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ABSTRACT

This paper deals with automatic systems for image recipe
recognition. For this purpose, we compare and evaluate lead-
ing vision-based and text-based technologies on a new very
large multimodal dataset (UPMC Food-101) containing about
100,000 recipes for a total of 101 food categories. Each item
in this dataset is represented by one image plus textual infor-
mation. We present deep experiments of recipe recognition on
our dataset using visual, textual information and fusion. Ad-
ditionally, we present experiments with text-based embedding
technology to represent any food word in a semantical contin-
uous space. We also compare our dataset features with a twin
dataset provided by ETHZ university: we revisit their data
collection protocols and carry out transfer learning schemes to
highlight similarities and differences between both datasets.

Finally, we propose a real application for daily users to
identify recipes. This application is a web search engine that
allows any mobile device to send a query image and retrieve
the most relevant recipes in our dataset.

1. INTRODUCTION

Food category classification is a key technology for many
food-related applications such as monitoring healthy diet,
computational cooking, food recommendation system, etc.
In [1], a novel smart phone application to record daily meal
activities by image retrieval technique is developed. Based
on this personal dietary data log system, they were able to
conduct further usage preference experiments [2] and food
nutrition balance estimation [3].

Open Food System 2 aims at inventing new smart cooking
appliances, with the ability to monitor cooking settings auto-
matically for optimal results and preserve the nutritional value
and organoleptic qualities of cooked foods. The Technology
Assisted Dietary Assessment (TADA) project of Purdue Uni-
versity [4] aims at developing a mobile food recorder which
can translate dietary information to an accurate account of
daily food and nutrient intake. Food category classification is
an indispensable ingredient in all these applications.

2http://www.futur-en-seine.fr/fens2014/en/
projet/open-food-system-2/

In this paper, we focus on building automatic systems for
image recipe recognition. For this purpose, we propose a new
very large multimodal dataset (UPMC Food-101) containing
about 100,000 recipes for a total of 101 food categories col-
lected from the web. Each item in this dataset is represented
by one image and the HTML information including metadata,
content etc. of the seed page from which the image orig-
inated. We detail our initiative to build our dataset in sec-
tions 2 and 3 explaining the specificities and the originality
of our dataset. We perform experiments at a large scale to
evaluate visual and textual features along with their fusion in
section 4. We propose in section 5, further statistics to high-
light dataset characteristics and comparison with another re-
cent large scale dataset (ETHZ Food-101 [5]). Finally, in sec-
tion 6, we demonstrate the interest of these recognition tech-
nologies coupled with web-based dataset in a mobile search
application, which can receive food image as a query and re-
turn the most relevant classes and corresponding recipes.

2. RELATED WORKS ON FOOD DATASETS

There is an increasing demand of food category data in var-
ious food-related applications like dietary assessment, com-
putational cooking, recipe retrieval, etc. However, specific
public massive dataset for food research community is still in-
sufficient. One of them is the Pittsburgh Food Image Dataset
(PFID) [6] dataset of 4556 fast food images. Another one
is UNICT-FD889 dataset [7] that has 889 distinct plates of
food. The authors use this database for Near Duplicate Im-
age retrieval (NDIR) by using three different state-of-the-art
image descriptors. There are a couple of databases from the
Max-Planck Institute for Informatics that contain images of
cooking activities which focus on detecting fine grained ac-
tivities while cooking [8]. UEC-Food100 [9] contains 100
categories of food images, each category contains about 100
images, mainly Japanese food categories. [10] performs a late
fusion of deep convolutional features and conventional hand-
crafted image features upon dataset UEC-Food100 [9], which
outperforms the best classification accuracy on this dataset.
Most of the datasets are either collected in a controlled envi-
ronment or contain too few samples for each food category to
build a generic food recognizer or classifier.

http://www.futur-en-seine.fr/fens2014/en/projet/open-food-system-2/
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In this paper, we propose a new very large multimodal
dataset henceforth named as UPMC Food-101, which is
collected in uncontrolled environment with a huge diver-
sity among the instances. UPMC Food-101 contains about
100,000 images and textual descriptions for 101 food cate-
gories. This dataset aims at stimulating the research of food
category recognition in the domain of multimedia and it will
be released freely to the research community. In addition to
the large number of images, an extra property of our dataset is
that it shares the same food categories with one of the largest
public food image dataset ETHZ Food-101 [5]. Such a ”twins
dataset pair” can thus enable many interesting research hot
spots such as transfer learning. To the best of our knowledge,
UPMC Food-101 and ETHZ Food-101 are the first ”twins
dataset pair” in food area. We explain the similarities and
differences between both datasets in detail in the following
sections.

