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Abstract 16 
Calibrating conceptual hydrological models is often done via the optimization of 17 

objective functions serving as a measure of model performance. Most of the objective 18 
functions used in the hydrological literature can be classified into distance- and weak 19 
form-based objective functions. Distance- and weak form-based objective functions can 20 
be seen respectively as generalizations of the square error and balance error. An analysis 21 
of the objective functions shows that: (i) the calibration problem is transformed from an 22 
optimization problem with distance-based objective functions into a root finding problem 23 
for weak form-based functions; (ii) weak form-based objective functions are essentially 24 
less prone to local extrema than distance-based functions; (iii) consequently, they allow 25 
simple gradient-based methods to be used; (iv) parameter redundancy can be assessed 26 
very simply by superimposing the contour lines or comparing the gradients of two 27 
objective functions of similar nature in the parameter space; (v) simple guidelines can be 28 
defined for the selection of the calibration variables in a conceptual hydrological model. 29 
The theoretical results are illustrated by two simple test cases. Weak form-based 30 
approaches offer the potential for better-posed calibration problems, through the use of a 31 
number of independent criteria that matches the dimension of the identification problem. 32 
In contrast with distance-based objective functions, they do not have the inconvenience of 33 
solution non-uniqueness. Finally, the need for models with internal variables bearing a 34 
physical meaning is acknowledged, as well as the need for an a posteriori check of the 35 
validity of the warm-up period. 36 

1. Introduction 37 
Calibration is recognized as an essential step in the operation of conceptual, 38 

hydrological models. It is classically translated into an optimization problem, whereby an 39 
objective function expressing the goodness-of-fit of the model, must be minimized or 40 
maximized depending on the definition. Although several authors have pointed out the 41 
importance of seeing calibration as a multi-objective optimization exercise using 42 
variables and criteria of different natures (Yapo et al., 1998; Gupta et al., 1998, Meixner 43 
et al., 1999), it is still conducted as a single-objective optimization procedure in a vast 44 
majority of practical applications. The same holds for model performance assessment that 45 
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is often performed using the same type of objective functions as those used in the 46 
calibration process. Such analyses are usually performed on the basis of empirical 47 
considerations, for which formal foundations are lacking. Although there is a commonly 48 
shared perception of the calibration/validation exercise in the hydrological community, 49 
this lack of theoretical bases often does not allow reliable guidelines to be derived.  50 

The present paper focuses on two types of objective functions: so-called distance-51 
based and weak form-based (or integral) objective functions (see Section 2 for a 52 
definition). The purpose is to analyse the behaviour of such functions and to determine 53 
under which conditions some may be better-suited than others. The choice of the model 54 
variable(s) to be used in the calibration process is also discussed. The behaviour of 55 
distance-based and weak form-based objective functions is analysed theoretically and 56 
illustrated by two simple case studies. 57 

  58 
Distance-based objective functions represent the vast majority of objective functions 59 

used in hydrological modelling (Kavetski et al., 2006b; Schaefli and Gupta, 2007). 60 
Distances may be defined for the original (Kavetski et al., 2006a) or transformed flow 61 
variables. In Hogue et al. (2000, 2006) and Kavetski et al (2006b), a logarithmic 62 
transformation error is presented. The Nash-Sutcliffe Efficiency (NSE) criterion (Nash 63 
and Sutcliffe, 1970), based on a Square Error (SE) measure of distance, is definitely the 64 
most widely used objective function in hydrological modelling. It is a normalized variant 65 
of the Least Square Estimator (LSE), and gives equivalent information to that given by 66 
the Mean Square Error (MSE), or Root Mean Square Error (RMSE). A number of 67 
theoretical justifications can be provided for the NSE. For instance, the NSE optimum 68 
corresponds to the Maximum Likelihood Estimator for a homoscedastic, gaussian 69 
distribution of model errors (Cacuci, 2003). This justifies its use in model performance 70 
evaluation and uncertainty assessment techniques such as the GLUE approach (Beven 71 
and Binley, 1992; Beven, 1993; Romanowicz and Beven, 2006). The NSE can also be 72 
seen as the sum of three indicators (Murphy, 1998; Weglarczyk, 1998) involving the 73 
correlation coefficient between the measured and modelled variable, as well as a measure 74 
of conditional and unconditional bias. Gupta et al. (2009) provided another 75 
decomposition of the NSE involving the correlation, the bias and a measure of variability 76 
in the measured and modelled signals. Such decomposition substantiates the proposal by 77 
Taylor (2001) that model performance should be assessed using both a measure of 78 
distance (such as the normalized standard deviation of the bias) and the correlation 79 
between observations and model outputs. 80 

