
HAL Id: hal-01197121
https://hal.science/hal-01197121v1

Submitted on 5 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AICHA: An atlas of intrinsic connectivity of homotopic
areas.

Marc Joliot, Gaël Jobard, Mikaël Naveau, Nicolas Delcroix, Laurent Petit,
Laure Zago, Fabrice Crivello, Emmanuel Mellet, Bernard Mazoyer, Nathalie

Tzourio-Mazoyer

To cite this version:
Marc Joliot, Gaël Jobard, Mikaël Naveau, Nicolas Delcroix, Laurent Petit, et al.. AICHA: An atlas
of intrinsic connectivity of homotopic areas.. Journal of Neuroscience Methods, 2015, 254, pp.46-59.
�10.1016/j.jneumeth.2015.07.013�. �hal-01197121�

https://hal.science/hal-01197121v1
https://hal.archives-ouvertes.fr


 1 

AICHA: An atlas of intrinsic connectivity  

of homotopic areas 

MarcJoliota, Gaël Jobarda, Mikaël Naveaua, Nicolas Delcroixb, Laurent Petita, 
Laure Zagoa, Fabrice Crivelloa, Emmanuel Melleta,Bernard Mazoyera, 

NathalieTzourio-Mazoyera 

a GIN, UMR 5296, CNRS, CEA, Bordeaux University, Bordeaux, France 

b GIP CYCERON, UMS 3408, Caen F-14000, France 

 
Abstract 

Atlases of brain anatomical ROIs are widely used for functional MRI data analysis. Recently, 
it was proposed that an atlas of ROIs derived from a functional brain parcellation could be 
advantageous, in particular for understanding how different regions share information. 
However, functional atlases so far proposed do not account for a crucial aspect of cerebral 
organization, namely homotopy, i.e. that each region in one hemisphere has a homologue in 
the other hemisphere. 

We present AICHA (for Atlas of Intrinsic Connectivity of Homotopic Areas), a functional 
brain ROIs atlas based on resting-state fMRI data acquired in 281 individuals. AICHA ROIs 
cover the whole cerebrum, each having 1—homogeneity of its constituting voxels intrinsic 
activity, and 2—a unique homotopic contralateral counterpart with which it has maximal 
intrinsic connectivity. AICHA was built in 4 steps: (1) estimation of resting-state networks 
(RSNs) using individual resting-state fMRI independent components, (2) k-means clustering 
of voxel-wise group level profiles of connectivity, (3) homotopic regional grouping based on 
maximal inter-hemispheric functional correlation, and (4) ROI labeling. 

AICHA includes 192 homotopic region pairs (122 gyral, 50 sulcal, and 20 gray nuclei). As an 
application, we report inter-hemispheric (homotopic and heterotopic) and intra-hemispheric 
connectivity patterns at different sparsities. 

ROI functional homogeneity was higher for AICHA than for anatomical ROI atlases, but 
slightly lower than for another functional ROI atlas not accounting for homotopy. 

AICHA is ideally suited for intrinsic/effective connectivity analyses, as well as for 
investigating brain hemispheric specialization. 
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1. Introduction 
 
Over the previous ten years, the use of brain parcellation atlases (Evans et al., 2012) has 
become more frequent with the introduction of resting state functional magnetic resonance 
imaging (fMRI) connectivity analysis (Biswal et al., 1995). Within this framework, atlas 
based sets of regions of interest (ROI) are used to compute a brain graph, i.e., a model of the 
human brain functional connectome (Bullmore and Bassett, 2011). As shown by Craddock et 
al. (2012), region-based analysis has advantages compared with voxel-based analysis, 
including better sensitivity, interpretability and computational time. Furthermore, the 
reduction of the dimensionality of the fMRI data makes the problem statistically manageable 
by lowering the required number of statistical tests (Zalesky et al., 2012). 
 
Today, several atlases are available, and each atlas has specific properties that should be 
considered with respect to the user's needs. The available atlases for functional/intrinsic 
connectivity and graph analyses can be characterized by the dataset of images that served in 
their elaboration, the target space that had been chosen for normalization, the neuro-
anatomo/functional parameters that drive the parcellation, and the parcellation algorithm. 
 
The datasets involved in atlas creation define their “specific versus generic” nature. At one 
end are the most “specific” atlases, that are built from a single-subject dataset (such as in the 
AAL case (Tzourio-Mazoyer et al., 2002); at the other end are the most “generic” atlases, that 
are built from datasets representative of the general population. Note that elaboration of a 
truly “generic” atlas is out of reach, since it would request datasets for all ages, ethnicities, 
etc. Rather, available generic atlases are based on samples representative of some specific 
population, balancing for some given phenotypes, such as sex (Craddock et al., 2012), or 
conversely, selecting a specific phenotype, such right-handedness (Shen et al., 2013). 
 
Regarding the target space, two main choices are available, namely volume (Ashburner and 
Friston, 2005) or surface (Dale et al., 1999). While the surface space has been demonstrated 
to be more accurate (Jo et al., 2007), the volume space is important when one is interested in 
tissue other than the cortical gray matter mantle, such as white matter or nuclei. The partial or 
complete parcellation proposed for a given brain tissue class should also be considered in 
atlas selection. For example, network centrality graph analysis (Bullmore and Bassett, 2011) 
can be critically affected in the case of partial coverage atlases because such analyses consider 
the strength of the connection between all graph regions. For example, centrality analysis 
based on an incomplete parcellation atlas or a complete cortex coverage atlas can lead to 
discrepant sets of “hub” region identification. 
 
For each atlas, there are some neuro-anatomo-functional parameters that guide the 
parcellation scheme and constrain the definition of landmarks that constitute the boundaries of 
the atlas regions. Three types of landmarks are used for gray matter parcellation, including 
sulci (anatomical landmarks, Tzourio-Mazoyer et al., 2002, Kennedy et al., 1998), borders of 
cytoarchitectonic areas (Caspers et al., 2006) or limits defined from functional properties, 
such as the borders of spatially coherent regions of homogeneous functional connectivity 
(Craddock et al., 2012). Note that the homogeneity in the regions of interest of a given atlas 
will depend on the parameters that guide its parcellation scheme. 
 
The atlas building constraints that are explicitly or implicitly associated with the parcellation 
scheme, such as the choice of the landmarks, has a strong impact on the topology of the 
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parcellation in terms of the shape and number of parcels and thus on the atlas’ final 
resolution. 
 
