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On the one dimensional representations of Ariki-Koike

algebras at roots of unity

Nicolas Jacon

Abstract

We study the natural labeling of the one dimensional representations for Ariki-Koike algebras at roots of unity. For

Hecke algebras of types A and B, some of these representations can be identified with the socle of the Steinberg

representation of a finite reductive group. We here give closed formulas for them. This uses, in particular, several

results concerning crystal isomorphisms and the Mullineux involution.

1 Introduction

The Hecke algebras of complex reflection groups can be seen as natural deformations of complex reflection
groups. In particular they both generalize the Hecke algebras of type A (deforming the symmetric groups)
and the Hecke algebras of type B (deforming the hyperoctohedral groups). The representation theory of
these algebras has been well studied during the last past decades. It appears to be quite deep and related to
the representation theory of various important algebraic objects (such as the quantum affine algebras, the
quiver-Hecke algebras or the rational Cherednik algebras.) In type A and B, a motivation for studying these
representations comes from the representation theory of finite reductive groups where these Hecke algebras
appear as endomorphism algebras of permutation representations.

Recently, a question on the combinatorial representation theory of these algebras has been asked in a
work of Meinolf Geck on the Steinberg representation of a finite reductive group G of “classical type” over
a field L [4]. In the case where [G : B]1L = 0 (where B is the Borel subalgebra of G), this remarkable
representation of G is reducible in general but one can show that its socle is simple. Using the so called
“Green correspondence”, Meinolf Geck has shown that one can identify this socle with the sign representation
of the Hecke algebra (associated to the datum of G and B) at a root of 1. Now, a classification of the simple
modules for these algebras is available. As the sign representation is one dimensional and thus irreducible,
the question of describing the above socle reduces to the problem of finding the precise labeling of the sign
representation in terms of the known classification.

The aim of this work is to give, more generally, a complete description of all the one dimensional repre-
sentations in the wider context of the Hecke algebra of the complex reflection group G(l, 1, n) where l ∈ Z>0

and n ∈ Z>0. This algebra (also known as Ariki-Koike algebra) is defined as follows. Let q be an indetermi-
nate and Q1, . . . , Ql be an l-tuple of indeterminates. The Hecke algebra H := H(q,Q1, . . . , Ql) of G(l, 1, n)
over the ring A := C[q±1, Q1, . . . , Ql] is the associative A-algebra generated by T0, · · · , Tn−1 subject to the
relations (T0−Q1) . . . (T0−Ql) = 0, (Ti− q)(Ti+1) = 0, for 1 ≤ i ≤ n− 1 together with the following “braid
relations”:

(T0T1)
2 = (T1T0)

2, TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i < n),

TiTj = TjTi (j ≥ i+ 2).

Set K = Frac(A) then by Tits’ deformation theorem, the irreducible representations of KH := K ⊗A H
are naturally labeled by the set of l-partitions of n (or simply multipartitions) that is, the set of l-tuples of
partitions (written in decreasing order) of total sum n. We denote λ ⊢l n if λ is a l-partition λ = (λ1, . . . , λl)
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of n. In fact, there exists a certain set of H-modules V λ with λ ⊢l n such that:

Irr(KH) = {K ⊗A V λ | λ ⊢l n}.

If we consider a specialization θ : A → C, the specialized algebra CθH := C ⊗A H is non semisimple in
general. As a consequence the specialized CθH-modules CθV

λ := C⊗A V λ are non semisimple in general.
In this case, a reduction theorem by Dipper and Mathas asserts that it is sufficient to consider the following

case to understand the representation theory of our algebra (in the sense that knowing the labelings, the
dimensions and the characters of the simple modules in this case is sufficient to know them in general):

θ(q) = η ∈ C∗, θ(Qj) = ηsj (j = 1, . . . , l),

where η is a primitive e-root of 1 where e ∈ Z>1 and s := (s1, . . . , sl) ∈ Zl.
Now, it is known, since the works of Lascoux, Leclerc, Thibon and Ariki, that a part of the representation

theory of Ariki-Koike algebras is controlled by the quantum affine algebra in affine type A and its action
on the Fock space. This approach allows a natural labeling of the simple modules by a certain subset of
l-partitions Φs,e(n) known as the “Uglov l-partitions”:

Irr(CθsH) = {Dµ
s,e | µ ∈ Φs,e(n)}.

If we consider a one dimensional H-module V λ. Then there exists λθs ∈ Φs,e(n) such that CθsV
λ ≃ D

λθs
s,e .

The goal of this note is to explicitly calculate λθs . To do this, after stating the main problem we are interested
in, several preparatory results must and will be made, first around the parametrization Φs,e(n) and then
around the strategy to identify our one dimensional representations. The fifth part recalls and translates
several results of crystal graph theory which will be needed in the proof of our main results in the sixth
section. The last section deals specifically with the case where l = 2 (that is the Hecke algebra of type B)
which is the first motivation of this work. This in particular solves the problem settled in [4, §3.8].

Acknowledgements. The author thanks Meinolf Geck for asking him this problem and for useful discussion
around it. This work is supported by Agence National de la Recherche Projet ACORT ANR-12-JS01-0003.

2 The main problem

We here introduce several notations and state our main problem.

2.1. We keep the notations of the introduction. A natural labeling of the irreducible representations for
KH may be obtained using a natural labeling of the irreducible representations of CG(l, 1, n) together with
Tits’ deformation Theorem. This is done as follows. We have:

Irr(CG(l, 1, n)) = {Eλ | λ ⊢l n}.

(We refer to [5, §5.1.3] for the construction of the irreducible CG(l, 1, n)-modules.) Now the specialization
θcan : A → C sending Qj to ηj−1

l for j = 1, . . . , l (where ηl := exp(2iπ/l)) and q to 1 induces a canonical
bijection between the sets Irr(KG(l, 1, n)) and Irr(KH) (see for example [6, §8.1.6].) We can thus denote:

Irr(KH) = {KV λ | λ ⊢l n}.

In our case (the algebra H is cellular in the sense of Graham and Lehrer) and at the level of characters, this
bijection may be seen as follows. Take a simple KH-module KV with character χ : KH → K. Then it
can be shown that there exists a H-module V with character χA : H → A such that χA extends to χ and
K ⊗A V = KV . Applying the specialization θ to χA leads to a trace function χC : CG(l, 1, n) → C, which
is the character of a simple CG(l, 1, n)-module Eλ. KV is thus naturally labeled with λ and we can thus
denote KV = KV λ, which is obtained from the H-module V by extension of scalars.