The NSE is not the only possible measure of distance. In Perrin et al. (2001) the Mean 81 
Absolute Error (MAE) is proposed. It can be normalized into a dimensionless index such 82 
as the volumetric efficiency (Criss and Winston, 2008). In Legates and McCabe (1999), 83 
the Nash-Sutcliffe efficiency criterion is generalized by replacing the square of the 84 
deviations with a power to be adjusted by the modeller. The purpose is to balance the 85 
larger weight given to large flow values (that are often measured with the larger 86 
imprecision) by using a power smaller than 2 (Krause et al., 2005).  87 

Lin and Wang (2007) use the inverse of the SE and the NSE for computing 88 
respectively the efficiency of chromosoms and the objective function in a genetic, global 89 
optimization algorithm. Several objective functions may also be defined for low flows or 90 
peak flow events, so as to allow for multiobjective calibration (Madsen, 2000; Madsen et 91 
al., 2002). Multiobjective calibration may also be carried out using variables of different 92 
natures (such as response signatures, see Pokhrel et al. (2008)). A review of multi-93 
objective calibration approaches can be found in Efstradiadis and Koutsoyiannis (2010). 94 
Conversely, multiple distance-based objective functions may be aggregated into a single 95 
one (Madsen et al., 2002; Cappelaere et al., 2003; Schoups et al., 2005). Additional 96 
information may be brought by integral criteria such as the bias (Hogue et al., 2006; 97 
Schoups et al., 2005), volume error (Madsen, 2000), also called Cumulative Error (CE) 98 
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(Perrin et al., 2001). To overcome the deficiency of the original GLUE method in 99 
reflecting modelling uncertainty, more formal derivations of likelihood functions ( eg., 100 
Schoups and Vrugt, 2010) or empirical adaptations of the approach (Cappelaere et al., 101 
2003, Xiong and O'Connor, 2008) have been proposed. 102 

Distance-based objective functions are well-known to introduce local minima in 103 
model response surfaces (Freedman et al., 1998; Skahill and Doherty, 2006; Xiong and 104 
O’Connor, 2000). In Freedman et al. (1998), distance-based objective functions such as 105 
the Least Squares Estimator (LSE) and the Heteroscedastic Maximum Likelihod 106 
Estimator (HMLE) are shown to introduce local extrema in the objective functions of a 107 
sediment transport model, thus introducing the need for global optimization or objective 108 
function exploration algorithms (see e.g. Brazil and Krajewski, 1987; Goldberg, 1989; 109 
Nelder and Mead, 1965; Skahill and Doherty, 2006; Duan et al., 1992). Modelling 110 
experiments where the LSE and HMLE were used to calibrate and validate different 111 
models on the same data indicated that the choice of the objective function plays a 112 
significant role on the final, calibrated parameter values (Gan et al., 1997). 113 

 114 
Weak form-based objective functions are somewhat less popular, as indicated by the 115 

inventory in Appendix A. The best-known weak form-based objective functions are the 116 
Cumulative Error (CE) (Perrin et al., 2001), also called Volume Error (Madsen, 2000), 117 
and the Balance Error (BE) (Perrin et al., 2001). The BE is nothing but a scaled version of 118 
the CE. The flow variable used in the CE and BE is usually the discharge at the outlet of 119 
the modelled catchment. The optimal value of the BE/CE is zero. The BE/CE may be 120 
used either as a constraint (typically, CE = 0) in a single objective optimization process or 121 
as an objective function in a multiple objective calibration exercise (see e.g. Ruelland et 122 
al., 2009). That the BE/CE is only a particular case and can be generalized so as to 123 
generate a wider family of weak form-based objective functions has been little 124 
investigated in the literature. This is one of the aspects explored in this paper. 125 

