
HAL Id: hal-01196988
https://hal.science/hal-01196988

Preprint submitted on 10 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Acoustics at an interface : promoting the Lagrange
picture

Martin Devaud, Thierry Hocquet

To cite this version:
Martin Devaud, Thierry Hocquet. Acoustics at an interface : promoting the Lagrange picture. 2015.
�hal-01196988�

https://hal.science/hal-01196988
https://hal.archives-ouvertes.fr


Acoustics at an interface : promoting the Lagrange picture

Martin Devaud∗
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In Fluid Mechanics, the Euler description is widely taught and used at the undergraduate level,
and the Lagrange description is rather presented as an alternative peculiarity. In this paper, it
is argued that, as far as acoustics is envisaged, the Lagrange description occurs to offer a more
suitable approach as well from a pedagogical viewpoint as from a technical one. Sound generation
by a pulsating source and reflection/transmission at an interface are discussed in this respect.

I. INTRODUCTION

Whenever an acoustic wave travels through an interface from one medium to another, it splits into a reflected
and a transmitted wave, exactly as a light beam would do when crossing the boundary between two media with
different refractive indices. In the latter optical case, it is neither conceptually embarrassing nor technically difficult
to derive the reflection and transmission coefficients at the interface. Using the standard continuity relations of the
electromagnetic fields at the boundary, one easily determines the reflected and transmitted fields as a function of the
incident ones. It is noteworthy that, in the optical case, the problem is particularly simple in this sense that the
geometry of the boundary on the one hand, and the electromagnetic state of the optical media on the other hand,
are utterly disconnected. More precisely, the position of the boundary is independent of the electric (or magnetic)
polarization of the media: the optical wave does not entail any (macroscopic) motion of the the media. In the acoustic
case, things are not that simple, as illutrated in figure 1: two different fluids – say 1 and 2 – are separated at rest by
the (infinite) plane x = 0. Let us consider now a plane pressure wave propagating from x = −∞ in fluid 1 towards
the boundary. As well known, this incident wave splits at the interface in two parts: a reflected wave, travelling
back to x = −∞ through medium 1, and a transmitted wave, travelling towards x = +∞ through medium 2. It
is a time-honored undergraduate level exercice to determine the reflection and the transmission coefficients at the
interface. In principle, the answer is easy: one equalizes the fluid pressures

P1(interface) = P2(interface) (1a)

and the fluid velocities

~v1(interface) = ~v2(interface), (1b)

which provides two equations enabling us to calculate both coefficients. The above process is undoubtedly correct,
but raises a nontrivial difficulty: where is the interface? At x = 0? Certainly not, since the interface itself moves
back and forth, due to the wave motion. As a matter of fact, the x = 0 plane spends half time in medium 1, half time
in medium 2. Of course, locating the interface at x = 0 is the best approximation, and it leads to the correct values
of the reflection and transmission coefficients, but it should be regarded as but an order-zero approximation.

Contrary to the optical case evoked above, the geometric position of the boundary and the acoustic vibration are
entangled. When dealing with the situation illustrated in figure 1, the difficulty we meet originates in our attempt

medium 1

x = 0 x = + ∞

medium 2

x = – ∞

FIG. 1: Medium 1 and medium 2 are separated at rest by the plane x = 0. When a pressure wave propagates, the interface
does not remain at x = 0, but moves back and forth on either side of the plane x = 0. In the Euler description, locating the
interface at x = 0 appears as an order-zero approximation.
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of using the formalism adopted in Fluid Mechanics, and known as the Euler description: to put it briefly, a (usely
Galilean) reference frame is defined. At a given point ~r of this frame, and at time t, the physical state of the fluid is
described by a set of parameters: mass density ρ, pressure P , fluid velocity (with respect to the frame) ~v, temperature
T and so on. So that one deals with a set of (coupled) continuous fields ρ(~r, t), P (~r, t), ~v(~r, t), T (~r, t), etc. For
instance, in absence of any external force (gravity or other), and neglecting viscosity for the sake of simplicity, the
movement of an inviscid fluid is ruled by the well-known Euler equation

ρ(~r, t)

(
∂~v

∂t
+ (~v · −−→grad)~v

)
= −−−→gradP. (2)

Such a description has many advantages. First, it is convenient to account for the dynamics of the fluid by means
of local equations coupling fields, exactly as in the Electromagnetism domain. Second, the Euler description is
particularly well adapted to situations in which the fluid really flows: when studying the stream of a river passing at
some bridge, we are interested in the very behavior of the water under this bridge at a time t, whichever the origin
or the past behavior of this water.

Nevertheless, the Euler description is not without a major drawback. Let us glance at equation (2). The left-hand

side is obviously nonlinear in field ~v, due to the (~v · −−→grad)~v term: in contrast to the Maxwell equations, the Euler
equation is nonlinear. In addition to the latter explicit nonlinearity, an implicit further nonlinearity hides in the mass
density term as soon as the fluid is compressible, since ρ(~r, t) is a priori ~v-dependent.

In textbooks,1,2 when using the Euler description to teach Acoustics at the undergraduate level, a perturbative
resolution of the Euler equation is implemented: expanding fields ρ(~r, t), ~v(~r, t), P (~r, t) in increasing powers of the
acoustic amplitude and restricting to the lowest significant order (namely order zero for the mass density and order
one for the fluid velocity and the pressure), we are left with a linearized form of the Euler equation which can be
easily handled. Such a linearization is argued to be justified as far as the fluid particle velocity is small compared
to the wave phase velocity. In the same connection, the equilibrium position of the interface (namely x = 0 in the
situation illustrated in figure 1) is chosen to determine the reflection and transmission coefficients.

