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Time-Reversed Excitation of Reveberation
Chambers: Improving Efficiency and Reliability in

the Generation of Radiated Stress
Henri Vallon, Andrea Cozza, Florian Monsef, Anne-Sophie Chauchat

Abstract—The ability of reverberation chambers to generate
high-intensity field levels from relatively low-power input signals
is reexamined for the case of time-reversed signals, proving that
they lead to a higher efficiency. Moreover, the strong statistical
spread typical of time-harmonic excitations can be dramatically
reduced, thus improving the reliability of radiative tests, while
limiting the need for a large number of independent realizations.
The two excitation schemes are compared when forcing their
respective input signals to display the same peak instantaneous
power. Experimental results are provided, supporting the con-
clusions of our theoretical analysis.

Index Terms—Conversion efficiency, radiated test, reverbera-
tion chamber, time reversal, statistical electromagnetics

I. I NTRODUCTION

REVERBERATION chambers (RCs) are capable of con-
verting harmonic signals into high-intensity fields, by

creating a pool of stored electromagnetic energy, thanks to
their relatively long relaxation time constants. The stored
energy can reasonably be expected to be uniformly spread
over the entire volume of the RC, thus allowing for an ideally
global excitation of an equipment under test (EUT).

Yet, this property also implies that, at each instant, only a
portion of the energy injected into the RC interacts with the
EUT. This observation is the starting point of our proposal
for using time reversal (TR) as an alternative to harmonic or
continuous-wave (CW) excitations. TR allows the generation
of wavefronts focusing both in space and time; in other
words, it allows concentrating a large portion of energy over a
region of space at a given time. Studies of applications of TR
to cavities are not new [1]–[3], but they have been mainly
concerned with demonstrating the possibility of producing
focusing signals while propagating through non-anechoic me-
dia. We are rather interested in assessing how much TR can
increase the peak intensity of the power used to stress an EUT.

This paper addresses this topic by analyzing the conversion
efficiency of an RC when using TR signals rather than standard
harmonic ones. The problem is tackled from a theoretical point
of view, with the aim of providing simple predictive tools
for the design of TR excitations. Our results prove that the
benefits of TR come in three shapes: 1) ensuring a higher
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field intensity, 2) reducing the uncertainty of the actual level
of the generated field and 3) reducing the need for multiple
realizations (i.e., stirring iterations) for the sake of producing
a higher stress on the EUT. Even though not discussed in this
paper, a fourth advantage should also be mentioned, namely
the possibility of controlling the polarization of the resulting
field, as proven in [4]. The comparisons are carried out by
acknowledging a fundamental limitation of power amplifiers,
namely the maximum peak instantaneous power (PIP) they
can handle. This constraint calls for an analysis differingfrom
that presented in [5], while also taking into account the highly
fluctuating behavior of RC-generated signals.

Only point-like focusing is considered in this paper, which
means focal spots with spatial extensions subject to the diffrac-
tion limit; in practice, about half a wavelength wide. Extension
to other kinds of wavefronts is possible by using generalized
TR, a technique described in [6]. This same reference also
discusses practical issues, e.g., how wavefronts are generated
and moved around an EUT. This paper will only focus on
how using TR excitations can improve the generation of
electromagnetic stresses within an RC.

II. CONVERSION EFFICIENCIES

The point of view adopted in this paper is that an RC is a
linear system that converts an input signalx(t), say a voltage,
applied at the input port of an excitation antenna, into a vector
electric fielde(r, t) measured within the RC at the positionr.
In the rest of this paper we will drop the variabler, for the sake
of brevity, and derive results that are valid for anyr within the
test volume, where we expect a diffuse-field approximation to
hold. The average composite quality factorQ of the RC will
be considered to be a good estimate of the composite quality
factors experienced over the bandwidth used, around a working
frequencyfc. The average time constant of electromagnetic
fields in the RC will thus be defined asτ = Q/πfc.