The question also arises of whether using additional variables (such as model internal 126 
variables) allows the calibration problem to be better constrained. Examples of this 127 
approach applied to conceptual models can be found in Seibert et al. (2002), Werth et 128 
al. (2009) and Winsemius et al. (2006).  129 

 130 
The present paper deals with objective functions for conceptual hydrological models 131 

that can be described by first-order differential equations. The main objectives are to (i) 132 
generalize the formulation of weak form-based objective functions, (ii) analyze the 133 
respective behaviour of distance-based and weak form-based objective functions and the 134 
resulting degree of difficulty in the calibration exercise, (iii) investigate whether certain 135 
model variables (e.g. internal variables or output fluxes) bring more information than 136 
others in the calibration of model parameters. 137 

 138 
In Section 2, distance-based and weak form-based objective functions are defined and 139 

a mathematical justification is proposed for them.  140 
In Section 3, the behaviour of such objective functions when applied to conceptual 141 

models is analyzed. Weak form-based objective functions are shown to be more 142 
monotone and less prone to local extrema than distance-based objective functions. Simple 143 
rules for detecting parameter redundancy are given and guidelines are provided for the 144 
choice of calibration variables. 145 

Sections 4 and 5 provide two application examples. In Section 4, a single reservoir 146 
model is considered and synthetic time series are used in order to avoid any possible site-147 
dependent bias. In Section 5, a three-reservoir model is applied to a Western African 148 
catchment. 149 

Section 6 is devoted to a discussion and concluding remarks. 150 
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2. Objective Function Definition 151 

2.1 Introduction 152 
Consider a model in the form 153 

 (1) 154 

where U is the state variable, t is the independent variable (in hydrological modelling, 155 
the time coordinate), j a parameter to be calibrated, and f is a known function of U, t and 156 
j. The standard calibration approach consists in comparing the variable U or a function 157 
F(U) of U with an observed variable V(t) over a certain domain W = [t1, t2] and adjusting 158 
j in such a way that U (or F(U)) is « as close as possible » to V. In what follows, the 159 
function F is assumed to be a monotone function of U and j. This assumption is verified 160 
by many models such as conceptual models, where F can be, for instance, taken as the 161 
discharge Q that is a function of U (see Section 4). In the general case, where F is not 162 
necessarily a physical function but any scaling function, it is chosen monotone in order to 163 
avoid several values of F(U) for a given value of U. 164 

The question then arises of how the closeness between U (or F(U)) and V should be 165 
assessed via an objective function. If the model is perfect, the output U or F(U) 166 
reproduces exactly the variations of the measured variable V, that is, U = V or 167 
F(U, j) = V for all t over the time interval W (the issue of data accuracy and measurement 168 
precision is not considered in the present work).In practice, this is never the case and the 169 
purpose of the calibration procedure is to bring the difference (U – V) or (F(U, j) – V) as 170 
close to zero as possible. Two types of objective functions are examined hereafter: 171 
distance-based and weak form-based objective functions. 172 

2.2 Distance-based objective function 173 
The distance-based approach is the most widely used in hydrological modelling. In 174 

this approach, the objective function is defined as one of the following two functions 175 
 (2a) 176 

 (2b) 177 

where a and b are respectively an offset and a scaling constant, e is the modelling error, 178 
defined as the difference between the modelled and observed variable, and the operator 179 

 has the properties of a norm (Courant and Hilbert, 1953): 180 

 (3a) 181 

 (3b) 182 

 (3c) 183 

In other words, the objective function J provides a measure of the distance between 184 
the model output U or F(U, j) and the measurement V. Property (3a) provides a 185 
fundamental justification to the distance-based approach. If the model is perfect (that is, if 186 
it allows the observed variable V to be reproduced exactly), the error e is zero over W and 187 
the objective function J is a, which is the extreme possible value. Conversely, if J is a, 188 
the model is perfect. In practice, J is never equal to a because the model is not perfect. 189 
However, J can be optimized by adjusting j suitably, hence the need for optimization 190 
procedures.  191 