In particular, let us consider the labeling of the one dimensional representations for KH. They are
obtained by extension of scalars of the one dimensional representations for H given as follows.
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1. For j = 1, . . . , l, the representation ρ : H → A such that ρ(T0) = Qj and ρ(Ti) = q (for i = 1, . . . , n−1)
is labeled by the l-partition λ such that λi = ∅ if i 6= j and λj = (n). For convenience, we denote by
[n, j] such a multipartition.

2. For j = 1, . . . , l, the representation ρ : H → A such that ρ(T0) = Qj and ρ(Ti) = −1 (for i = 1, . . . , n−1)
is labeled by the l-partition λ such that λi = ∅ if i 6= j and λj = (1n) (which means that 1 is repeated
n times.) We denote by [1n, j] such a multiparitition.

We will denote by Λ(n) the subset of l-partitions consisting in these two types of l-partitions.

2.2. Let s = (s1, . . . , sl) ∈ Zl. Assume that we have a specialization θs : A → C such that θs(q) = η, a
primitive root of unity of order e > 1 and θs(Qi) = ηsi for 1 ≤ i ≤ l. We denote by T θs

0 , T θs
1 , . . . , T θs

n−1 the
standard generators of the specialized algebra CθsH. For λ ⊢l n, let us consider the H-module V λ. After
specialization, this module, which is denoted by CθsV

λ, is non simple (nor semisimple) in general but we
have an associated composition serie. Let us denote by [CθsV

λ : M ] the multiplicity of M ∈ Irr(CθsH) in
such a composition serie (this is well-defined by the Jordan-Hölder theorem). Then the matrix defined by:

Dθs := ([CθsV
λ : M ])λ⊢ln,M∈Irr(CθsH)

controls a part of the representation theory of CθsH.This is called the decomposition matrix with respect to
the specialization θs. It can be used to parametrize the simple modules by certain subset of l-partitions as
we briefly recall now.

2.3. They are several ways of indexing the simple modules of the Ariki-Koike algebras after specializations.
To do this, we can use the theory of canonical basic sets developed by Geck and Rouquier and generalized
by Gerber [7]. We here follow [5, Ch.5, Ch. 6]. Consider another l-tuple of integers (v1, . . . , vl) such that for
all i < j then 0 ≤ vj − vi < e and define m = (m1, . . . ,ml) ∈ Ql such that for all j = 1, . . . , l, mj = sj − vj .
Then one can define a pre-order ≪m on the set of l-partitions which depends on the choice of m. We don’t
give the definition of this pre-order here, all we need to know is the following theorem (see [5, §6.7]).

Theorem 2.4. Under the above hypotheses, there exists a subset Φs,e(n) of the set of l-partitions of rank n
such that for all M ∈ Irr(CθsH),

1. there exists λM ∈ Φs,e(n) such that [CθsV
λM : M ] = 1,

2. for all µ ⊢l n, if [CθsV
µ : M ] 6= 0 then µ ≪m λM .

The map M 7→ λM is injective. As a consequence, if for all M ∈ Irr(CθsH) we denote DλM
s,e := M , we have:

Irr(CθsH) = {Dµ
s,e | µ ∈ Φs,e(n)}.

Remark 2.5. This approach has been generalized in [7] where more general pre-orders ≪m are considered.

2.6. Our main problem is now the following. Take λ ∈ Λ(n) then, we want to calculate λθs ⊢l n which is
characterized as follows:

1. we have [CθsV
λθs : CθsV

λ] = 1,

2. if we have [CθsV
µ : CθsV

λ] 6= 0 then µ ≪m λθs .

Indeed, by the above theorem, we obtain D
λθs
s,e = CθsV

λθs . In particular we have λθs ∈ Φs,e(n). We denote
by Λs,e(n) the set consisting of all the l-partitions λθs with λ ∈ Λ(n).

Note that if e = 2, for all j = 1, . . . , l, the representations CθsV
[1n,j] and CθsV

[n,j] are isomorphic. As a
consequence we must have [1n, j]θs = [n, j]θs in this case.
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3 Characterization of the sets Φs,e(n)

In this part, we explain how one can compute the sets Φs,e(n) we have defined above and study several
properties around these subsets of l-partitions.

3.1. The subsets Φs,e(n) are in fact certain subsets of l-partitions which label the crystal of some irreducible
highest weight modules in quantum affine type A. A complete survey on this subject can be found in [5,
Ch. 6]. We can give a purely combinatorial (but recursive) definition of Φs,e(n) as follows. Let λ be an
l-partition. The nodes of λ are by definition the elements of the Young diagram of λ:

[λ] := {(a, b, c) | a ≥ 1, c ∈ {1, . . . , l}, 1 ≤ b ≤ λc
a} ⊂ Z>0 × Z>0 × {1, . . . , l}.

The residue of a node γ = (a, b, c) of λ is the element b − a + sc + eZ of Z/eZ. If [λ] = [µ] ∪ {γ} for some
l-partition of n− 1, we say that γ ∈ [λ] is a removable node for λ and an addable node for µ. If the residue
of γ is i ∈ Z/eZ, then we say that γ is an i-node. We now define a total order on the set of removable and
addable i-nodes of λ depending on s and e. Let γ = (a, b, c) and γ′ = (a′, b′, c′) be such two i-nodes. Then
we denote

γ ≺s,e γ
′ ⇐⇒

{
either b− a+ sc < b′ − a′ + sc′ ,
or b− a+ sc = b′ − a′ + sc′ and c > c′.

For λ an l-partition, we can consider its set of addable and removable i-nodes. Let wi(λ) be the word
obtained first by writing the addable and removable i-nodes of λ in increasing order with respect to ≺s,e,
next by encoding each addable i-node by the letter A and each removable i-node by the letter R. Write
w̃i(λ) = ApRq for the word derived from wi by deleting as many of the factors RA as possible. wi(λ) is
called the i(mod e)-word of λ and w̃i(λ) the reduced i(mod e)-word of λ .

If p > 0, let γ be the rightmost addable i-node in w̃i. The node γ is called the good addable i-node. If
r > 0, the leftmost removable i-node in w̃i is called the good removable i-node.