The field thus generated is expected to stress a portion of a
circuit in an EUT, which will “receive” the powerpr(t) as a
linearly-polarized antenna, i.e.,

pr(t) = Cr [e(t) · q̂]2 = Crf2(t) (1)

whereCr represents the sensitivity of the receiver, assumed
to be non-dispersive, with no loss of generality, whileq̂ is the
polarization-vector of the receiver. Similarly, we consider the
input available powerpi(t) = Cix

2(t) applied at the antenna
input port, withCi a constant of units equal to a conductance.
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In view of the generation of a radiated stress, the conversion
efficiency

ηS = η[xS(t)] =
‖pr(t)‖∞

‖pi(t)‖∞

=
Cr

Ci

‖f2
S(t)‖∞

‖x2
S(t)‖∞

(2)

should be maximized, where the subscriptS is used in order
to distinguish different excitation signals. The rationale for
choosing theL∞ norm is twofold: the output PIP stressing the
EUT should be as high as possible, while being generated by
an input signal with the lowest PIP, in order to avoid any strain
on power amplifiers and subsequent non-linear distortions or
potential thermal stress.

The q̂-aligned component of the electric field,f(t), is lin-
early related to the excitation signal through a transfer function
Φ(ν), such thatf(t) = F−1 {Φ(ν)X(ν)} (t), whereF−1 {·}
is the inverse Fourier transform between the frequency variable
ν and the time variablet. The functionX(ν) is the Fourier
spectrum of the excitation signal. The following derivations
will assume excitation signals with spectra centered at the
frequencyfc, covering the bandwidthBT = f2 − f1.

Harmonic signals are routinely used in standard operation
of RC. In this casexCW(t) = A cos(2πfct) and thus the
conversion efficiency is

ηCW =
Cr

Ci
|Φ(fc)|2 =

Cr

Ci
W (fc), (3)

whereW (ν) = |Φ(ν)|2 is a short-hand notation. In practice,
the response of RCs is randomized by means of stirring
techniques; as a result several realizations ofΦ(ν) can be
generated and the resulting efficiency can take very different
values. This point will be discussed in sec. III.

In the case of time-reversed excitations, the input signal is
chosen to be

xTR(t) = g(t) ∗ φ(−t) = F
−1 {G(ν)Φ⋆(ν)} (t), (4)

whereG(ν) is the Fourier spectrum of the signalg(t) chosen
to stress the receiver;∗ stands for the convolution operator
applied to the time variable, while the superscript⋆ represents
the complex conjugate. Any kind of signal can be chosen for
g(t), but time reversal has been demonstrated mainly with
short pulses; a by-product of our derivation is that indeed
better efficiencies are obtained by choosing ag(t) with the
most compact support. Therefore, EUTs with a relaxation time
longer than that of the cavity, typically in the microsecond
range, are not suited to this technique, as their bandwidths
would not cover enough degrees of freedom, as explained in
the rest of the paper. This limitation can be overcome by using
trains of short pulses; this kind of signals does not appear
to have been considered so far in the literature and deserve
investigations on their own as a practical solution.

Since the electric fieldf(t) at the receiver position will
have a spectrum|Φ(ν)|2G(ν), if g(t) presents a maximum
intensity att = 0, the same will occur forf(t), given that
|Φ(ν)|2 is real-positive and corresponds to the spectrum of
the auto-correlation function ofφ(t), i.e., with its maximum
at t = 0. Hence,

‖pr(t)‖∞ = Cr

[
∫

BT

dν G(ν)W (ν)

]2

= CrI
2. (5)

Solving the integralI by parts yields

I = G(f2)CW (f2) −
∫

BT

dνG′(ν)CW (ν), (6)

with G′(ν) the first derivative ofG(ν) with respect toν and

CW (ν) =

∫ ν

f1

ds W (s) ≃ (ν − f1)W̄ (7)

a primitive ofW (ν). The linear approximation in (7) assumes
an average valuēW of W constant overBT ; indeed, typical
RCs present slowly-varying statistical moments for the scalar
components of the electric field, as shown in sec. IV. This
approximation holds forν −f1 ≫ Bc, where theBc = 1/τ is
the coherence bandwidth ofΦ(ν): in other words, as soon as
the integration is carried out over enough significantly different
portions ofW (ν). Making use of this approximation in (6) and
solving by parts the integral therein yields

I = W̄

∫

BT

dν G(ν) = W̄ ḠBT (8)

and finally substituting it into (5) gives

‖pr(t)‖∞ = CrW̄ ḠBT . (9)

This result holds for receivers modeled as in (1), i.e.,
presenting an flat frequency response overBT . An eventual
constant group delay could be included, but is not explicited in
(1) as it would not affect the PIP. When dealing with dispersive
responses, (9) should be modified by weightingW (ν) by
the transfer function of the receiver, before computing its
average value overBT . Depending on its degree of frequency
dispersion, this latter could reduce the frequency averageand
thus the peak received power. As thus, the case of a flat
response must be regarded as a best case for TR excitations.