The aim of the present work was to design an atlas suitable for functional/intrinsic 
connectivity and graph analysis that would consider and benefit from a major characteristic of 
brain organization, namely homotopy. Homotopy corresponds to the fact that the two 
hemispheres have comparable organization regarding macroscopic anatomy, cytoarchitecture 
and large-scale functional organization (Fuster, 1998, Mesulam, 1990) and are for the most 
part connected to each other by the white matter tracts of the corpus callosum, which originate 
from and terminate in the 4th cortical layer. As a consequence, almost all areas from identical 
cortical structures and with identical hierarchical levels are connected through the corpus 
callosum in a mirroring way. However, this cortical symmetry is not perfect because of the 
global torsion of the brain, the Yaklovian torque, which makes difficult a point-to-point 
correspondence between cortical areas that are functionally homotopic (Toga and Thompson, 
2003). In addition, the torque goes along with asymmetries in sulcus depth and position in 
relation to differences in asymmetries in neighboring cortices (Lyttelton et al., 2009); the 
largest sulcal and cortical asymmetries in newborns and adults are located at the termination 
of the Sylvian fissure and at the superior temporal sulcus (Hill et al., 2010). These gross 
morphological differences across hemispheres increase the difficulty in defining homotopic 
regions in the temporal and inferior parietal areas. For example, in order to calculate regional 
asymmetries, one must define what is meant by homotopic regions. This definition can be 
based either on anatomical atlases, such as AAL (Tzourio-Mazoyer et al., 2002), which use a 
rough spatial metric based on the position of the regions relative to the sulci, or on a 
cytoarchitectonic atlas based on both anatomical symmetry in position and differences in the 
cortical lamination patterns (Caspers et al., 2006). In functional atlases, criteria based on the 
functional characteristics of the regions of the atlas areas have not yet been proposed to define 
homotopic areas. However, it is common to observe homotopic-like patterns in resting data 
analysis using seed based analysis (van den Heuvel and Hulshoff Pol, 2010, Jo et al., 2012) or 
network decomposition methods (Beckmann et al., 2005, Naveau et al., 2012, Yeo et al., 
2011). Furthermore, Stark et al. (2008) have reported that the highest mean functional 
connectivity is observed between inter-hemispheric symmetrical areas compared with other 
inter-hemispheric or intra-hemispheric connections. These observations support that 
homotopic organization is a fundamental feature of the functional organization of the cortex 
and plead for the definition of homotopic areas based on functional, rather than anatomical, 
criteria. 
 
The Atlas of Intrinsic Connectivity of Homotopic Areas (AICHA) we propose here is thus a 
population-level, cerebrum gray matter brain atlas of homotopic regions based on a time 
correlation structure of the resting brain. We designed AICHA based on the following 
properties: 1—a large dataset of 281 healthy participants balanced for handedness and gender; 
2—volumetric MNI space of normalization to cover the gray matter of the whole cerebrum, 
including the sub-cortical gray nuclei; 3—time correlation structure of the functional resting 
state signal (intrinsic connectivity) as the basis for landmark definition; and 4—choice of an 
algorithm that permits a homotopic parcellation to maximize the weight of the functional 
signal at the final step. We describe the AICHA atlas building, its dataset regional functional 
homogeneity (i.e., the intra-regional similarity level of the voxel blood oxygen level 
dependent time-series), compare it to four existing atlases, and provide the intra- and inter- 
hemispheric intrinsic connectivity patterns at different thresholds of regional connection 
strength. 
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2. Materials and methods 
 
2.1. Participants 
Two hundred eighty-one healthy adults (137 women, 144 men) aged 18–57 years (25 ± 6 
years, mean ± SD) were included in this study. Subject handedness was self-reported, and 
their manual preference strength was measured using the Edinburgh score (ES, mean ± σ, 
(Oldfield, 1971). 133 subjects were right-handed (66 women, ES = 94 ± 10; 67 men, ES = 91 
± 13) and 148 subjects were left-handed (71 women, ES = −63 ± 39; 77 men, ES = −63 ± 41). 
All subjects provided informed written consent, and the local ethics committee (CPP de 
Basse-Normandie, France) approved the study. 
 
2.2. Data acquisition and pre-processing 
2.2.1. Imaging methods 
Imaging was performed on a 3 Tesla MRI scanner (Achieva Philips, Best, The Netherlands). 
Spontaneous brain activity was monitored using blood oxygen level dependent (BOLD) fMRI 
while the participants performed an 8-min resting state condition (T2*-EPI, sequence 
parameters: 240 volumes; TR = 2 s; TE = 35 ms; flip angle = 80°; 31 axial slices; and 3.75 × 
3.75 × 3.75 mm3 isotropic voxel size). Immediately preceding the fMRI scan, the subjects 
were instructed to “keep their eyes closed, relax, refrain from moving, stay awake and let their 
thoughts come and go”. Prior to the fMRI session, high-resolution 3D T1-weighted structural 
MR brain images (sequence parameters: TR = 20 ms; TE = 4.6 ms; flip angle = 10°; inversion 
time = 800 ms; turbo field echo factor = 65; sense factor = 2; field of view = 256 × 256 × 180 
mm3; and 1 × 1 × 1 mm3 isotropic voxel size) and T2*-weighted multi-slice images (T2*-
weighted fast field echo [T2*-FFE], sequence parameters: TR = 3.5 ms; TE = 35 ms; flip 
angle = 90°; sense factor = 2; 70 axial slices; and 2 × 2 × 2 mm3 isotropic voxel size) were 
acquired. The subjects did not perform cognitive training or any other task prior to image 
acquisition. 
 
2.2.2. Data pre-processing 
Pre-processing was performed using Statistical Parametric Mapping subroutines (SPM5, 
Wellcome Department of Neurology, London, UK; www.fil.ion.ucl.ac.uk/spm) completed by 
in-house MATLAB-based software. Each subject's anatomical T1-weighted volume was 
segmented into three brain tissue classes (gray matter, GM; white matter, WM; and 
cerebrospinal fluid, CSF) and spatially normalized using specific cerebral tissue templates 
built from the T1-weighted images of 80 subjects (40 men) acquired with the same scanner 
and acquisition parameters (Template resolution of 2 × 2 × 2 mm3 voxels; bounding box, x = 
−90 to 90 mm, y = −126 to 91 mm, z = −72 to 109 mm) and normalized to the stereotaxic 
space of the Montreal Neurological Institute (MNI) template (Ashburner and Friston, 2005). 
The fMRI data were corrected for slice timing differences and motions (6 parameters: 3 
translations and 3 rotations) and registered to the T2*-FFE volume. The fMRI data were then 
spatially normalized combining the T2*-FFE to T1-weighted registration matrix and the T1-
weighted stereotaxic normalization matrix and spatially smoothed (Gaussian 6 mm full width 
at half maximum filter). Finally, the time series for WM, CSF (average time series of voxels 
that belong to each tissue class), the six motion parameters and the temporal linear trend were 
regressed out of the fMRI data. 
 
