ∆q([p]) the class of ∆([p]) modulo the sub-level set f(q) − ε in
Hk

(
f(p)− ε, f(q)− ε

)
. By definition of the minimax, this class is not zero and we have

∆q([p]) = αIpq
(
[q]
)
, α ∈ F, α 6= 0,

where Ipq : Hk(f(q) + ε, f(q) − ε) → Hk(f(p) − ε, f(q) − ε) is induced by the inclusion. Thus,
W u
loc(q) is the boundary of 1

α
W u(p) in the pair (+∞, f(q)− ε). Hence I([q]) = 0. �

The Barannikov differential. Set ∂B(p) = λ(p) if p is of upper type and ∂B(p) = 0 in
the two other cases. According to the previous lemma, ∂B ◦ ∂B = 0.

Lemma 1.7. The map λ defines a bijection from the set of critical points of upper type onto
the set of critical points of lower type.
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Proof. 1) Injectivity. Let q = ∂B(p) = ∂B(p′) with f(p) > f(p′). We are using the same
notation as in Lemma 1.6. We have ∆q([p]) = αIpq ([q]) 6= 0 in Hk

(
f(p) − ε, f(q) − ε

)
and

∆q([p
′]) = α′Ip

′
q ([q]) 6= 0 in Hk

(
f(p′)− ε, f(q)− ε

)
. By construction Ipq∆q([p

′]) = 0. Thus, we
have:

∆q([p]) = ∆q([p])−
α

α′
Ipq∆q([p

′])

= αIpq ([q])− α

α′
α′Ipq ([q]) = 0 .

Therefore, f(q) is not the minimax value associated with p.

2) Surjectivity. Let q be a critical point of lower type and index k. Set

µ(q) = inf
σ

max(f |σ)

where σ runs among the relative chains of (+∞, f(q) − ε) whose boundary is a relative cycle
representing the class [q]. This µ(q) is a critical value of index k + 1 with µ(q) = f(p) for
some critical point p. A chain σ approximating the infimum has a non vanishing class in
Hk+1

(
f(p) + ε, f(p)− ε

)
; hence, [σ] = β[p] in the pair (f(p) + ε, f(p)− ε) with β ∈ F, β 6= 0.

We have ∆q

(
[p]
)

= Ipq (
1

β
[q]). If this element is zero, this means that there is another relative

chain bounded by W u(q) under the level of p, contradicting the definition of µ(q). Then,
∆q([p]) 6= 0. A fortiori, ∆([p]) 6= 0 and p is of upper type.

We have also to show that λ(p) = q. By the above σ, ∆([p]) is homologous to [q] up a non
zero scalar. If it is homologous to [q′] with f(q′) < f(q), then Ipq ([q]) = 0, and this is not the
case. �

At this point we have the uniqueness part in Barannikov’s theorem.

Lemma 1.8. The Morse-Barannikov complex is F-equivalent to the Morse complex. In partic-
ular, its homology is isomorphic to H∗(M,F).

Proof. Suppose we have a chain complex (C∗, ∂), F-equivalent to the Morse complex and which
is simple until the degree k. Then, ∂ (Ck+1) is orthogonal to the critical points of upper type
(with respect to the canonical scalar product of a based vector space). If not, ∂ ◦ ∂ 6= 0.

Let p1, . . . , pm be the critical points of index k + 1, with f(p1) < . . . < f(pm). Let q1, . . . , qr
be the critical points of index k whose type is lower or homological; f(q1) < . . . < f(qr). We
assume that, for some j ≤ r, we have ∂pi = 0 or ∂pi = qk(i) for every i < j, the map i 7→ k(i)
being injective. We have

∂pj =
∑

i<j,∂pi 6=0

αi qk(i) +



0

or

βk0 qk0 +
∑

k<k0,k 6=k(i)

βk qk, with βk0 6= 0 .
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In the first case we use the following upper triangular matrix in degree k + 1:

T (pj) = pj −
∑

i<j,∂pi 6=0

αi pi

T (p`) = p` if ` 6= j

and we set ∂̄ = ∂ ◦ T . We get ∂̄(pj) = 0 and ∂̄(pi) = ∂(pi) for every i < j; so we have improved
the simpleness of the differential.

In the second case, we use an upper triangular matrix in both degree k + 1 and k:

T (pj) = 1
βk0

(
pj −

∑
i<j, ∂pi 6=0

αi pi

)
,

T (p`) = p` if ` 6= j,

T (qk0) = qk0 +
∑

k<k0,k 6=k(i)

βk
βk0

qk

T (qk) = qk if k 6= k0 .