Before computing‖pi(t)‖∞, we need to recall that TR
makes sense only for impulse-like signalsg(t) covering a
bandwidthBT ≫ Bc, i.e., for BT /fc ≫ π/Q; under these
conditions,g(t) has a time supportTg ≪ τ , implying that the
macroscopic features ofφ(−t) ⋆ g(t) are dominated by those
of φ(t).

Impulse responses in an RC can be modeled as random
processes, with a root-mean-square (rms) envelope following
〈

|φ(t)|2
〉

= A2
o exp(−2t/τ) [7, ch. 3] [8]. The local deviations

of the peak power of these kind of signals with respect to their
rms envelope can be expressed as an overshoot factor

K =
√

‖pi(t)‖∞/Ao, (10)

whose cumulative distribution function is

FK(x) =
N

∏

k=0

erf
(

xek/BT τ /
√

2
)

, (11)

with N ≥ 4BT τ ln 2, as demonstrated in [8]. It is now
sufficient to expressAo as a function ofW (ν); sinceA2

o =
〈

x2
TR(0)

〉

,

〈

x2
TR(0)

〉

=

∫

BT

∫

BT

dν1 dν2 G(ν1)G⋆(ν2) 〈Φ(ν1)Φ⋆(ν2)〉 ,

(12)
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where

〈Φ(ν1)Φ⋆(ν2)〉 =
〈

|Φ(fc)|2
〉

µ(ν2 − ν1) (13)

is the frequency covariance function, which can be factorized
into a slowly-varying power spectral density

〈

|Φ(ν)|2
〉

=
〈W (ν)〉, here assumed to be constant overBT , such that
〈W (ν)〉 ≃ W̄ , and a frequency-coherence functionµ(ν2 −ν1)
with a much narrower support, of the order of the modal
bandwidth of the RC, as discussed in [9].

For any signalg(t) such that its spectrum varies over scales
much larger thanBc, the coherence function operates as a
sifting function

∫

BT

dν2 G⋆(ν2)µ(ν2 − ν1)

≃ G⋆(ν1)

∫

BT

dν2 µ(ν2 − ν1) = G⋆(ν1)Bc,

(14)

yielding

A2
o =

〈

x2
TR(0)

〉

= W̄Bc

∫

BT

dν |G(ν)|2, (15)

where the last integral represents the energy ofg(t), in
the mathematical sense. Using (9) and (15), the conversion
efficiency of time-reversed excitations is

ηTR =
Cr

Ci

BT

Bc

W̄κ2

K2 , (16)

with

κ2 = BT Ḡ2

(
∫

BT

dν |G(ν)|2
)−1

≤ 1 (17)

a shape factor attaining its maximum value for flat Fourier
spectra.

III. POWER GAIN

How do ηCW and ηTR compare? In order to answer this
question, two points should be considered: the random nature
of W (ν) and the fact that, in case of harmonic excitations, an
RC is typically operated jointly with a stirring technique.The
assumption of an overmoded RC, as defined in [10], implies
that W (ν) is bound to follow an exponential probability law
[11], [12]. As a result,ηCW, when computed for a single
realization, is widely dispersed around its mean value: e.g.,
ηCW/ 〈ηCW〉 ∈ (0.05, 3.00) with 90 % probability. The
poor predictability of the actual stress generated by an RC
is improved by havingN realizations, introducing stirring
techniques [13]. This pragmatic approach is acknowledged by
introducing

ηN
CW = max

i∈[1,N ]
η

(i)
CW (18)

i.e., the performance of the harmonic excitation will be eval-
uated as the highest one out ofN realizations. As a result,
x = ηN

CW/ 〈ηCW〉 will follow the probability law [14], [15]

pN (x) = N(1 − e−x)N−1e−x. (19)

The strong skewness of this family of probability laws (see
Fig. 1) implies that the statistical mode should be regardedas
a more accurate estimator of typical values taken byηN

CW,

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

x

p
N
(x
)

1

10
1000100

Figure 1. Probability distributions ofηN
CW

/
〈

η
CW

〉

for a varying number
N of realizations.

instead of its mean value. Therefore, the two conversion
efficiencies will be compared by taking the ratio of their
modes, a quantity hereafter referred to as the power gain

GN
p =

Mo [ηTR]

Mo
[

ηN
CW

] , (20)

with Mo [·] the mode of a population of samples. The rationale
for naming this quantity power gain is to be found in the
possibility of obtaining the same order of magnitude of stress
onto the EUT, while using a lower PIP at the input of the RC,
i.e., at the output of the power amplifier. This observation is a
direct consequence of having defined the conversion efficiency
(2) as a quantity normalized to a fixed peak instantaneous input
power.