2.3. Atlas building methodology 
The methodology is subdivided in 4 stages that are summarized on the flow chart in Fig. 1, 
with intermediate results shown in Fig. 2. The first stage covers the estimation of resting-state 
networks (RSN's) using an algorithm of classification of individually extracted independent 
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components. The second stage covers the making of a template of regions of interest (ROI's) 
based on these RSN's using a k-means clustering algorithm. The rationale for choosing such a 
RSN-ROI based (rather than voxel-level) approach was three-fold: 1—the need for reducing 
spatially-extended noise-related artifacts in rs-fMRI correlation maps (Salimi-Khorshidi et al., 
2014), 2—use RSN decomposition to capture the group reproducible functional correlation 
patterns 3—the fact that most RSN's are spatially symmetrical, a feature we considered as a 
strong advantage in the context of building an atlas of homotopic ROI's. The third stage 
concerns the homotopic regional grouping procedure and the parcellation refinement, while 
the fourth stage deals with the atlas labeling procedure. 
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2.3.1. Estimation of resting-state networks (Stage 1) 
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We used a multi-scale clustering of individual components (MICCA) to estimate group-level 
resting-state networks (RSNs). This algorithm has been fully described elsewhere (Naveau et 
al., 2012); thus, we only present the key features of the procedure. First, we computed 
individual independent components (ICs) for each subject using probabilistic independent 
component analysis provided by the FMRIB Software Library (FSL, 
http://www.fMRIb.ox.ac.uk/fsl) (Smith et al., 2004) under the name MELODIC (Multivariate 
exploratory linear optimized decomposition into independent components, version 3.10). The 
number of ICs was estimated for each subject (i.e., model order = 48 ± 6, mean ± SD, N = 
281) using Laplace approximation (Minka, 2000). Each extracted component was described 
as a spatial z-map (zIC) built to quantify each voxel membership to the specific IC. These z-
values represent the correlation between the voxel time series and IC time series divided by 
the standard error of the residual noise (Beckmann et al., 2005). In a second step, the MICCA 
method clustered zICs across individuals according to their spatial similarity and provided a 
group of zICs (gICs) that corresponded to the same signal source. These two steps were 
replicated 20 times because we used a random (stochastic) algorithm for ICA. This algorithm 
relies on a pseudo-random initialization and, consequently, two decompositions of the same 
data led to two different solutions. The results were aggregated using Icasso (Himberg et al., 
2004), and we retained group-level components repeatedly identified in more than half of the 
repetitions (>10). Forty-five gICs were identified using this procedure. The gICS that 
demonstrated a maximal proportion of cerebrum gray matter (N = 34) were considered RSNs 
(Naveau et al., 2012). The 11 discarded gICS were primarily localized in the cerebrospinal 
fluid (6), the white matter (3) and the cerebellum or cerebral trunk (2). The 34 selected RSNs 
covered 98% of the cerebrum gray matter. 
 
Using the individual zICs that belong to each RSN, we created a median z-map (zICmed) that 
coded how strongly the voxels belonged to the corresponding RSN. Thus, the median of the 
z-value distribution across individual zIC maps included in the considered gICs was assigned 
to each voxel of zICmed. For display purposes, a thresholded map (gamma-Gaussian mixture 
model p > 0.95) of each RSN was computed, both 3D and 3 orthogonal slice renderings are 
presented in Fig. 2A and Supplementary Fig. S1, respectively. 
 
2.3.2. Construction of the optimal parcellation (Stage 2) 
The construction of the optimal parcellation was decomposed in 5 steps. 
 
2.3.2.1. Step 1: Profiles of connectivity 
Using the ICmed z-maps, we defined voxel-wise profiles of connectivity across the RSNs. 
We retained voxels of the sample average gray matter probability map that indicated a gray 
matter probability above 25%. The cerebellum and brain stem were subsequently removed 
using a ROI manually defined on the average T1-weighted volume (144,216 voxels selected). 
For each selected voxel (v), a connectivity profile was created as an N-dimensional vector, 
such as Cp(v) = [zICmed,1(v), zICmed,2(v),…, zICmedN(v)], where N is the number of 
resting-state networks (here N = 34). Each element of the “connectivity profile” is thus a 
statistical measure of its membership to the corresponding network. The z-values of 
connectivity were normalized so that ∑Cp(v) = 1 (the negative values were set to zero prior to 
the normalization) (Fig. 2B). Each brain voxel was thus attributed a normalized connectivity 
profile along the N = 34 dimensions. 
 
2.3.2.2. Step 2: k-means parcellation 
The Matlab-based k-means algorithm (provided by the Statistical Toolbox) was chosen as the 
parcellation algorithm. The whole set of connectivity profiles, Cp(v) (v belonging to the gray 
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matter, see above), was submitted to multiple k-mean decompositions with 18 k-level initial 
number of clusters that ranged from 75 to 500 in steps of 25. For each k-level of partition, 11 
repetitions using random seed initialization were computed, which led to 11 parcellations. In 
the k-means clustering, the squared Euclidean distance was used as a measure of dissimilarity 
between average cluster connectivity profiles. 
 
2.3.2.3. Step 3: Definition of the optimal k-level used in the parcellation 
To define the optimal k-level, the resulting partitions were compared using the Rand index 
criteria corrected for agreement by chance (Hubert and Arabie, 1985). Two voxels are in 
agreement in partition P1 and P2 if they are placed in the same cluster in P1 and in the same 
cluster in P2 or if they are in different clusters in P1 and P2. The rand index corresponds to 
the proportion of voxel pairs in agreement. Because the Rand index is not null in the case of 
random parcellation (Hubert and Arabie, 1985), we used a Rand index “corrected for chance” 
using a generalized hypergeometric distribution null model. Two corrected-Rand indexes 
were computed: one index between each repetition of a k-level (intra-level agreement) and 
one index between repetitions of each successive k-level (inter-level agreement). Confidence 
intervals for both intra and inter k-level corrected-Rand indexes were then computed. We 
observed that the intra-level agreement (Fig. 2C, blue curve) attained a high-level plateau, i.e., 
a maximal stability, in the 100 and 175 k-level range. The optimal regional parcellation was 
set at the highest level of partition in the maximum intra-level agreement range (k-level = 
175). The inter-level agreement (Fig. 2C, red curve) was below the intra-level agreement up 
to the k-level of 175 and was at the same level as the intra-level agreement beyond this value. 
These findings indicate that at higher levels, the difference between two successive 
parcellations was in the same range as the difference measured by the replication. Thus, there 
was no clear benefit in increasing the subdivision. The use of this criterion resulted in a 
parcellation of the 144,216 voxels in 175 clusters. 
 
