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Introduction

In this paper, we prove and elaborate the results announced in Section 9 of [JPR]. We consider a dynamical system described by a real separable Hilbert space K and the equation of motion

d dt x t = Lx t , x 0 ∈ K, (1) 
where L is a bounded linear operator on K. Let D be a strictly positive bounded symmetric operator on K and (X, ω D ) the Gaussian random field over K with zero mean value and covariance D. Eq. ( 1) induces a flow φ L = {φ t L } on X, and our starting point is the dynamical system (X, φ L , ω D ) (its detailed construction is given in Section 2.1). We compute in closed form and under minimal regularity assumptions the nonequilibrium characteristics of this model by exploiting its Gaussian nature. In particular, we discuss the existence of a non-equilibrium steady state (NESS), compute the steady state entropy production, and study the large deviations of the entropy production observable w.r.t. both the reference state ω D and the NESS. To emphasize the minimal mathematical structure behind the results, in the main body of the paper we have adopted an abstract axiomatic presentation. In Section 3, the results are illustrated on the example of the one-dimensional harmonic crystal. For additional information and a pedagogical introduction to the theory of entropic fluctuations in classical non-equilibrium statistical mechanics, we refer the reader to the reviews [RM, JPR].

There are very few models for which the large deviation functionals of the entropy production observable can be computed in a closed form, and we hope that our results may serve as a guide for future studies. In addition, an important characteristic of a Gaussian dynamical system is that its entropy production observable is an unbounded function on the phase space. This unboundedness has dramatic effects on the form and regularity properties of the large deviation functionals that require modifications of the celebrated fluctuation relations [START_REF] Evans | Probability of second law violation in shearing steady flows[END_REF][START_REF] Evans | Equilibrium microstates which generate second law violating steady states[END_REF][START_REF] Gallavotti | Dynamical ensembles in nonequilibrium statistical mechanics[END_REF][START_REF] Gallavotti | Dynamical ensembles in stationary states[END_REF]. Although this topic has received a considerable attention in the physics literature [START_REF] Baule | Steady state work fluctuations of a dragged particle under external and thermal noise[END_REF][START_REF] Bonetto | Chaotic hypothesis, fluctuation theorem and singularities[END_REF][START_REF] Baiesi | Fluctuation symmetries for work and heat[END_REF][START_REF] Farago | Injected power fluctuations in Langevin equations[END_REF][START_REF] Harris | Breakdown of Gallavotti-Cohen symmetry for stochastic dynamics[END_REF][START_REF] Visco | Fluctuations of power injection in randomly driven granular gases[END_REF][START_REF] Visco | Work fluctuation for a Brownian particle between two thermostats[END_REF][START_REF] Van Zon | An extension of the fluctuation theorem[END_REF], to the best of our knowledge, it has not been studied in the mathematically rigorous literature on the subject. Thus, another goal of this paper is to initiate a research program dealing with mathematical theory of extended fluctuation relations in non-equilibrium statistical mechanics, which emerge when some of the usual regularity assumptions (such as compactness of the phase space, boundedness of the entropy production observable, smoothness of the time reversal map) are not satisfied.

The paper is organized as follows. In Section 2.1 we introduce Gaussian dynamical systems. In Section 2.2 we define the entropy production observable and describe its basic properties. In Section 2.3 we introduce the NESS. Our main results are stated in Sections 2.4 and 2.5. The entropy production observable is defined as the phase space contraction rate of the reference measure ω D under the flow φ L , and in Section 2.6 we examine the effects of a perturbation of the reference measure on the large deviation theory. In Section 3 we illustrate our results on two classes of examples, toy models and harmonic chains. The proofs are given in Section 4.

The focus of this paper is the mathematics of the large deviation theory of the entropy production observable. The physical implications of our results will be discussed in the continuation of this paper [JPS].
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2 The model and results

Gaussian dynamical systems

In order to setup our notation, we start with some basic facts about classical Gaussian dynamical systems. We refer the reader to [CFS] for a more detailed introduction to this subject.

Let Γ be a countably infinite set and

X = {x = (x n ) n∈Γ | x n ∈ R} = R Γ .
For x ∈ X and I ⊂ Γ, we denote x I = (x i ) i∈I ∈ R I . Let l = (l n ) n∈Γ be a given sequence of strictly positive numbers such that n∈Γ l n = 1 (we shall call such a sequence a weight). Then

d(x, y) = n∈Γ l n |x n -y n | 1 + |x n -y n |
is a metric on X and (X, d) is a complete separable metric space. Its Borel σ-algebra F is generated by the set of all cylinders

C I (B) = {x ∈ X | x I ∈ B},
where I ⊂ Γ is finite and B ⊂ R I is a Borel set.

Let ν and ω be two Borel probability measures on X. We shall write ν ω when ν is absolutely continuous w.r.t. ω. The corresponding Radon-Nikodym derivative is denoted by

∆ ν|ω = dν dω .
We will also use the notation1 ν|ω = log ∆ ν|ω .

The two measures ν and ω are called equivalent, denoted ν ω, if they are mutually absolutely continuous, i.e., ω ν and ν ω. We adopt the shorthand ν(f ) = X f dν. The relative entropy of ν w.r.t. ω is defined as

Ent(ν|ω) = -ν( ν|ω ) if ν ω, -∞ otherwise.
(2)

We recall that Ent(ν|ω) ≤ 0, with equality iff ν = ω. For α ∈ R, the relative Rényi α-entropy of ν w.r.t. ω is defined as

Ent α (ν|ω) =
log ω e α ν|ω if ν ω, -∞ otherwise.

We denote by K ⊂ X the real Hilbert space with inner product (x, y) = n∈Γ

x n y n (3)

(K = 2 R (Γ))
, and by {δ n } n∈Γ its standard basis. The matrix elements of a linear operator A on2 R (Γ) w.r.t. this basis are denoted by A nm = (δ n , Aδ m ).

Let X l , X * l ⊂ X be real Hilbert spaces with respective inner products

(x, y) l = n∈Γ l n x n y n , (x, y) l * = n∈Γ l -1 n x n y n ,
(X * l is the dual of X l w.r.t. the duality (3)). Clearly, X * l ⊂ K ⊂ X l ⊂ X, with continuous and dense inclusions. All the measures on (X, F) we will consider here will be concentrated on X l .

Let D be a bounded, strictly positive operator on K. The centered Gaussian measure of covariance D on (X, F) is the unique Borel probability measure ω D specified by its value on cylinders

ω D (C I (B)) = 1 det(2πD I ) B e -1
where

D I = [D ij ] i,j∈I .
The measure ω D is also uniquely specified by its characteristic function

X * l y → χ(y) = X e i(y,x) dω D (x) = e -(y,Dy)/2 .
The bound

X x 2 l dω D (x) = X n∈Γ l n x 2 n dω D (x) = n∈Γ l n D nn ≤ D , (4) 
implies that ω D (X \ X l ) = 0, i.e., that ω D is concentrated on X l .

Let T be the real vector space of all trace class operators on K and T 1 = tr((T * T ) 1/2 ) the trace norm on T . The pair (T , • 1 ) is a real Banach space. By the Feldman-Hajek-Shale theorem, two Gaussian measures ω D1 and ω D2 on (X, F) are equivalent iff T = D -1 2 -D -1 1 ∈ T . In this case, one has

∆ ω D 2 |ω D 1 (x) = det(I + D 1 T ) e -(x,T x)/2 , ( 5 
)
Ent(ω D2 |ω D1 ) = 1 2 tr D 1 T (I + D 1 T ) -1 - 1 2 log det (I + D 1 T ) . Note that det (I + D 1 T ) = det I + D 1/2 1 T D 1/2 1 = det(D 1/2 1 D -1 2 D 1/2 1 ) > 0. Let L be a bounded linear operator on K such that L * X * l ⊂ X * l .
It follows that L has a continuous extension to X l which we also denote by L. For x ∈ X and t ∈ R we set

φ t L (x) =    e tL x if x ∈ X l , x if x ∈ X l . (6) 
The map (t, x) → φ t L (x) is measurable and φ L = {φ t L } t∈R is a group of automorphisms of the measurable space (X, F) describing the time evolution. We shall call φ L the dynamics generated by L and (X, φ L , ω D ) a Gaussian dynamical system. Note that for ω D -almost all x ∈ X, φ t L (x) = e tL x for all t ∈ R.

Entropy production observable

Our starting point is the dynamical system (X, φ, ω), where φ is the dynamics on X generated by L and ω is the centered Gaussian measure with covariance D (from now on, L and D are fixed, and we shall omit explicit reference to them). The measure ω is sometimes called the initial or the reference state of the system. Observables are measurable functions f : X → C. They evolve according to

f t (x) = f • φ t (x).
The expectation of an observable f at time t ∈ R is given by

ω t (f ) = ω(f t ) = f t (x)dω(x),
where ω t = ω • φ -t is the centered Gaussian measure on (X, F) with covariance

D t = e tL De tL * .
D t is a bounded strictly positive operator on 2 R (Γ) and ω t (X l ) = 1 for all t. By the Feldman-Hajek-Shale theorem, the two measures ω t and ω are equivalent iff T t := D -1 t -D -1 ∈ T . We shall assume more:

(G1) The map R t → T t ∈ T is differentiable at t = 0.
As will be seen later, this condition implies that the function t → T t is differentiable for all t. The entropy production observable (or phase space contraction rate) for (X, φ, ω) is defined by

σ(x) = d dt ωt|ω (x) t=0 , x ∈ K.
A simple computation shows that (cf. (37))

σ(x) = (x, ςx) -tr(Dς), (7) 
where

ς = - 1 2 dT t dt t=0 , (8) 
and the derivative is understood in the sense of T (in particular, ς ∈ T ). Since T is continuously embedded in the Banach space of all bounded operators on K, we have

ς = 1 2 (L * D -1 + D -1 L).
Remark. If A is a self-adjoint element of T , then the quadratic form (x, Ax) has a unique extension from K to an element of L 1 (X, dω). With a slight abuse of notation, we shall also denote this extension by (x, Ax) (see Lemma 4.1 below for a more precise statement). Thus, the entropy production observable ( 7) is a continuous function on K and an integrable function on X w.r.t. the measure ω.

Proposition 2.1 Suppose that (G1) holds. Then:

(1) The function R t → σ t ∈ L 1 (X, dω) is continuous.

(2) ωt|ω = t 0 σ -s ds holds as the Riemann integral of a continuous L 1 (X, dω)-valued function. It also holds for ω-almost every x ∈ X as the Lebesgue integral of a real-valued function.

(

3) The function R t → e ω t |ω ∈ L 1 (X, dω) is C 1 and d dt e ω t |ω = e ω t |ω σ -t . (9) 
(4) ω t (σ) = tr(ς(D t -D)) and in particular ω(σ) = 0.

(5) Ent(ω t |ω) = -t 0 ω s (σ)ds.

In specific examples, it may happen that only finitely many matrix elements ς nm are non-zero, and in this case the map x → σ(x) is continuous on X. The function σ is bounded only in the trivial case σ = 0. Note that σ = 0 iff ω t = ω for all t; this follows, for instance, from the cocycle property (38).