As opposed to the case of harmonic excitation, time-reversal
excitation is characterized by a self-averaging property [16], as
long asBT ≫ Bc. This property is apparent in the definition
of CW (ν) in (7), where the integral is taken over a stationary
random processW (ν) which takes only positive real values.
The low coherence ofW (ν) outside sub-bandwidths of the
order ofBc implies that the integral can be recast as a discrete
sum

CW (ν) ≃ Bc

Nν
∑

i=1

W (si) (21)

with si − si−1 = Bc and ν − f1 = NνBc. The stationarity
of W (ν) overBT here translates into i.i.d.W (si); hence, the
central-limit theorem allows stating that asymptoticallyCW ,
and ultimately‖fTR(t)‖∞, follow a normal distribution with
relative standard deviation approximated by

√

Bc/BT . This
property is confirmed in sec. IV.

Use of a sufficiently large bandwidth can therefore be
expected to reduce the uncertainty in the TR-generated field;
this key point is discussed in secs. IV and V. Convergence
to a weakly fluctuating‖fTR(t)‖∞ invites the following
approximation: to consider that the randomness ofηTR is only
due to‖x2

TR(t)‖∞. Under this assumption, the pdf ofηTR can
be expressed as a function of the pdf of the random variable
1/K2, as apparent from (16)

pK−2(x) =
(x/α)

−3/2

2α
pK

(

√

α/K
)

(22)
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Figure 2. Equivalent number of independent realizations required in a CW-
driven RC in order to ensure the same typical efficiency than aTR-driven
one, as given by (27).

wherepK(x) is the first derivative ofFK(x) (to be computed
numerically), andα = CrBT W̄κ2/CiBc. This pdf serves as
a reference in sec. IV.

The mode, and also the mean ofηTR are well approximated
as

Mo [ηTR] ≃ 〈ηTR〉 ≃ Cr

Ci

BT

Bc
〈W (fc)〉 (κ/Mo [K])2 , (23)

where
Mo [K] ≃ a lnb(4BT /Bc) (24)

was shown to be accurate to better than 1 % in [8], when
a = 0.749 andb = 0.678.

For a harmonic excitation, the mode is

Mo
[

ηN
CW

]

= 〈ηCW〉 ln N =
Cr

Ci
〈W (fc)〉 ln N. (25)

From (23) and (25), we can now express (20) as

GN
p =

BT

Bc

κ2

ln N

[

a lnb(4BT /Bc)
]−2

. (26)

It could seem surprising, at first sight, to see that forN = 1,
Gp is expected to be infinite. This is a direct consequence of
the high probability of observing a weak field intensity for a
single realization. In fact, the caseN = 1 is of no practical
use, as in any experimental setup typically involves at least a
few tens of independent stirrer states.

Eq. (26) provides a direct estimate of how many realizations
(e.g., stirrer steps) should be carried out in case of an harmonic
excitation, in order to obtain a performance similar to that
expected with TR excitations. EnforcingGN

p = 1, one would
need

N = exp

{

BT

Bc

[

a lnb(4BT /Bc)
]−2

}

(27)

independent realizations. A graphical representation of (27) in
Fig. 2 shows that keeping up can quickly become unaffordable.
Eq. (27) can also be interpreted as the ratio, between the
bandwidth that should be spanned for CW frequency stirring,
with respect to that needed by a TR signal in order to obtain
the same efficiency. The underlying reason for this potentially
huge difference in the performance is to be found in the
collaborative nature of TR, where theN degrees of freedom
are used coherently at the same time, as opposed to the CW
case, where they are used separately in a non-coherent manner.

Figure 3. The hemispherical positioner (a) and the electro-optical probe (b)
used during the experimental validation.
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Figure 4. Estimate of
〈

η
CW

〉

(grey dots) and its smoothed version (black
line) obtained with a moving average over a 20 MHz bandwidth.