2.3.2.4. Step 4: Construction of the optimal parcellation 
Once the optimal k-level was determined, the 11 parcellations of the 175 k-level solutions 
were collapsed into a single parcellation. We used a two-step procedure (Fig. 2D). In the first 
step, we maximized the matching of the class denomination between one randomly chosen 
parcellation and the 10 other parcellations. For each pair, we used the “matchClasses” 
function of the “e1071” R-package (Meyer et al., 2012). For each pair, we built a contingency 
matrix that represented the number of voxels that belonged to each possible pair of parcels 
between the 2 considered parcellations. Using permutation of the rows and columns of this 
matrix, the algorithm maximizes the trace of the matrix (i.e., the sum of the diagonal values) 
(Parameters of “matchClasses”: method =“exact”, maxexact = 9, iteration for greedy search = 
105). In the second step, each voxel was attributed to one parcel based on a maximum voting 
criteria of the 11 repetitions. Note, that for voxels with a matching vote, they were affected to 
the parcel they were connected to (edge connectivity criteria) and pseudo-randomly to one 
parcel for those that connected the two parcels. 
 
2.3.2.5. Step 5: Spatial decomposition of the parcellation 
Hemispheres were disconnected by removing the voxels that overlapped the inter-hemispheric 
fissure. The fissure geometry was defined as the average of the anatomical T1-weighted 
volumes (Supplementary Fig. S2). Following this virtual hemisphere disconnection, each 
cluster showing on both hemispheres appears as at least 2 spatially disconnected regions. In 
fact it could be more than two regions per cluster, as the k-means algorithm does not impose 
to get only one region because it does not consider the spatial information. To get the 
parcellation we performed a connected-component analysis using a voxel edge-connectivity 
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heuristic. This heuristic states that one voxel is connected to neighbor voxels if they share a 
common edge, thus one voxel is connected to 18 neighbors. This step led to a parcellation in 
221 and 239 regions in the left and right hemispheres, respectively (Fig. 2E). 
 
2.3.3. Homotopic regional grouping (Stage 3) 
We computed the average BOLD time-series for each region of the atlas in each subject. For 
each region identified, we identified the contralateral region that had the maximal average 
temporal Pearson correlation coefficient across subjects. Thus, we considered only the inter-
hemispheric connections. The homotopic relationship was defined using two steps (Fig. 2F): 
 
2.3.3.1. Step 1 
Two regions A and B were labeled as “homotopic” if they fulfilled the following three 
conditions: region A shows a maximal temporal correlation with region B; region B shows a 
maximal temporal correlation with region A; and no other region had a maximum correlation 
with A or B. 
 
Following the first step, the parcellation comprised 460 regions, including 274 homotopic 
regions (60% of the regions, 137 pairs) and 84/102 left/right orphans regions, i.e., regions that 
did not belong to a homotopic pair. 
 
2.3.3.2. Step 2 
If two spatially adjacent regions B and C show a maximal correlation with the contralateral 
region A and if region A shows a maximal temporal correlation with B or C, then we merged 
B and C and labeled the regions (A; B U C) as “homotopic”. Note that the resultant regions 
had to fulfill the Step 1 criteria. 
 
After this step, the parcellation comprised 386 regions, including 360 homotopic regions 
(93% of the regions, 180 pairs) and 26 (13 per hemisphere) orphan regions, i.e., regions that 
did not belong to a homotopic pair (Fig. 2G). 
 
A visual inspection of the orphan regions revealed that they appeared as two non-neighboring 
regions in one hemisphere that had a maximal correlation with the same regions in the other 
hemisphere. In such cases, the target region generally consists of two foci linked by a thin 
continuum of voxels located either at the gray/white matter or gray/CSF interface. These 
continuums were manually removed, which created the same number of regions in each 
hemisphere. The homotopic regional grouping procedure was re-applied for identifying the 
homotopic couples. At the end, only 4 regions remained orphans: two regions in the frontal 
lobe and two regions in the parietal lobe (Supplementary Fig. S3). An analysis of the 
correlation pattern demonstrated that if the left and right parietal regions were maximally 
correlated, the right frontal region was maximally correlated with the left parietal region, 
although not significantly more than with the left frontal region (paired t-test correlation 
difference, t(280) = 0.92, p = 0.36). Consequently, we re-affected both frontal regions and 
both parietal regions as homotopic couples. The resulting final parcellation, which is referred 
to as the Atlas of Inter-Connected Homotopic Area (AICHA), is shown in Fig. 3. 
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2.3.4. AICHA labeling (Stage 4) 
The labeling of the regions constituting AICHA was based on sulcal and gyral anatomical 
labels. The sulci were defined at the intersection of the T1-weighted structural MR average 
image convex hull and the CSF compartment (Joliot and Mazoyer, 1991) (Supplementary Fig. 
S4). The convex hull was computed using Caret software (Van Essen et al., 2001). The sulci 
and gyri were labeled using the rule used in the construction of the AAL atlas (Tzourio-
Mazoyer et al., 2002). AICHA parcellation encompasses both gyral regions located in the 
crown of the gyri and sulcal regions located in the depth of the sulci. With the addition of 
gray nuclei, 55 anatomical labels were defined in each hemisphere. 
 
The anatomical scale was not sufficiently precise to describe the fine spatial resolution of 
AICHA; thus, additional labeling procedures were defined inside each anatomically labeled 
region. The different sub-regions were labeled using numbers that were attributed according 
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to cumulative criteria: first from anterior to posterior, then from ventral to dorsal and finally 
from lateral to medial. 
 
2.4. Homotopic ROI pair volume asymmetry 
The normalized volume asymmetry (NVA) of each pair of homotopic regions was computed 
as the left minus right region volume difference divided by the mean volume of the pair of 
regions. Positive (or negative) values indicate that the left (or right) region has a larger 
volume than its contralateral region. The NVAs were submitted to an outlier analysis and we 
report the regions that exhibit NVA values below the 25th and above the 75th percentiles of 
the distribution. 
 
2.5. Regional functional homotopic correlation 
For each of the 281 participants and each region of AICHA, the mean BOLD fMRI time-
series was computed by averaging the signals of all voxels belonging to this region. Then, for 
each participant and each homotopic pair of regions, we computed the Pearson's linear 
correlation coefficient (r) between the region's BOLD fMRI time-series. Based on these 
individual results, the regional group-average homotopic correlations (AHC) and variation 
coefficient homotopic correlation (VHC) maps were computed. Note that the VHC map was 
computed at the basis of the z-transform of the homotopic correlation, taking into account the 
saturation effect of the correlation measures. 
 