Non-equilibrium steady state

Our next assumptions are:

(G2) There are some numbers

0 < m < M < ∞ such that m ≤ D t ≤ M for all t ∈ R. (G3)
The following strong limits exist:

s -lim t→±∞ D t = D ± .
It is clear that m ≤ D ± ≤ M , and

LD ± + D ± L * = 0.
In what follows, we set

δ = m M -m . ( 10 
)
Let ω ± be the centered Gaussian measure on (X, F) with covariance D ± .

Proposition 2.2 Suppose that (G1)-(G3) hold. Then:

(1) For any bounded continuous function f : X → R,

lim t→±∞ ω t (f ) = ω ± (f ).
(2) σ ∈ L 1 (X, dω ± ) and ω ± (σ) = lim t→±∞ ω t (σ) = tr(ς(D ± -D)).

Note that

ω + (σ) = lim t→∞ 1 t t 0 ω s (σ)ds = -lim t→∞ 1 t Ent(ω t |ω).
We shall call ω + the NESS and the non-negative number ω + (σ) the entropy production of (X, φ, ω).

Entropic fluctuations with respect to the reference state

Time reversal invariance plays an important role in non-equilibrium statistical mechanics, and in particular in formulation of the fluctuation relations. Hence, we shall also consider the following hypothesis:

(G4) There exists a unitary involution ϑ : K → K such that ϑ(X l ) ⊂ X l , ϑL = -Lϑ, and ϑD = Dϑ.

This assumption implies that D -t = ϑD t ϑ for all t ∈ R, and thus D -= ϑD + ϑ and ω + = ω -• ϑ. Moreover, it follows from Definition (8) that ϑς = -ςϑ. This in turn implies that tr(Dς) = 0 and

σ(x) = (x, ςx), ω + (σ) = -ω -(σ). (11) 
For simplicity of notation and exposition, we shall state and prove our main results under the time reversal invariance assumption, which covers the cases of physical interest. With a minor modifications of the statements and the proofs, most of our results hold without this assumption. We leave these generalizations to the interested reader.

The relative Rényi entropy functional, which is defined by

e t (α) = Ent α (ω t |ω) = log ω(e α ω t |ω ), (12) 
is a priori finite only for α ∈ [0, 1]. To describe its properties, we introduce the sets

J t = α ∈ R | D -1 + αT t > 0 , t ∈ R,
and denote by C ± the open upper/lower half-plane.

Proposition 2.3 Suppose that (G1)-(G4) hold. Then:

(1) J t = (-δ t , 1 + δ t ) for some δ t ≥ δ and J -t = J t .

(2) The function α → e t (α) is finite on the interval J t and is equal to +∞ for α ∈ J t . Moreover, this function is convex, extends to an analytic function on the cut plane C + ∪ C -∪ J t , and satisfies e t (0) = e t (1) = 0, e t (0) ≤ 0, e t (1) ≥ 0.

In particular, e t (α) ≤ 0 for α ∈ [0, 1] and e t (α) ≥ 0 otherwise.

(3) The finite time Evans-Searles symmetry e t (α) = e t (1 -α) holds for all t and α.

We now study the statistical properties of trajectories as t → +∞. The intervals J t do not necessarily form a monotone family, and we define the minimal interval

J = lim inf t→∞ J t = T >0 t>T J t .
Clearly, one has J = (-δ, 1 + δ), where δ = lim inf t→∞ δ t ≥ δ.

Theorem 2.4 Suppose that (G1)-(G4) hold.

(1) The limit e(α) := lim

t→+∞ 1 t e t (α) (14) 
exists for α ∈ J. Moreover, the function e(α) is convex on the interval J and satisfies the relations

e(0) = e(1) = 0, e (0) = -ω + (σ) ≤ 0, e (1) = ω + (σ) ≥ 0, e(1 -α) = e(α). (15) 
(2) The function e(α) extends to an analytic function on the cut plane C + ∪ C -∪ J, and there is a unique signed Borel measure ν with support contained in R \ J such that |r| -1 d|ν|(r) < ∞ and

e(α) = - R log 1 - α r dν(r). (16) 
(3) The Large Deviation Principle holds in the following form. The function 

I(s) = sup
Moreover, there is ε > 0 such that, for any open set J ⊂ (-ω + (σ) -ε, ω + (σ) + ε), we have

lim t→∞ 1 t log ω x ∈ X 1 t t 0 σ s (x) ds ∈ J = -inf s∈J I(s). (18) 
(4) The Central Limit Theorem holds. That is, for any Borel set B ⊂ R, we have

lim t→∞ ω x ∈ X 1 √ t t 0 (σ s (x) -ω + (σ)) ds ∈ B = B e -x 2 /2a dx √ 2πa ,
where a = e (1).

(5) The strong law of large numbers holds. That is, for ω-a.e. x ∈ X, we have

lim t→∞ 1 t t 0 σ s (x) ds = ω + (σ). ( 19 
)
Remark 1. In general, the two limiting measures ω -and ω + are distinct. This property is closely related to the strict positivity of entropy production. In fact, it follows from the second relation in ( 11) that if ω -= ω + , then ω + (σ) = 0 as well as ω -(σ) = 0, while any of these two conditions imply that the function e(α) vanishes on [0, 1] and, hence, identically in view of analyticity.

Remark 2. The representation of e(α) as a logarithmic potential of a signed measure is somewhat surprising, and its mathematical and physical significance remains to be studied in the future. The measure ν is related to the spectral measure of the operator Q (see the proof of Theorem 2.4 for more details).

Now let {t n } ⊂ R + be a sequence such that δ tn → δ. We define Ĵ = (-δ, 1 + δ). Note that, by Proposition 2.3 (1), we have δ ≥ δ. In the case when δ coincides with δ = lim sup t→∞ δ t , we write J instead of Ĵ.

Theorem 2.5 Suppose that (G1)-(G4) hold and {t n } ⊂ R + is a sequence satisfying the above hypothesis.

(1)

Let Q = D 1/2 -(D -1 --D -1 + )D 1/2 -. Then - 1 δ ≤ Q ≤ 1 1 + δ . ( 20 
)
Furthermore, since the function

g(z) = z -1 log(1 -z) is analytic in the cut plane C \ [1, ∞), the operator-valued function E(α) = -αD 1/2 -g(αQ)D 1/2 -, (21) 
is analytic in the cut plane C + ∪ C -∪ J.

(2) For α ∈ Ĵ, the following relation holds:

ê(α) := lim n→∞ 1 t n e tn (α) = tr(E(α)ς), (22) 
and if α ∈ R is not in the closure of Ĵ, then lim sup

n→∞ 1 t n e tn (α) = ∞. ( 23 
)
Moreover, the function ê(α) is convex on the interval Ĵ and satisfies relations (15).

(3) The Large Deviation Principle holds in the following form. The function

Î(s) = sup -α∈ Ĵ(αs -ê(-α)) (24) 
is convex, takes values in [0, ∞], vanishes only at s = ω + (σ), and satisfies the Evans-Searles symmetry relation (17). Moreover, for any open interval J ⊂ R, we have

lim n→∞ 1 t n log ω x ∈ X 1 t n tn 0 σ s (x) ds ∈ J = -inf s∈J Î(s). ( 25 
)
Remark 1. The functions ê(α) constructed in Theorem 2.5 coincide with e(α) on the minimal interval J. Moreover, by Part (2) of Theorem 2.5, the functions ê constructed for different sequences {t n } must coincide on the common domain of definition.

Remark 2. If δ = ∞, then ê(α) = e(α) = 0 for α ∈ R.

Remark 3. The local Large Deviation Principle described in Part (3) of Theorem 2.4 is an immediate consequence of the local Gärtner-Ellis theorem (see Appendix A.2 in [JOPP]). The global Large Deviation Principle described in Part (3) of Theorem 2.5 cannot be deduced from the Gärtner-Ellis theorem. Our proof of the LDP exploits heavily the Gaussian structure of the model and is motivated by Exercise 2.3.24 in [DZ], see also [BFL, BFR, BD] for related results.

Entropic fluctuations with respect to the NESS

We now turn to the statistical properties of the dynamics under the limiting measures ω ± . In view of the time-reversal invariance (G4), it suffices to study the case of one of these measures, and we shall restrict ourselves to ω + . Let us set (cf. Part (2) of Proposition 2.1)

e t+ (α) = log ω + (e -α ω t |ω ) = log ω + e -α t 0 σ-s ds = log ω + e -α t 0 σs ds ,
where the last relation follows from the invariance of ω + under the flow φ t . Note that, a priori, e t+ (α) might not be finite for any α = 0.

Theorem 2.6 Suppose that (G1)-(G4) hold. Then:

(1)

For any t ∈ R, the function R α → e t+ (α) ∈ (-∞, +∞] is convex.
(2) The set

J + t = α ∈ R | D -1 + -αT t > 0 (26)
is an open interval containing (-δ, δ), and the function e t+ (α) is real analytic on J + t and takes value +∞ on its complement.

(3) Let J + be the interior of the set lim inf t→∞

J + t = T >0 t>T J + t .
Then J + is an open interval containing (-δ, δ). Moreover, for α ∈ J + , the limit

e + (α) = lim t→∞ 1 t e t+ (α) (27) 
exists and defines a real-analytic function on J + . Finally, if α is not in the closure of J + , then

lim sup t→∞ 1 t e t+ (α) = +∞. (28) 
(4) The Large Deviation Principle holds in the following form. The function

I + (s) = sup -α∈J + (αs -e + (-α)) is convex, takes values in [0, ∞],
and vanishes only at s = ω + (σ). Moreover, there is an open interval

I + containing ω + (σ) such that, for any open set J ⊂ I + , lim t→∞ 1 t log ω + x ∈ X 1 t t 0 σ s (x) ds ∈ J = -inf s∈J I + (s).
(5) The Central Limit Theorem holds. That is, for any Borel set B ⊂ R,

lim t→∞ ω + x ∈ X 1 √ t t 0 (σ s (x) -ω + (σ)) ds ∈ B = B e -x 2 /2a+ dx √ 2πa + ,
where a + = e + (0).

(6) The strong law of large numbers holds. That is, for ω + -a.e. x ∈ X, we have

lim n→∞ 1 t t 0 σ s (x) ds = ω + (σ).
(7) Let J be as in Theorem 2.4. Then e + (α) = e(α) for α ∈ J + ∩ J. Moreover, there is an open interval

J + ⊂ I + such that I + (s) = I(s) for s ∈ J + .
Remark. This theorem is a refinement of Proposition 9.5 in [JPR]. We point out that parts (1) and ( 3) of that proposition are inaccurately formulated: in part (1), the interval (-δ, 1 + δ) has to be replaced with (-δ, δ), while in part (3) the interval (-σ + -ε, σ + + ε) has to be replaced with ( σ + -ε, σ + + ε).

Finally, we have the following analogue of Theorem 2.5 on statistical properties of the dynamics under the limiting measure ω + . Let {t n } ⊂ R + be an arbitrary increasing sequence going to +∞ such that the intervals J + tn defined by ( 26) converge to a limiting interval Ĵ+ .