IV. EXPERIMENTAL VALIDATION

One of Supelec’s RCs was used for the validation; its
dimensions are6.6 × 3.0 × 2.5 m3 with an expected lowest
usable frequency around 400 MHz. We did not studyηN

CW

experimentally, since two decades of research on RCs have
thoroughly validated the good accuracy of (19) when using
harmonic excitations [13], [14]. It is sufficient to estimate
〈W (ν)〉, as discussed in sec. II. The validation therefore
focused on the performance of TR excitation and the power
gain, so that we did not apply any stirring technique, as TR
is based on self-averaging. The presence of the stirrer was
still useful for breaking symmetries in the cavity, as well as
for reducing any direct illumination of the receiver from the
source antenna.

A monocone antenna, mounted between a corner of the RC
and the stirrer, was used for the excitation of the RC. Transfer
functions between this antenna and a phase-sensitive electro-
optical probe (Enprobe EFS-105) were measured by means of
a vector network analyzer, collecting data over 5000 frequency
samples in the bandwidth[1.8, 2.2] GHz. The probe was made
to scan a hemispherical surface with a radius of 1 m, thanks
to the low-perturbation robot depicted in Fig. 3, together with
the probe. The residual field coherence, or correlation, as the
robot moves was estimated to be about 80 %, thanks to its thin
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Figure 5. Empirical and theoretical pdfs of‖xTR(t)‖∞/Ao, for BT = 32
MHz (left) and256 MHz (right).
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Figure 6. Estimate of〈‖fTR(t)‖∞〉 as a function ofBT .

structure made out of glass fibers immersed in a plastic matrix.
3431 positions were thus considered, uniformly distributed
with an average distance of 3.75 cm, i.e.,λ/4 at 2 GHz.

From this set of data we first computedηCW, shown in
Fig. 4 to be indeed slowly varying. Field-related results were
not corrected for the antenna factor of the probe, since our
models refer to ratios of efficiencies affected by the same
constants. Therefore efficiencies are all reported in arbitrary
units (a.u.).

Time-domain responsesφ(t) of the RC were computed at
each position, for several bandwidthsBT , up to 256 MHz. It
was thus possible to estimate a time constantτ = 2.14 µs by
means of a least-square fitting of

〈

φ2(t)
〉

; τ is needed in order
to compute the coherence bandwidthBc = 467 kHz required
by our models.

Having direct access to the impulse responses, TR ex-
citations can be defined as in (4), and their actual peak
values recorded; all the results about TR excitations involve
G(ν) = 1 over BT , i.e., a sine cardinale (sinc) pulse in the
time domain. The histogram of the peak values, normalized
to Ao = W̄BcBT (see (15)), is shown in Fig. 5, together
with the theoretical pdf of the overshoot factorK, obtained
by numerically differentiation of (11). These results refer to
two bandwidths,BT = 32 and 256 MHz, corresponding to
fractional bandwidthsBT /fc equal to 1.6 % and 12.8 %,
respectively. Both distributions present a good agreement,
while their mode passes from 2.25 to 2.85, i.e., slightly more
than a 25 % change for an eightfold increase in the excitation
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Figure 7. Empirical and theoretical pdfs of(‖fTR(t)‖∞ − u)/
√

u, with
u = (BT /Bc)W̄ , for BT = 2 MHz (left) and 32 MHz (right).
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Figure 8. Estimate of
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as a function ofBT .

bandwidth.
Conversely, the output field generated by these excitations

is expected to be proportional to the bandwidth, as stated by
(9). Fig. 6 supports this prediction for the mean value of TR
output fields. In order to assess whether their mean value is
a good representative of TR-generated fields, Fig. 7 presents
the histograms obtained by computing(‖fTR(t)‖∞ − u)/

√
u,

with u = (BT /Bc)W̄ . If TR-generated fields were normally
distributed according to the central-limit theorem, the previous
operation should lead to a random variable well described bya
standard normal distribution. The results in Fig. 7 confirmsthat
this model is consistent forBT = 32 MHz, while for BT = 2
MHz the approximation, while not perfect, is still reasonable.
This last observation is surprising, since forBT = 2 MHz,
the input signal just covers slightly more than 4 coherence
bandwidths, i.e., a very low number of degrees of freedom.
These results have a strong effect on the confidence margin of
TR-generated fields, as discussed in the next section.