2.6. Comparison of atlases 
We defined a regional functional homogeneity measure as the average Pearson correlation 
coefficient between the BOLD time series of all pairs of voxels belonging to a considered 
region. The regional functional homogeneity of AICHA was computed using an additional 
distinct resting state dataset (88 subjects), which was acquired and processed in the same 
manner as the AICHA generation dataset. The dataset was balanced for both gender and 
handedness (22 subjects per combination). These measures were compared with the measures 
obtained in the regions defined by 4 previously published and available atlases. Note that only 
the cerebrum gray matter regions were retained for this analysis. These atlases included the 
Automated Anatomical Labeling Atlas (referenced as AAL, 90 anatomical regions selected, 
Tzourio-Mazoyer et al., 2002), the anatomical based Harvard-Oxford Atlas (referenced here 
as Ha-Ox, 110 anatomical regions selected, Desikan et al., 2006), the Juelich 
cytoarchitectonic atlas (referenced here as Cyt-Jue, 90 cytoarchitectonic regions selected with 
a partial coverage of the cerebrum gray matter, Caspers et al., 2006) and one of the resting 
state based functional atlases provided by Craddock et al. (2012) (referenced here as Func-
Cra, 394 functional regions selected). 
 
2.7. Description of the atlas’ regional functional correlations 
We were interested in characterizing the between-subject pairwise regional correlations based 
on AICHA's regions. We describe the functional inter-hemispheric (homotopic and 
heterotopic) and intra-hemispheric (left and right) connectivity patterns of the creation atlas 
dataset at different thresholds of connection strength. 
 
For each of the 281 individuals and each region of AICHA, an individual regional BOLD 
fMRI time-series was computed by averaging signals from all voxels belonging to this region. 
Then, for each individual and each pair of regions, we computed the Pearson's linear 
correlation coefficient between the pair of regional BOLD fMRI time-series. 
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Region pair correlation values (73,536) were analyzed at a sparsity (St) threshold going from 
50 to 2% (step of 2%), i.e., only the St percentage of highest correlation values was retained 
for each subject. For each threshold, the pairs that had correlation values above the chosen 
threshold for at least 95% of the participants were selected and were classified into the 4 
categories: homotopic, heterotopic, intra-hemispheric left and intra-hemispheric right. The 
intra-hemispheric correlations were further analyzed for the proportion of bilateral (present in 
both hemispheres) or unilateral (present in only one hemisphere) occurrences. 
 
3. Results 
3.1. AICHA description 
 
3.1.1. General description of AICHA ROIs 
AICHA includes 192 pairs of homotopic ROIs (Fig. 3). Of these ROIs, 122 ROIs 
anatomically belong to 37 gyri (Table 1), 50 ROIs overlap 14 sulci (Table 2) and 20 ROIs are 
localized within the 4 subcortical gray matter nuclei (Table 2). The complete labels are 
provided as Supplementary material (see Supplementary Fig. S5), together with the ROI 
volumes and mass center coordinates. The average volume of the AICHA ROIs is 2.1 ± 2 
cm3 (mean ± S.D.) with a range from 0.16 to 10.2 cm3. A three-dimensional rendering of 
each region is provided in Supplementary Fig. S5. 
 



 13 

 



 14 

 
 

3.1.2. Anatomical location of AICHA ROIs 
Overall, 74% of the ROIs (142 regions per hemisphere) were localized within a gyrus or a 
gray matter nucleus. These regions can thus be considered subparts of the anatomical regions 
based on sulcal landmarks. This was also the case for 18 sulcal-labeled regions per 
hemisphere that were primarily localized in one bank of a sulcus, including the precentral, 
postcentral, intra-parietal and parieto-occipital sulci ROIs (Table 2). The remaining sulcal 
regions (32 per hemisphere, 17% of the total) encompass both banks equally, and these ROIs 
represent “new” regions compared with the anatomically defined atlases. These regions 
include the superior and inferior frontal, orbital, anterior_rostral, olfactory, Rolando, 
intra_occipital, superior temporal, cingulate and calcarine sulcus ROIs (Table 2). 
 
3.1.3. Volume asymmetry of AICHA ROIs 
The normalized volume asymmetry (NVA) distribution of AICHA's ROIs was centered on 
zero showing no asymmetry. NVA absolute values larger than 61.8% (which corresponded to 
the 25th and 75th percentiles of the distribution) were observed in 8 leftward asymmetrical 
and 10 rightward asymmetrical ROIs (Table 3). 
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In the frontal lobe, the middle frontal regions were rightward asymmetrical, whereas the 
superior frontal sulcus, superior frontal gyrus and inferior frontal sulcus regions exhibited 
leftward asymmetry. In the medial wall, the largest subpart of SMA (G_Supp_Motor_Area-3) 
was leftward asymmetrical. 
 
The G_Temporal_Pole_Mid-1 was larger in the left compared with right hemisphere, whereas 
the reverse was observed for the neighboring G_Temporal_Pole_Mid-2 and 
S_Superior_Temporal-2 regions. 
 
In the parietal cortex, the S_Postcentral-3 was larger on the left, whereas the neighboring 
G_Parietal_Inf-1 exhibited the reverse asymmetry. Note that the G_SupraMarginal-7 was 
larger on the left without any neighboring ROI exhibiting the reverse asymmetry. 
 
3.1.4. Regional functional homotopic correlation 
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A 3-D rendering of regional average homotopic correlation (AHC) values is presented on Fig. 
4A. The regional AHC values range from 0.26 to 0.84. The highest AHC values were 
observed on the medial face in regions surrounding the corpus callosum. The highest 
correlations on the cortical convexity were observed in the cortex surrounding the Rolando 
sulcus, insula, temporal superior gyrus, supramarginal gyrus and occipital cortices. Most of 
the lateral frontal and temporal cortices (except for the superior temporal cortex) showed the 
weakest correlations. Additional intermediate correlations values were found in the inferior 
frontal and parietal regions. 
 

 
 
The coefficient of variation of the homotopic correlation strength (VHC) is shown in Fig. 4B. 
Regional values look homogeneous across the brain with some high outlier values located 
mostly in the lower parts of the brain. BOLD signal susceptibility artifacts that are important 
when acquiring the whole brain may explain the highest variability in those regions. Indeed, 
the frontal lobe included most of those outliers: G_Frontal_Sup-1-L, S_Sup_Frontal-1, 
G_Frontal_Sup_Orb-1-L, G_Frontal_Inf_Orb-2, G_Frontal_Mid_Orb-1, S_Orbital-1, 
G_Frontal_Med_Orb-1 and S_Sup_Frontal-2. Other areas were located in (from the front to 
the back of the brain): G_Insula-anterior-1, G_ParaHippocampal-3, G_Temporal_Pole_Mid-
2, G_Temporal_Pole_Mid-3, G_Fusiform-2 and G_Occipital_Pole-1. In the upper parts of the 
brain only the G_Frontal_Sup-3 showed similar high value. 
 