Then we have λ ∈ Φs,e(n) if and only if there exist a sequence of elements gs,e(λ) = (i1, . . . , in) ∈ (Z/eZ)n

and, for each k = 1, . . . , n, an l-partition λ[k] of k − 1 such that λ[1] = ∅ and λ[n] = λ such that for all
k = 2, . . . , n, [λ[k]] = [λ[k − 1]] ∪ {γ} for a good addable i-node for λ[k − 1]. Note that λ is entirely and
uniquely determined by the datum of gs,e(λ).

Example 3.2. Take (s1, s2) = (2, 0) and e = 4. We consider the 2-partition ((4), (2.1)), the associated pair
of Young diagrams (where we add the residue of each node in the associated box) is given by:

(
2 3 0 1 ,

0 1
3

)

Let us look at the removable good 1-node, we have two removable 1-node (1, 4, 1) and (1, 2, 2) and one
addable 1-node (2, 1, 1). Moreover we have:

(1, 2, 2) ≺s,e (2, 1, 1) ≺s,e (1, 4, 1),

which gives
w1(((4), (2.1))) = RAR.

We conclude that (1, 4, 1) is the good removable 1-node of ((4), (2.1)). Continuing in this way, we see that
((4), (2.1)) is in Φs,e(7) with gs,e((4), (2.1)) = (2, 0, 3, 3, 0, 1, 1).

3.3. Let Ŝl be the (extended) affine symmetric group. This is defined as follows. We denote by Pl := Zl

the Z-module with standard basis {yi | i = 1, . . . , l}. For i = 1, . . . , l − 1, we denote by σi the transposition

(i, i + 1) of Sl. Then Ŝl can be seen as the semi-direct product Pl ⋊ Sl where the relations are given by
σiyj = yjσi for j 6= i, i+ 1 and σiyiσi = yi+1 for i = 1, . . . , l − 1 and j = 1, . . . , l. This group acts faithfully
on Zl by setting for any s = (s1, . . . , sl) ∈ Zl:

σc.s = (s1, . . . , sc−1, sc+1, sc, sc+2, . . . , sl) for c = 1, . . . , l − 1 and
yi.s = (s1, s2, . . . , si + e, . . . , sl) for i = 1, . . . , l
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A fundamental domain for this action is given by

{
(s1, . . . , sl) ∈ Zl | 0 ≤ s1 ≤ . . . ≤ sl < e

}
.

3.4. Let σ ∈ Ŝl and assume that s ∈ Zl. Set s
′ := σ.s. Recall that we have defined a first specialization

θs : A → C in §2.2 and let us consider another specialization θσ.s : A → C such that θσ.s(q) = η and
θσ.s(Qi) = ηs

′
i for 1 ≤ i ≤ l. Then there is an isomorphism of C-algebras:

Cθσ.s
H → CθsH

T θσ.s

0 7→ T θs
0

T θσ.s

i 7→ T θs
i (i = 1, . . . , n− 1).

This induces an exact functor F from the category of finite dimensional CθsH-modules to the category of
finite dimensional Cθσ.s

H-modules. As a consequence, we obtain a bijection:

Ψe,s,s′ : Φs,e(n) → Φs
′,e(n),

which is defined as follows. Let λ ∈ Φs,e(n) then there exists Ψe,s,s′(λ) ∈ Φs
′,e(n) such that F(Dλ

s,e) =

D
Ψe,s,s′ (λ)

s
′,e .

Take λ ⊢l n and consider the irreducible CθsH-module CθsV
λ. Applying the functor F gives a Cθσ.s

H-
module. We set σ = σ0.y with σ0 ∈ Sl and y ∈ Pl. It is important to note that we have θσ.s = θσ0.s because
η is an e-root of 1. By the construction of the irreducible representations (see [1, Ch. 13]), it is easily checked
that this Cθσ.s

H-module is isomorphic to Cθσ.s
V σ0.λ where Sl acts naturally on the set of l-partitions by

permutation (that is σ0.λ = (λσ
−1
0 (1), . . . , λσ

−1
0 (l)).)

Example 3.5. In particular, if λ ∈ Λ(n), then there exists i ∈ {1, . . . , l} such that the CθsH-module
CθsV

λ sends T θs
0 to θs(Qi) and T θs

i to θs(q) or −1. Hence F(CθsV
λ) is the Cθσ.s

H-module sending T σ.θs
0 to

θσ.s(Qσ0(i)). We obtain that F(CθsV
λ) = Cθσ.s

V σ0.λ.

As a consequence, if we restrict the bijection Ψe,s,s′ to Λs,e(n), we obtain a bijection which is, by a slight
abuse of notation, noted identically:

Ψe,s,s′ : Λs,e(n) → Λs
′,e(n)

λθs 7→ (σ0.λ)θ
s
′
.

Note that we have for all M ∈ Irr(CθsH) and for all µ ⊢l n:

[CθsV
µ : M ] = [Cθσ.s

V σ0.µ : F(M)]. (1)

3.6. On the other hand, as explained in [5, §6.2.17], the crystal graph theory allows to construct a combi-
natorial bijection between the two sets. This is given as follows: let λ ∈ Φs,e(n) then there exists a unique
µ ∈ Φs

′,e(n) such that gs,e(λ) = gs′,e(µ), we set χe,s,s′(λ) := µ. This defines a bijection

χe,s,s′ : Φs,e(n) → Φs
′,e(n).

The following result asserts that the two bijections we have just constructed actually coincide. In the proof,
we will freely use several results from [5].

Proposition 3.7. Let s ∈ Zl, σ ∈ Ŝl and s
′ := σ.s. For all λ ∈ Φs,e(n), we have χe,s,s′(λ) = Ψe,s,s′(λ).

Proof. The proof is based on Ariki’s Theorem relying the decomposition matrix of Ariki-Koike algebras with
the canonical bases for Fock spaces. By definition, the Fock space Fs is the Q(v)-vector space (where v is an
indeterminate) with basis given by the symbols |λ, s〉 with λ ⊢l n and n ∈ Z≥0. One can define an action of
the quantum affine algebra of type A on this space. The submodule generated by |∅, s〉 is then an irreducible
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highest weight module (where ∅ = (∅, . . . , ∅)) and we have an associated canonical basis which is indexed by
the set Φs,e = ∪n∈Z≥0

Φs,e(n):
{G(λ, s) | λ ∈ Φs,e}.