3. UPMC FOOD-101 DATASET

3.1. Data Collection Protocol

To create a real world and challenging dataset (with both vi-
sual and textual data) which can truly represent the existing
large intra-class variations among food categories, we decide
to use Google Image search. Unlike controlled sources, us-
ing long ranking (one thousand results) of Web search engine
allows to explore recipes that are potentially deeply buried in
the world wide web. Similarly, Y. Kawano and K. Yanai ex-
plore the Web resources in [11], to extend their initial UEC
Food-100 dataset [9]. It is also interesting to note that the
past approaches [12] using Google search engine to obtain
images for classification tasks have reported around 30 per-
cent of precision level on some of collected images (in 2006).
We observe that the results returned by Google Image search
in 2014 for textual queries related to food images are more
relevant with very low level of noise. This is explained by the
large improvement in the field of searching and page rank-
ing algorithms since 2006. Based on these preliminary find-
ings, we decide to create our database by querying Google
image search with 101 labels taken from the ETHZ Food-101
dataset [5] along with an added word ”recipes”. We added
the word ”recipes” to each label before passing the query to
Google for two reasons:

• As we are interested in recipe recognition, adding
”recipes” word after the labels, for example, ”ham-
burger recipe”, returns more focused information about
”how to make hamburgers” rather than other topics
like ”where to eat hamburgers” or ”Hamburger is junk
food” in the textual form.

• We observed that adding ”recipes” to our queries helps
decreasing the noise level a little further in the returned
images. For example, a simple ”hamburger” in search

engine could return some thing like ”hamburger menu
icon” or ”hamburger-like evening dress” which are far
from our expectations.

We then collect the first 1, 000 images returned for
each query and remove any image with a size smaller than
120 pixels. In total, UPMC Food-101 contains 101 food cat-
egories and 90, 840 images, with a size range between 790
and 956 images for different classes. Figure 1 shows repre-
sentative instances of all 100 categories. Due to no human
intervention in grasping these data, we estimate that each cat-
egory may contain about 5% irrelevant images for each cate-
gory. 3 examples of ”hamburger” class are shown in Figure 2.
We notice that adding the keyword ”recipes” results in taking
into account ingredient or intermediate food images. Deter-
mining whether these images should be considered as noise
or not, directly depends on the specific application. Addition-
ally, we save 93, 533 raw HTML source pages which embed
images. The reason that we don’t have 101, 000 HTML pages
is that some pages are not available. The number of the im-
ages that have text is 86, 574.

Fig. 1: Category examples of our UPMC Food-101 dataset.

Dataset class num
image num

per class source Data type

UPMC 101 790 - 956 various text&image
ETHZ 101 1000 specific image

Table 1: UPMC Food-101 and ETHZ Food-101 statistics



(a) Correct (b) Ingredient (c) Noise

Fig. 2: Example images within class ”hamburger” of UPMC
Food-101. Note that we have images completely irrelevant
with hamburger like Figure 2c, as well as hamburger ingredi-
ent like Figure 2b, which depends on the specific application
to judge whether it is noise or not.

Fig. 3: Example images within class ”hamburger” of ETHZ
Food-101. All these images have strong selfie style as they are
uploaded by consumers. Although some background noise
(human faces, hands) are introduced in images, it ensures im-
ages out of food categories are excluded from this dataset.

3.2. Comparison with ETHZ Food-101

The food dataset ETHZ Food-101 [5] has been recently intro-
duced. 101,000 images for 101 food categories have been col-
lected from a specific website (e.g. www.foodspotting.com).
The labels of food categories were chosen from the top 101
most popular dishes on the mentioned website.

We have used the same class labels as ETHZ Food-101
for our dataset. In Table 1, general statistics on both sets are
reported. The main difference comes from the data collection
protocols. Since our data is collected directly from a search
engine with automatic annotations, whereas ETHZ Food-101
dataset images were collected from a specific website which
contains manual annotated images uploaded by humans, lead-
ing to less number of false positive/noise in ETHZ Food-101
than in UPMC Food-101. As the three examples of ”ham-
burger” class show in Figure 3, ETHZ Food-101 ensures im-
ages irrelevant with food categories are mostly excluded from
this dataset. Moreover, there was no textual data provided
with images in ETHZ Food-101. However, to classify be-
tween two variants of the same food categories, text can help
a lot. We explore visual and text classification in the next
section.