3.2. Comparison of AICHA ROI homogeneity with other atlases 
For each atlas, the regional functional homogeneity was averaged across the subjects and 
presented as a boxplot in Fig. 5. 
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The median regional homogeneity was higher for the Func-Cra atlas (0.20) followed 
sequentially by AICHA (0.18), Cyt-Jue (0.16), Ha-Ox (0.12) and AAL (0.08). 
 
The regional homogeneity was significantly higher in Func-Cra compared with AICHA 
(student t-test t(778) = 2.96, p = 0.003), and these two atlases exhibited a larger regional 
functional homogeneity compared with the 2 anatomical atlases (t > 8.86, p < 10−16). 
 
The cytoarchitectonic atlas (Cyt-Jue) homogeneity was below the AICHA functional atlas 
homogeneity (t(472) = 2.16, p = 0.03); however, this finding must be confirmed because the 
former atlas provides only a partial coverage of the gray matter. 
 
3.3. Descriptive pattern of the regional functional correlation 
The categorical distribution of functional correlation connections at increasing sparsity 
thresholds is presented in Fig. 6A. We first observe a preponderance of the homotopic 
categories. With a sparsity threshold of 2% (noted St2), 62% of the connections were 
homotopic. This proportion of homotopic connections remained preponderant up to a 
threshold at St12, where a balanced proportion of homotopic (27.6%), left intra-hemispheric 
(27.4%) and right hemispheric connections (27.9%) was observed (Fig. 6A, left panel). Note 
that at this threshold, 108 of the 192 potential homotopic connections (Fig. 6A right panel) 
were above the sparsity threshold in most subjects. 
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The intra-hemispheric right and left proportions were comparable across all sparsity 
thresholds (Fig. 6A). 
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More than 50% of the intra-hemispheric connections were bilateral, and the proportion was 
stable at 80% below St10 (Fig. 6B). 
 
An example of the pattern of regional connections at threshold St30 for inter-hemispheric and 
intra-hemispheric categories is provided in Fig. 7, Fig. 8, respectively. 
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4. Discussion 
 
We will discuss the choices we made in the construction of AICHA, including the advantages 
and potential limitations of these choices. 
 
4.1. Large population dataset balanced for handedness 
The issue of the dataset used to define an atlas is often overlooked. Very popular atlases, such 
as the Talairach atlas (Talairach and Tournoux, 1988), the Brodmann atlas (Brodmann and 
Garey, 1994) and AAL (Tzourio-Mazoyer et al., 2002), are based on a single individual 
and/or a single hemisphere. The increasing ability to obtain access to in-vivo individual data 
makes it possible to consider brain variability in atlas construction by including several 
brains, which raises questions regarding the selection of the sample participants. The question 
then arises of the sample size and whether the sample should include participants with 
specific demographic/phenotypic characteristics, if it should be balanced for some of these 
characteristics, or if it should be randomly constituted from the population. There is no 
consensus in the literature; the sample size ranges from one (see previous discussion) to tens 
of individuals (37–79, Desikan et al., 2006, Craddock et al., 2012, Shen et al., 2013), 
including one atlas built from 1000 subjects (Yeo et al., 2011). Most atlases are matched for 
gender, whereas other phenotypes are uncontrolled. For example, of the 4 atlases previously 
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discussed, only Shen et al. (2013) reported a handedness phenotype (only right handed 
subjects were selected). Additionally, the age range of the participants is highly variable from 
18 years for the lower bound (in general, based on the legal majority) to approximately 50/55 
years for the upper bound; however, the age distribution is typically not uniform because 
younger subject recruitment is typically more common. 
 
We chose to build AICHA from a large set of 281 healthy volunteers that covered a consistent 
range of variability in age and cultural levels. We balanced our sample for gender and 
handedness because these two factors are known to have strong impacts on anatomical and 
functional brain organization and asymmetries. Sex impacts brain anatomy because of the 
differences in brain volume (Leonard et al., 2008, Luders et al., 2009, Inano et al., 2013), as 
well as brain white matter connectivity (Ingalhalikar et al., 2014) and function (for a review, 
see Sacher et al., 2013). Handedness is also known to modify the anatomo-functional brain 
support of motor functions (Amunts et al., 2000, Amunts et al., 1996, Sun et al., 2012, Herve 
et al., 2006), as well as other lateralized cognitive functions, such as language (review in 
Hervé et al., 2013). We believe that it was important to avoid the bias induced by the 
inclusion of only 10% of left-handers (prevalence of left handers in the general population) to 
avoid the drawback of the under representation of rare brain organizations, such as reversed 
language lateralization (e.g., Mazoyer et al., 2014). 
 
We could have utilized random sampling from the general population, which is the theoretical 
best solution, but it is hard to accomplish this approach in practice because this sampling 
would lead to the inclusion of subjects with neurological disorders or brain lesions. 
Furthermore, restriction of the sampled population to “normal” subjects would raise the 
unresolvable issue of defining normality. 
 
The option that consists of ad hoc sampling, which is based on specific criteria, for example, 
only right-handed men, would lead to the creation of one atlas for each different combination 
of characteristics; this procedure is combinatory and can rapidly increase the number of 
atlases. Furthermore, it imposes the classification of participants according to the set of 
chosen properties; thus, this may result in a difficult choice regarding which atlas to use (for 
example, with ambilateral subjects when 2 atlases are created for right and left handers, 
respectively). Finally, it may be difficult to compare results obtained in groups analyzed with 
different atlases because their regional homology will not be known. 
 
4.2. Volumetric normalization space 
We choose to develop AICHA in the volumetric space to benefit from the substantial amount 
of structured information regarding the functional anatomy of cognitive functions that is 
available in this framework. Spatial normalization of individual data in a common space has 
initially been developed using a volumetric approach (Ashburner and Friston, 1999; see also 
review Evans et al., 2012), and this normalization has proven to be a successful means for 
comparing different studies in a coordinate reference system, such as the Talairach or 
Montreal Neurological Institute (MNI) spaces. The development of this procedure has 
enabled the design of large databases (Brainmap, Fox et al., 2005b) that compile extensive 
functional localizations of cognitive functions (currently 2466 papers) and make it available 
to the community (e.g., Toro et al., 2008). The methodological evolution based on gray matter 
surface normalization (Dale et al., 1999) provides more sensitive approaches to process data 
(Jo et al., 2007) and offers a better handling of the partial volume effect. Despite a more 
limited corpus of research published compared with volumetric normalization, surface 
normalization has been adopted by some leading projects (e.g., the Human connectome 
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project, Glasser et al., 2013). In the near future, we will make a surface-based version of 
AICHA available. 
 
