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An Application of Gaussian Processes on
Ocular Artifact Removal from EEG*

Saman Noorzadeh1,2, Bertrand Rivet1, Pierre-Yves Guméry2

Abstract— Consequences of eye movements are one of the
main inferences that distort the brain EEG recordings. In this
paper, a multi-modal approach is used to estimate the ocular
artifacts in the EEG: both vertical and horizontal eye movement
signals recoded by an eye tracker are used as a reference
to denoise the EEG. A Gaussian process, i.e. a second order
statistics method, is assumed to model the link between the eye
tracker signals and the EEG signals. The proposed method is
thus a non-linear extension of the well-known adaptive filtering
and can be applied with a single EEG signal contrary to
independent component analysis (ICA) which is extensively
used. The results show the applicability and the efficiency of
this model on the ocular artifact removal.

I. INTRODUCTION

The non-invasive electroencephalogram (EEG), which
measures the electrical brain activities through surface elec-
trodes, can be distorted by several sources of noise that
makes it difficult to interpret [1]. Eye movements are among
these inferences, and there is a rapidly growing literature on
the removal of such artifacts. A common way to avoid the
ocular artifacts is to restrict eye movements during the data
recording; however, this method can limit the experiments for
which the EEG is recorded [2]. It should also be mentioned
that a band-pass filter is not capable of removing this artifact
completely since it may remove also some information in the
brain activity, or may lead to a step-like change at the eyeball
rotation moment, due to the impulse response of the filter.
Among other studies that have tackled this problem, con-
cerning signal processing methods, one can name regression
method [3] or blind source separation methods like Principal
Component Analysis (PCA) [1] and Independent component
analysis (ICA) [4], [5]. ICA, which is more popular in
the literature, can decompose a noisy EEG into statistically
independent components [6], [7], [8], [9]; however, its lim-
itations would make it impractical because, first, it needs
a large number of sensors and, second, some studies have
assumed that the data recorded via certain electrodes around
eyes contain only the ocular activities (Electrooculography).
Since this assumption is not completely true (EEG signal
is also present in the mentioned channels), it may lead to
the subtraction of a portion of the brain activity in the final
estimation of EEG. The other method which has been used
in this regard is the adaptive filter [10], [11] which removes
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the artifacts but can also attenuate some part of the wanted
brain activities. Moreover, the EEG signals and the reference
signals are assumed to be correlated by a linear system,
which is not necessarily a correct assumption.

This paper intends to investigate the application of Gaus-
sian processes (GPs) [12], [13] on modeling the ocular
artifacts to remove them from the EEG signal. The GP is a
flexible, non-parametric model and a practical tool to work
with. One of these practical characteristics is that it can
be defined only by the first and the second order moments
of the process [12]. Another property of GP is that it can
be used in a Bayesian setting where the GP is a prior on
the functions and can provide a probability measure over
the function space. Therefore, GP modeling provides the
possibility of flexible models. Afterwards, the prediction
can be done in a straight forward way within a Bayesian
framework. Another interesting feature of GP model is its
ability to solve nonlinear estimation [14] meaning that the
flexible prior function would handle the nonlinearity, and
the nonlinear estimation can be treated within a Bayesian
framework.

Considering the mentioned characteristics, in [15], [16]
the Gaussian process has been used to extract the fetal
Electrocardiogram (ECG) from the abdominal observations
by modeling the maternal and fetal ECGs using GPs. With
the same reasoning, the GP model can also handle the
problem of identification and removal of ocular artifacts.
In this study, we use a two-channel approach in which the
eye movement data act as a reliable input of the Gaussian
Process. Using this reference channel, the ocular signal
existing in the EEG observation is modeled as a GP. Having
the GP model, this signal can then be estimated and removed
from the observation channel and, as a result, the brain
activity signal without ocular distortions is obtained.

The rest of the paper is organized as follows: in section II
the Gaussian process model is introduced, and section III
shows the application of this model on removing ocular
artifacts from EEG. In section IV the results of this approach
is shown on real data, and it is compared with the results
obtained from adaptive filters and with ICA, and finally in
section V the conclusions and perspectives are presented.

II. GAUSSIAN PROCESS MODEL

Gaussian process can describe a signal only using its
second order statistics. Considering s(t) as a real process,



it can be defined by its mean and covariance function [12]:

m(t) = E[s(t)],

k(t, t′) = E[
(
s(t)−m(t)

)(
s(t′)−m(t′)

)
].