If the data used in the calibration process is discrete (e.g. daily, weekly or monthly 192 
hydrographs), the norm is computed using a discrete sum. If the data can be considered a 193 
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continuous function of time, the norm is computed using an integral. In what follows, 194 
only continuous functions of time will be considered for the sake of conciseness. 195 
However, the conclusions drawn for such functions remain valid for discrete model 196 
outputs. 197 

 198 
Examples of distance-based objective functions are given in Appendix A. The Nash-199 

Sutcliffe Efficiency (NSE), the Square Error (SE), the Root Mean Square Error (RMSE), 200 
the Mean Absolute Error (MAE), the Volumetric Efficiency (VE) or the Generalized 201 
Nash-Sutcliffe Efficiency (GNSE) presented in the appendix can be recast in the form (2) 202 
via a proper definition of the constants a and b. The NSE gives exactly the same 203 
information as the SE, only the offset and scaling differs. The same remark holds for the 204 
MAE and VE.  205 

 206 
Note that: 207 
 208 

(R1) Eq. (2a) is a particular case of Eq. (2b). Eq. (2a) provides a measure of distance 209 
between the modelled state variable U in the model and the measured one, V. It is 210 
recalled that, in most applications of hydrological models, however, the variable 211 
used in the objective function is not the state variable U itself (e.g. the water depth 212 
in one of the model reservoirs) but a function of it (e.g. the output discharge). 213 
Consequently, Eq. (2b) is the most widespread form of objective function used. 214 

(R2) The function F in Eq. (2b) may also include a transformation in the variables. For 215 
instance, in some applications the logarithm, or square root of the discharge, is 216 
deemed a more appropriate variable than the discharge itself because it gives more 217 
weight to low flows. 218 

(R3) The objective function may be defined for a specific range of the observed (or 219 
modelled) variables. For instance, two different values of the objective function 220 
may be computed over a given period, one for low flows and another one for high 221 
flows (see e.g. Perrin et al., 2001). In this case, a weighting function w(V) is used, 222 
which is nonzero only over a subset of W, and the norm can be written as  223 

 (4a) 224 

 (4b) 225 

 where w(V) is a weighting function, equal to 0 or 1 depending on whether V is 226 
considered to belong to the category of low [high] flows, and i is the record 227 
number. Eqs. (4a) and (4b) are respectively the continuous and discrete versions of 228 
the norm. In what follows, the continuous form (4a) will be used for the sake of 229 
notation consistency, but the reader should keep in mind that the discrete form (4b) 230 
may be used instead without loss of generality. The conclusions derived using the 231 
formulation (4a) also hold for the formulation (4b) of the objective function. 232 

(R4) In Eq. (4), any positive weighting function w may be used over W. The simplest 233 
possible case is w = Const, but non constant, positive functions of V, U, F(U) 234 
and/or t may also be considered.  235 

(R5) The distance-based objective functions presented in Appendix A are particular 236 
cases of Eq. (4), where the norm of the modelling error is defined as a power of its 237 
absolute value, called a p-norm. In the NSE and SE objective functions, p = 2, 238 
while p = 1 in the MAE and VE. In the GNSE, p may be set to any value, which 239 
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does not necessarily have to be an integer. However, other definitions may be 240 
proposed for the norm. For instance the maximum of the modelling error over the 241 
domain W also verifies the definition (3a) for a norm: 242 

 (5) 243 

 Note that the power 1/p in Eqs. (4a-b) is not indispensable but allows Eq. (3b) to be 244 
verified. 245 