Although the above-recalled processes undoubtedly work, students are often left with the uncomfortable feeling that
they do not perfectly master the approximations they have been led to make in the course of the calculation. In fact,
the above-underlined difficulties of the Euler description can be (up to a point) overcome in an alternative framework,
known as the Lagrange description.3–5 It is noteworthy that such an alternative in the description of the physical
state of a system is also encountered in the quantum formalism. For this reason, we shall henceforth deliberately
substitute the word “picture” for “description”: the Euler picture and the Lagrange picture are indeed, as outlined
below, the exact transposition to fluid mechanics of the so-called “Schrödinger picture” and “Heisenberg picture” of
quantum mechanics. It is precisely the aim of the present paper to sketch the main features of the Lagrange picture
which is poorly taught in academic courses and scarcely used when studying acoustic propagation.

To begin with, what is it all about? The philosophy of the Lagrange picture can be outlined as follows. Contrary
to the Euler picture, which, as recalled above, labels the geometric points of the reference frame disregarding the
origin of the fluid elements passing through these points at time t, the Lagrange picture labels the fluid elements
disregarding the exact position they occupy at time t. Let us detail hereafter how it works. With this aim, let us
consider a fluid at some time t0. We denote ~r0 the fluid element that is positioned at point ~r0 of the reference frame
at time t0. We shall henceforth keep this label ~r0 to denote this fluid element, whatever its further motion. Thus, at
time t, the fluid element ~r0 will be found at some point ~r given by

~r(~r0, t) = ~r0 + ~u(~r0, t), (3)

where ~u(~r0, t) is the displacement of the fluid element ~r0 between times t0 and t. The physical state of the fluid is
still described by a set of continuous fields: mass density, pressure, velocity, temperature, etc. The correspondance
between both pictures is very simple. Superscripts E and L respectively denoting “Euler” and “Lagrange”, we have,
quantity A standing for whichever parameter ρ, P , ~v, T , etc.,

AE
(
~r(~r0, t), t

)
= AL(~r0, t), (4)

with ~r(~r0, t) given by (3). Concretely, the above equation (4) means that AL(~r0, t) denotes the actual value of
parameter A as undergone at time t by the fluid element labeled ~r0 which is currently at point ~r0 + ~u(~r0, t) of the
reference frame, i.e. AL(~r0, t) is numerically equal to AE

(
~r(~r0, t), t

)
.

We show in the present paper that the Lagrange picture offers several advantages from a technical point of view.
To begin with, this picture rids us of spurious nonlinearities (for instance, the pseudo nonlinearity associated with the
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(~v ·−−→grad)~v term in the left-hand side of the Euler equation (2)), and enables us to index and classify true nonlinearities,
allowing (should the occasion occur) perturbative resolutions of the field equations. Secondly, each fluid element d3r0

is, thermodynamically speaking, a closed system: no particle exchange with the outside occurs, except a possible
– and neglected in this paper – matter diffusion. A third technical advantage of the Lagrange picture appears when
dealing with interfaces co-moving with the fluid(s). This point will be illustrated in detail in subsections II B, II C,
III B and III C.

Let us add that the Lagrange labeling of the fluid particles can be easily visualized using passive markers, designed
to follow the flow without perturbing it in any way: they behave exactly as would behave a “painted” fluid parti-
cle. Observing the trajectories of the latter markers provides an experimental check for mathematical solutions or
simulations and, besides, is of interest for environmental problems (see for instance5).

Teaching the Lagrange picture also offers some advantage from a pedagogical point of view. A very natural way
indeed to introduce the continuous media dynamics consists in starting from a discrete description of matter: using
Newton’s Second Law, the dynamics of every fluid element is established, then merged into a continuous description
(typically, in lattice dynamics, this continuous description naturally emerges when the conditions of the center of
Brillouin zone propagation are fulfilled). In this respect, the bridge with the Euler picture is a bit more delicate

(leading for instance to the spurious (~v · −−→grad)~v nonlinearity mentioned above).

Nevertheless, our promotion of the Lagrange picture would be incomplete if we did not stress the following feature.
Let us consider the position of a moving fluid at some initial time t0. Labelling the different fluid elements by their
position ~r0 with respect to the reference frame, we can of course choose a set of Cartesian coordinates: ~r0(x0, y0, z0).
But, in the course of the subsequent motion, we will have to take the distortion of the fluid elements into account in
order to write correctly the local balance equations (as (2) for instance, where both hand-sides have to be reconsidered
in the framework of the Lagrange picture). Now, due to the a priori complex motion of the fluid, our coordinate
system is no longer Cartesian at any time t, but curvilinear (of course, we should never have the same problem with
the Euler picture, since then the choice of a Cartesian coordinate system to label the geometric points of the reference
frame can be made once for all). For this reason, and for the sake of simplicity, we shall restrict this article to the
study of the one-dimension case and, in the three-dimension case, to the mere spherical geometry.

With this general philosophy, we have organized the present paper as follows. In section II, we focus on the one-
dimension problem. We illustrate our purpose with the calculation (subsection II A) of the exact solution of the sound
propagation in a fluid with a linear extrapressure-to-dilatation thermodynamic relation. Then (subsection II B) we
address the most simple following question: how do we calculate the acoustic wave generated by a load-speaker? We
finish with the determination (subsection II C) of the reflection/transmission coefficients at an interface. Section III is
devoted to the three-dimension case. After a quick overflight of the general situation (subsection III A), we consider
the acoustic radiation of the pulsating sphere (subsection III B) and the calculation of the reflection/transmission
undergone at an interface by a spherical wave (subsection III C).