If we assume the mean function to be zero for all the inputs
(m(t) = 0), it is only the covariance function which has to
describe the data characteristics. This assumption is logical
for the EEG signal, and also makes the notations simpler. To
give an illustration of the model, let us consider the square
exponential covariance function which is a popular kernel in
describing physiological processes. This covariance function
is defined by equation (1), for the real process s(t):

k(t, t′) = exp
(
− ||~u(t)− ~u(t′)||22

2l2
)
, (1)

where,||.||22 denotes the L2 norm, and l is the length-scale
which defines the smoothness of the function. This covari-
ance function is defined as the function of the input space,
~u(t). The input space can be either the time points where
~u(t) = t, or any other inputs which can be mapped by a
function f to the output s(t) : as s(t) = f(~u(t)). Having
defined a covariance and mean function, the set of real values
functions, s(t) ∈ R, can then be described as a Gaussian
Process:

s(t) = GP(0, k(t, t′)). (2)

Turning now to the problem of separation of sources,
consider the signal s(t) in which we are interested to separate
from a noisy observed signal called x(t):

x(t) = s(t) + n(t), (3)

where n(t) is considered as the white noise defined here as a
GP: GP(0, σ2

nI), with σ2
n as the power of the noise and I the

identity matrix. Having the prior defined by the GP for s(t)
in equation (1), the posterior distribution on functions s(t)
can be computed considering the set {x(ti), ~u(ti)}1≤i≤T of
T pairs of the observation x(ti) and the related input ~u(ti).
Consequently, the prediction of s(t∗) at any time t∗ would
be the maximum of the posterior function defined as:

ŝ(t∗) = Argmax
s(t∗)

p
(
s(t∗)|t∗, {x(ti), ~u(ti)}1≤i≤T

)
. (4)

It is worth noting that the time t∗, defined for the estimated
signal, can be different from that of the observations. The
final estimation of the s(t∗) signal can be expressed as the
mean of the posterior function as:

ŝ(t∗) = k(t∗)(K + σ2
nI)
−1x, (5)

where K ∈ RT×T is the covariance matrix calculated from
equation (1) for every pair of the observation input points,
i.e. Ki,j = k(ti, tj), k(t∗) = [k(t∗, t1), · · · , k(t∗, tT )] is the
covariance vector and x = [x(t1), · · · , x(tT )]†, with ·† the
transpose operator. This model is used to handle the ocular
artifacts in the next section.

III. REMOVING OCULAR ARTIFACTS

In this section, the possibility of the extraction of ocular
artifacts from the EEG signal is investigated. For this pur-
pose, besides EEG observation which we intend to denoise,
we have also considered another data as the reference for the
ocular artifacts. Here, the reference is considered to be the
eye movements data. This data consists of two time series
indicating the vertical and the horizontal eye movements,
which are indicated as ex(t) and ey(t) respectively. As
previously mentioned in section II, we can model the ocular
artifact existing in the EEG if we can have a GP model
with the covariance function that fits this data. Let us define
the observed EEG, x(t), and the ocular artifact, s(t), as in
equation (3). Here the n(t) signal expresses the rest of the
EEG separated from the ocular artifact, and s(t) and n(t) are
assumed to be decorrelated. The s(t) signal is then expressed
to be non-linearly correlated with both the ex(t) and ey(t)
as:

s(t) = f(~eN (t)) + ε(t), (6)

where f(·) is the non-linear relationship between the eye
position and the ocular artifact in the EEG recordings. ~eN (t)
is the input space related to the eye position defined as the
concatenation of ex(t) and ey(t) for a window of length N ,
and ε(t) is an additive noise to model the remaining error.
The non-linear mapping f(·) is defined as a GP

f(~eN (t)) = GP (0, k(t, t′)), (7)

with the covariance function k(·, ·) defined as:

k(t, t′) = σ2exp
(
− 1

2

(
~eN (t)− ~eN (t′)

)†
Σ−1

(
~eN (t)− ~eN (t′)

))
. (8)

This covariance function is different from equation (1) in
the sense that here we have two references which can have
a correlation with each other and their relation is expressed
in the covariance matrix Σ. This matrix is a block matrix
of four diagonal matrices whose diagonal values define the
smoothness behavior of the GP functions according to the
relation of the references. σ also defines the power of the GP.
The hyper-parameters of the model (σ, N , and the diagonal
values of the blocks of Σ) can be estimated according to
the maximum likelihood framework or using a prior on
parameters to maximize the posterior [15]. If the hyper-
parameters are well defined, we have a covariance function
and, consequently, we can obtain a GP which can describe
the ocular activity. This activity can then be estimated as
ŝ(t∗) by the mean of the posterior function (as defined in
equation (5)). Subsequently, this estimation can be subtracted
from the EEG observed channel to have an estimation of the
denoised EEG, n̂(t∗):

n̂(t∗) = x(t∗)− ŝ(t∗) (9)

It should be noted that the GP does not assume a linear
relationship between the input and the output of the GP,
meaning that the dependency between the two modalities,
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Fig. 1. EEG and eye movement signals recorded simultaneously. The figure
on top shows the brain activities distorted by ocular artifacts captured with
an EEG electrode. The next two figures show the horizontal and vertical
eye movements captured with the eye tracker.
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Fig. 2. Estimation of ocular artifacts and EEG using the proposed method.
The figure on top shows the noisy EEG, x(t), and the estimation of ocular
artifacts, ŝ(t). The next figure shows the estimated remaining brain activity,
n̂(t) = x(t)− ŝ(t).