The TR efficiency was then assessed, first for its mean
value shown in Fig. 8. Its sub-linear dependence onBT is
a direct consequence of how the maxima of RC impulse
responses increase, although slowly, withBT [8]. The slight
discrepancy (about 6 %) between theory and experiments
could seem surprising, since previous results were in very good
agreement for both the numerator and the denominator ofηTR.
In fact, predicting the pdf of the ratio of random variables
is not a simple matter, in particular in the case of interest,
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Figure 10. Normalized gainGN
p ln N as a function ofBT .

since the numerator and denominator are not independent,
having a common origin in the impulse responses of the RC.
Having chosen to approximate the field generated by TR as
a deterministic quantity is the reason for this residual error,
which is confirmed in the comparison of the empirical and
theoretical probability distributions (22) in Fig. 9.

Finally, we present data confirming the validity of (26),
shown in Fig. 10. Attention should be paid to the meaning
of GN

p ln N : it does not represent the final power gain, but a
normalized version independent ofN . The slight disagreement
is a direct consequence of the one in the modeling ofηTR.

V. CONFIDENCE INTERVALS

The good agreement of experimentally estimated TR-
generated peak fields with a standard Gaussian distribution
implies that indeed output fields do converge as dictated by
the central-limit theorem, i.e., they span a confidence interval
CTR, e.g., with a 95 % probability, approximately equal to

CTR/ 〈ηTR〉 = 2
√

Bc/BT , (28)

to be compared with the one obtained forηN
CW

CN
CW/

〈

ηN
CW

〉

= ln

[

1 − N
√

0.025

1 − N
√

0.975

]

/ ln N. (29)

These confidence intervals, represented as functions of the
available number of degrees of freedom, are shown in Fig. 11.
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Figure 11. Relative confidence intervals of the conversion efficiencies for a
95 % probability, as a function of the number of degrees of freedom.

The self-averaging property of TR excitations is the inherent
cause for its faster convergence.

It could therefore be disappointing to haveηTR still featur-
ing a pdf that does not appear to converge to a deterministic
value. In fact, the reasons for the statistical dispersion of ηTR

are utterly different from those that are behindηCW. In the
case of TR, the output field does converge to a deterministic
value, as demonstrated in the previous section in Fig. 7; but
when normalized to the input peak power, it is the stronger
dispersion of this last quantity that increases the spread of
ηTR.

Conversely, in the case of CW excitations, the statistical
dispersion only depends on the output fields, meaning that its
actual value is hardly predictable. Therefore, in the case of TR
excitations, a non deterministicηTR has a simple meaning:
while the output field is predictable with a high degree of
accuracy, the actual amount of peak input power is not. As
such, it could require more, or less, peak power than expected
on average, but this uncertainty will hardly have any major
effect on the field intensity.

VI. CONCLUSIONS

The benefits of driving an RC with TR signals has been
confirmed on three levels: 1) a higher conversion efficiency,
2) a reduced uncertainty in the actual field level, and this
3) without the need for multiple realizations (stirring). The
increase in the efficiency may well be translated into a
lightening in the peak-instantaneous power specificationsfor
power amplifiers.

Our work has also proven that TR does not necessarily
rhyme with wide-band signals, as acoustical TR has got us
used to. Narrow bands can be envisaged as TR excitation
signals, since the only constraint isBT /Bc ≫ π/Q; with RCs
easily displayingQ & 1000, it should be possible to keep
using standard power amplifiers while reaping TR benefits.
Furthermore, a minimum frequency resolution can also be
preserved.

The price to pay is the need for an overhaul in the use of
RCs, as TR excitations require thinking in terms of spatially-
resolved stresses. A TR-driven RC works by focusing part
of the injected energy over a reduced region of space during
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a short time interval. As a result, tests would need to be
repeated when switching from one position to the next one,
not unlike an anechoic chamber, where directions are tested
one after the other. Depending on the size of the focal spot,
and ultimately, on the desired spatial resolution and the EUT
dimensions, the number of excitations required could vary
wildly. Predicting this number is tricky, as a large number of
potential implementations for TR-powered RC facilities can
be devised. A discussion about the benefits and shortcomings
of the various classes of TR implementations can be found
in [6], where a special attention was given to the use of TR-
excitations for test facilities.
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