Fix n ∈ Z>0 then for all λ ∈ Φs,e(n) and ν ⊢l n, there exist dsν,λ(v) ∈ N[v] such that:

G(λ, s) =
∑

ν⊢ln

dsν,λ(v)|ν, s〉.

Now we fix λ ∈ Φs,e(n). By Ariki’s Theorem (see [5, Thm 6.2.21]), there exists M ∈ Irr(CθsH) such that for
all ν ⊢l n,

dsν,λ(1) = [CθsV
ν : M ].

By [5, Thm 6.6.12] (see also Thm 2.4), we have M = Dλ
s,e. On the other hand, the submodule generated by

|∅, s′〉 in the Fock space Fs
′ admits also a canonical basis

{G(µ, s′) | µ ∈ Φs
′,e}.

Set λ′ := χe,s,s′(λ) ∈ Φs
′,e(n). By Ariki’s Theorem again, there exists M ′ ∈ Irr(Cθ

s
′H) such that for all

ν ⊢l n,
ds

′

ν,λ′(1) = [Cθ
s
′V

ν : M ′].

Again by [5, Thm 6.6.12], we have M ′ = Dλ′

s
′,e. Now by [5, §6.4.10], we have

dsν,λ(1) = ds
′

σ0.ν,λ
′(1),

and this leads to:
[CθsV

ν : Dλ
s,e] = [Cθσ.s

V σ0.ν : Dλ′

s,e],

for all ν ⊢l n. Combining this with (1) and taking into account that the above decomposition numbers
determine uniquely the simple modules, we obtain that Dλ′

s,e = F(Dλ
s,e) which is exactly what we wanted.

3.8. We end this section by giving one strategy to solve our problem §2.6:

1. We find all the elements λθs for all λ ∈ Λ(n) and for all specialisation θs where s ∈ Ae,l, a domain

contained in a fundamental domain with respect to the action of Ŝl on Zl.

2. Let s ∈ Zl and and let λ ∈ Λ(n) then there exists σ ∈ Ŝl such that σ.s′ = s with s
′ ∈ Ae,l. Then

consider σ−1
0 .λ ∈ Λ(n). We can compute (σ−1

0 λ)θ
s
′ by (1).

3. We have (σ−1
0 λ)θ

s
′ ∈ Φs

′,e(n) and we can consider the sequence gs′,e((σ
−1
0 λ)θ

s
′ ).

4. By the discussion above, λθs is then uniquely determined by its sequence gs,e(λθs) = gs′,e((σ
−1
0 λ)θ

s
′ ).

4 One dimensional representations and Mullineux involution

Now our main problem can be rephrased as follows. Let λ ∈ Λ(n) then there exists λθ ∈ Φs,e(n) such that

CθsV
λ ≃ D

λθs
s,e .

We want to find explicitly λθs in terms of λ for all s ∈ Zl and e ∈ Z>1 . To do this, we will proceed in
several steps. For the first step, the aim is to study the case where s ∈ Ae,l where:

Ae,l = {s = (s1, . . . , sl) ∈ Zl | ∀i < j, 0 ≤ sj − si < e}.

Note that the fundamental domain in §3.3 is contained in this set. We assume that s ∈ Ae,l. In this case,
the set Φs,e(n) can be explicitly described without any references to the theory of crystal graphs. This set
is given by the so called FLOTW l-partitions (see [5, Def. 5.7.8]), we recall the definition of them hereafter.
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4.1. Recall that we assume that s ∈ Ae,l. We have λ = (λ1, . . . , λl) ∈ Φs,e(n) if and only if:

1. For all j = 1, . . . , l− 1 and i ∈ Z>0, we have:

λj
i ≥ λj+1

i+sj+1−sj
.

2. For all i ∈ Z>0, we have:
λl
i ≥ λ1

i+e+s1−sl
.

3. For all k ∈ Z>0, the set

{λj
i − i+ sj + eZ | i ∈ Z>0, λj

i = k, j = 1, . . . , l},

is a proper subset of Z/eZ.

(In the above definition, the partitions are considered with an infinite number of empty parts)

4.2. First, note that 1-dimensional representations may induced isomorphic modules after specialization.
Indeed, let us consider i1 = 1 < i2, . . . < ik in {1, . . . , l} such that s1 = . . . = si2−1, si2−1 < si2 , si2 = . . . =
si3−1, si3−1 < si3 , . . . sik−1−1 < sik , sik = . . . = sl, then we have for all j = 1, . . . , k:

CθsV
[n,ij ] ≃ CθsV

[n,ij+1] ≃ . . . ≃ CθsV
[n,ij+1−1] and CθsV

[1n,ij ] ≃ CθsV
[1n,ij+1] ≃ . . . ≃ CθsV

[1n,ij+1−1],
(2)

where we set ik+1 := l + 1. Our main problem can now be easily solved in “half” of the cases.

Proposition 4.3. For all j = 1, . . . , k, we have:

[n, ij ]θs = [n, ij + 1]θs = . . . = [n, ij+1 − 1]θs = [n, ij ].

Proof. From (2), we immediately get that [n, ij ]θs = [n, ij + 1]θs = . . . = [n, ij+1 − 1]θs . Now from the
definition above, it is direct to see that [n, ij] ∈ Φs,e(n) . As in addition CθsV

[n,ij ] is simple we have

CθsV
[n,ij ] ≃ M for a simple module M ≃ D

[n,ij ]
s,e which is exactly what we wanted.

4.4. Now the FLOTW l-partitions of the above types are characterized by the sequence gs,e([n, ij ]) of “good
nodes”. This sequence is easy to have in this case, it is indeed given by the following:

gs,e([n, ij]) = (sij + eZ, sij + 1 + eZ, . . . , sij + n− 1 + eZ).

4.5. For the one dimensional representation indexed by [1n, ij] (j = 1, . . . , k), the problem is more difficult
as such l-partitions are not FLOTW l-partitions in general. To solve it, let us consider another specialization
θ̃s : A → C such that

θ̃s(q) = ξ, θ̃s(Qj) = ξ−sl+1−j , j = 1, . . . , l,

where ξ := η−1. We denote by T θ̃s
0 , T̃ θ̃s

1 , . . . , T̃ θ̃s
n−1 the associated standard generators. Note that the relations

in C
θ̃s
H are given as follows:

(T θ̃s
0 − ξ−sl) . . . (T θ̃s

0 − ξ−s1) = 0, (T θ̃s
i − ξ)(T̃ θ̃s

i + 1) = 0, i = 1, . . . , n− 1.