Theorem 2.7 Under the hypotheses of Theorem 2.6 the following assertions hold.

(1) For α ∈ Ĵ+ , the limit

ê+ (α) := lim n→∞ 1 t n e tn+ (α) (29) 
exists and defines a real-analytic function on Ĵ+ . If α does not belong to the closure of Ĵ+ , then

lim sup n→∞ 1 t n e tn+ (α) = ∞.
Moreover, ê+ (α) and tr(E(α)ς) coincide on their common domain of definition.

(2) The Large Deviation Principle holds in the following form. The function

Î+ (s) = sup -α∈ Ĵ+ (αs -ê+ (-α))
is convex, takes values in [0, ∞] and vanishes only at s = ω + (σ). Moreover, for any open interval J ⊂ R, we have

lim n→∞ 1 t n log ω + x ∈ X 1 t n tn 0 σ s (x) ds ∈ J = -inf s∈J Î+ (s).
The proof of this result is completely similar to that of Theorem 2.5, and therefore we omit it.

Remark. Unlike in the case of the Evans-Searles symmetry, there is no a priori reason why the limiting intervals Ĵ+ should be symmetric around α = 1 2 , and indeed in all cases we know where Ĵ+ can be computed, this property does not hold. Hence, the relation ê+ (α) = ê+ (1 -α) may fail since one side may be finite and the other infinite, leading to the failure of the Gallavotti-Cohen symmetry Î+ (-s) = Î+ (s)+s. The fact that for unbounded entropy production observables the Gallavotti-Cohen symmetry may fail is known in the physics literature [START_REF] Baule | Steady state work fluctuations of a dragged particle under external and thermal noise[END_REF][START_REF] Bonetto | Chaotic hypothesis, fluctuation theorem and singularities[END_REF][START_REF] Baiesi | Fluctuation symmetries for work and heat[END_REF][START_REF] Farago | Injected power fluctuations in Langevin equations[END_REF][START_REF] Harris | Breakdown of Gallavotti-Cohen symmetry for stochastic dynamics[END_REF][START_REF] Visco | Fluctuations of power injection in randomly driven granular gases[END_REF][START_REF] Visco | Work fluctuation for a Brownian particle between two thermostats[END_REF][START_REF] Van Zon | An extension of the fluctuation theorem[END_REF]. In these works one can also find various prescriptions how the entropy production observable can be modified so that the Gallavotti-Cohen symmetry is restored. We shall discuss this topic in the continuation of this paper [JPS].

Perturbations

We shall consider the following type of perturbation of the reference state ω. Let P be a bounded selfadjoint operator on K such that D -1 + P > 0. To avoid trivialities, we assume that P is not the zero operator. Let

D P = (D -1 + P ) -1
and let ω P be the centered Gaussian measure with covariance D P . Obviously,

D P t = (D -1 t + P t ) -1 ,
where P t = e -tL * P e -tL . We consider the following two cases, assuming that (G1)-(G4) hold for D.

Case 1. P is a non-negative trace class operator such that ϑP = P ϑ, and slim

t→±∞ P t = 0.
In this case, ω P and ω are equivalent and (G1)-(G4) also hold for D P . Moreover, using the superscript P to denote the objects associated with the initial measure ω P , we easily check that

D P ± = D ± , E P (α) = E(α), ς P = ς + 1 2 (L * P + P L), ω P + (σ P ) = ω + (σ),
where we used ( 21) to derive the second relation. We also see that the functions e P (α) and e(α) coincide on J ∩ J P . It is possible, however, that J P = J and J +P = J + , and in fact the difference could be quite dramatic. Indeed, let us fix P and consider the perturbation λP for λ > 0. Pick a unit vector ϕ such that P ϕ = eϕ with e > 0.

We consider first the case of J λP . One easily sees that for any α > 1,

(ϕ, ((D λP ) -1 + αT λP t )ϕ) ≤ α m -λ ((α -1)e -α(ϕ, P t ϕ)) . (30) 
There exists t 0 such that for t > t 0 , (α -1)e -α(ϕ, P t ϕ) > (α -1)e/2. Hence, for t > t 0 and λ > 2α/em(α -1) the right hand side of ( 30) is negative which implies that α > 1 + δ λP t . Thus

δ λP = lim inf t→∞ δ λP t ≤ α -1 provided λ > 2α/em(α -1). Letting now α ↓ 1 we conclude that lim λ→∞ δ λP = 0,
and the intervals J λP collapse to [0, 1] in the limit λ → ∞.

To deal with the case of J +λP , we set ψ α,t = e tL ϕ for α > 0 and ψ α,t = ϕ for α < 0. A simple analysis yields

(ψ α,t , ((D λP + ) -1 -αT λP t )ψ α,t ) ≤ 1 + |α| m ψ α,t 2 -λ|α|(e -(ϕ, P t ϕ)).
Repeating the previous argument, one shows that the length of the interval J +λP goes to zero as λ → ∞, so that the intervals J +λP collapse to {0}.

Case 2. P > 0, ϑP = P ϑ, and P t = P for all t ∈ R.

Hypotheses (G1)-(G4) again hold for D P , and we have

D P + = (D -1 + + P ) -1 , ς P = ς, σ P = σ.
Replacing P with λP , it is easy to see that δ λP , defined by (10), satisfies lim λ→∞ δ λP = ∞. Since (-δ λP , 1 + δ λP ) ⊂ J λP and (-δ λP , δ λP ) ⊂ J +λP , we see that the intervals J λP and J +λP extend to the whole real line in the limit λ → ∞.

Examples

Toy model

Suppose that the generator L satisfies L * = -L, and let ϕ ∈ K be a unit vector such that the spectral measure for L and ϕ is purely absolutely continuous. Let

D = I + λP ϕ ,
where P ϕ = (ϕ, • )ϕ and λ > -1. Then D t = I + λP ϕt , where ϕ t = e tL ϕ is a continuous curve of unit vectors converging weakly to zero as t → +∞. Let λ ± = 1 2 (|λ| ± λ) denote the positive/negative part of λ. One easily verifies that (G1)-(G3) hold with m = 1 -λ -, M = 1 + λ + and D ± = I, so that

δ = 1 2 + 1 λ - 1 2 .
Without loss of generality we may assume that (G4) holds.2 Since (I + λP ψ ) -1 = I -λ 1+λ P ψ for any unit vector ψ and any λ = -1, we have

D -1 + αT t = I - λ 1 + λ ((1 -α)P ϕ + αP ϕt ) , D -1 + -αT t = I - λ 1 + λ α (P ϕ -P ϕt ) .
Using the simple fact that for any two linearly independent unit vectors ϕ, ψ and all a, b ∈ R,

sp(aP ϕ + bP ψ ) = {0} ∪    a + b 2 ± a -b 2 2 + ab(ψ, ϕ) 2    ,
one easily shows that

δ t = 1 4 + 1 + λ λ 2 (1 -(ϕ, ϕ t ) 2 ) - 1 2 , J + t = α ∈ R |α| < 1 + λ |λ| 1 -(ϕ, ϕ t ) 2 .
Recalling that (ϕ, ϕ t ) → 0 as t → +∞ we see that for all λ > -1, δ = δ = δ and J + = (-δ + , δ + ) where

δ + = 1 + λ |λ| = δ for λ ∈ (-1, 0], 1 + δ for λ ∈ [0, ∞).
Furthermore, evaluating Relations ( 46) and ( 86) established below, we obtain

e t (α) = -1 2 log 1 + λ 2 1 + λ α(1 -α) 1 -(ϕ, ϕ t ) 2 , e t+ (α) = -1 2 log 1 - λ 2 (1 + λ) 2 α 2 1 -(ϕ, ϕ t ) 2 . It follows that lim t→∞ 1 t e t (α) = 0 for |α -1 2 | < 1 2 + δ, +∞ for |α -1 2 | > 1 2 + δ, lim t→∞ 1 t e t+ (α) = 0 for |α| < δ + , +∞ for |α| > δ + .
Finally, one easily compute the Legendre transforms of these limiting functions,

I(s) = ( 1 2 + δ)|s| -1 2 s, I + (s) = δ + |s|.
While the first one satisfies the fluctuation relation, i.e., I(s) + 1 2 s is an even function, the second one does not.

One-dimensional crystal

We follow [JOPP] and consider the simplest example of the one-dimensional harmonic crystal. If Λ ⊂ Z is the crystal lattice, then the phase space and Hamiltonian of the harmonic crystal are

R Λ ⊕ R Λ = {(p, q) = ({p n } n∈Λ , {q n } n∈Λ ) | p n , q n ∈ R}, H Λ (p, q) = n∈Λ p 2 n 2 + q 2 n 2 + (q n -q n-1 ) 2 2 ,
where we set q k = 0 for k ∈ Λ (Dirichlet boundary conditions). The Hamilton equation of motions are

ṗ q = L Λ p q ,
where

L Λ = 0 -j Λ 1 Λ 0 , j Λ is the restriction of the finite difference operator (jq) n = 3q n -q n+1 -q n-1 (31) 
to R Λ with Dirichlet boundary condition and 1 Λ the identity on R Λ (which we shall later identify with the projection

R Z → R Λ ). Clearly, for all Λ, j Λ is a bounded selfadjoint operator on 2 R (Λ) satisfying 1 ≤ j Λ ≤ 5.
To fit this model into our abstract framework, we set

Γ Λ = Λ × Z 2 , X Λ = R ΓΛ = R Λ ⊕ R Λ with the weight sequence l = (l n,i ) (n,i)∈ΓΛ , where l n,i = c Λ (1 + n 2 ) -1 and c Λ is a normalization constant. One easily verifies that L * Λ X * Λl ⊂ X *
Λl and the dynamics of the harmonic crystal is described by the group e tLΛ . Let h Λ be the self-adjoint operator on

K Λ = 2 R (Λ) ⊕ 2 R (Λ) associated to the quadratic form 2H Λ . Energy conservation implies L * Λ h Λ + h Λ L Λ = 0.
Equivalently, the operator L Λ defined by

L Λ = h 1/2 Λ L Λ h -1/2 Λ = 0 -j 1/2 Λ j 1/2 Λ 0 ,
is skew-adjoint. Since 1 ≤ h Λ ≤ 5, this implies in particular that the group e tLΛ is uniformly bounded on K Λ .

Our starting point is harmonic crystal on Λ = Z and in this case we drop the subscript Λ. For our purposes we will view this crystal as consisting of three parts, the left, central, and right, specified by

Λ = (-∞, -1], Λ c = {0}, Λ r = [1, ∞).
In what follows we, adopt the shorthands

H Λ = H , h Λ = h , j Λ = j , etc. Clearly X = X ⊕ X c ⊕ X r , K = K ⊕ K c ⊕ K r ,
where

K s = 2 R (Λ s ) ⊕ 2 R (Λ s ) for s = , c, r, and 
H = H 0 + V + V r ,
where

H 0 = H + H c + H r and V (p, q) = -q 0 q -1 , V r (p, q) = -q 0 q 1 .
The reference state ω is the centered Gaussian measure with covariance

D = D ⊕ D c ⊕ D r ,
where

D s = T s I s 0 0 j -1 s , s = , c, r,
I s is the identity on 2 R (Λ s ), and T s > 0. Thus, initially the left/right part of the crystal are in thermal equilibrium at temperature T /r . The Hamiltonian V /r couples the left/right part of the crystal to the oscillator located at the site n = 0 and this allows for the transfer of the energy/entropy between these two parts. The entropic fluctuation theorems for this particular Gaussian dynamical system concern statistics of the energy/entropy flow between the left and right parts of the crystal.