We set ∂̄k+1 = T−1 ◦ ∂k+1 ◦ T and ∂̄k = ∂k ◦ T . We observe that ∂̄k = 0 on the k-cycles as T
keeps this set invariant. We have ∂̄(pj) = qk0 and ∂̄(pi) = ∂(pi) if i < j. Thus, ∂̄ has the simple
form for 1 ≤ i ≤ j. Arguing this way recursively, we get a simple complex which is F-equivalent
to the Morse complex. �

Since the equivalence relation involves upper triangular matrices only, ∂(p) remains the class
of ∆([p]) in H∗

(
f(p) − ε;F

)
as it is in the Morse complex. Therefore, when the F-equivalent

complex is simple, the type of each critical point can be easily derived and this complex is the
Morse-Barannikov complex. The proof of Theorem 1.4 is completed. �

2. Bifurcations

Bifurcations occur in a path of functions. It follows from Thom’s transversality theorems, as
it is explained by J. Cerf in the beginning of [3], that the space F of real smooth functions on
M has a natural stratification whose strata of codimension ≤ 1 are the following:

0) The stratum F0, an open dense set in F , is formed by Morse functions whose critical
values are all simple. The next two strata are of codimension one.

1) The stratum F1 is formed by the functions whose critical values are simple and whose
critical points are all non-degenerate but one where the Hessian has a kernel of dimension
one.

2) The stratum F2 is formed by the Morse functions whose critical values are all simple
but one which has multiplicity 2.

3) The complement R in F of the preceding strata.
A generic path has its end points in F0, avoids R which in turn is said to be of codimension

greater than 1, and crosses F1 ∪ F2 transversely in a finite number of points.
Since the Morse-Barannikov complex is well defined for functions in F0 only, it is necessary

to study the bifurcation when crossing F1 and F2. In that aim, it is convenient to introduce
the Barannikov diagram and the Cerf diagram, which are defined as follows.
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The Barannikov diagram deals with a generic Morse function f ∈ F0. Let n = dimM . The
vertical lines Dk, k = 0, 1, . . . , n, are drawn in the plane, the x-coordinate of Dk being n − k.
The critical values of f of index k are marked on Dk. When the pair of critical points (p, q) are
coupled in the Barannikov complex a segment is drawn from f(p) to f(q); clearly, the slope of
this segment is negative (Fig. 1). The critical values, of homological type, in particular max f
and min f , remain non-connected to another one.

Figure 1
The Cerf diagram deals with a generic path γ = (ft)t∈[0,1]. Its Cerf diagram is the union in

[0, 1]×R of {t}× ft(critft). It is made of finitely many smooth arcs transverse to the verticals
{t} × R, ending at cusp points or in {0, 1} × R, crossing one another transversely.

2.1. Bifurcation at birth times. This event is the crossing of the stratum F1, which is
co-oriented: the crossing in the positive direction corresponds to the birth of a pair of critical
points of index k and k + 1 respectively. The crossing in the opposite direction corresponds to
the cancellation of a pair of critical points.

The birth is modeled by the following formula:

f(x, y) = c+Q(y) + x3 − (t− t0)x,

where t0 is the birth time, c is the critical value of the birth point, (x, y) ∈ R× Rn−1 are local
coordinates at the birth point p0 and Q is a non-degenerate quadratic form of index k on Rn−1.
In the Cerf diagram, there is a cusp of coordinates (t0, c). For 0 < t0 − t small, there are no
critical points in the vicinity of p0. For 0 < t − t0 small, there are two critical points pt, qt of
index k + 1 and k close to p0 (Fig. 2).

Figure 2
It follows from the model that pt is of upper type and qt is of lower type and this pair is

coupled in the Barannikov diagram. The other critical points keep their type and coupling
when crossing the birth time.
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2.2. Bifurcation at double critical value time. This event is the crossing of the
stratum F2, say at time t0. Since the functions ft are Morse for t close to t0, the critical points
can be followed continuously on (t0−η, t0 +η). Generically, the pseudo-gradient is Morse-Smale
at the time t0. Therefore, the Morse complex remains the same on a small interval. But, as
the order of the critical values is modified the Barannikov complex could change.

Denote by (p1
t , p

2
t ) the pair of critical points whose values cross at time t0; say ft(p1

t ) < ft(p
2
t )

when t < t0; hence, ft(p1
t ) > ft(p

2
t ) when t > t0. The question is how the types and coupling of

critical points are changing when t crosses the time t0.
With Barannikov we limit ourselves to the case when M is the n-sphere Sn and the crossing

does not involve the extremal values, this latter question being left as an exercise to the reader.
Since on a sphere the only critical points of homological type are the extrema, the crossing
deals with critical values of upper/lower type.