4. CLASSIFICATION RESULTS

In the following subsections we run several classification al-
gorithms by using visual information, textual information and

the fusion, to make quantitative descriptions of our dataset.
The results are shown in Table 2. A unified training and test
protocol is applied for both visual and textual tests, in order
to evaluate and compare the performances with minimal extra
factors. The protocol is as follows: we split out the exam-
ples which have both image and text, then randomly select
600 training examples for each category to train a one-vs-rest
linear SVM [13] with C = 100, the remaining examples are
for test. We evaluate our results by averaging accuracy over
10 tests, where accuracy is defined as #(true positives)

#(test examples) .

4.1. Visual Features Experiments

4.1.1. Bag-of-Words Histogram (BoW) + SIFT

We represent images as Bag-of-Words histogram with a spa-
tial pyramid as our first baseline. In detail, we first proportion-
ally resize images which has a size larger than 300 pixels,
then extract mono-scale SIFT with window size 4 and step
size 8, 1024 word visual dictionary, soft coding and max pool-
ing with 3 level spatial information. This baseline obtains an
average accuracy 23.96%.

4.1.2. Bossanova Image Pooling Representation

Bossanova [14] reinforces the pooling stage of BoW by con-
sidering distance between a word and a given center of a clus-
ter. As Bossanova only modifies the pooling stage, we can
reuse the same coding setting as BoW. In our experiment, 2
bins are used in the quantization step to encode the distances
from sifts to clusters, BoW is concatenated with vector his-
togram with no scaling factor, we set range of distances per
cluster to [0.4, 2.0], for each word we consider 10 neighbors.
This method results in an average accuracy of 28.59%, which
constitutes an improvement of 19.37% over the BoW model.

4.1.3. Convolutional Neural Networks (CNN) Deep Features

CNN deep feature is the state of the art in many image recog-
nition challenges. Deep feature contains color information,
nevertheless, its dimensionality is often much lower than the
traditional SIFT descriptor but with much better performance.
In our experiment, we first adopt the ”fast network” pre-
trained model of OverFeat3 as the feature extractor. The out-
put of the 7th stage of this model, a 4096 dimension vector,
is used as the feature description of a given image. We get
an average accuracy of 33.91%, which gains an relative im-
provement of 18.6% with respect to the Bossanova.

This result is very interesting because the OverFeat CNN
was trained on 1,000 class dataset ImageNet, which contains
very few images of food categories (French fries, few images
of waffles etc). Even after having been trained on few food
images, the OverFeat CNN produces very good deep features

3http://cilvr.nyu.edu/doku.php?id=software:
overfeat:start
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Visual Textual Fusion
BoW Bossanova Deep Very Deep TF-IDF TF-IDF + Very Deep

23.96% 28.59% 33.91% 40.21% 82.06% 85.10%

Table 2: Classification results (Ave. Precision %) on UPMC Food-101 for Visual, Textual and Combined features.

which outperform the standard Bossanova baseline in the con-
text of classification.

[15] pushes CNN network to 16−19 weight layers, which
is about twice deeper than the previous work. In our experi-
ment, we use the pre-trained model ”imagenet-vgg-verydeep-
19”4 to extract features. This model is also trained on Ima-
geNet so it is comparable with the result in the last paragraph.
We take the output of the last layer before the classification
layer as image features. Each feature is a 4096 dimensions
vector. We finally achieve an accuracy of 40.21% over our
dataset with very deep features.

4.2. Textual Features Experiment

Since our raw textual data is in html format, we need some
preprocessing in order to remove numerous noisy elements
such as html tags, code, punctuations. Our foremost prepro-
cessing is parsing content out from HTML pages by Python
package html2text5.

4.2.1. TF-IDF

TF-IDF (Term Frequency–Inverse Document Frequency)
value measures the importance of a word w in a document
D with respect to the whole corpus, where TF evaluates the
importance of word in a document, and IDF evaluates the im-
portance of a word in the corpus.

To represent a document with TF-IDF, we generate the
dictionary by preprocessing words as follows: 1/ Stemming
all words. For example, words like ”dogs” and ”sleeping”
are respectively stemmed to ”dog” and ”work”, 2/ Removing
words with high frequency of occurrence (stop words) such as
”the”,”is”,”in”, 3/ Removing words occurred less than in 11
docs, 4/ Keeping stems with length between 6 and 18. After
the pre-processing, 46972 words are left. We then form a
dictionary Dictt using these words.