II. THE ONE-DIMENSION CASE

As announced in the above introduction, we start the present study of the Lagrange picture with the simplest
situation we may have to face: the one-dimension problem. Let us therefore consider a fluid occupying at rest a
cylindrical volume with axis Ox0 and section S (figure 2a), at equilibrium pressure P0 and mass density ρ0. Both
ends, labeled x0 = 0 and x0 = L, are made of pistons that are supposed to be fixed. As displayed in figure 2, the
slice of fluid comprised between the faces labeled x0 and x0 + dx0 has mass ρ0Sdx0. At time t, its current thickness
is (see figure 2b) (

x0 + dx0 + u(x0 + dx0, t)
)
−
(
x0 + u(x0, t)

)
=

(
1 +

∂u

∂x0

)
dx0, (5a)

so that its current mass density is simply

ρ(x0, t) =
ρ0

1 +
∂u

∂x0

. (5b)

Besides, within the framework of the Lagrange picture, the pressure forces undergone by this slice of fluid are respec-
tively SP0(x0, t) (left end) and − SP (x0 + dx0, t) (right end). Consequently, applying Newton’s Second Law to the
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(r0, P0)(a)

x0 = 0 x0 x0 + dx0 x0 = L0

(b)

S

S

x0 = 0 x0 x0 + dx0 x0 + u(x0) x0 + dx0 + u(x0 + dx0) x0 = L0

FIG. 2: (a). The fluid at rest, with equilibrium mass density ρ0 and pressure P0. (b). The fluid at time t. Both ends, labeled
x0 = 0 and x0 = L, are made of fixed pistons.

latter slice, we obtain

ρ0
∂L2u

∂t2
= − ∂P

∂x0
, (6)

where superscript L in the left-hand side recalls that the time-(second) derivative is understood at constant x0 (even
if the current position at time t of the face labeled “x0” is quite away from the point with abscissa x0 of the reference
frame). The above equation (6) deserves at least a twofold comment: (i) it is exact (we made no approximation); (ii)

it is linear in displacement u (or in velocity v = ∂Lu
∂t ). Establishing equation (6) is half of the job. If we want now to

get a propagation equation, we have to connect the pressure P (x0, t) with the expansion factor ∂u
∂x0

(or equivalently

the mass density ρ). This is a thermodynamic issue. Throughout the present article, we shall assume, for the sake of
simplicity, that any transformation undergone by the fluid is isentropic. In the framework of the Lagrange picture,
this means that the entropy of any fluid slice [x0, x0 + dx0] is, at any time, equal to its equilibrium value, so that in
the course of the motion, the pressure P (x0, t) can be expressed as a function of the sole mass density ρ(x0, t) (let us
recall that, in the Lagrange picture, the slice [x0, x0 + dx0] does constitute a closed thermodynamic system). It will
appear in the following discussion that it is most convenient to expand the extrapressure p(x0, t) = P (x0, t) − P0 in
increasing powers of ∂u

∂x0
:

p(x0, t) = − κ1

(
∂u

∂x0

)
+

1

2
κ2

(
∂u

∂x0

)2

+ · · · , (7)

where the bulk modulus κ1 > 0 due to the Second law of thermodynamics. Combining the mechanical equation (6)
(in which the superscript L for “Lagrange” is henceforth omitted) with the above thermodynamic relation (7), we get
the sound propagation equation

ρ0
∂2u

∂t2
= κ1

∂2u

∂x2
0

(
1− κ2

κ1

∂u

∂x0
+ · · ·

)
. (8)

The above equation is nonlinear in displacement u, its nonlinearity originating exclusively in the nonzero κ2, κ3, etc.
coefficients in the thermodynamic expansion (7).

A. The linear approximation

We shall henceforth deliberately linearize the above equation (7), i.e. we assume that κ2 = κ3 = · · · = 0. The
propagation equation (8) becomes also linear, and reads

1

c2
∂2u

∂t2
=
∂2u

∂x2
0

, (9a)

with

c =

√
κ1

ρ0
. (9b)



5

Let us look for the acoustic eigenmodes, i.e. the monochromatic solutions of (9a). They necessarily read, owing to
the boundary conditions we have choosen and < denoting the real part,

un(x0, t) = <
{
An sin(knx0) e−iωnt

}
, (10a)

with

ωn = ckn, kn =
nπ

L0
(n = 1, 2, · · · ), (10b)

and An a (complex) amplitude. Note that, as far as the linearization of the thermodynamic relation (7) (i.e. κ2 =
κ3 = · · · = 0) is relevant, the above solution is exact, in contrast to the solution generally proposed in the framework

of the Euler picture, which requires in addition the linearization of the Euler equation, i.e. neglecting the (~v · −−→grad)~v
term in (2), namely (as recalled in the introduction) that the fluid particle velocities should be small compared to the
wave phase velocity.