As −s := (−sl, . . . ,−s1) ∈ Zl and ξ is still a primitive e-root of 1, we can use the results of Theorem 2.4. In
particular we have a parametrization of the simple modules by a certain set of l-partitions Φ−s,e(n) which
can be recursively described as in §3.1.

Irr(C
θ̃s
H) = {Dµ

−s,e | µ ∈ Φ−s,e(n)}.
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Following an idea of M. Fayers [3], we consider the isomorphism of C-algebra sending T θ̃s
0 to T θs

0 and T θ̃s
i

to −ξT θs
i for i = 1, . . . , n− 1. This, in turn, induces a functor F from the category of CθsH-modules to the

category of C
θ̃s
H-modules. For all λ ∈ Φs,e(n), there exists a bijection

ms,e : Φs,e(n) → Φ−s,e(n),

such that:
F (Dλ

s,e) = D
m(λ)
−s,e .

This map satisfies ms,e◦m−s,e = IdΦ−s,e(n) and m−s,e◦ms,e = IdΦs,e(n) and can be seen as a generalization of
the Mullineux involution. Indeed, in the case l = 1, this involution is simply the usual Mullineux involution
which we denote by me.

Proposition 4.6. For j = 1, . . . , k, we have [1n, ij ]θs = m−s,e([n, l+ 2− ij+1]) where ik+1 := l + 1.

Proof. By definition, we haveCθsV
[1n,ij ] ≃ D

[1n,ij ]θs
s,e and we can apply the functor F to obtain F (CθsV

[1n,ij ]) ≃

F (D
[1n,ij ]θs
s,e ). On the one hand, by definition, we have F (D

[1n,ij ]θs
s,e ) = D

ms,e([1
n,ij ]θs )

−s,e and on the other hand

the representation associated to the C
θ̃s
H-module F (CθsV

[1n,ij ])) is given by

T̃ θ̃s
0 7→ T θs

0 7→ ηsij = ξ−sij , T̃ θ̃s
i 7→ −η−1T θs

i 7→ η−1 = ξ.

this is the module obtained by specialization through θ̃s of the H-module V [n,l+1−ij ] sending T0 to q and Ti

to Ql+1−ij for i = 1, . . . , n − 1. This is thus C
θ̃s
V [n,l+1−ij ]. Now, note that we have −s ∈ Ae,l. Hence we

can use Proposition 4.3 which shows that:

C
θ̃s
V [n,l+1−ij ] = D

[n,l+2−ij+1]
−s,e .

As a conclusion we obtain:
ms,e([1

n, ij ]θs) = [n, l+ 2− ij+1].

Applying then m−s,e leads to the desired result.

4.7. By the result of Fayers, the image m−s,e(λ) for λ ∈ Φs,e(n) may be recursively computed. Indeed let
us consider the sequence g−s,e(λ) and assume that we have:

gs,e(λ) = (k1 + eZ, . . . , kn + eZ).

Then m−s,e(λ) satisfies:
gs,e(m−s,e(λ)) = (−k1 + eZ, . . . ,−kn + eZ).

By §3.1, this uniquely characterized m−s,e(λ).

Example 4.8. Let us study the case of type A that is when l = 1. In this case, note that T0 is just Q1 so
we only have to consider θ : A → C a specialization such that θ(q) = η, a primitive e-root of 1. We have two
1-dimensional representations (n)θ and (1n)θ for the specialized Hecke algebra.

By Proposition 4.3, we have (n)θs = (n) and by Proposition 4.6, we have (1n)θs = me((n)) where me is
the usual Mullineux involution. The explicit form of this partition is known (by [9, Thm 6.22]) and can, for
example, easily been computed following §4.7. Take here for example s = (0) (it does in fact not depend on
the choice of s in this case)

g(0),e((n)) = (eZ, 1 + eZ, . . . , n− 1 + eZ).

Then me((n)) is the unique element such that

g(0),e(me((n))) = (eZ,−1 + eZ, . . . ,−n+ 1 + eZ).

It is not difficult to see that we obtain the partition ((q + 1)rqe−1−r) where (q, r) ∈ Z>0 × {0, 1, . . . , e − 2}
is uniquely defined by the euclidean division n = q(e − 1) + r.
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Example 4.9. Assume now that e = 2. Then we remark that we have for all j = 1, . . . , k:

gs,e([n, ij]) = gs,e([1
n, ij ]),

and more generally
gs,e(λ) = gs,e(m−s,e(λ)).

We thus have [n, ij]θs = [1n, ij]θs This is consistent with our remark in §2.6.

5 Crystal isomorphisms

Let s ∈ Zl and σ ∈ Ŝl. Set s
′ := σ.s = (s′1, . . . , s

′
l). The aim of this part is to explain how the bijections

χe,s,s′ : Φs,e(n) → Φs
′,e(n),

can be combinatorially computed without any reference to sequences of “good nodes”. This result essentially
comes from [8] but we need to translate it a little bit for our purpose. This will be helpful in the following.

5.1. Recall §3.3 , if we set τ := ylσl−1 . . . σ1, we see that Ŝl is generated by τ and σi for i = 1, . . . , l − 1.

In addition, the action of Ŝl on Zl gives that

τ.s = (s2, . . . , sl, s1 + e).

To compute χe,s,s′ explicitly it suffices to consider the cases where σ = τ and σ = σi for i = 1, . . . , l. This is
what we will do in the next subsections.

5.2. First, we describe the case where σ = τ . In this case, the bijection

χe,s,s′ : Φs,e(n) → Φs
′,e(n),

is simply given as follows, for all λ ∈ Φs,e(n), we have:

χe,s,s′(λ) = (λ2, . . . , λl, λ1).

We refer to [8, Prop. 5.2.1] for a proof.

5.3. Let us now describe the case σ = σi for i = 1, . . . , l− 1. The proof follows from the proof of [8, Prop.
5.2.1]. If λ = (λ1, . . . , λl) ∈ Φs,e(n) we have

χe,s,σi.s(λ) = (λ1, . . . , λi−1, λ̃i+1, λ̃i, λi+2, . . . , λl),

where we will now describe how one can obtain (λ̃i+1, λ̃i) from (λi, λi+1). This has been originally given by
modifying a combinatorial object associated to the l-partition called the charged symbol. Here we translate
the procedure in terms of Young tableaux.