Hypothesis (G1)-(G4) are easily verified following the arguments of Chapter 1 in the lecture notes [JOPP] and one finds that

ω + (σ) = κ (T -T r ) 2 T T r ,
where κ = ( √ 5 -1)/2π, and

e(α) = -κ log 1 + (T -T r ) 2 T T r α(1 -α) . ( 32 
)
Note that e(α) is finite on the interval

J o = (-δ o , 1 + δ o ),
where

δ o = min(T , T r ) |T -T r | , (33) 
and takes the value +∞ outside the interval J o . Note also that δ o can take any value in (0, ∞) for appropriate choices of T , T r ∈ (0, ∞). The measure ν in Part (2) of Theorem 2.4 is

ν = κD -δo + κD 1+δo ,
where D a is the Dirac measure centered at a.

We finish this section with several remarks.

Remark 1. The intervals J, J + can be strictly smaller then J o . To see this, fix T c , δ o , α > 1, and set T r = (1 + δ -1 o )T to ensure Relation (33). Let ϕ ∈ K be such that (ϕ, h c ϕ) = 1. One has

(ϕ, (D -1 + αT t )ϕ) = s 1 T s ((1 -α)(ϕ, h s ϕ) + α(ϕ t , h s ϕ t )) ,
where ϕ t = e -tL ϕ. Since the skew-adjoint operator L has purely absolutely continuous spectrum and h c is compact, there exists t 0 > 0 such that

(ϕ t , h c ϕ t ) = (e -tL h 1/2 ϕ, h -1/2 h c h -1/2 e -tL h 1/2 ϕ) < α -1 2α
for all t > t 0 . Moreover, since the Hamiltonian flow is uniformly bounded there exists a constant C such that 1

T /r (1 -α)(ϕ, h /r ϕ) + α(ϕ t , h /r ϕ t ) ≤ C α T . Summing up, if T > 4CT c α/(α -1), then (ϕ, (D -1 + αT t )ϕ) ≤ 1 -α 2T c + 2C α T < 0,
for all t > t 0 and hence δ < α. Thus, in the limit T → ∞ the interval J collapses to [0, 1]. In a similar way one can show that in the same limit the interval J + collapses to {0}. On the other hand, arguing as in the Case 2 of Section 2.6, one can always take T /r , T c → 0 in such a way that in this limit the intervals J, J + extend to the whole real line.

Remark 2. Somewhat surprisingly, even in the simplest example of the harmonic crystal discussed in this section, it appears difficult to effectively estimate the location of the intervals J, J + outside of the perturbative regimes. In particular, the subtleties regarding the location of these sets were overlooked in Sections 1.11, 1.14 and 1.15 of the lecture notes [JOPP]. These difficulties raise many interesting questions and we leave the complete analysis of these aspects as an open problem.

Remark 3. An interesting question is whether one can find P such that for the perturbed reference state ω P as defined in Section 2.6 one has J = J o . That can be done as follows. Set β s = 1/T s , suppose that β r > β and let

P = (β r -β c )1 c 0 0 (β r + 2β -3β c )j c + β v + β r v r ,
where v /r denotes the selfadjoint operator associated with the quadratic form 2V /r . One easily checks that

D P = (β r h -Xh (N ) ) -1 ,
where X = β r -β > 0,

h (N ) = 1 Λ ∪Λc 0 0 j (N ) ,
and j (N ) denotes the restriction of the operator (31) to R Λ ∪Λc with Neumann boundary condition. We are concerned with the interval

J P t = {α ∈ R | (D P ) -1 + αT P t > 0}. Since (D P t ) -1 = β r h -Xe -tL * h (N ) e -tL = h 1/2 β r -Xe tL h -1/2 h (N ) h -1/2 e -tL h 1/2 ,
a simple computation gives

(D P ) -1 + αT P t = h 1/2 β r -(1 -α)Xh -1/2 h (N ) h -1/2 -αXe tL h -1/2 h (N ) h -1/2 e -tL h 1/2 ,
and hence

J P t = {α ∈ R | β r /X > (1 -α)h -1/2 h (N ) h -1/2 + αe tL h -1/2 h (N ) h -1/2 e -tL }. Since β r /X = 1 + δ o and 0 ≤ h (N ) ≤ h,
we have that for all t, (-δ o , 1 + δ o ) ⊂ J P t . Thus, lim t→∞ δ P t = δ o and J P = J o . Remark 4. In contrast to Remark 3, we do not know whether there exists P such that for the perturbed reference state ω P one has J +P = J o .

Remark 5. In the equilibrium case T = T r = T we have ω + (σ) = 0, and one may naively expect that σ does not fluctuate with respect to ω and ω + , i.e., that e(α) = e + (α) = 0 for all α, and that

I(s) = I + (s) = ∞ if s = 0.
If one also takes T c = T and the perturbed reference state described in Remark 3, then σ = 0, and the above expectation is obviously correct. On the other hand, for the reference state determined by D, in the high-temperature regime T → ∞, T c fixed, the interval J collapses to [0, 1] while the interval J + collapses to {0}. Hence, in this regime, the rate functions Î(s) and Î+ (s) are linear for s ≤ 0 and s ≥ 0, with the slopes of the linear parts determined by the end points of the finite intervals Ĵ and Ĵ+ , and the entropy production observable has non-trivial fluctuations.

Remark 6. The scattering theory arguments of [JOPP] that lead to the derivation of the formula (32) extend to the case of inhomogeneous one-dimensional harmonic crystal with Hamiltonian

H Λ (p, q) = n∈Λ p 2 n 2 + ω n q 2 n 2 + κ n (q n -q n-1 ) 2 2 ,
where ω n and κ n are positive numbers satisfying

C -1 ≤ ω n , κ n ≤ C for all n ∈ Z,
and C ≥ 1 is a constant. In this case the operator j is the Jacobi matrix

(jq) n = (ω n + κ n + κ n+1 )q n -κ n q n-1 -κ n+1 q n+1 , n ∈ Z.
One easily verifies that Hypotheses (G1), (G2), and (G4) hold. If j has absolutely continuous spectrum (considered as a self-adjoint operator on 2 C (Z)), then (G3) also holds. Moreover, ω + (σ) and e(α) can be computed in closed form in terms of the scattering data of the pair (j, j 0 ), where j 0 = j ⊕j c ⊕j r (for related computations in the context of open quasi-free quantum systems we refer the reader to [JLP, JOPP, Lan]). The formulas for ω + (σ) and e(α) involve the scattering matrix of the pair (j, j 0 )3 and estimating the location of the intervals J, J + is difficult. However, the interesting aspect of the formula for e(α) is that it allows to express the measure ν in Part (2) of Theorem 2.4 in terms of the scattering data. The mathematical and physical significance of this representation remain to be studied in the future. Finally, the scattering methods can be extended to treat an arbitrary number of infinite harmonic reservoirs coupled to a finite harmonic system. The discussion of such extensions is beyond the scope of this paper.

Proofs

An auxiliary lemma

Using the notation and conventions of Section 2.1, we have the following simple result.

Lemma 4.1 (1) If A = A * ∈ T , then the quadratic form 2 R (Γ) x → q A (x) = (x, Ax
) has a unique extension to an element of L 1 (X, dω D ) with a norm satisfying q A 1 ≤ D A 1 . Moreover, q A (x) dω D (x) = tr(DA).

(34)

(2) Let R t → A t = A * t ∈ T be differentiable at t = t 0 and let Ȧt0 be its derivative. Then the map R t → q At ∈ L 1 (X, dω D ) is differentiable at t = t 0 and d dt q At t=t0 = q Ȧt 0 .

(3) If 1 does not belong to the spectrum of A, then the function T X → F (X) = det(I -X) is differentiable at X = A and its derivative is given by

(D A F )(X) = -F (A) tr((I -A) -1 X). ( 35 
)
Proof.

Part (1) By Eq. ( 4), the function x → Φ y (x) = (y, x) belongs to L 2 (X, dω D ) for y ∈ X * l . Moreover, Fubini's theorem yields the estimate

Φ y 2 2 = i,j∈Γ y i y j x i x j dω D (x) = i,j∈Γ D ij y i y j = (y, Dy) ≤ D y 2 , ( 36 
)
which implies that the linear map y → Φ y has a unique extension Φ :

2 R (Γ) → L 2 (X, dω D ), such that Φ ≤ D 1/2 . A self-adjoint A ∈ T has a spectral representation A = k a k ϕ k (ϕ k , • )
, where the a k are the eigenvalues of A and the corresponding eigenvectors ϕ k form an orthonormal basis of 2 R (Γ). It follows that q A (x) = k a k Φ ϕ k (x) 2 from which we conclude that q A extends to an element of L 1 (X, dω D ) with

q A 1 ≤ k |a k | Φ ϕ k 2 2 ≤ k |a k | D = D A 1 .
The last equality in Eq. ( 36) yields

q A (x) dω D (x) = k a k Φ ϕ k 2 2 = k a k (ϕ k , Dϕ k ) = tr(AD),
which proves Identity (34).

Part (2) It follows from Part (1) that the linear map T A → q A ∈ L 1 (X, dω D ) is bounded and hence C 1 .

Part (3) Using a well known property of the determinant (see Theorem 3.5 in [Si]), we can write

F (A + X) = det(I -(A + X)) = det((I -A)(I -(I -A) -1 X) = det(I -A) det(I -(I -A) -1 X) = F (A) det(I -(I -A) -1 X).
To evaluate the second factor on the right-hand side of this identity, we apply the formula

det(I + Q) = 1 + ∞ k=1 tr(Q ∧k ),
where Q ∧k denotes the k-th antisymmetric tensor power of Q (see [Si]). Since

Q ∧k 1 ≤ (k!) -1 Q k 1 , one has the estimate | det(I + Q) -1 -tr(Q)| ≤ e Q 1 -1 -Q 1 ≤ e Q 1 2 Q 2 1 .

It follows that det(I -(I

-A) -1 X) = 1 -tr((I -A) -1 X) + O( X 2 1
), as X → 0 in T . Thus, we can conclude that

F (A + X) -F (A) = -F (A) tr((I -A) -1 X) + O( X 2 1 ),
and the result follows.