We shall say that there is no bifurcation if the crossing keeps all critical points with their initial
types and coupling (remember that, near a crossing time all the functions of the considered
path are Morse and the critical points can be followed smoothly in time due to the implicit
function theorem).

One checks by hand that there is no bifurcation if p1
t and p2

t have distinct indices. Now, we
are reduced to the case where the two crossing critical values have the same index, say k.

We are going to prove in the next three propositions that, in our restrictive setting, there are
only three types of bifurcations which are shown with their Barannikov diagrams before and
after crossing (Fig. 3).

2.3. Notation. Before stating the bifurcation propositions, it is useful to introduce some
notation. Denote by c0 the double critical value:

c0 = ft0(p
1
t0

) = ft0(p
2
t0

).

We have two (k − 1)-spheres Σ1 and Σ2 traced in the level set ft0 = c0 − ε by the respective
unstable manifolds of p1

t0
and p2

t0
. When t runs in a small interval around t0, these objects move

by a small isotopy: Σ1
t ,Σ

2
t ⊂ (ft = c0 − ε).

Finally, if α is a non-zero (k − 1)-homology class is the sub-level set c0 − ε, we denote by
λ(α) the critical value which is the infimum of c such that α vanishes in the relative homology
Hk−1(c0 − ε, c;F) of the pair of the denoted sub-level sets.
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Figure 3

Proposition 2.4. We assume that, for t < t0, p1
t and p2

t have not the same type upper/lower.
Then, the following holds true.
1) A bifurcation can occur only in case (A left), that is: p1

t is of upper type and below p2
t which

is of lower type.
2) Assuming the above necessary condition, a bifurcation occurs if and only if [Σ1] = [Σ2] in
Hk−1(c0;F) up to a scalar. In that case, for t > t0, p1

t becomes of lower type and p2
t becomes of

upper type; the new coupling is shown on (A right).

Proof. 1) Assume p1
t and p2

t are respectively of lower and upper type for t < t0. When t is
close to t0, t < t0, by assumption, Σ1

t is null-homologous in its sub-level set while Σ2
t is non-

homologous to 0. Since these spheres change with t by an isotopy, this property persists up to
t = t0 and still a little further, up to some t′ > t0. Therefore the types are unchanged after
crossing and it is easy to check that the coupling is also unchanged. Hence, no bifurcation.

2) Then, we assume (A left). Again, for t < t0 and close to t0, certainly [Σ1
t ] is not homologous

to 0 in Hk−1((ft = c0− ε);F). The unstable manifold W u(p2
t ) traces in ft = ft(p

2
t )− ε′, ε′ > 0,

a sphere which is homologous to 0 in its sub-level set if ft(p2
t ) − ε′ > ft(p

1
t ). Thus, for Σ2

t

in ft = c0 − ε, there are two possibilities: (i) [Σ2
t ]=0 or (ii) [Σ2

t ] is a non-zero multiple of
[Σ1

t ] since it should vanish when passing in a sub-level set containing p1
t . In both cases, this

property persists up to t0 and up to some t′ > t0. One checks easily that in case (i) there is no
bifurcation.

Consider case (ii). The point p2
t′ is of upper type, by the very definition. Now, with ε′ > 0

small enough so that ft′(p2
t′) < ft′(p

1
t′) − ε′, we see that the trace of W u(p1

t′) in the level set
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ft′ = ft′(p
1
t′) − ε′ is homologous to 0 in its sub-level set. Therefore, p1

t′ is of lower type and
the types of the two critical points exchange. One checks that the coupling is as shown on (A
right). �

Assume now p1
t and p2

t are both of upper type. By the same homological argument as before,
the type cannot change. But the coupling could change. Denote q1

t and q2
t the points associated

with p1
t and p2

t respectively before t0.

Proposition 2.5. In this situation, there is a bifurcation (exchange of coupling) if and only if
λ([Σ1]) = λ([Σ2]). In that case, when t < t0, ft(q1

t ) > ft(q
2
t ) as shown on (B left).

Proof. Assume λ([Σ1]) < λ([Σ2]) (the opposite inequality is treated similarly). This implies
that [Σ1] is 0 in the homology of the pair of sub-level sets

(
c0 − ε, λ([Σ2])

)
. But this vanishing

holds true for every t close t0. This proves that the coupling of p1
t remains unchanged; hence,

no bifurcation.
What happens in case of equality? First, we look at t < t0. Since the function ft, restricted

to the sub-level set c0− ε, moves by isotopy when t runs in (t0− η, t0], one derives that λ([Σ1
t ])

varies continuously on this interval. But we know λ([Σ1
t ]) = ft(q

1
t ); as a consequence we have

λ([Σ1]) = λ([Σ2]) = ft0(q
1
t0

) .