We calculate TF-IDF value for every word in document by
formula tfidfw,D = tfw,D × idfw, with tfw,D =

nw,D∑
k nk,D

,
where ni,j is the frequency of word i appearing in document
j, and idfw = log |N |

|{j:w∈Dj}| , where N is the total number of
documents in the corpus, and |{j : w ∈ Dj}| is the number
of documents where the term w appears. TF-IDF value fa-
vors the words less occurred in corpus and more occurred in
a given document D, and suppress the word in reverse case.
A document can be represented by the TF-IDF value of all its

4http://www.vlfeat.org/matconvnet/pretrained/
5https://pypi.python.org/pypi/html2text

words belonging to the dictionary Dictt. We obtain 82.06%
classification average accuracy on our dataset. Such a high
score is partly due to the bias introduced by our data crawling
protocol.

4.3. Late Fusion of Image+Text

We merge very deep features and TF-IDF classification scores
by late fusion. The fusion score sf is a linear combination of
the scores provided by both image and text classification sys-
tems, as sf = αsi+(1−α)st, where α is the fusion parameter
in the range [0, 1], si is the score from the image classifier and
st is the score from the text. We select α by cross-validation
over different splits of data and the final classification score
is 85.1%, which improves 3.6% with respect to textual infor-
mation alone and 109.8% with respect to visual information
alone. Note that the classification scores were not calibrated
prior to late fusion so that α does not depend on the relative
accuracy of each source of scores.

5. QUANTITATIVE ANALYSIS OF UPMC FOOD-101

In this section, we report further analysis of UPMC Food-
101. We investigate the word vector representations [16] for
its strong semantic expressiveness. Transfer learning between
UPMC Food-101 and ETHZ Food-101 is also analyzed.

5.1. Word Vector Representation

We first introduce how to extract word vectors, then explore
some interesting features of this representation.

After parsing out the content of web pages, we concate-
nate all of them together to build a corpus for training a dictio-
nary Dictv with word2vec [16], which is a tool to efficiently
compute vector representations of words. Words with an oc-
currence frequency less than 5 in the corpus are removed from
Dictv . This condition results in 137092 words, in which each
word is described by a 200 dimensional feature vector. Dictv
contains stop words and other noisy words, so we intersect
Dictt and Dictv , which creates a new dictionary Dict con-
taining 46773 words.

On the other hand, each document is first preprocessed
by the tool html2text, then represented by the element-wise
average of its valid word vectors, where ”valid” means that
the word is in Dict. A linear SVM is trained and we obtain
an average accuracy of 67.21% on our dataset. Although this
classification result is worse than TF-IDF (82.06%), it can be
enhanced by more advanced pooling strategies, rather than

http://www.vlfeat.org/matconvnet/pretrained/
https://pypi.python.org/pypi/html2text


TF-IDF word2vec TF-IDF+word2vec
82.06% 67.21% 84.19%

Table 3: Late fusion of TF-IDF and average word2vec repre-
sentations.

a simple average vector over all words, as reported in [17].
Additionally, recall that our data source is the Google search
results according to a category name: this step can also rein-
force the superiority for word frequency based methods like
TF-IDF. On the other hand, since the word vector tries to learn
a semantic representation of words with much less dimension,
the simple word frequency statistical information will surely
lose a lot. However, by late fusion with TF-IDF, we get the
score of 84.19%, improving by 2% the single TF-IDF perfor-
mance, as shown in Table 3. TF-IDF and word2vect encode
complementary information in textual data.

The embedded word vector space allows to explore se-
mantic relationships. To investigate this aspect, we report in
Table 4 the closest words by using the cosine distance met-
ric for -ravioli, -sushi, -pho in the embedded vector space
(using the Dictv dataset). The five most closest words are
strongly semantically related to the given query. Addition-
ally, calculating a simple average of the words in a phrase
also results in a reasonable semantic. In Table 5, we show
the closest words of -rice, -japan and -rice japan. As we can
see, -koshihikari, which is a popular variety of rice cultivated
in Japan, is closest to -rice japan, meanwhile for either -rice
or -japan, -koshihikari- is out of their first five candidates,
which means word vector has well expressed the semantic of
the short phrase -rice+japan. Moreover, -koshihikari is not
among the 101 food category, its meaning and relation with
other words are all learned from the corpus in a purely un-
supervised manner. Such a powerful semantic understanding
property could help search engine understand user-level needs
with natural language as input. It is a promising tool for filling
the semantic gap.

ravioli sushi pho
gnocchi 0.67 nigiri 0.69 souppho 0.68
tortelli 0.58 maki 0.65 vietnames 0.59

cappellacci 0.55 uramaki 0.65 phos 0.57
delallocom 0.52 sashimi 0.64 beefnoodl 0.58
itemtitlea 0.52 norimaki 0.64 bo 0.56

Table 4: 5 most similar words of -ravioli, -sushi and -pho.
Each group is indeed semantically relevant, except for some
words with low scores like -delallocom and -itemtitlea.