Proof of Proposition 2.1

Part (1) Up to the constant tr(Dς) (which is well defined since ς ∈ T ), σ is given by the quadratic form q ς which is in L 1 (X, dω) by Lemma 4.1 (1). For x ∈ X l , i.e., ω-a.e. x ∈ X, one has

σ t (x) -σ s (x) = 1 2
x, (e tL * ςe tL -e sL * ςe sL )x , whence, setting ς t = e tL * ςe tL and applying again Lemma 4.1 (1), it follows that

σ t -σ s L 1 (X,dω) ≤ 1 2 D ς t -ς s 1 .
Thus, it suffices to show that the function t → ς t ∈ T is continuous. This immediately follows from the norm continuity of the group e tL , the fact that ς ∈ T , and the well-known trace inequality AB 1 ≤ A B 1 . We note, in particular, that

σ t L 1 (X,dω) ≤ D (1 + e tL 2 ) ς 1 for t ∈ R.
Part (2) From Eq. ( 5), we deduce that

ωt|ω = 1 2 log det(I + DT t ) - 1 2 q Tt . (37) 
Now note that T t = D -1 t -D -1 satisfies the cocycle relation

T t+s = T t + e -tL * T s e -tL . (38) 
It thus follows from Assumption (G1) that the function t → T t ∈ T is everywhere differentiable and that its derivative is given by Ṫt = -2ς -t .

Lemma 4.1 (3) and the chain rule imply that the first term on the right-hand side of ( 37) is a differentiable function of t. Using Eq. ( 35), an elementary calculation shows that

1 2 d dt log det(I + DT t ) t=0 = -tr(Dς).
Applying Lemma 4.1 (2) to the second term on the right-hand side of Eq. ( 37), one further gets

- 1 2 d dt q Tt = q ς-t = q ς • φ -t .
Summing up, we have shown that

d dt ωt|ω = σ -t , t ∈ R.
Since the function t → σ -t ∈ L 1 (X, dω) is continuous by Lemma 4.1 (1), and ω|ω = 0, we can use Riemann's integral to write

ωt|ω = t 0 σ -s ds. ( 40 
)
The fact that, for ω-almost every x ∈ X, one has

ωt|ω (x) = t 0 σ -s (x) ds, (41) 
follows from Theorem 3.4.2 in [HP].

Part (3) From the cocycle relation

ωt+s|ω = ωt|ω + ωs|ω • φ -t , (42) 
we infer

ξ s = 1 s e ω t+s |ω -e ω t |ω -σ -t e ω t |ω = 1 s e ωs|ω -1 -sσ • φ -t dω t dω ,
and hence

X |ξ s | dω = 1 |s| X e ωs |ω -1 -sσ dω ≤ 1 |s| X e ωs |ω -1 -ωs|ω dω + 1 |s| X ωs|ω -sσ dω.
To prove that Relation (9) holds in L 1 (X, dω), it suffices to show that both terms on the right-hand side of this inequality vanish in the limit s → 0.

To estimate the first term we note that the inequality e -1 -≥ 0 (which holds for ∈ R) combined with Eq. ( 34) and (37) implies

1 |s| X e ωs|ω -1 -ωs|ω dω = 1 |s| ω(e ωs|ω ) -1 - X ωs|ω dω = 1 2 1 s (tr(DT s ) -log det(I + DT s )) .
By Assumption (G1), the map s → T s is differentiable in T at s = 0. Since T 0 = 0, we can write To deal with the second term, we use Eq. ( 40), Fubini's theorem and Lemma 4.1 (1) to write

1 |s| X ωs|ω -sσ dω = X 1 0 (σ -su -σ) du ≤ 1 0 X q ς-su-ς dω du ≤ D 1 0 ς -su -ς 1 du,
and since the map s → ς s is continuous in T , the dominated convergence theorem yields

lim s→0 1 0 ς -su -ς 1 du = 0.
Part (4) Relation ( 7) implies that

ω t (σ) = ω(σ t ) = X q ςt dω -tr(Dς),
and formula (34) yields ω t (σ) = tr(D(ς t -ς)) = tr(ς(D t -D)).

Part (5) Starting from Definition (2) and using the cocycle relation (42), we obtain

Ent(ω t |ω) = - X ωt|ω dω t = X ω-t|ω dω.
Eq. ( 41) and Fubini's theorem further yield

Ent(ω t |ω) = X -t 0 σ -s dsdω = - X t 0 σ s dsdω = - t 0 ω s (σ) ds.

Proof of Proposition 2.2

Part (1) We have to show that ω + , the Gaussian measure of covariance D + , is the weak limit of the net {ω t } t>0 . Since the cylinders form a convergence determining class for Borel measures on X (see Example 2.4 in [Bill]), it suffices to show that lim t→∞ ω t (C I (B)) = ω + (C I (B)) holds for any finite subset I ⊂ Γ and any Borel set B ⊂ R I . By Hypotheses (G2)-( G3), one has lim t→∞ D t,I = D +,I and

e -1 2 (x,D -1 t,I x) ≤ e -x 2 2M ,
for all x ∈ R I . It follows that lim t→∞ D -1 t,I = D -1 +,I as well as lim t→∞ det(2πD t,I ) = det(2πD +,I ) so that lim

t→∞ 1 det(2πD t,I ) B e -1 2 (x,D -1 t,I x) dx = 1 det(2πD +,I ) B e -1 2 (x,D -1 +,I x) dx,
holds by the dominated convergence theorem. The same argument applies to ω -.

Part (2) Follows directly from Lemma 4.1 (1) and Proposition 2.1 (4).

Proof of Proposition 2.3

Part (1) Let us note that α ∈ J t if and only if

D -1 + α(e -tL * D -1 e -tL -D -1 ) > 0. ( 43 
)
It follows that J t is open. For θ ∈ [0, 1], we can write

D -1 + θα(e -tL * D -1 e -tL -D -1 ) = θ D -1 + α(e -tL * D -1 e -tL -D -1 ) + (1 -θ)D -1 ,
whence α ∈ J t ⇒ θα ∈ J t and we can conclude that J t is an interval. Multiplying ( 43) by ϑ from the left and the right and using the relations ϑ = ϑ * = ϑ -1 , we obtain

D -1 + α(e tL * D -1 e tL -D -1 ) > 0, (44) 
whence we see that α ∈ J -t . By symmetry, we conclude that J -t = J t . Furthermore, multiplying ( 44) by e -tL * and e -tL from the left and the right, respectively, we obtain

αD -1 + (1 -α)e -tL * D -1 e -tL > 0.
It follows that 1 -α ∈ J t , and by symmetry, we conclude that α ∈ J t if and only if 1 -α ∈ J t . Thus, J t is an open interval symmetric around α = 1 2 . Part (2) For any bounded operator C > 0 on 2 R (Γ) and for any α, t ∈ R such that C -1 + αT t > 0, formulas ( 5) and ( 37) allow us to write

e α ω t |ω dω C = det(I + DT t ) α det(I + αCT t ) dω (C -1 +αTt) -1 . ( 45 
)
By definition D -1 + αT t > 0 for α ∈ (-δ t , 1 + δ t ). Taking C = D in (45) and integrating over X, one easily checks that

e t (α) = α 2 log det(I + DT t ) - 1 2 log det(I + αDT t ) (46) 
for all t ∈ R and α ∈ (-δ t , 1 + δ t ). The first term on the right-hand side of this identity is linear in α and hence entire analytic. 4 The determinant in the second term is also an entire function of α, and its logarithm is analytic on the set where the operator I + αDT t is invertible; see Section IV.1 in [GK].

Writing I + αDT t = D(D -1 + αT t ), we see that I + αDT t is invertible for α ∈ J t . Furthermore, since

I + αDT t = αD 1/2 (α -1 I + D 1/2 T t D 1/2 )D -1/2 ,
and the operator

D 1/2 T t D 1/2 is self-adjoint, we conclude that I + αDT t is invertible for α ∈ C \ R.
Hence, the function e t (α) is analytic in the cut plane C + ∪ C -∪ J t . Its convexity is a well-known property of Rényi's relative entropy and follows from Hölder's inequality applied to Eq. ( 12), and relations ( 13) are easy to check by a direct computation.

It remains to prove that e t (α) = +∞ for α / ∈ J t . To this end, we first note that the spectrum of D -1 is contained in the interval [M -1 , m -1 ] and that the operator αT t is compact. By the Weyl theorem on essential spectrum, it follows that the intersection of the spectrum of the self-adjoint operator D -1 + αT t with the complement of [M -1 , m -1 ] consists of isolated eigenvalues. Thus, if α / ∈ J t , then there are finitely many orthonormal vectors {ϕ j }, numbers λ j ≥ 0, and an operator B ≥ cI with c > 0 such that

D -1 + αT t = - n j=1 λ j (ϕ j , •)ϕ j + B. It follows that ω(e α ω t |ω ) = det(I + DT t ) α/2 X exp 1 2 n j=1 λ j |(ϕ j , x)| 2 e -(x,Bx)/2 ω(dx). ( 47 
)
Since B -D -1 ∈ T and D -1 + B > 0, we conclude from ( 5) that e -(x,Bx)/2 ω(dx) coincides, up to a numerical factor C > 0, with a centered Gaussian measure whose covariance operator is equal to D := (D -1 + B) -1 . Hence, we can rewrite (47) in the form

ω(e α ω t |ω ) = C X exp 1 2 n j=1 λ j |(ϕ j , x)| 2 ω D (dx).
Since the support of ω D coincides with the entire space, this integral is infinite.

Part (3) Using the cocycle relation ( 42), we can write5 

e t (1 -α) = log ω(e ω t |ω e -α ω t |ω ) = log ω t (e -α ω t |ω ) = log ω(e -α ω t |ω •φ t ) = log ω(e α ω -t |ω ) = e -t (α).
Now note that, by (G4), the measure ω is invariant under ϑ, whence we conclude that ω -t = ω t • ϑ and ωt|ω • ϑ = ω-t|ω . It follows that e -t (α) = e t (α). Combining this with the above relation, we obtain the Evans-Searles symmetry.

Proof of Theorem 2.4

Part (1) We first prove the existence of limit ( 14). Let us set

D t (α) = ((1 -α)D -1 + αD -1 t ) -1 (48)
and recall that e t (α) can be written in the form (46). Using Relations ( 35), (39), Lemma 4.1 (3) and the chain rule we obtain

d dt log det(I + αDT t ) = tr (I + αDT t ) -1 αD Ṫt = -2α tr D t (α)ς -t = -2α tr D -t (1 -α)ς . ( 49 
)
In particular, for α = 1 the derivative is equal to zero for any t ∈ R, whence we conclude that the first term in ( 46) is identically equal to zero. Let us now fix α ∈ J and choose t 0 > 0 so large that α ∈ J t for t ≥ t 0 . It follows from ( 46) and ( 49) that

1 t e t (α) = 1 t e t0 (α) - 2α t t t0 tr D -s (1 -α)ς ds. ( 50 
)
By Assumption (G3)

s -lim s→∞ D -s (1 -α) = D -(1 -α) := αD -1 + (1 -α)D -1 - -1 ,
and since ς is trace class, it follows that

lim s→∞ tr D s (1 -α)ς = tr D -(1 -α)ς .
Combining this with (50), we conclude that for α ∈ J,

lim t→+∞ 1 t e t (α) = -2α tr D -(1 -α)ς . ( 51 
)
Once the existence of limit is known, we can easily obtain the required properties of e(α). The convexity of e(α) and the first and last relations in (15) follow immediately from the corresponding properties of e t (α). Furthermore, it follows from ( 40) and the invariance of ω under ϑ that

e t (0) = X ωt|ω (x) ω(dx) = X t 0 σ -s (x) ds ω(dx) = - X t 0 σ s (x) ds ω(dx).
In view of Part (2), the limit e(α) is analytic on its domain of definition. By Theorem 25.7 in [Rock],

lim t→∞ 1 t e t (α) = e (α),
for α ∈ J. Using Fubini's theorem and Part (2) of Proposition 2.2, we derive

e (0) = lim t→∞ 1 t e t (0) = -lim t→∞ 1 t t 0 ω(σ s ) ds = -ω + (σ) = -tr(ςD + ).
The third relation in ( 15) now follows from the fourth one.