 (R6) The calibration process is an optimization process. 246 

2.3 Weak form-based objective function 247 
The weak form-based approach uses the property 248 

 (6) 249 

where v(t) is a function defined over W. In what follows, v is defined as v = w|e|p–1 for the 250 
sake of similarity with Eq. (4). This leads to the following definition for the weak form-251 
based objective function 252 

 (7) 253 

where a and b are respectively an offset and scaling parameter, and w is a positive 254 
weighting function defined over W. The Volume Error/Cumulative Error (CE) and the 255 
Balance Error (BE) presented in Appendix A are particular cases of Eq. (7) with p = 0 256 
and w(t) = 1. In contrast with the distance-based approach, the objective function defined 257 
in Eq. (7) is not necessarily positive. 258 

The following remarks may be made: 259 
 260 

(R7) Equation (7) is a particular case of (6) obtained for the specific choice v = w|e|p–1 of 261 
the weighting function. Other formulations may be considered for v. The formula 262 
proposed in (7) has the advantage that it bears similarity with familiar distance-263 
based objective functions (only an absolute value operator needs to be modified).  264 

(R8) The calibration procedure is transformed into a root finding problem. The most 265 
desirable value for the objective function is the offset value a.  266 

3. Sensitivity Analysis for Conceptual Models 267 

3.1 Assumptions – preliminary remarks 268 
Consider a model obeying Eq. (1). The specific form of (1) examined hereafter is 269 

 (8a) 270 

 (8b) 271 

where g is a known function of U and j, and R is a known function of U, t and j. In 272 
conceptual models, R represents the recharge, or inflow, and g represents the outflow.  273 
 274 
The following assumptions are made: 275 
(A1) R and g are positive over W: 276 

 (9a) 277 
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 (9b) 278 

(A2) The difference R – g is a decreasing function of U and a monotone function of j: 279 

 (10a) 280 

 (10b) 281 

(A3) There always exists a positive, steady state solution, that is, a value of U0 for which 282 
the outflow g is equal to the inflow R: 283 

 (11) 284 
(A4) U(t1) is positive: 285 

 (12) 286 
 287 
Assumptions (A1)–(A4) are typical of conceptual, conceptual models (see Section 4). 288 

When these assumptions hold, U is positive over the domain W (see Section B.1 in 289 
Appendix B for the proof).  290 

 291 
The sensitivity of U with respect to j is defined as . The governing 292 

equation for s is obtained by differentiating (8) with respect to j: 293 

 (13a) 294 

 (13b) 295 
where the initial condition s (t1) = 0 is derived considering that U (t1) = U1 is known and 296 
does not change with j.  297 

 298 
It can be shown (see Section B.2 in Appendix B for the proof) that if  299 

keeps the same sign for all t, s has the same sign as : 300 

 (14a) 301 

 (14b) 302 

3.2 Distance-based objective function 303 
Consider a distance-based objective function using the definition (4) for the norm of 304 

the modelling error:  305 

 (15) 306 

where U(t) obeys (8), F is a monotone function of U as mentioned in Section 2.1 and w is 307 
a strictly positive weighting function over the domain W. Then the derivative of the 308 
objective function with respect to j is given by one of the following two formulae 309 
depending on whether the function F involves the parameter j: 310 
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 (16a) 311 

 (16b) 312 

Since the sign of s is constant (see Section 3.1) and F is assumed to be monotone, the 313 
product  keeps the same sign over W. Two possibilities arise: 314 

– F is not a function of j. In this case, Eq. (16a) is applicable. The terms 315 
 and  in the integral keep a constant sign over W, while 316 

the second term F(U) – V may change sign. There is a possibility for  to 317 
cancel, which is a desirable property because the purpose of the calibration 318 
exercise is to find an optimum of the function Jp. 319 

– F is a function of both U and j. Then, Eq. (16b) is applicable. In the case of 320 
conceptual models (see Section 4), the sign of  is not 321 
necessarily constant because and  may have opposite signs. 322 
Then both  and  in the integral may change sign. 323 
In the general case, the two terms do not cancel for the same value of j, thus 324 
increasing the possibilities for the appearance of local extrema. 325 