4.3. Atlas landmarks 
AICHA construction was based on resting state fMRI data homogeneity, which enabled us to 
set the number of regions at a desired value. The limited number of sulci consistent across 
individuals restricts the anatomical parcellation to a limited ROI number, such as 45 ROIs per 
hemisphere for AAL (cerebrum region parcellation in gyri/nuclei, Tzourio-Mazoyer et al., 
2002) or 74 ROIs per hemisphere in the Destrieux atlas (cerebrum region parcellation in 
gyri/sulci/nuclei, Destrieux et al., 2010). In addition, anatomical atlases exhibit important 
differences in ROI size, including very large ROIs, such as the middle temporal in AAL, 
because of the absence of a reproducible anatomical marker to enable a finer grain 
parcellation. Arbitrary geometric criteria are then applied, which vary across atlases, such as 
the cingulum in AAL (three parts) or the frontal pole in the Ha-Ox atlas (Desikan et al., 
2006). 
 
AICHA parcellation is based on the time correlation structure of the resting state functional 
signal, which is a low frequency BOLD pseudo-oscillatory activity that subtends intrinsic 
brain function (Doucet et al., 2011, Fox et al., 2005a, Golland et al., 2008). It has been 
demonstrated that the regional assemblies evidenced by intrinsic connectivity analyses are 
comparable to the networks that subtend extrinsic or goal directed tasks (Laird et al., 2011, 
Smith et al., 2009). More recent work demonstrates that the brain's functional network 
architecture during task performance is primarily shaped by the resting state network 
architecture while showing also some small differences (Cole et al., 2014) also reported by 
Mennes et al. (2013) in some areas. Thus, an atlas parcellation based on intrinsic connectivity 
of regional assemblies is meaningful not only for the study of intrinsic connectivity networks 
but also possibly for the investigations of the neural substrates of cognitive functions. 
 
4.4. Atlas building 
The algorithmic building of AICHA is based on a 4 stage procedure, including ICA based 
group analysis, k-means clustering, homotopy driven parcellation refinement and labeling. 
 
The first stage of the analysis is rooted in the observation that the correlation strength of the 
anatomically defined homotopic connections largely predominates over the heterotopic 
connections (Stark et al., 2008). Using an ICA based analysis, this organization led to a 
partition in resting state networks that exhibited the gross symmetric organization 
characteristic of homotopy for a majority of these networks (Beckmann et al., 2005). 
 
ICA applied to a group of subjects (Beckmann et al., 2005, Calhoun et al., 2001) has been 
shown to generate a brain parcellation in spatially resting state networks that are highly 
reproducible across many laboratories and datasets (e.g., Chen et al., 2008, Damoiseaux et al., 
2006, Kiviniemi et al., 2009, Varoquaux et al., 2010). For this first stage, we choose the 
implementation of the group ICA (MICCA, Naveau et al., 2012) based on a classification of 
individual ICAs because of the following advantages: it could handle the massive multi-
subject data involved in AICHA definition, and it has been demonstrated to lead to 
reproducible whole-brain parcellation. Independent processing of the two halves of the dataset 
demonstrated that the extracted RSNs encompass 98% of the cerebrum gray matter (Naveau 
et al., 2012). The MICCA algorithm also has the advantage of filtering out the non-spatially 
reproducible artifactual components that are commonly observed in the individual ICA 
analysis. 
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The second stage, i.e., the k-means, was imposed by the outcome of the group ICA analysis, 
which does not preclude a voxel to belong to two or more RSNs. The detection of a voxel that 
belongs to 2 or more regions is a meaningful observation for a neuroscientist, which 
corresponds to the concept of the “hub” regions (Achard et al., 2006) that are believed to be 
essential for the flow of information between the networks (Bullmore and Bassett, 2011). 
However, a voxel that belongs to 2 or more regions is an undesirable feature in an atlas. For 
example, in the case of functional connectivity analysis, it will create a built-in link between 
the regions independent of the measured signal. To avoid this feature, we entered the RSN 
functional connectivity matrices into the classification algorithm. 
 
We selected k-means because it does not impose geometrical constraints on the ROIs as 
opposed to other algorithms, such as the Normalized-Cut, which constrains parcels to have 
more or less equivalent sizes and shapes (Craddock et al., 2012, Shen et al., 2013). This is a 
crucial point because as a result of the extremely convoluted shape of the brain, there is no 
reason to assume that macroscopic functional units have geometrically equivalent shapes. 
 
As previously discussed, in anatomical atlases, the number of population reproducible sulci 
determines the number of parcels; however, in functional atlases, the number of parcels is a 
user choice. Other authors have published atlases at different resolutions: 7 and 17 networks 
per hemisphere for Yeo et al. (2011), 50/100/150 regions per hemisphere for Shen et al. 
(2013) and 50 to 1000 regions (in increments of 50) for Craddock et al. (2012). For AICHA, 
while a large range of k-level values was present, we used a heuristic criterion based on the 
robustness of the parcellation to set the optimal levels of partition. The most robust candidates 
were obtained with a brain parcellation between k-level = 100 and k-level = 175 parcels. We 
choose the level with the highest number of parcels to stay in the optimal range while using 
an aggregative (i.e., decreasing the number of parcels) procedure to uncover the homotopic 
organization. 
 
The third stage comprised the homotopy driven parcellation refinement. Note that prior to 
refinement, there was an important amount of homotopic regions (60%), i.e., regions that 
fulfill the maximal correlation criteria. For the 40% remaining regions, regarding the 
arbitrariness of the number of clusters, it appeared reasonable to modify the number of 
regions by separation or aggregation until we reached the desired features. We chose to 
implement an aggregation procedure because it was less arbitrary than a random based 
regional separation procedure. This procedure was successful as we attained 93% regional 
homotopy and 99% after segmentation artifact corrections. Such a high level was expected 
because we based our atlas construction on the existence of a predominant functional 
homotopic correlation between the two hemispheres (Stark et al., 2008). Nevertheless, it does 
not imply that the two hemispheres are identical because we observed regional size 
differences between ROIs of a homotopic pair that increased to 140%. Interestingly, the 
frontal lobe comprises the majority of the highest volumetric asymmetries. This finding could 
be further studied in the framework of the hemispheric specialization (Hervé et al., 2013). For 
example, the larger frontal regions in the left hemisphere could be related to the leftward 
asymmetry observed during language processing (Vigneau et al., 2006, Vigneau et al., 2010). 
Finally, note that the homotopic stage is independent of the two first stages and thus could be 
applied to any existing atlas. 
 