Part (2)

The analyticity of e(α) follows from Relation (51). We now prove ( 16).

Let µ be the spectral measure of Q for the linear functional induced by the trace class operator D

1/2 -ςD 1/2
-. In other words, µ is the signed Borel measure such that

f (q)µ(dq) = tr(f (Q)D 1/2 -ςD 1/2 -), (52) 
for any bounded continuous function f : R → C. By Eq. ( 20), the measure µ has its support in the interval

[-δ -1 , (1 + δ) -1 ]. One easily checks that f → f (q -1 )q -1 µ(dq),
defines a continuous linear functional on the Fréchet space C 0 (R) of compactly supported continuous functions f : R → C. By the Riesz representation theorem (see Chapter 2 in [Rud]), it follows that there exists a signed Borel measure ν, with support on

(-∞, -δ] ∪ [1 + δ, ∞), such that f (r) ν(dr) = f (q -1 )q -1 µ(dq) (53) 
A standard argument based on the monotone class technique shows that (53) remains valid for any bounded measurable function f . Decomposing the measures µ and ν into their positive and negative parts, we easily deduce from (53) that

f (r)|ν|(dr) = f (q -1 )|q| -1 |µ|(dq),
for all bounded continuous f . In particular, taking f (r) = 1 r outside a small neighborhood of zero and using (52), we derive

|ν|(dr) |r| = |µ|(dq) ≤ D 1/2 -ςD 1/2 - 1 < ∞.
Recalling relation ( 22) (which will be established below) and using (53) with f (r) = -log(1 -αr -1 ) on the support of ν, we obtain

e(α) = -α tr g(αQ)D 1/2 -ςD 1/2 - = -αg(αq)µ(dq) = -q -1 log(1 -αq)µ(dq) = -log(1 -αr -1 )ν(dr).

This relation coincides with (16).

To prove the uniqueness, let ν 1 , ν 2 be two signed Borel measures with support in R \ J, satisfying |r| -1 |ν k |(dr) < ∞, k = 1, 2, and such that log(1 -αr -1 )ν 1 (dr) = log(1 -αr -1 )ν 2 (dr)

for α ∈ J. Differentiating, we derive that

dν 1 (r) r -α = dν 2 (r) r -α (54) 
for α ∈ J. By analytic continuation ( 54) holds for all α ∈ C + ∪ C -. Since the linear span of the set of functions

{(r -α) -1 | α ∈ C + ∪ C -} is dense in C 0 (R), (54) yields that for any f ∈ C 0 (R), f dν 1 = f dν 2 . Hence ν 1 = ν 2 .
Part (3) The fact that I is a convex function taking values in [0, +∞] follows immediately from the definition. The relation e (0) = ω -(σ) = -ω + (σ) and the regularity of e imply that I vanishes only at s = ω + (σ). The validity of ( 17) is a straightforward consequence of the last relation in ( 15). Let us prove (18).

Consider the following family of random variables {Σ t } t∈[0,∞) defined on the probability space (X, F, ω)

Σ t = 1 t t 0 σ s ds.
By Proposition 2.1 (2) and the symmetry relations ω = ω • ϑ and σ • ϑ = -σ, we have e t (α) = log ω e α ω t |ω = log ω e α t 0 σ-s ds = log ω e -α t 0 σs ds = log ω e -αtΣt , so that e t (-α) is the cumulant generating function of the family {Σ t } t∈[0,∞) . Applying a local version of the Gärtner-Ellis theorem (see Theorem 4.65 in [JOPP]), we conclude that (18) holds with

ε = min -ω + (σ) -∂ + e(-δ), -ω + (σ) + ∂ -e(1 + δ) = min e (0) -∂ + e(-δ), ∂ -e(1 + δ) -e (1)
where ∂ ± e(α) denotes the right/left derivative of e(α). The fact that ε > 0 follows from the convexity and analyticity of e(α).

Part (4) As was shown above, e t (-α) is the cumulant generating function of {Σ t }. Therefore, by Bryc's lemma (see [Br] or Section 4.8.4 in [JOPP]), the CLT will be established if we prove that e t (α) extends analytically to a disc D ε = {α ∈ C | |α| < ε} and satisfies the estimate

sup t≥t0,α∈Dε 1 t |e t (α)| < ∞, (55) 
for some t 0 > 0. The analyticity was established in Part (2) of Proposition 2.3. Using the representation (50), one easily sees that in order to prove (55) it suffices to show that

sup t∈R,|1-α|<ε D t (α) < ∞. (56) 
An elementary analysis shows that Assumption (G2) implies the lower bound

(1 -α)D -1 s + αD -1 t ≥ 2 M M -m M + m δ + 1 2 -|α -1 2 | , ( 57 
) for t, s ∈ R and α ∈ [-δ, 1 + δ]. Since for z ∈ C Re (1 -z)D -1 s + zD -1 t = (1 -Re z)D -1 s + Re zD -1 t ,
we have the upper bound

(1 -z)D -1 s + zD -1 t -1 ≤ M 2 M + m M -m δ + 1 2 -|Re z -1 2 | -1 (58) 
for s, t ∈ R and z in the strip {z ∈ C | Re z ∈ (-δ, 1+δ)}. Thus, the required estimate (56) holds provided < δ.

Part (5)

We first note that the differentiability of e(α) at zero and a local version of Theorems II.6.3 in [El] (which holds with identical proof) implies that, for any ε > 0 and any integer n ≥ 1,

ω ({x ∈ X | |Σ n -ω + (σ)| ≥ ε}) ≤ e -a(ε)n ,
where a(ε) > 0 does not depend on n. By Theorems II.6.4 in [El], it follows that

lim n→∞ 1 n n 0 σ s (x) ds = ω + (σ) (59) 
for ω-a.e. x ∈ X. Suppose now we have shown the following inequality for some r < 1 sup

0≤t≤1 n+t n σ s (x) ds ≤ (n + 1) r for n ≥ n 0 (x), (60) 
where n 0 (x) ≥ 0 is an integer that is finite for ω-a.e. x ∈ X. In this case, we can write

1 t t 0 σ s (x) ds - 1 n n 0 σ s (x) ds ≤ 1 n n+ t n σ s (x) ds + 1 n 2 n 0 σ s (x) ds .
where n is the integer part of t and t = t -n. It follows from ( 60) that the first term on the right-hand side goes to zero for a.e. x ∈ X, and the second goes to zero in view of (59). Combining this with (59), we obtain ( 19). Thus, it remains to establish (60).

Let us fix an arbitrary r ∈ (0, 1) and denote by ξ n (x) the expression on the left-hand side of (60). In view of the first relation in ( 11), we have Suppose we have constructed a sequence {B n } of selfadjoint elements of T such that, for any n ≥ 0,

ξ n (x) = sup
sup 0≤t≤1 (x, ς n,t x) ≤ (x, B n x), B n 1 ≤ C, (61) 
where C > 0 does not depend on n. In this case, introducing the events A n = {x ∈ X | ξ n (x) ≥ (n + 1) r }, for sufficiently small ε > 0, we can write

ω(A n ) ≤ e -ε(n+1) r ω(e εξn ) ≤ e -ε(n+1) r det(I -2εDB n ) -1/2 , ( 62 
)
where we used the fact that the Gaussian measures on X with covariance operators

D ε = (D -1 -2εB n ) -1
and D are equivalent, with the corresponding density given by (see ( 5)) ,Bnx) .

∆ D ε |D (x) = det(I -2εDB n ) 1/2 e ε(x
In view of the second inequality in (61), the determinant in ( 62) is bounded from below by a positive number not depending on n ≥ 0 for sufficiently small ε > 0. Thus, the series n ω(A n ) converges, and by the Borel-Cantelli lemma, inequality (60) holds with an almost surely finite integer n 0 (x).

We now prove (61). From Assumption (G2) we derive 

M ≥ D t =
B n 1 ≤ M m ς 1 .
The proof of Theorem 2.4 is complete.

4.6 Proof of Theorem 2.5

Part (1) Let {s n } be an arbitrary sequence converging to δ. Recall that D -1 + αT sn > 0 for α ∈ J sn . Multiplying this inequality by e snL/2 from the right and by e snL * /2 from the left, we obtain

(1 -α)D -1 -sn/2 + αD -1 sn/2 > 0,
for any α ∈ J sn . Invoking Assumptions (G2)-(G3), we can pass to the limit in the last inequality to get

(1 -α)D -1 -+ αD -1 + ≥ 0,
for any α ∈ J. Taking α = 1 + δ and α = -δ and performing some simple estimation, we obtain inequality (20). Furthermore, it follows from (20) that αQ < 1 for α ∈ (-δ, 1 + δ), whence we conclude that the operator function ( 21) is analytic in the cut plane C + ∪ C -∪ (-δ, 1 + δ).

Part (2)

We first prove the existence of the limit in (22). To this end, we shall apply Vitali's convergence theorem to the sequence of functions

h n (α) = 1 t n e tn (α), n ≥ 1, α ∈ J tn .
By the very definition of δ, for any ε > 0 there is N ε such that, for all n ≥ N ε , the function h n is analytic in the cut plane C -∪ C + ∪ Ĵε where

Ĵε = (-δ + ε, 1 + δ -ε) ⊂ J tn .
By the proof of Part (4) of Theorem 2.4 (more precisely Eq. ( 58)), the functions h n are uniformly bounded in any disk or radius less than δ around α = 0. By the Cauchy estimate, the same is true of their derivatives h n .

Let K 0 be the compact subset of (C -∪C + ∪ Ĵε )\{0} described on the left of Figure 1. From Definition (48) we infer

D tn (α) = D 1/2 (1 + αQ n ) -1 D 1/2 = zD 1/2 (z -Q n ) -1 D 1/2 , z = - 1 α ,
where

Q n = D 1/2 T tn D 1/2 is a selfadjoint element of T . By definition, α ∈ J tn iff I + αQ n > 0, i.e., sp(Q n ) ⊂ (-(1 + δ tn ) -1 , δ -1 tn ) ⊂ (-(1 + δ -ε) -1 , ( δ -ε) -1 ) (64) 
for all n ≥ N ε . Since the function α → z = -1/α maps K 0 to a set which is uniformly separated from sp(Q n ) (see Figure 1), it follows from the spectral theorem that

sup n≥Nε α∈K0 D tn (α) ≤ D sup n≥Nε -z -1 ∈K0 |z| dist(z, sp(Q n )) < ∞. Re α Im α Im z Re z Figure 1: A compact region K 0 ⊂ (C -∪ C + ∪ Ĵε ) \ {0}
and its image under the map α → z = -1/α. The thick lines in the α-plane are the cuts R \ Ĵε . By Eq. ( 64), if n ≥ N ε , then the spectrum of Q n lies inside the thick line of the z-plane.