EEG and eye movements, can also be a non-linear rela-
tion [14].

IV. RESULTS

The extraction of the ocular artifact using GP is tested
on the data collected from real subjects. The data is taken
from [17]. The participants have followed a given pattern
on the screen with the eyes, and meanwhile EEG and eye-
tracking signals were jointly recorded. Fig. 1 shows an
EEG signal channel, referred to as x(t), and the horizontal
and vertical eye movements, referred to as ex and ey in
the previous section. All the results which are shown are
normalized in amplitude.

Using the proposed method described in Section III, the
recorded EEG signal is separated to the brain activity and
ocular artifacts. The reference eye movements which are
used, are the ones in Fig. 1. This result is shown in Fig. 2. As
one can see, the estimated brain signal n̂(t) do not contain
some signals synchronized with the eye movements.

This result can be compared with the results obtained
from other methods. For instance, the eye tracking signals of
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Fig. 3. Removal of ocular artifacts from EEG using adaptive filter. n̂(t)
shows the estimated EEG.

Fig. 1 are given sequentially to two FIR adaptive filters as the
inputs. 150 coefficients are considered for each filter and the
Least Mean Square algorithm is used for the estimation of
these coefficients. From Fig 3, it is clear that the estimation
of the brain activity is not as good as the results of the
GP since not only the final estimation of brain activity still
contains some ocular artifacts, but also the middle part of
the estimated signal has been attenuated. This is because
of the fact that this portion is considered to be noisy and
adaptive filter has also removed some part of the brain
activity considering it as the ocular noise. GP outperforms
the adaptive filter since a linear filter is not sufficient to
extract the two modalities, however the GP gives a non-linear
estimation.

ICA can also be compared to the previous results. We
have used the FastICA algorithm [18]. Two experiments are
designed: using only three mixtures ex(t), ey(t) and a single
EEG sensor (Figure 4) and using seven mixtures ex(t), ey(t)
and five additional EEG sensors (Figure 5). In the first case
(Figure 4), two estimated independent components (ICs) are
clearly related to the eye movements (the two first ones)
and the third one is then the estimation of the brain activity.
However, one can see that the “eye” components do not only
contain ocular artifact but also some brain activity (i.e. some
small variations around the step-like curves) and that some
ocular artifacts are remaining into the “brain” component. In
the second case (Figure 5) some extra EEG sensor are added
so that a total of five EEG signals are used in addition to the
two eye-tracker signals. In this case two ICs are identified
as related to the ocular artifacts while the five remaining
ICs are associated with brain activity. However, even if the
“brain” ICs are better estimated using more EEG sensors, the
“eye” ICs still contain some brain activities. Consequently,
removing these components to reconstruct the brain signal
in the EEG channels will result in a loss of information in
the desired estimated EEG signal.

V. CONCLUSIONS AND PERSPECTIVES

A Gaussian process model is presented and adapted to
handle the problem of ocular artifacts removal from the
brain activities. A single EEG channel is used in a multi-
modal approach using eye tracking signals as reference.
This approach is a two-channel approach in which two
modalities of data are used: EEG, recorded non-invasively
through the electrode on the scalp, and the horizontal and
vertical eye movements are captured with an eye tracker.
The ocular activity is modeled using a GP with a zero
mean function and the two eye movements are concatenated
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Fig. 4. Estimation of ocular artifacts and EEG using ICA with 3 mixtures:
x(t), ex(t), ey(t). The three estimated independent components are plotted:
the two first one are related to the eye movements and the third one is the
estimation of the brain activity.
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Fig. 5. Estimation of ocular artifacts and EEG using ICA with seven
mixtures: ex(t), ey(t) and five EEG channels. The two figures on top show
the ICs identified as “eye” components. The next figure is one of the ICs
associated with the brain activity.

for the computation of the covariance function. The eye
movement is then used as the input of the GP, since it
is correlated with the ocular artifact existing in the brain
activity. Having considered a proper model for the ocular
artifact, and the noisy observation, this artifact is estimated
using the mean of the posterior probability density function
and is finally subtracted from the observed signal. The result
of this subtraction is the extraction of the EEG which is
denoised from the ocular activity. The GP method uses a
non-linear relationship between the input and the output of
the GP. The experiments show that it can work with only a
single EEG observation channel which makes it a practical
method and it outperforms more classical adaptive (linear)
filters or ICA when few sensors are used.

Future work will involve using other kinds of input to the
GP, since the reference signals that are used in this work
can be replaced by other kinds of signals as long as they
are correlated with the ocular artifacts. This can include
the EOG (Electrooculography) signals which are captured
by sensors placed around the eyes and contain most of the
ocular activities.
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