As previously shown by Stark et al. (2008), we observed that the primary cortices showed the 
highest homotopic correlation strength and the heteromodal cortices the lowest. According to 
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Mesulam's model, these areas cover the two extremes of the proposed hierarchical 
classification that are the primary areas and the heteromodal association areas, respectively 
(Mesulam, 2000). 
 
4.5. Comparison of regional homogeneity on different atlases 
As expected, the ROI functional homogeneity analysis (which quantifies the similarity of the 
resting state signals within each region) demonstrates a clear cut-off between the 2 functional 
based atlases and the two anatomical based atlases, which favors the former atlases. This was 
expected because both ICA-k means (AICHA) and Normalized-CUT (Func-Cra) 
methodologies were chosen to maximize this feature. Between these 2 atlases, Func-Cra 
exhibits a higher homogeneity. As previously discussed, this finding was expected as the 
spatial constraint of the N-Cut parcellation scheme favors more compact patches. 
 
Note that we have restricted our analysis to the intra-regional homogeneity and not to a 
criterion taking into account both intra- and the inter-regional connectivity. Indeed, the known 
mixing of high and low regional functional connectivity strength in the brain (see for 
example, Stark et al., 2008) will make the inter-regional connectivity complex to interpret in 
this framework. 
 
4.6. AICHA as a tool to investigate brain functional asymmetries 
Recent renewed interest in the hemispheric specialization (Herve et al., 2013) has emphasized 
the need to categorize functional connections as inter-hemispheric, either homotopic (Stark et 
al., 2008, Zuo et al., 2010) or heterotopic (Gee et al., 2011, Liu et al., 2009), or intra-
hemispheric (Iturria-Medina et al., 2011). AICHA provides a categorization at a regional level 
of sampling that is more precise than the anatomical atlas level; however, it is less precise 
than the voxel level. However, at the voxel level, the dimensionality of potential connections 
is difficult to handle in connectivity and graph approaches. 
 
The sparsity analysis completed with AICHA highlighted the major symmetric organization 
of the brain. This symmetrical organization was present at the inter-hemispheric level 
between homotopic regions (as shown by others, Stark et al., 2008); this result was expected 
because of the principles that underlie AICHA elaboration. Interestingly, however, the 
symmetry was also evidenced by a similar proportion of right and left intra-hemispheric 
connections. We also described a heterotopic connection that had, per construction, lower 
correlation values and a distribution that favored the homoareal connections defined as 
callosal connections between non-homotopic contralateral sites close to each homologue 
(Kaiser, 2005). An exploration of different levels of sparsity indicated that heterotopic 
connections were preponderant within the insula and the lower part of the occipital lobe. 
Whether such distribution is due to instrumental factors, such as partial volume effect, or 
regional differences in organization will be the object of further investigations. 
 
Beyond the matching level of right and left intra-hemispheric connections, we observed that 
the level of symmetrical connections reached a plateau at 80%, which was below an 8% 
sparsity threshold. This observation reinforces the similarity feature of the two hemispheres. 
Interestingly, it appears that higher correlation values of long range connections are observed 
in two approximately orthogonal directions: the antero-posterior dimension between the 
frontal and parietal lobes and the right-left dimension between the medial frontal lobe toward 
the insula and lateral frontal inferior lobes. These high correlations in selective orientations fit 
with Zilles proposal of “unifying principles behind the structural complexity of the cerebral 
cortex” according to the gradation hypothesis, genetic topography and cytoarchitecture (Zilles 
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and Amunts, 2012). The 20% of asymmetric connections are interesting connections to study 
in the framework of hemispheric specialization. 
 
4.7. How to obtain and use AICHA 
AICHA is provided in a “nifti” image format with additional files for use with the AAL 
toolbox (Tzourio-Mazoyer et al., 2002), mricron 
(http://www.mccauslandcenter.sc.edu/mricro/mricron) software and FSLView atlas tools 
(http://fsl.fmrib.ox.ac.uk/fsl/fslview/). 
 
For region interest analysis, we also provide an anatomical labeling of AICHA. This labeling 
is based on AAL and was adapted to consider the specificity of AICHA. We created a sulcal 
regional label (labeled S-) that groups regions that encompass one or two banks of the cortex 
buried in a specific sulcus. Regions that encompass both gyral and sulcal matter were labeled, 
as in the original AAL definition, as the gyral region. Note also that only a small part of the 
existing sulci are identified in the AAL partition. This factor explains that a majority of voxels 
belongs to gyral matter. Similar to AAL, the labeling provides a coarse localization to 
facilitate data interpretation, but it cannot be considered as a precise measure of gyral versus 
sulcal gray matter; this distinction is unreachable given the resolution of functional atlases, 
such as AICHA. 
 
It is important to underline that over 80% of the regions corresponded to a single anatomical 
AAL label, either a gyrus (labeled G-) or a nucleus (labeled N-), although no anatomical 
landmarks were used in the atlas construction. This finding may represent a heuristical 
demonstration that the combination of the low resolution BOLD EPI acquisition with the 
partial volume effects that occur between the two banks of a sulcus does not lead to an 
artefactual mixing of functional information. One may thus consider that AICHA provides a 
functionally driven sub-partition of anatomical ROIs, which is thus a tool for finer grain 
analyses of numerous previous results obtained using AAL and graph analysis of resting state 
data. In this framework, using AICHA, we demonstrated that language lateralization was 
associated with differences in inter-hemispheric connectivity during resting state by 
measuring their regional homotopic inter-hemispheric intrinsic connectivity coefficient in 36 
ROIs implicated in language processing and known to be connected via the corpus callosum 
(Tzourio-Mazoyer et al., 2015). 
 
5. Conclusion 
We have developed an atlas of ROIs that covers the entire cerebral gray matter using a 
parcellation scheme based on the intrinsic connectivity of homotopic areas. Considering that 
AICHA was developed from resting state low frequency BOLD pseudo-oscillatory activity, 
which is known to subtend intrinsic brain function and likely task performance, we believe 
that this atlas will be useful for connectivity and graph analysis of both resting-state and task-
related functional imaging data. In addition, the fact that the hemispheric parcellation of 
regions is based on the strength of homotopic intrinsic correlations indicates it is a new and 
powerful tool for the investigation of regional asymmetries and thus brain hemispheric 
lateralization. The AICHA atlas is available on a mail request to the corresponding author. 
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