For a small ε′ so that ft(p2
t )− ε′ > ft(p

1
t ), the trace of W u(p2

t ) in ft = ft(p
2
t )− ε′ is homologous

to 0 in the pair of sub-level sets (ft(p
2
t ) − ε′, ft(q1

t ) − ε); indeed, the class of W u(q1
t ) is null in

this pair which contains p1
t . Therefore, λ([Σ2

t ]) < λ([Σ1
t ]) and, hence, ft(q2

t ) < ft(q
1
t ) as shown

on (B left).
Second, we look at t > t0. Now, λ([Σ2

t ]) varies continuously on [t0, t0 + η); thus, this value is
ft(q

1
t ) due to the above equality at time t0. Thus p2

t is coupled with q1
t . Therefore, p1

t must be
coupled with q1

t ; there is, indeed, no other free place! �

The last case to consider is when p1
t and p2

t are both of lower type. For homological reasons,
there is no change of types. Let q1

t and q2
t be the points of index k + 1 with which they are

coupled respectively when t < t0.
At time t0, denotes by ei, i = 1, 2, the k-cell traced by the unstable manifold of pit0 in the

level set f = c0 − ε. The map µ that we introduced in Lemma 1.7 is still defined: µ([ei]) is the
infimum of c such that the class of ei is 0 in the pair (c, c0 − ε) with coefficients in F. Arguing
similarly as in the previous proposition, one proves the following.

Proposition 2.6. In this situation, there is a bifurcation (exchange of coupling) if and only if
µ([e1]) = µ([e2]). In that case ft(q1

t ) > ft(q
2
t ) when t < t0 as shown on (C left).

3. The non-empty boundary case

Following S. Barannikov, we discuss in this section the problem of extending without critical
points a germ of function given along the boundaryM of a compact (n+1)-dimensional manifold
W , M = ∂W . This setting was already considered in 1934 by Morse-van Schaack [8] where the
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Morse inequalities have been formulated and proved for manifolds with non-empty boundary.
Notice that generically a function F : W → R is a Morse function whose critical points lie in
the interior of W and whose restriction to the boundary is Morse.

Actually, the problem considered by Barannikov in [1] was more ambitious, that is, given a
generic germ f̃ along the boundary M , to give a bound from below of the number of critical
points of any generic extension F : W → R of f̃ , as acute as possible. We focus on M = Sn,
the n-sphere, and W = Dn+1. Moreover, we limit ourselves to answer the question of knowing
when this bound is positive. This problem was completely solved by S. Blank & F. Laudenbach
[2] for n = 1 and by C. Curley [5] for n = 2.
3.1. The framing. Here we use Barannikov’s terminology. Given a Morse function f : M →
R a framing of f is the data of one vertical arrow at each critical value of f . A generic germ
f̃ : M × [0, ε) → R along the boundary determines a framing according the following rule:
for the critical p of f the arrow at f(p) points up (resp. down) if < df̃(p), ~n(p) > is positive
(resp. negative), where ~n(p) is a tangent vector at p pointing inwards. Conversely, the framing
classifies the germ f̃ up to isotopy fixing the boundary.

This yields some information about the non-existence of an extension without critical points
F : W → R of the germ f̃ . For instance, if the framing points up at the maximum, the
maximum principle tells us that any extension must have at least one critical point in the
interior. Barannikov’s discussion will be of course more subtle. The framing may be attached
to a Morse function on M , an F-equivalence class of Morse complexes or the associated Morse-
Barannikov complex CB(f) as well. We will speak of the framed Barannikov diagram. We are
going to look at the framed Barannikov complex and get some information in relation to the
extension problem.

From now on, we restrict ourselves toM = Sn andW = Dn+1. A framed function f : Sn → R
is said to be standard if f has two critical points only, the framing pointing down at the max-
imum and pointing up at the minimum. In this case, there is a standard extension to the
(n+ 1)-ball without critical points.

Now, start with a generic germ f̃ along Sn and assume there is an extension without critical
points F : Dn+1 → R. Then, there is a one-parameter family of spheres St ⊂ Dn+1, t ∈ [0, 1],
such that S0 = M , St′ lies inside St when t′ > t and the germ of F along S1 is standard. Set
ft := F |St; it is a function thought of as defined on M = Sn, equipped with a framing due to
the knowledge of St′ for t′ = t + ε, ε > 0. The framing says the direction of moving of the
spheres near a critical point p of ft (up to isotopy, F may be locally thought of as the height
function in R3).