Let us now determine the overall acoutic energy associated with the wave, i.e. the variation (with respect to the rest
state) of the sum of all the [x0, x0 +dx0] slices total energy. Since there is neither heat exchange between neighbouring
slices nor external force, we just have to determine the (mechanical) work done by the pressure forces to drive each
fluid slice from its equilibrium state to its current state at time t. For the [x0, x0 + dx0] slice, the energy variation is
exactly

dE =

∫ t

0

dt′
[
− SP (x0 + dx0, t

′)
∂u(x0 + dx0, t

′)

∂t′
+ SP (x0, t

′)
∂u(x0, t

′)

∂t′

]
= Sdx0

∫ t

0

dt′
[
− ∂P

∂x0

∂u

∂t′
− P ∂2u

∂x0∂t′

]
. (11a)

Owing to (6) and to the linarized version of (7), the above equation becomes

dE = Sdx0

[
1

2
ρ0

(
∂u(x0, t)

∂t

)2

− P0
∂u(x0, t)

∂x0
+

1

2
κ1

(
∂u(x0, t)

∂x0

)2]
. (11b)

Integrating over the whole fluid, and accounting for (9b) and our boundary conditions, we finally get the overall
acoustic energy E, which is a constant of the movement:

E =
1

2
ρ0S

∫ L0

0

dx0

[(
∂u

∂t

)2

+ c2
(
∂u

∂x0

)2]
. (11c)

Now, since any solution u(x0, t) of the wave equation (9a) is but a linear combination of eigenmodes of the type (10a),
the above energy (11c) may also be written, all calculations carried out,

E =
1

4
ρ0SL0

∞∑
n=1

|An|2ω2
n. (11d)

The above results deserve the following remark. Introducing the acoustic energy density

E =
dE

S dx0
, (12a)

the time-derivative of (11a) reads

∂E
∂t

+
∂

∂x0

(
P
∂u

∂t

)
= 0, (12b)

and should be regarded as the Lagrange expression of the local acoustic energy conservation, G = P ∂u
∂t standing for

the (1D) acoustic Poynting vector. Observe that the energy density E is defined with respect to the rest volume
(denominator S dx0 in (12a)). Likewise, the (one-dimension) divergence (∂/∂x0 in (12b)) is expressed using the rest
coordinate: G is derived with respect to the label x0, not to the current spatial position x.
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x = 0

ξ(t)

x = + ∞

fluid

x = – ∞

FIG. 3: A moving piston, with abscissa ξ(t), generates an acoustic wave propagating towards x = +∞.

B. The pulsating piston

Consider the situation illustrated in figure 3. A (1D) fluid occupies at rest and at the equilibrium pressure P0 the
x > 0 domain. A piston is placed at x = 0. Now, let the piston move (for instance pulsate around its rest position)
and let ξ(t) be its abscissa at time t.

How can we account for the motion of the fluid? The answer is most simple in the framework of the Lagrange
picture. Since no wave is coming from x = +∞, the relevant solution of equation (9a) reads

u(x0, t) = f
(
t− x0

c

)
, (13a)

where f is a regular function determined by imposing

u(x0 = 0, t) = ξ(t) ∀t  f = ξ. (13b)

Besides, using (7) in its linear form, we get

p(x0, t) =
κ1

c
f ′
(
t− x0

c

)
= Zv(x0, t), (14)

where v(x0, t) = ∂u(x0,t)
∂t is the velocity field of the fluid and

Z = ρ0c =
κ1

c
=
√
κ1ρ0 (15)

is its acoustic impedance. Observe by the way that the extrapressure exerted by the piston to move the fluid is Zξ̇,
hence G = P0ξ̇ + Zξ̇2: (in 1D geometry) the time average (〈 〉) acoustic power radiated by an oscillating (〈ξ̇〉 = 0)

piston is Z〈ξ̇2〉 per unit (transverse) surface.
We leave it to the reader as a challenge to propose a simpler solution in the framework of the Euler picture.

C. Reflection/transmission at an interface

Let us now go back to the question raised in the introduction and show that the Lagrange picture provides an exact
calculation of the reflection/transmission coefficients. Let us consider fig. 1 again. At rest, medium 1 and medium 2
are separated by the plane x = 0. Choosing the rest state of the system to implement the Lagrange labeling of the
fluid elements, x0 = 0 labels both the right-hand face of the last slice of medium 1, and the left-hand face of the first
slice of medium 2. This labeling will “follow” the motion of the system and (provided of course that no mixing occurs
between the two fluids) the Lagrange labeling of the interface will remain x0 = 0 throughout the propagation of the
acoustic wave, whatever the amplitude of the latter and without any approximation. Let ρ0j , resp. κj , (j = 1, 2)

denote the rest mass density, resp. the bulk modulus, of medium j. According to (9b), cj =
√
κj/ρ0j is the speed

of sound in medium j. Let us consider an acoustic wave coming from x = −∞. This incident wave is described by
the displacement field ui(x0, t) = f

(
t− x0

c1

)
, where f is any (regular) function. When the wave reaches the interface

(labeled x0 = 0, whatever its motion), it splits into a reflected wave ur(x0, t) = g
(
t + x0

c1

)
and a transmitted wave

ut(x0, t) = h
(
t− x0

c2

)
. In summary, the total displacement field u reads

for x0 < 0 : u(x0, t) = f

(
t− x0

c1

)
+ g

(
t+

x0

c1

)
,

for x0 > 0 : u(x0, t) = h

(
t− x0

c2

)
, (16a)
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whereas the extrapressure field p reads, owing to the linearized version of (7):

for x0 < 0 : p(x0, t) = Z1

(
f ′
(
t− x0

c1

)
− g′

(
t+

x0

c1

))
,

for x0 > 0 : p(x0, t) = Z2h
′
(
t− x0

c2

)
, (16b)

where Z1 = ρ01c1 = κ11/c1 =
√
κ11ρ01 and Z2 = ρ02c2 = κ12/c2 =

√
κ12ρ02 stand for the acoustic impedances of

media 1 and 2. Writing the continuities of v and p at the interface x0 = 0 at any time t, we obtain the well-known
reflection/transmission coefficient in velocity

rv =
g′

f ′
=
Z1 − Z2

Z1 + Z2
, tv =

h′

f ′
=

2Z1

Z1 + Z2
= 1 + rv (16c)

and in extrapressure

rp = − g′

f ′
= − rv, tp =

Z2h
′

Z1f ′
=
Z2

Z1
tv. (16d)