5.2. Transfer Learning

As another set of experiments, we perform knowledge trans-
ferring experiments over both datasets (ETHZ Food-101 and

rice japan rice japan
calros 0.59 osaka 0.70 koshihikari 0.64

basmati 0.59 tokyo 0.62 awabi 0.61
vermicelli 0.58 kyoto 0.62 japanes 0.61

stirfri 0.58 chugoku 0.61 nishiki 0.59
veget 0.58 gunma 0.60 chahan 0.57

Table 5: Short phrase -rice japan, represented as the average
of -rice and -japan, is closest to -koshihikari.

UPMC Food-101), namely learning the classifier model on
one dataset and testing it on the other one. This experiment
aims at showing the different performances of UPMC Food-
101 and ETHZ Food-101 when performing visual classifica-
tion. In this experiment, we use very deep features. The re-
sults of the transfer learning experiments are shown in Ta-
ble 6. The first two rows show the results of classification
when training with the same number of examples (e.g. 600
examples for each class) of one dataset and testing on the rest
of this dataset or on the whole of the other dataset, while the
last two rows show the results of classification when train-
ing with all examples on one dataset and testing on the other
dataset.

There are some interesting points that can be inferred
from the results. The first one is that even though both
datasets contain images for same food categories, they are
very different from each other. This can be derived from the
fact that there is a considerable difference of around 50% av-
erage accuracy when training on one dataset and testing on
both datasets (first 2 rows in Table 6).

Second point that can be observed from the Table 6 is that
training on part of UPMC Food-101 outperforms training on
the whole UPMC Food-101 when testing on ETHZ Food-101
by a margin of 1.57%, while on the contrary, only a negligi-
ble difference (0.36%) for training on ETHZ Food-101 and
testing on UPMC Food-101 is observed. This perhaps can
be an indication of comparative noise levels in both datasets,
UPMC Food-101 being the noisier dataset.

train / test UPMC ETHZ
UPMC (600 examples) 40.56 25.63
ETHZ (600 examples) 25.28 42.54
UPMC (all examples) - 24.06
ETHZ (all examples) 24.92 -

Table 6: Results of transfer learning between UPMC Food-
101 and ETHZ Food-101.

Note that our ETHZ deep results are not comparable with
the CNN results in [5] because they train deep features as we
use a pre-trained CNN on ImageNet.



6. MOBILE RECIPE RETRIEVAL

Providing an efficient way to automatically recognize the
food/dish or its recipes on our plates will not only satisfy our
curiosity but can have a wider impact on daily life in both
the real and virtual worlds. ”What is the name of this dish?”,
”How to cook this?”. We all have asked these questions to a
chef or friends. As a proof of concept, we have created a web
search engine 5 that allows any mobile device to send a query
image and to get answers to our questions. For any query
image, the result is a ranking of the 3 best categories auto-
matically found with a matching score that may at least indi-
cate if the match is correct (positive) or not (negative score).
For each selected category, images related to the query are
displayed with the hyperlink to the recipe webpage available.
Figure 4 presents the answer to a query image (representing
a pizza) displayed at the top of the page. The categories pre-
dicted with the highest scores are returned on the next three
lines, followed by seven clickable images (by category) linked
to the original recipe webpages. In this case, only the correct
result -pizza gets a positive score (top ranking).

Fig. 4: Results for a pizza image

7. CONCLUSION

In this paper, we introduce a large multimedia dataset with
101 food categories. We present an extended evaluation of
BoVW, Bossanova and deep features for food image recog-
nition, as well as TF-IDF for document classification. Our
experiments suggest that for visual recognition, CNN deep
feature is the best step forward. Due to the manner of collect-
ing data, a strong bias makes bag-of-textual-words perform
better than any other single method. Nevertheless, the fusion
of visual and textual information achieves better average pre-
cision 85.1%. Additionally, we find that word vector shows
powerful ability in representing any word in a semantical food
continuous space. We also run complementary experiments
to highlight differences and complementarity of our UPMC
Food-101 dataset with the recently published ETHZ Food-
101 dataset. Based on our dataset, we have proposed a re-

5Available at http://visiir.lip6.fr/.

trieval system that we plan to improve using machine learning
techniques [18, 19, 20] for user interaction.
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