Generically, for such a family of spheres, the map t 7→ ft is a generic path of functions in the
sense of Section 2. Therefore, there is a sequence of bifurcations starting from a given germ
and ending at the standard germ.

There is no bifurcation of framing. At a birth time the pair (pt, qt) which has born with
ft(pt) > ft(qt) has the standard framing: the arrows are both up or both down; such a pair
will be said to be a standard pair. At a crossing time t0 involving the pair of critical values
ft(p

1
t ) < ft(p

2
t ), with the same indices, each critical point keeps its framing during the crossing.

But, the rule of moving added to the rule of numbering implies that, for t < t0, the arrow
of p1

t is up and the arrow of p2
t is down (Compare Fig. 4). At each generic time, we have
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a well-defined Morse-Barannikov framed complex and the bifurcations are those allowed by
Propositions 2.4 to 2.6. Of course, in each case the bifurcation occurs only when the required
homological condition is satisfied. If it is not, the crossing yields no bifurcation.

Figure 4

3.2. Barannikov idea’s. Not any sequence of allowed bifurcations of the framed Barannikov’s
complex is realizable by a sequence of bifurcations of framed Morse complex; at the level of
framed Barannikov diagram there is no longer homological condition. Therefore, there is a
formal problem which is the following: given a framed Barannikov complex, does there exist a
sequence of allowed bifurcations connecting it to the standard Barannikov complex (i.e. one
maximum down and one minimum up)? If there is no solution to the formal problem, a fortiori
there is no solution to the extension problem without critical point. Now, the question is
whether it is possible to answer the formal problem in finite time. This question is solved by
the last theorem in Barannikov’s article.

Theorem 3.3. Given a framed Barannikov complex C0, if it is connected to the standard
Barannikov complex Cst, then C0 is connected to Cst without any birth.

In particular, the formal problem reduces to a finite combinatorics.

Definition 3.4. Let f be a framed Morse function. A coupled pair of critical points is said to
be inverted when one of its two arrows points up and the other points down.

There are two types of such inverted pairs: in type I (resp. type II) the upper point is equipped
with an arrow pointing up (resp. down).

The index of a coupled pair (inverted or standard) will be the index of the upper point.

One checks on the list of bifurcations that such a pair could not disappear alone. At best, it
is possible to shift the indices of the involved critical points (use the bifurcation of Fig. 4 one
pair being inverted and the other being standard in the sense of the birth bifurcation). But,
two inverted pairs involving of a bifurcation as shown on Fig.4 become both standard and then,
each of them can be cancelled.

As a consequence, an obvious obstruction to extending without critical points is the parity
of the number of inverted pairs in the initial framed Morse function. The obstruction which
follows from Theorem 3.3 is more subtle as shown in the next example.
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Figure 5

The proof of Theorem 3.3 is based on the fact that there is a very short list of bifurcations
involving at least one inverted pair; moreover, the role of the two types, I and II, are completely
different. Here is the list of these bifurcations:

(1) a pair of type I and a pair of type II of the same indices yield two standard pairs;
(2) two pairs of type I whose indices differ by 1 yield two standard pairs whose indices differ

by 1;
(3) two standard pairs having the same index k yield a pair of type I and a pair of type II

both having the index k;
(4) two standard pairs whose indices are k and k+1 yield two pairs of type II whose indices

are still k and k + 1;
(5) a pair of type I and index k and a standard pair of index k ± 1 yield a pair of type II

and index k ± 1 and a standard pair of index k.

In particular, it is impossible to change the index of a pair of type II. For proving Theorem
3.3, without losing generality we may assume that the initial complex C0 has no standard pairs.
All the coupled pairs are inverted and we are facing the problem of canceling them, maybe with
the help of introducing standard pairs (births) whose bifurcations could create new inverted
pairs in good positions for a total cancellation. One checks that this event cannot happen.

According to the previous list, for canceling one pair A of type II it is required to have one
pair B of type I and of the same index is the right position allowing the bifurcation (1). If B
comes from births followed by the bifurcation (3), then B is born with another pair of type II
still with the same index. So the price to pay the cancellation of A with B is the appearance
of C which is almost in the same position as A in the Barannikov diagram, up to a shift of
the heights in the direction of the arrows of the framing. So, nothing is gained. The complete
proof follows the same line. We refer to Barannikov’s article for the details.
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