Applying Lemma 4.1 (3) to Eq. 46 (recall that the first term on the right hand side of the latter vanishes) and integrating Eq. ( 39) to express T tn we obtain

h n (α) = - 1 2t n tr(D tn (α)T tn ) = 1 0 tr(D tn (α)ς -stn )ds.
The bound (63) further yields

|h n (α)| ≤ M m ς 1 D tn (α) ,
and the previous estimate allows us to conclude that the sequence {h n } n≥Nε is uniformly bounded in K 0 .

Summing up, we have shown that {h n } n≥Nε is uniformly bounded on any compact subset of C -∪C + ∪ Ĵε and since h n (0) = 0, the same is true of the sequence {h n } n≥Nε . By Part (1) of Theorem 2.4, the sequence {h n (α)} converges for α ∈ J. By Vitali's theorem (see Section I.A.12 in [GR]), we conclude that the sequence {h n } converges uniformly on any compact subset of C -∪ C + ∪ Ĵε , and the limit is an analytic function on it. Since ε > 0 was arbitrary, we see that the middle term in ( 22) is well defined for any α ∈ C -∪ C + ∪ Ĵ and is an analytic function on this domain.

To prove the second equality in ( 22), it suffices to establish it for α ∈ J, because both left-and right-hand sides are analytic functions on C -∪ C + ∪ Ĵ. The lower bound (57) shows that D t (α) is bounded and strictly positive for all t ∈ R and α ∈ (-δ, 1 + δ). It follows from Eq. ( 37) and Lemma 4.1 (1) that ωt|ω ∈ L 1 (X, dω Dt(α) ). Moreover, Eq. ( 45) shows that for f ∈ L 1 (X, dω Dt(α) ) Taking the logarithm, dividing by t, and using (41), we obtain

ω Dt(α) (f ) = ω(e α ω t |ω f ) ω(e α ω t |ω ) . ( 65 
1 t e t (α) = 1 t α 0 ω Dt(γ) ( ωt|ω ) dγ = 1 t α 0 t 0 ω Dt(γ) (σ -s ) dsdγ = α 0 1 0 ω Dt(γ) (σ -ts ) dsdγ. ( 66 
)
It follows from ( 34) and the first relation in ( 11) that

ω Dt(γ) (σ -ts ) = tr(D t (γ) ς -ts ) = tr e -tsL D t (γ)e -tsL * ς = tr (1 -γ)D -1 -ts + γD -1 t(1-s) -1 ς .
Combining this with Hypothesis (G3) and a continuity property of the trace, we derive

lim t→∞ ω Dt(γ) (σ -ts ) = tr D γ ς = ω Dγ (σ) for γ ∈ (-δ, 1 + δ), s ∈ (0, 1),
where we set

D γ = ((1 -γ)D -1 -+ γD -1 + ) -1 .
The bound (58) allows us to apply the dominated convergence theorem to Eq. ( 66), and conclude that

e(α) = lim t→∞ 1 t e t (α) = α 0 1 0 ω Dγ (σ) dsdγ = α 0 tr D γ ς dγ, α ∈ (-δ, 1 + δ). (67) 
Writing

D γ = D 1/2 -(I -γQ) -1 D 1/2 -, we further get e(α) = α 0 tr D 1/2 -(I -γQ) -1 D 1/2 -ς dγ,
and performing the integral yields Eq. ( 22) for α ∈ (-δ, 1 + δ).

Finally, to prove (23), it suffices to note that if α does not belong to the closure of Ĵ then, for infinitely many n ≥ 1, α / ∈ J tn and by Proposition 2.3 (2), e tn (α) = +∞.

Part (3)

The required properties of the rate function Î follow from (15) and elementary properties of the Legendre transform. Thus, we shall only prove (25). In doing so, we shall assume that the interval Ĵ is finite; in the opposite case, the result follows immediately from the Gärtner-Ellis theorem; see Section 4.5.3 in [DZ]. Moreover, we shall consider only the non-degenerate situation in which ω + (σ) > 0. The analysis of the case ω + (σ) = 0 is similar and easier.

Let us extend ê(α) to the endpoints of the interval Ĵ by the relation

ê(α) = lim sup t→+∞ 1 t e t (α), α ∈ {-δ, 1 + δ}.
Since the extended function ê is convex and, hence, continuous at any point where it is finite, the Legendre transform of e(-α) coincides with Î defined by ( 24). In view of a well-known result on the large deviation upper bound (e.g., see Theorem 4.5.3 in [DZ]), the following inequality holds for any closed subset F ⊂ R:

lim sup n→∞ 1 t n log ω x ∈ X 1 t n tn 0 σ s (x) ds ∈ F ≤ -inf s∈F Î(s).
Since Î is also continuous, this upper bound easily implies that (23) will be established if we prove the inequality

lim inf n→∞ 1 t n log ω x ∈ X 1 t n tn 0 σ s (x) ds ∈ O ≥ -inf s∈O Î(s), (68) 
where O ⊂ R is an arbitrary open set. A standard argument shows that it suffices to prove ( 68) for any open interval J ⊂ R. Let us set

s -= -lim α↑1+ δ ê (α), s + = -lim α↓- δ ê (α).
In view of the local version of the Gärtner-Ellis theorem (see Theorem 4.65 in6 [JOPP]), relation ( 25) is true for any interval J ⊂ (s -, s + ). Thus, it suffices to consider the case when J = J s,ε = (s -ε, s + ε), where ±(s -s ± ) ≥ 0. The proof of ( 68) is divided into several steps.

Step 1: Reduction. We first show that the required inequality will be established if we prove that, for any ŝ ∈ R satisfying the inequality ±(ŝ -s ± ) ≥ 0 and any ε > 0, lim inf

n→∞ 1 t n log ω B n (ŝ, ε) ≥ -Î(ŝ ± ε), (69) 
where

B n (ŝ, ε) = {x ∈ X | |t -1 n ωt n |ω + ŝ| < ε}. Indeed, we have Î(s) = -(1 + δ)s -e -for s ≤ s -, δs -e + for s ≥ s + , (70) 
where e -(respectively, e + ) is the limit of ê(α) as α ↑ 1 + δ (respectively, α ↓ -δ). In particular, the rate function Î is everywhere finite and continuous. It follows from ( 69) and inequality (68) with J ⊂ (s -, s + ) that

lim ε→0 + lim inf n→∞ 1 t n log ω x ∈ X 1 t n tn 0 σ s (x) ds ∈ J ŝ,ε = lim ε→0 + lim inf n→∞ 1 t n log ω B n (ŝ, ε) ≥ -Î(ŝ),
where ŝ ∈ R is any point. A well-known (and simple) argument implies the required lower bound (68) for any interval J ⊂ R. Thus, we need to establish (69). To simplify the notation, we shall consider only the case when ŝ ≥ s + (assuming that s + < ∞).

Step 2: Shifted measures. Let us fix ŝ ≥ s + and denote ẽt (α) = e t (-α) and ẽ(α) = ê(-α). Since ẽ tn is a monotone increasing function mapping the interval -J tn = (-1 -δ tn , δ tn ) onto (-∞, ∞) (see ( 46)), for any n ≥ 1 there is a unique number α n ∈ -J tn such that ẽ tn (α n ) = t n ŝ. Following a well-known idea in the theory of large deviations, let us define a sequence of measures ν n on X by their densities

∆ νn|ω = exp -α n ωt n |ω -ẽtn (α n ) .
Suppose we have proved that lim inf

n→∞ ν n B n (ŝ, ε) > 0. (71) 
In this case, assuming that α n > 0, we can write

ω B n (ŝ, ε) = Bn(ŝ,ε) exp α n ωt n |ω + ẽtn (α n ) dν n ≥ exp t n α n (-ŝ -ε) + ẽtn (α n ) ν n B n (ŝ, ε) , whence it follows that lim inf n→∞ 1 t n log ω B n (ŝ, ε) ≥ lim inf n→∞ α n (-ŝ -ε) + 1 t n ẽtn (α n ) . (72) 
If we know that

lim n→∞ α n = δ, lim inf n→∞ 1 t n ẽtn (α n ) ≥ e + , (73) 
then α n > 0 for n large enough and inequality (72) and relation (70) immediately imply the required result (69). Thus, we need to prove (71) and (73).

Step 3: Proof of (73). Since α n ∈ -J tn and δ tn → δ, the first relation in (73) will be established if we show that lim inf

n→∞ α n = δ. ( 74 
)
Suppose this is not the case. Then there is ε > 0 and a sequence n k → +∞ such that -1 ≤ α n k ≤ δ -ε, where the first inequality follows from the fact that ẽ tn (α n ) ≥ 0 and ẽ tn (-1) ≤ 0. To simplify notation, we assume that the entire sequence {α n } satisfies this inequality. It follows that

s + ≤ ŝ = 1 t n ẽ tn (α n ) ≤ 1 t n ẽ tn ( δ -ε) for any n ≥ 1. (75) 
Since 1 tn e tn (α) are convex functions converging to the smooth function ẽ(α) for α ∈ -Ĵ, by Theorem 25.7 in [Rock], we have

lim n→∞ 1 t n ẽ tn (α) = ẽ (α) for any α ∈ -Ĵ,
and the limit is uniform on any compact subset of -Ĵ. Comparing this with (75), we see that s + ≤ ẽ ( δ-ε).

It follows that ẽ is constant on the interval [ δ -ε, δ] and, hence, by analyticity and the first relation in ( 15), the function e(α) vanishes. This contradicts the assumption that ω + (σ) > 0 and proves (74).

We now establish the second relation in ( 73). For any γ ∈ (0, δ), we have

ẽtn (α n ) = ẽtn (γ) + αn γ ẽ tn (α) dα ≥ ẽtn (γ) + (α n -γ)ẽ tn (0),
where we used the facts that ẽ is nondecreasing and that α n > γ for sufficiently large n ≥ 1, in view of the first relation in ( 73). It follows that

lim inf n→∞ 1 t n ẽtn (α n ) ≥ ẽ(γ) + ( δ -γ)ẽ (0).
Passing to the limit as γ → δ, we obtain the required inequality.

Step 4: Proof of (71). Let us introduce trace class operators

Q n = D 1/2 T tn D 1/2 , M n = t -1 n (I -α n Q n ) -1 Q n , n ≥ 1.
Since α n ∈ -J tn , the operator I -α n Q n is strictly positive and, hence, invertible, so that M n is well defined. Suppose we have shown that

ν n f (X n ) = µ f (Y n ) , X n = -t -1 n ωt n |ω , Y n = 1 2 (x, M n x), n ≥ 1, (76) 
where f : R → R is an arbitrary bounded measurable function and µ is the centered Gaussian measure on X with the covariance operator I. In this case, taking f to be the indicator function of the interval J ŝ,ε , we can write

ν n B n (ŝ, ε) = µ {x ∈ X | |Y n (x)
-ŝ| < ε} =: p n (ε) for any n ≥ 1.