In the framework of the linear thermodynamic response, the Lagrange picture thus provides the simplest quantitative
description of the reflection/transmission phenomenon of an acoustic wave at an interface. Observe too that equalling
the acoustic Poynting vectors on either side of the interface x0 = 0, we recover the well known relation R + T = 1,
where

R = − rvrp =

(
Z1 − Z2

Z1 + Z2

)2
and T = tvtp =

4Z1Z2

(Z1 + Z2)2
(17)

are the power reflection and transmission coefficients. It is noteworthy that, in 1D geometry, reflection and dispersion
are nondispersive.

III. THE THREE-DIMENSION CASE

A. A quick overflight of the motion equations

Let us now come back to equation (6) and see how it can be generalized in the three-dimension case. Considering
a fluid amount with (rest) volume V0 =

∫
dτ0 and (rest) mass density ρ0, Newton’s Second Law reads∫

dτ0 ρ0
∂2~u

∂t2
=

∫∫
Σ(t)

−P d~s, (18a)

where Σ(t) is the external surface of the fluid amount at time t (see figure 4), and P the actual pressure exerted onto
this fluid amount by its surroundings. Using Ostrogradsky’s theorem, the surface integral in the right-hand side of
the above equation is changed in a volume integral∫∫

Σ(t)

−P d~s =

∫
dτ (−−−→gradP ) (18b)

where dτ is the volume at time t of the deformed fluid element whose volume was dτ0 at rest. Introducing the
dilatation factor

J =
dτ

dτ0
(19a)

(J is the jacobian of the variable change ~r0  ~r displayed in (3)), it can be shown and we leave it to the reader to
check that

∂J

∂t
= J div~v. (19b)

Therefore, an incompressible flow corresponds to div~v = 0, exactly like in the framework of the Euler picture.
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P0

Σ(0)

Σ(t)

ρ0, dτ0

ρ, dτ

– P ds−→

FIG. 4: An amount of fluid with rest mass density ρ0 and wrapped in its (external) surface Σ(0) under the (rest) pressure P0 is
displaced and deformed in the course of the motion. At time t, it undergoes the outside pressure P exerted onto its (external)
surface Σ(t).

Since the above equations (18a) and (18b) hold whatever the integration volume, we are left with the local motion
equation

ρ0
∂2~u

∂t2
= − J −−→gradP, (20)

where superscript “L” (for “Lagrange”) is understood in the left-hand side time-derivative.
The above motion equation obtained in the Lagrange picture is nonlinear (due to J in the right-hand side). It is

interestingly compared to the Euler equation recalled in (2). To begin with, let us observe that the fluid velocity ~v is
nothing else than the (Lagrange) time-derivative of the displacement ~u. Restoring provisionally superscripts “L” and
“E”, we have indeed

∂L~u

∂t
= ~v (21a)

and

∂L2~u

∂t2
=
∂L~v

∂t
=
∂E~v

∂t
+
(
~v · −−→grad

)
~v. (21b)

Moreover, observing that the fluid mass density ρ is (as a consequence of (19a) for instance) equal to ρ0/J , we conclude
that equations (2) and (20) are perfectly equivalent.

Interesting too is the comparison between the three-dimension motion equation (20) and its one-dimension reduced
expression (6). A (too) quick glance may instil the uncomfortable – and misleading – feeling that the J factor has
disappeared from the right-hand side of (6). In fact, in the one-dimension problem considered in section II, if x0 and
x respectively denote the abscissa at rest and at time t of the same fluid element (therefore labeled x0), we have,
owing for (19a),

grad =
∂

∂x
=

1

J

∂

∂x0
, (22a)

hence (20) becomes, in the one-dimension case,

ρ0
∂2~u

∂t2
= − J −−→gradP = − J ∂P

∂x
= − ∂P

∂x0
, (22b)

so that (6) is recovered. In the same connection, it is not difficult to extend the results of equations (11a-d) to the
three-dimension case and set out the energy balance in the Lagrange picture, as explained below.

Let us consider the fluid amount displayed in figure 4, and let E be its total energy. For the sake of simplicity, we
assume here again that there is no external force (gravity or other) acting on the fluid. Since the transformations of
the latter fluid are supposed to be isentropic, the time variations of E are (exactly as in the 1D case) only due to the
work of the outer pressure forces exerted upon surface Σ(t):

dE

dt
=

∫∫
Σ(t)