We in addition assume that si > si+1. We only need this case in the following (but the result can be
adapted to the case si < si+1) We assume that λi = (λi

1, . . . , λ
i
ri
) with ri ∈ Z>0 and λi+1 = (λi+1

1 , . . . , λi+1
ri+1

)
with ri+1 ∈ Z>0. We then set

r := Max(ri+1 + si − si+1, ri).

Now adding as many zero part as necessary we slightly abuse notation by assuming that λi = (λi
1, . . . , λ

1
r)

and λi+1 = (λi+1
1 , . . . , λi+1

r−si+si+1
). Moreover, for any part µc

a of an l-partition µ = (µ1, . . . , µl), we set
β(µc

a) = µc
a − a+ sc (this is called a β-number). This corresponds to the content of the right most node of

λc
a if it is non zero.

We will now consider the parts of λi+1 indexed decreasingly from r − si + si+1 to 1 and construct the

new partitions λ̃i and λ̃i+1 step by step:
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• Let us consider the part λi+1
r−si+si+1

, we define a1 ∈ {1, . . . , r} such that:

β(λi
a1
) = Min(β(λi

a), a ∈ {1, . . . , r}, β(λi
a) ≥ β(λi+1

r−si+si+1
)).

It can be shown from the fact that λ is in Φs,e(n) that this is well and uniquely defined. Then we set

λ̃i
k =

{
0 if k > r − si + si+1,

λi+1
r−si+si+1

+ β(λi
a1
)− β(λi+1

r−si+si+1
) if r − si + si+1.

λ̃i+1
k =

{
λi
k if k > a1,

λi
a1

− β(λi
a1
) + β(λi+1

r−si+si+1
) if k = a1.

• For λi+1
r−si+si+1−1, we define a2 ∈ {1, . . . , r} such that:

β(λi
a2
) = Min(β(λi

a), a ∈ {1, . . . , r}, β(λi
a) ≥ β(λi+1

r−si+si+1−1)).

It can be shown from the fact that λ is in Φs,e(n) that this is well and uniquely defined and we have
a2 < a1. Then we set

λ̃i
r−si+si+1−1 = λ2

r−si+si+1−1 + β(λi
a2
)− β(λi+1

r−si+si+1−1),

λ̃i+1
k =

{
λi
k if a1 > k > a2,

λi
a2

− β(λi
a2
) + β(λi+1

r−si+si+1−1) if k = a2.

• We continue this process until we reach λi+1
1 . We thus have defined aj ∈ {1, . . . , r} for j = 1, . . . , r −

si + si+1 on the one hand and the parts λ̃i
k for k ≥ 1 and λ̃i+1

k for k ≥ ar−si+si+1 on the other hand.

We in addition set λ̃i+1
k = λi

k for 1 ≥ k > ar−si+si+1 . This gives λ̃i+1 and λ̃i.

Note that, quite remarkably, this procedure does not depend on e ! this has in fact a crystal theory
explanation: this process correspond to an isomorphism of crystals between U(ŝle)-modules. It can be
shown that the associated crystals embed in crystals of U(sl∞)-modules and that the crystal isomorphism is
nothing but the restriction of a crystal U(sl∞)-isomorphism. It thus does not depend on e.

5.4. We consider the Young diagram of λ and we color each node of the diagram with its content. We get
a colored Young diagram as in the following example. One can visualize the above process in this colored
Young diagram. This consist in adding to the Young diagram of λ2 a skew Young diagram to obtain the
Young diagram of λ̃1 and delete it to λ1 to obtain λ̃2. This skew Young diagram is obtained by looking at
the β-numbers we have defined above.

Example 5.5. Take (s1, s2) = (1, 0) and the 2-partition (5.5.3.1, 3.1). We here have r1 = 4 and r2 = 2.
Thus r = 4.

• We start with λ2
3 = 0. As β(λ2

3) = −3 then a1 = 4 because β(λ1
4) = −2. Thus we obtain λ̃1

3 = 1 and

λ̃2
4 = 0.

• For λ2
2 = 1, as β(λ2

2) = −1 then a1 = 3 because β(λ1
3) = 1. Thus we obtain λ̃1

2 = 3 and λ̃2
3 = 1.

• For λ2
1 = 3, as β(λ2

1) = 2 then a1 = 2 because β(λ1
2) = 4. Thus we obtain λ̃1

1 = 5 and λ̃2
2 = 3.

We thus get λ̃ = (5.3.1, 5.3.1). At the level of colored Young diagram, we get for λ the following one:




1 2 3 4 5
0 1 2 3 4

1 0 1

2

,
0 1 2
1



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and we obtain for λ̃:




0 1 2 3 4

1 0 1

2

,
1 2 3 4 5
0 1 2
1




where a for a ∈ Z≥0 means −a.

6 Labeling of one dimensional representations

Our goal is to develop the strategy of §3.8 to obtain an explicit description of our one dimensional repre-
sentations. So we assume that s ∈ Zl and that λ ∈ Λ(n). If µ = (µ1, . . . , µl) and ν = (ν1, . . . , νl), we
denote by µ+ ν the l-partition (µ1 + ν1, . . . , µl + νl). Here, the sum of two partitions µ = (µ1, . . . , µr) and
ν = (ν1, . . . , νr) is defined as (ν1 + µ1, . . . , νr + µr) (where we add as many zero parts to the partitions µ or
ν if necessary).

6.1. Let s ∈ Zl and define the set:

I := {i ∈ {0, 1, . . . , e− 1} | ∃j ∈ {1, . . . , l}, sj ≡ i+ eZ}.

As in our discussion in §4.2, note that we have

[n, k1]θs = [n, k2]θs and [1n, k1]θs = [1n, k2]θs ,

as soon as sk1 = sk2 + eZ. For each k ∈ I, we define α(k) to be the minimal element of {1, . . . , l} such that

sα(k) = max{sj | j ∈ {1, . . . , l}, sj ≡ k + eZ}.

We thus have sα(k) + eZ = k + eZ. The question remains to determine [n, α(k)] and [1n, α(k)] for all k ∈ I.

Following our strategy exposed in §3.8, there exists σ ∈ Ŝl such that σ.s′ = s with s
′ ∈ Ae,l. We fix

k ∈ I, then we obtain:

• For λ = [n, α(k)]θs we have by §4.4, that

gs′,e((σ
−1
0 λ)θ

s
′ ) = (k + eZ, k + 1 + eZ, . . . , k + n− 1 + eZ),

and thus
gs,e((λ)θs) = (k + eZ, k + 1 + eZ, . . . , k + n− 1 + eZ).