Thus, the required assertion will be established if we prove that inf n≥1 p n (ε) > 0 for any ε > 0.

(77)

To this end, let us assume that we have proved that

M := sup n≥1 M n 1 < ∞, tr(M n ) = 2ŝ. ( 78 
)
We now use the following lemma, whose proof is given in the end of this subsection (cf. Lemma 2 in [START_REF] Bryc | Large deviations for quadratic functionals of Gaussian processes[END_REF]Section 3].)

We claim that both factors on the right-hand side of this inequality are separated from zero. Indeed, to estimate the first factor, we note that

κ ≥ M 1 ≥ θ rank M >θ , (83) 
where rank(M >θ ) =: N θ stands for the rank of M >θ . Denoting by λ j the eigenvalues of M indexed in the non-increasing order of their absolute values, we see that

|Y >θ (x))| = N θ j=1 λ j (x 2 j -1) ≤ κ N θ j=1 |x 2 j -1|,
where {x j } are the coordinates of x in the orthonormal basis formed of the eigenvectors of M . Combining this with (83), we derive

µ |Y >θ (x))| < ε/2 ≥ µ N θ j=1 |x 2 j -1| < ε 2κ ≥ N θ j=1 µ |x 2 j -1| < (2κN θ ) -1 ε ≥ p δ) κ/θ ,
where δ = εθ/(2κ 2 ), and p(δ) > 0 is the probability of the event |x 2 -1| < δ under the one-dimensional standard normal law. To estimate the second factor in (82), we use the Chebyshev inequality:

µ |Y ≤θ (x)| < ε/2 = 1 -µ Y ≤θ (x) ≥ ε/2 -µ -Y ≤θ (x) ≥ ε/2 ≥ 1 -µ exp(γY ≤θ -γε/2) + µ exp(-γY ≤θ -γε/2) , (84) 
where γ > 0 is sufficiently small and will be chosen later. We have µ exp(γY ≤θ ) = exp -γtr M ≤θ -1 2 log det I -γM ≤θ = exp -1 2 tr 2γM ≤θ + log(I -2γM ≤θ ) .

Now note that if 4|γ|θ ≤ 1, then

2γM ≤θ + log(I -2γM ≤θ ) = ∞ n=2 -2γM ≤θ n n .
Recalling that M ≤θ ≤ θ and M ≤θ 1 ≤ κ and using the inequality |tr(AB)| ≤ A 1 B , it follows that tr 2γM ≤θ + log(I -2γM ≤θ ) ≤ ∞ n=2 |2γθ| n-1 2|γ|κ ≤ 8κγ 2 θ.

Substituting this into (85), we see that, if |γ| ≤ (4θ) -1 , then µ exp(γY ≤θ ) ≤ exp 4κγ 2 θ . A similar estimate holds for µ exp(-γY ≤θ ) . Combining these inequalities with (84) and choosing γ = ε 16κθ , we derive µ |Y ≤θ (x)| < ε/2 ≥ 1 -2 exp 4κγ 2 θ -γε/2 = 1 -2 exp -ε 2 64κθ . The right-hand side of this inequality can be made greater than zero by choosing a sufficiently small θ > 0 which will depend only on κ and ε.

Proof of Theorem 2.6

The proof of this result is verty similar to that of Theorems 2.4 and 2.5, and we shall only outline the proof.

Part (1) Follows from Hölder's inequality as in the proof of Proposition 2.3 (2).

Part (2) Since 0 ∈ J + t , the fact that J + t is an interval follows immediately from the following property: if α ∈ J + t , then θα ∈ J + t for θ ∈ (0, 1). To prove the analyticity, note that, by Eq. ( 45), one has + with the negative half-line is nonempty). The above inequality coincides with the one defining J + t . Part (3) The fact that J + is an interval follows immediately from its definition. To prove that J + t ⊃ (-δ, δ), note that, in view of Hypothesis (G2), for any t, α ∈ R we have

I -αD 1/2 + T t D 1/2 + = D 1/2 + (D -1 + -α(D -1 t -D -1 ))D 1/2 + ≥ δ -|α| δ + 1 .
This expression is positive for |α| < δ.

To prove the existence of limit ( 27) and its analyticity on J + , we repeat the argument used in the proof of Theorem 2.5 (2). Namely, let us introduce the family of operators D + t (α) = (D -1 + -αT t ) -1 , which are well defined for α ∈ (-δ, δ). Then the following analogue of relation ( 65) is valid:

ω D + t (α) (f ) =
ω(e -α ω t |ω f ) ω(e -α ω t |ω ) for f ∈ L 1 (X, dω D + t (α) ).

The argument used in the derivation of (66) gives that 

We have thus established the existence of limit ( 27) on the interval (-δ, δ) ⊂ J + . The fact that it exists for any α ∈ J + and defines a real-analytic function can be proved with the help of Vitali's theorem (cf. proof of Part (2) of Theorem 2.5). Finally, relation ( 28) is established by the same argument as (23).

Parts (4-6) The proofs of the large deviation principle, central limit theorem, and strong law of large numbers for the time average of the entropy production functional under the limiting law ω + are exactly the same as for ω (see Parts (3-5) of Theorem 2.4), and therefore we will omit them.

Parts (7)

The fact that the functions e + (α) and e(α) coincides on the intersection J + ∩J follows from (88) and their analyticity. The equality of the corresponding rate functions on a small interval around ω + (σ) is a straightforward consequence of (88) and the definition of the Legendre transform.

  takes values in [0, ∞], vanishes only at s = ω + (σ), and satisfies the Evans-Searles symmetry relation I(-s) = I(s) + s for s ∈ R.

.

  DT s ) -log det(I + DT s )) s=0 Using Lemma 4.1 (3) and the chain rule, we get d ds (tr(DT s ) -log det(I + DT s )) s=0 = tr(D Ṫ0 ) -tr(D Ṫ0 ) = 0.

  x, ςe sL x)ds = sup 0≤t≤1 (x, ς n,t x) , ς n,t := n+t n ς s ds.

) 0 ω

 0 Using this relation with f = ωt|ω , integrating the identity e α ω t |ω = 1 + α 0 e γ ω t |ω ωt|ω dγ against ω, and applying Fubini's theorem, we obtainω(e α ω t |ω ) = 1 + α 0 ω(e γ ω t |ω )ω Dt(γ) ( ωt|ω ) dγ.Resolving this integral equation (which reduces to a linear differential equation) for α → ω(e α ω t |ω ), we derive ω(e α ω t |ω ) = exp α Dt(γ) ( ωt|ω )dγ .

e> 0

 0 -α ω t |ω dω + = det(I + DT t ) -α det(I -αD + T t ) dω (D -1 + -αTt) -1 .This relation implies that the functione t+ (α) = -α 2 log det(I + D + T t ) -1 2 log det(I -αD + T t )in α on the open interval defined by the condition I -αD and takes the value +∞ on its complement (where the intersection of the spectrum of I -αD

. 0 ω

 0 t (γ) (σ -ts ) dsdγ, while Hypothesis (G2) and the relation e rL D + e rL * = D + valid for r ∈ R imply thate -tsL D + t (γ)e -tsL * = D -1 + -γ(D -1 t(1-s) -Following again the argument in the proof of Theorem 2.5 (2), for α ∈ (-δ, δ) we derivee + (α) = lim D 1-γ = ϑD γ ϑ, whence it follows ω D1-γ (σ) = ω Dγ (σ • ϑ) = -ω Dγ (σ). Substituting this into (87) and recalling (67), we see that e + (α) = α Dγ (σ) dγ = e(α) for α ∈ (-δ, δ).

  e tL De tL * ≥ m e tL e tL * , Since ς ∈ T is selfadjoint, one has |(x, ςx)| ≤ (x, |ς|x) for all x ∈ K. Hence

	holds. sup	|(x, ς n,t x)| ≤	n+1	|(e sL x, ςe sL x)|ds ≤	n+1	(e sL x, |ς|e sL x)ds = (x, B n x),
	0≤t≤1		n				n
	where			B n =	n+1	e sL *	|ς|e sL ds
					n	
	is a self-adjoint element of T such that		
	so that the uniform bound			e tL ≤	M m	1/2	,	(63)

Throughout the paper we adopt the convention log x = -∞ for x ≤ 0.

(x,D -1 I x) dx,

That can be always achieved by replacing K with K ⊕ K, L with L ⊕ L * , ϕ with 1 √ 2 ϕ ⊕ ϕ, and setting ϑ(ψ 1 ⊕ ψ 2 ) = ψ 2 ⊕ ψ 1 .

In the case of harmonic crystal considered in this section, j is a discrete Laplacian and the absolute values of the entries of the scattering matrix of the pair (j, j 0 ) are either 0's or 1's. For this reason the formula (32) for e(α) has a particularly simple form.

We shall see in the proof of Theorem 2.4 that it is in fact identically equal to zero.

Note that this computation does not use (G4).

In the formulation of Theorem 4.65 in[JOPP], it is required that the limit of t -1 n et n (α) as n → ∞ should exist for any α in the closure of Ĵ. However, the same proof works also in the case when the limits exist only for α ∈ Ĵ.

Lemma 4.2 Let µ be the centered Gaussian measure on X with the covariance operator I. Then for any positive numbers κ and ε there is p(κ, ε) > 0 such that

for any selfadjoint operator M ∈ T satisfying the inequality M 1 ≤ κ.

In view of (78), we have

Applying Lemma 4.2 with κ = 2 M, we see that (77) holds. Thus, to complete the proof of the theorem, it remains to establish (76) and (78).

Step 5: Proof of the auxiliary assertions. Simple approximation and analyticity arguments show that, to prove (76), is suffices to consider the case in which f (x) = e γx , where γ ∈ R is sufficiently small. Thus, we need to check that

Recalling the construction of α n and using the relation ẽt (α) = -1 2 log det(I -αQ t ) (see ( 46)), we write

This expression coincides with the right-hand side of (80).

Finally, to prove (78), we first note that the equality follows immediately from the choice of α n and the relation ẽ t (α) = 1 2 tr (I -αQ t ) -1 Q t . To establish the inequality, we start by using ( 39) and ( 63) to get the bound

Writing the spectral decomposition of the compact self-adjoint operator M n , we easily show that

where A + and A -stand the positive and negative parts of a selfadjoint operator A, and we used that fact that α n > 0 for sufficiently large n (see ( 74)). Combining this relation with (81), we derive

Recalling the second relation in ( 78), we conclude that

The proof of Theorem 2.5 is complete.

Proof of Lemma 4.2. We set Y (x) = (x, M x) and note that µ(Y ) = tr(M ). Let us denote by {P I , I ⊂ R} the family of spectral projections for M and, given a number θ > 0, write M = M ≤θ + M >θ , where

Now note that the random variables Y ≤θ and Y >θ are independent under the law µ. It follows that the probability P (M, ε) given by the left-hand side of (79) satisfies the inequality