−P d~s · ∂~u
∂t
, (23a)
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entailing (through Ostrogradsky’s theorem)

dE

dt
+

∫
dτ div ~G = 0, (23b)

where ~G = P
∂~u

∂t
is the so-called acoustic Poynting vector. Detailing the above energy conservation equation, we get,

owing to (19a), (19b) and (20),

dE

dt
= −

∫
dτ

[−−→
gradP · ∂~u

∂t
+ P div

∂~u

∂t

]
= −

∫
dτ0

[
J
−−→
gradP · ∂~u

∂t
+ PJ div

∂~u

∂t

]
=

∫
dτ0

[
ρ0
∂2~u

∂t2
· ∂~u
∂t
− P ∂J

∂t

]
, (24a)

where
∫

dτ , resp.
∫

dτ0, denote integrals over the volumes occupied at current time t, resp. at rest, by the amount of
fluid shown in figure 4. Equation (24a) consequently reads

dE

dt
=

dEk

dt
+ Pc, (24b)

where Ek =

∫
dτ0

1

2
ρ0

(
∂~u

∂t

)2
is the overall kinetic energy and Pc =

∫
dτ0

(
− P

∂J

∂t

)
is the overall compression

power of the pressure forces undergone by the fluid. As a matter of fact, due to the absence of any thermal exchange,
equation (24b) is but the expression of the First Principle of Thermodynamics. As was already the case in 1D geometry,
calculating the latter compression power is a thermodynamic issue which requires the P -versus-J relation. We have

indeed P ∂J
∂t = d

dt

∫ J
1
P (J ′) dJ ′, hence, since the integral

∫
dτ0 concerns a time-independent integration volume,

Pc =
d

dt

∫
dτ0

∫ J

1

−P (J ′)dJ ′. (25)

In the particular case of a linear thermodynamic response of the type

p = P − P0 = −κ1(J − 1), (26a)

setting κ1 = ρ0c
2 like in (9b), we are left, all calculations carried out, with

E + P0(V − V0) =
1

2

∫
dτ0 ρ0

[(
∂~u

∂t

)2
+ c2(J − 1)2

]
, (26b)

where V and V0 are the overall volume of the fluid, respectively at current time t and at rest. Observe that, in the
framework of the small deformation approximation (26a), the expansion term J − 1 should be substituted by div ~u.
In the latter framework, the above result (26b) thus generalizes (11c). Observe too that, in the case where the fluid
undergoes an outer pressure P0, the quantity E + P0(V − V0), and hence the enthalpy, is conserved in the course of
time.

B. The pulsating sphere

The well known problem of the acoustic wave generated by a pulsating sphere will illustrate the convenience of
the Lagrange picture. Let us consider an infinite homogeneous elastic fluid. A pulsating sphere, with center at the
origin of a spherical coordinate system and with current radius R(t) = R0 + ξ(t), excitates spherical waves in the
fluid (see figure 5a). For the sake of simplicity, let us restrict our study to the small deformation limit. Due to the
spherical symmetry of the motion, all relevant quantities (pressure, temperature) are independent of angles θ and ϕ.
The displacement field ~u reads

~u(~r, t) = u(r, t)~er, (27a)

where ~er is the radial unitary vector of the spherical coordinate system. Thus, linearizing equation (20), we get the
simple motion equation

ρ0
∂2u

∂t2
= − ∂P

∂r
= − ∂p

∂r
. (27b)
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Assuming a linear p-versus-(J−1) thermodynamic relation of the type (26a) and linearizing the expansion term J−1,
we obtain the extrapressure

p = −κ1div ~u = − κ1

r2

∂(r2u)

∂r
. (28a)

From the above expression, the d’Alembert wave equation(
1

c2
∂2

∂t2
− ∂2

∂r2

)(
rp(r, t)

)
= 0 (28b)

is obtained. The mathematical treatment of this equation is well known from textbooks. Since there is no incoming
spherical wave from infinity, its general relevant solution is

p(r, t) =
1

r
ϕ

(
t− r −R0

c

)
, (29)

where ϕ is any (regular) function. Choosing the Lagrange picture reveals its convenience in fine when one has to
determine function ϕ knowing the motion ξ(t) of the pulsating sphere, as shown below. Using (29) to rewrite the
right-hand side of (27b), we get

ρ0
∂2u

∂t2
=

1

r2
ϕ

(
t− r −R0

c

)
+

1

rc
ϕ′
(
t− r −R0

c

)
=

1

r2

(
1 +

r

c

d

dt

)
ϕ

(
t− r −R0

c

)
. (30a)

Simply equalizing u(r = R0, t) and ξ(t) we obtain the differential equation

ρ0ξ̈ =
1

R2
0

(
1 +

R0

c

d

dt

)
ϕ(t), (30b)

the solution of which we symbolically denote

ϕ(t) = ρ0R
2
0

(
1 +

R0

c

d

dt

)(−1)

ξ̈(t). (30c)

Allowing for (29) and (30c) we get the extrapressure p(r, t). On the other hand, owing to (30c) again and after a
(double) time-integration of (30a), we get the symbolic expression of the displacement

u(r, t) =
R2

0

r2

(
1 +

R0

c

d

dt

)(−1)(
1 +

r

c

d

dt

)
ξ

(
t− r −R0

c

)
. (31)

At this step, it is interesting to consider the following two limit-situations.