• For λ = [1, α(k)]θs we have by Proposition 4.6 and §4.7,

gs,e((λ)θs) = (k + eZ, k − 1 + eZ, . . . , k − n+ 1 + eZ).

We can now first study more precisely the multipartitions [n, α(k)]θs , we then turn to the multipartitions
[1n, α(k)]θs for k ∈ I.

Proposition 6.2. Under the above notations, we have the following result.

1. If for all k1 ∈ I we have:

sα(k) > sα(k1) or (sα(k1) > sα(k) > sα(k1) − e and α(k) < α(k1)).

Then we have [n, α(k)]θs = [n, α(k)].

2. Otherwise, let k1 ∈ I be such that:

• sα(k1) > sα(k) + e or (sα(k1) > sα(k) > sα(k1) − e and α(k1) < α(k).)
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• The integer jk1 ∈ {1, . . . e− 1} such that jk1 ≡ k1 − k + eZ is minimal with the above property.

We then have:

[n, α(k)]θs =

{
[n, α(k)] if n ≤ jk1 ,

[jk1 , α(k)] + [n− jk1 , α(k1)]θs otherwise.

Proof. We have to consider the sequence (k + eZ, k+ 1+ eZ, . . . , k+ n− 1 + eZ) and add successively good
nodes with appropriate residues, starting with the empty multipartition.

1. Assume that we are in the first case of the theorem. Assume moreover that j ∈ I is such that there
exists t ∈ {1, . . . , n− 1} satisfying:

k + t+ eZ = j + eZ.

Then, in the l-partition [t, α(k)], we have:

(1, 1, α(j)) ≺s,e (1, t+ 1, α(k)),

because of our hypothesis and because of the definition of ≺s,e. Thus, for this l-partition, the good
k + t+ eZ-node is (1, t+ 1, α(k)). The result follows.

2. Consider now the second case. If n ≤ jk1 then it is clear that the good nodes are successively added in
the component α(k) of the l-partition and thus we have [n, α(k)]θs = [n, α(k)]. Otherwise, considering
the sequence of residue:

(k + eZ, k + 1 + eZ, . . . , k + jk1 − 1 + eZ).

The l-partition which is obtained by adding the good nodes associated to this sequence is [jk1 , α(k)].
Now note that the removable node (1, jk1 , α(k)) comes with a residue:

k + jk1 − 1 + eZ.

If we now want to add a good addable node with residue k + jk1 + eZ, we have to add it in the
component α(k1) by hypothesis. Note then that the node (2, 1, α(k1)) becomes an addable node with
residue:

1− 2 + k1 + eZ = k + jk1 − 1 + eZ.

This node is greater than (1, jk1 , α(k)) and there are no (and there will be no) addable or removable
nodes with the same residue between these two nodes. Thus in the process of computing good nodes,
these two nodes have no impact in the following (because it is associated to an occurrence RA in the
notation of §3.1). We now have to consider the sequence:

(k + jk + eZ, k + jk + 1 + eZ, . . . , k + n− 1 + eZ).

and add good nodes with the appropriate residues to our multipartition [jk1 , α(k)]. Note that in this
process, we will never add new nodes in the component α(k) of our l-partition. We can then conclude
by induction.

Example 6.3. Set e = 4 and s = (3, 0, 7, 3) then we have I = {0, 3} and we have α(0) = 2 and α(3) = 3.
Following the above theorem we thus have

[n, 2]θs =

{
(∅, n, ∅, ∅) if n ≤ 3,

(∅, 3, n− 3, ∅) otherwise.

and combining Proposition 4.3 with the above theorem gives

[n, 3]θs = [n, 1]θs = [n, 4]θs = (∅, ∅, n, ∅).
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We now turn to the representations of type [1n, i]θs .

6.4. In general, the result is more complicated to describe than for the other type of 1-dimensional repre-
sentations and it requires to much notations for being stated and useful in the general setting. Instead, we
will use the following idea. Let k0, . . . , ks be the element in I such that α(k0) < α(k1) < . . . < α(ks). We
here make the assumption that we have:

sα(k0) > sα(k1) > . . . > sα(ks).

We will explain later how we can deduce the general result from this case. Let i ∈ {0, 1, . . . , s}, we want to
find [1n, α(ki)]θs .

Proposition 6.5. Under the above hypotheses, we have

[1n, α(k0)]θs = [
(
(q + 1)r, qe−1−r

)
, α(k)],

where (q, r) ∈ Z>0 × {0, 1, . . . , e− 2} is uniquely defined by the euclidean division n = q(e− 1) + r. If i 6= 0,
we consider j ∈ {0, . . . , i− 1} such that x ∈ {1, . . . , e− 1} is minimal such that x+ eZ = ki − kj + eZ. Then
we have:

[1n, α(ki)]θs =

{
[1n, α(ki)] if n ≤ x,

[1x, α(ki)] + [1n−x, α(kj)]θs otherwise.

Proof. In the case where i = 0, the problem reduces to the case where l = 1. Indeed, the sequence of residues
we have to consider is

(k0 + eZ, k0 − 1 + eZ, . . . , k0 − n+ 1 + eZ).

Because of our assumption sα(k0) > sα(k1) > . . . > sα(ks), we see that the good nodes we have to add are
always located in the component α(k0) of our l-partition because the greatest addable nodes with appropriate
residues are always in this component. The result follows in this case.

Assume now that i 6= 0. Consider j ∈ {0, . . . , i − 1} such that x ∈ {1, . . . , e − 1} is minimal such that
x+ eZ = ki − kj + eZ. Consider our sequence of residues:

(ki + eZ, ki − 1 + eZ, . . . , ki − n+ 1 + eZ).

For the sequence
(ki + eZ, ki − 1 + eZ, . . . , ki − x+ 1 + eZ),

the addable good node appears in the component α(ki) of the multipartition. We thus obtain the l-partition
[1x, α(ki)]. Now we must note that we have a removable node R with residue ki−x+1+eZ on the component
α(ki). To continue our process, we need to add a good node with residue ki − x + eZ = kj + eZ and thus
consider the sequence

(kj + eZ, kj − 1 + eZ, . . . , kj − n+ 1− x+ eZ).