(i) R0

c |ξ̇| � |ξ|. In the case of a monochromatic pulsation of the sphere, the condition R0ω
c � 1 means that the

wavelength of the generated acoustic wave is small compared to radius R0. Neglecting unity with respect to
R0

c
d
dt in (30c), we simply get

ϕ ' ρ0cR0ξ̇, (32a)

and consequently

u(r, t) ' R0

r
ξ

(
t− r −R0

c

)
, p(r, t) ' R0

r
ρ0cξ̇

(
t− r −R0

c

)
= Zv(r, t), (32b)

which (save for the R0

r prefactor characteristic of the 3D geometry) is exactly what was expected from the 1D
analysis in subsection II B (see (13)-(15)). The total acoutic power radiated by the pulsating sphere is thus

P(t) = 4πR2
0G(R0, t) = 4πR2

0Zξ̇
2. (32c)
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(a) (b)
medium 2

medium 1

R0

fluid

pulsating
sphere

R0 R0 + ξ(t)

FIG. 5: (a). A pulsating sphere with current radius R(t) = R0 + ξ(t) generates an outgoing spherical wave in the outer fluid.
(b). Medium 1 and medium 2 are separated at rest by a spherical interface with radius R0 (dashed line) and center at the
origin. An outgoing spherical pressure wave, generated in the r < R0 area, is reflected/transmitted at the interface.

(ii) R0

c |ξ̇| � |ξ|. In the case of a monochromatic pulsation of the sphere, the condition R0ω
c � 1 means that the

wavelength of the generated acoustic wave is large compared to radius R0. Solution (30c) can then be expanded

as a series of time-derivatives of ξ̈, yielding

ϕ ' ρ0R
2
0

(
ξ̈ − R0

c

...
ξ + · · ·

)
, (33a)

hence the extrapressure p(r, t) (using (29)) and the displacement

u(r, t) =

[
R2

0

r2
ξ +

R2
0

r2

(
1− R0

r

)(
ξ̇ − R0

c
ξ̈ + · · ·

)](
t− r −R0

c

)
. (33b)

Observe that, in the present limit-situation (ii), the extrapressure is dominated by ξ̈, instead of ξ̇ in (i), and
that the part of the displacement proportional to ξ decays like 1/r2, instead of 1/r in (i). The power P(t)
furnished by the sphere to move the fluid reads, setting M = 4πρ0R

3
0,

P(t) = 4πR2
0G(R0, t) = M

(
ξ̈ − R0

c

...
ξ

)
ξ̇. (34a)

It is noteworthy that the first term in the right-hand side of the above equation simply reads d
dt

(
1
2Mξ̇2

)
: the

ξ̈ term in the extrapressure accounts for a renormalization of the mass of the pulsating sphere. The
...
ξ term

accounts for an acoustic radiated power

〈P〉 = −MR0

c
〈
...
ξ ξ̇〉 = 4πρ0

R4
0

c
〈ξ̈2〉. (34b)

Note too that the behavior of the pulsating sphere in the (ii) limit-situation is quite analogous to that of
moving charges in electrodynamics, the

...
ξ term in equations (33a) and (34a-b) bearing the equivalent of the

Abraham-Lorentz force.6

C. Reflection/transmission in a spherical geometry

The formalism used in the above subsection III B also offers the opportunity to determine the reflection and
transmission coefficients of an acoustic wave at the interface between the two media (1 and 2) considered in subsection
II C, but now in spherical geometry. Let us consider figure 5b. An outgoing spherical wave is supposed to propagate
in medium 1. This wave reaches a spherical interface with rest radius R0. It is then split in a reflected wave and a
transmitted wave. Disregarding further possible reflection at the origin, the pressure field is described (in the linear
approximation) by

r < R0 : p(r, t) =
1

r

[
ϕ

(
t− r −R0

c1

)
+ γ

(
t+

r −R0

c1

)]
(35a)

r > R0 : p(r, t) =
1

r
η

(
t− r −R0

c2

)
. (35b)
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Equalizing the pressures at the interface (labeled r = R0) we naturally get

ϕ(t) + γ(t) = η(t). (36a)

Equalizing the accelerations of the fluid at this interface r = R0, we also get (see (30a) for instance)

1

ρ01

[
1

R0

(
ϕ(t) + γ(t)

)
+

1

c1

(
ϕ′(t)− γ′(t)

)]
=

1

ρ02

[
1

R0
η(t) +

1

c2
η′(t)

]
. (36b)

Contrary to its 1D analogous discussed in subsection II C, the above system cannot be simply solved for γ(t) and η(t).
This is due to the mixing, in equation (36b), of funtions ϕ, γ, η with their time-derivatives ϕ′, γ′, η′, which accounts
for dispersive reflection and transmission of the wave at the interface. Considering indeed a monochromatic solution
of the above equations (36a-b) and setting ϕ(t) = <[ϕ̃ e−iωt], γ(t) = <[γ̃ e−iωt] and η(t) = <[η̃ e−iωt], we are left with
the relations

ϕ̃+ γ̃ = η̃ (37a)

ϕ̃

z1
− γ̃

z∗1
=

η̃

z2
, (37b)

where, setting k1 = ω/c1 and k2 = ω/c2,

1

z1
=

1

Z1

(
1 +

i

k1R0

)
,

1

z2
=

1

Z2

(
1 +

i

k2R0

)
(38)

stand for complex effective acoustic impedances at the interface r = R0. Observe that for k1R0, k2R0 � 1 (i.e.
interface radius large compared to the acoustic wavelengths) z1 and z2 are real, and coincide with the usual impedances
Z1 and Z2 introduced in subsection II C. From the above system (37a-b) one can easily derive the reflection and
transmission coefficients in extrapressure

rp =
γ̃

ϕ̃
=

1

z1
− 1

z2

1

z∗1
+

1

z2

, tp =
η̃

ϕ̃
= 1 + rp, (39a)

in velocity

rv = − z1

z∗1
rp, tv = 1 + rv =

z1

z2
tp, (39b)

and in power

R = |r2
p|, T =

Z1

Z2
|tp|2, (39c)

to be compared with the 1D results (16c-d) and (17).

Considering figure 5b again, we can also envisage the case where an incoming spherical wave propagates in medium 2
(from infinity). When it reaches the interface, it splits into a reflected wave (which goes back to infinity in medium 2)
and a transmitted wave (which enters into medium 1). We leave it to the reader to check that the corresponding
reflection and transmission coefficients can then be derived from expressions (39a-c) by simply permuting indices 1
and 2 and complex-conjugating the whole. In the latter case of the reflection of an incoming wave, it is interesting to
consider the limit-situation R0 → 0. As shown by (38), both effective impedances z1 and z2 are then purely imaginary
and tend towards zero. It is also noteworthy that both rp and rv tend towards −1 (as expected since tp and tv tend
towards 0). This behavior is characteristic of the (3D) spherical geometry: in 1D, rp and rv are always opposite (see
(16d)). A rather spectacular feature of the latter 3D geometry originates in the reflection dispersivity, as illustrated
below. Let us consider an air bubble, with (rest) radius R0, immersed in water. As far as spherical pressure waves
are concerned, this system can be regarded as an acoustic cavity of Pérot-Fabry type, the sound bouncing between
r = 0 (reflection coefficient = –1) and r = R0 (reflection coefficient = rp(R0)). The amplitude of the wave inside the
air cavity (medium 1) is then proportional to the infinite series

1− rp(R0) e2ik1R0 + r2
p(R0) e4ik1R0 + · · · = 1

1 + rp(R0) e2ik1R0
=

1

D
. (40)
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FIG. 6: The inverse absolute value of denominator D introduced in the text (see (40)) as a function of xa = k1R0. The peaks
of |D−1| correspond to the radial Pérot-Fabry acoustic resonances of the air bubble. Note that a log-log scale is necessary to
display both the fundamental frequency peak and the others: for an air bubble at standard pressure and temperature, the
fundamental resonance is obtained for xa ' 6.2 × 10−2 � π

2
and its height is several orders of magnitude larger than that of

the other peaks.

The resonances of the cavity naturally correspond to the minima of |D|. If the formulas (16c-d) of the 1D geometry
were available in the present case, the reflection coefficient rp(R0) would not depend of frequency. Moreover, with air as
medium 1 and water as medium 2, the latter coefficient would be real and positive (' 1 under the circumstances, since
Z2 ' 5000Z1). As a consequence, |D|−1 would display a series of equidistant peaks corresponding to k1R0 = (n+ 1

2 )π
(n = 0, 1, 2, . . . ). This is indeed what is obtained for n� 1: for higher-order resonances, the acoustic wavelengths (in
air and a fortiori in water) are small compared to R0 and the 1D results are available. But for low-order resonances
(n = 0 or 1), the frequency-dependence of rp(R0) entails both a “red shift” and an enhancement of the peaks, so
much so that a log-log scale is necessary to display the lowest five resonances in figure 6. The shift of the fundamental
resonance is tremendous. To derive it analytically, let us assume k1R0, k2R0 � 1 and expand denominator D in
increasing powers of xa = k1R0. Allowing for (38) and (39-a) we get, owing to ρ01 � ρ02, Z1 � Z2,

D ' 2ixa

(
ρ01

ρ02
− x2

a

3

)
+ o(x5

a). (41)

As a consequence, the absolute value of denominator D has its lowest frequency minimum for

x2
a '

3ρ01

ρ02
 ω = ωM =

c1
R0

√
3ρ01

ρ02
=

√
3γP0

ρ02R2
0

, (42)

where P0 is the pressure of the air inside the bubble and γ = CP /CV the air heat capacities ratio. The story of
the above formula (42) is worth relating. At the begining of the last century, to interpret the sound of the running
water, R. Paget suggested that the fall of simple drops could generate air cavities oscillating much like resonators.7 M.
Minnaert objected that, for air bubbles with radii in the millimetric range, rigid-wall Pérot-Fabry resonances would
correspond to frequencies overshooting the human ear sensitivity cutoff. Indeed, as mentioned above, the lowest
fundamental resonance would be found, if the 1D results were available, for xa ' π

2 , namely f ' c1/4R0 ' 85 kHz

for R0 = 1 mm. He then proposed an utterly different approach in a pioneering work,8 and derived formula (42),
ωM being since known as the Minnaert angular frequency. At atmopheric pressure, for R0 = 1 mm and γ = 1.4, the
Minnaert frequency is ωM/2π ' 3.3 kHz. Surprising though it may be, the Paget and the Minnaert interpretations
are both correct, the controversy between them simply originates in their disregarding the peculiar behavior of the
acoustic reflection/transmission at a spherical interface.

IV. CONCLUSION

In the present paper, we have argued that as far as acoustic propagation in fluids is considered, the Lagrange picture
provides a very intuitive framework to carry out the calculations. This is particularly true in 1D geometry: provided
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that the thermodynamic extrapressure-to-dilatation relation is linear, the motion equation itself is linear and can be
solved without any approximation. Moreover, when the fluid is assigned a moving boundary condition (for instance
when it is moved, like in subsection II B, by a pulsating piston), the Lagrange picture provides the most natural
framework to account for this boundary condition. In 3D geometry, the motion equation of the fluid is no longer
linear, unless the small movements approximation is made. Nevertheless the Lagrange picture remains convenient as
concerns moving boundary conditions, as illustrated by the example of the pulsating sphere and related topics.

We thank Professor Jean-Claude Bacri for drawing our attention onto the air bubble problem.
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