To conclude by induction, we have to check that our removable node R does not change the possible good
nodes. But as we add the good kj+eZ-node in the component α(kj), we get an addable ki−x+1+eZ-node in
the component α(kj) which is greater than R and there will be no addable or removable node with the same
residue between these two in the following. We thus obtain an occurrence RA in the process of computing
the good nodes. This thus doesn’t interfere in the process. We can thus conclude by induction as in the
proof of the last proposition.

6.6. Now, how can we deduce the result for the general case ? to do that we can use the description of the
“crystal isomorphism” given in section 5. Assume that s ∈ Zl. Then there exists σ ∈ Sl such that s

′ = σ.s
satisfies the condition in §6.4. We can thus use Proposition 6.5 to obtain [1n, α(ki)]θ

s
′ for all 0 ≤ i ≤ s and

then conclude using §5.3.
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Example 6.7. Set e = 4 and s = (3, 0, 7, 3). Assume that n > 1 then we have I = {0, 3} and we have
α(0) = 2 and α(3) = 3 and s2 = 0 and s3 = 7. Let us consider s

′ = (7, 0, 3, 3). Then we are in position to
apply Proposition 6.5 to θs′

(1n, ∅, ∅, ∅)θs′ = ((q + 1)r.qe−1−r , ∅, ∅, ∅),

where (q, r) ∈ Z>0 × {0, 1, . . . , e− 2} is uniquely defined by the euclidean division n = q(e− 1) + r. Now we
have:

(∅, 1n, ∅, ∅)θs′ = ((q′ + 1)r
′

.q′
e−1−r′

, 1, ∅, ∅),

where (q′, r′) ∈ Z>0 × {0, 1, . . . , e − 2} is uniquely defined by the euclidean division n − 1 = q′(e − 1) + r′.
To conclude now, we have to consider the isomorphism χe,s,s′ which we have described in §5.3. Applying
it to our two 4-partitions will give what we wanted that is (1n, ∅, ∅, ∅)θs = (∅, ∅, 1n, ∅)θs = (∅, ∅, ∅, 1n)θs and
(∅, 1n, ∅, ∅)θs′ . Note that in our case, we can take σ = σ1σ2σ1.

7 Application to type Bn

In this part, we apply the above result to the case of Hecke algebra of type Bn that is the case l = 2 where
we give closed formulae for each case. So we assume that (s1, s2) ∈ Z2 and we will study three different
cases.

7.1. First let us assume that s1 = s2. Then by Proposition 4.3, we obtain:

((n), ∅)θs = (∅, (n))θs = ((n), ∅),

and from Proposition 6.5, we obtain:

((1n), ∅)θs = (∅, (1n))θs = (me(1
n), ∅),

where me is the Mullineux map in type A given in Example 4.8.

7.2. Now let us assume that s1 > s2. Then by Proposition 6.2, we obtain:

((n), ∅)θs = ((n), ∅),

and if we set j ∈ {0, . . . , e− 1} such that j + eZ = s1 − s2 + eZ.

(∅, (n))θs =

{
(∅, (n)) if j ≤ n,

((n− j), (j)) otherwise.

By Proposition 6.5, we obtain:
((1n), ∅)θs = (me(1

n), ∅),

again where me is the Mullineux map in type A and if we set j ∈ {0, . . . , e−1} such that j+eZ = s2−s1+eZ.

(∅, (1n))θs =

{
(∅, (1n)) if j ≤ n,

(me(1
n−j), (1j)) otherwise.

7.3. Finally let us study the case where s2 > s1. Then by Proposition 6.2, we obtain:

(∅, (n))θs = (∅, (n)),

and if we set j ∈ {0, . . . , e− 1} such that j + eZ = s2 − s1 + eZ.

((n), ∅)θs =

{
((n), ∅) if j ≤ n,

((j), (n− j)) otherwise.

Now let us consider the last two types of representations that we want to characterize. For this, we can
directly use §6.6 or argue as follows:
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• Assume first that we have s2 ≥ s1 + e. Then we will use the bijection described in §5.2. We have that
s
′ = (s2, s1 + e) satisfies s2 ≥ s1 + e so we can use the case above to deduce that:

(∅, (1n))θ
s
′ = (me(1

n), ∅),

again where me is the Mullineux map in type A. We thus obtain:

(∅, (1n))θs = (∅,me(1
n)).

Now, if we set j ∈ {0, . . . , e− 1} such that j + eZ = s1 + e− s2 + eZ, we obtain:

(∅, (1n))θ
s
′ =

{
(∅, (1n)) if j ≤ n,

((me(1
n−j), (1j)) otherwise.

and by §5.2 we conclude:

((1n), ∅)θs =

{
((1n), ∅) if j ≤ n,

((1j),me(1
n−j)) otherwise.

• Assume finally that s1 + e > s2 > s1. We want to find (∅, (1n))θs . To do this, we just have to apply
the strategy proposed in §6.6 and consider (1n, ∅)θ(s2,s1)

. We need thus to apply our algorithm to
(me(1

n), ∅). After a quick calculation, we see that:

(∅, (1n))θs =

{
((q + 1)r−(s2−s1)qe−1−r , (q + 1)s2−s1) if s2 − s1 ≤ r,

(qe−1−s2+s1 , (q + 1)rqs2−s1−r) otherwise.

where n = q(e − 1) + r for q ∈ Z>0 and 0 ≤ r ≤ e− 1.

Now for the case (1n, ∅)θs , we again use the bijection of §5.2. Let us consider (∅, 1n)θ(s2,s1+e)
. We have

s2 + e > s1 + e > s2 so by the above result we have:

(∅, (1n))θ(s2,s1+e)
=

{
((q + 1)r−(s1+e−s2)qe−1−r , (q + 1)s1+e−s2) if s1 + e− s2 ≤ r,

(qe−1−s1−e+s2 , (q + 1)rqs1+e−s2−r) otherwise.

and we can thus conclude that

((1n), ∅)θ(s1,s2)
=

{
((q + 1)s1+e−s2 , (q + 1)r−(s1+e−s2)qe−1−r) if s1 + e− s2 ≤ r,

((q + 1)rqs1+e−s2−r, qs2−1−s1) otherwise.

Remark 7.4. The explicit determination of the parameters (s1, s2) associated to a weight function on a Hecke
algebra of type Bn is explained in [5, §6.7.5].
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