 326 
In both cases, using a strictly positive weighting function w minimizes the number of 327 

extrema for Jp. 328 

3.3 Weak form-based objective function 329 
Consider a weak form-based objective function defined from Eq. (7) : 330 

 (17) 331 

with the same assumptions on F, U and w as in Section 3.2. Then 332 

 (18a) 333 

 (18b) 334 

As in Section 3.2, two possibilities arise: 335 
– F is not a function of the parameter to be calibrated j. In this case,  and 336 

Eq. (18a) is applicable. Since  keeps the same sign over W, the sign of 337 
cannot change. No local extremum can appear in the objective function. 338 

– F is a function of both U and j. Then Eq. (18b) applies. The sign of 339 
 is not necessarily constant, as shown in Section 4. This may 340 

lead to local extrema in Jp. Nevertheless, the derivative of Jp as defined by 341 
Eq. (18b) is less prone to sign change than that defined in Eq. (16b) because the 342 
term  keeps a constant sign. 343 
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3.4 Choice of calibration variables 344 
In the light of the expressions derived in Subsections 3.2 and 3.3, the following 345 

remarks may be made: 346 
(R9) When calibrating a given model parameter, it is not advised to use a flow variable, 347 

the calculation of which involves this parameter. For instance, in a linear 348 
conceptual model, the output discharge is defined as kU, where U is the water level 349 
in the reservoir and k is the discharge coefficient. Using U as a calibration variable 350 
for k is advisable, while using the discharge kU to calibrate k may generate local 351 
extrema in the objective function. Conversely, the discharge kU may be used to 352 
calibrate the effective catchment area. 353 

(R10) In many situations however, the only variable available for measurement is not U 354 
but a function of U (for instance, the outflowing discharge). In conceptual models, 355 
the internal, state variable U of the model is almost never used in 356 
calibration/validation procedures, while the discharge, that is only a function of U, 357 
is used in almost all situations. Then using a weak form -based objective function 358 
minimizes the probability of finding local extrema compared to a distance-based 359 
objective function. Consequently, classical gradient-based methods may be used 360 
with a larger probability of success to find the zero of the weak form-based 361 
objective function than in finding the global optimum of a distance-based objective 362 
function. 363 

(R11) Owing to the presence of  and  in Eqs. (16b) and (18b), using such 364 
a function F in the objective function, rather than the primary model variable U, 365 
has a strong influence on the direction of the gradient of the objective function in 366 
the parameter space. Using several variables of different natures (or 367 
transformations of the measured flow variables), such as water levels and 368 
discharges, to calibrate the models, may be more beneficial and more helpful in 369 
removing indeterminacy than using several objective functions on the same flow 370 
variables. This was already stated in Beven (2006) about the ill-posed character of 371 
the calibration exercise.  372 

(R12) Models with several reservoirs in series have a similar behaviour with respect to 373 
the objective function. Indeed, when a reservoir discharges into another, its outflow 374 
discharge g (U, j) is the recharge R (U, t, j) of this second reservoir and 375 
Assumptions (A1–4) still hold. Remarks (R9) and (R10) also hold for the 376 
calibration of parameters governing the internal fluxes between several reservoirs 377 
in a model. 378 

3.5 Objective functions as indicators of parameter redundancy 379 
Assume that two parameters j1 and j2 in the model are redundant. In this case, for any 380 

given variation in j1, at least one alternative value can be found for j2 such that the 381 
modelling result remains unchanged. In other words, in the parameter subspace j1×j2, 382 
there exists a relationship in the form 383 

 (19) 384 
Eq. (19) becomes 385 

 (20) 386 

Eq. (20) defines a hypersurface in the parameter space and a curve in the subspace 387 
j1×j2. On the hypersurface (20) one has 388 
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 (21) 389 

which means that the objective function is constant along (20). Consequently, the contour 390 
lines of the distance-based objective functions (15) obtained with different values of p 391 
never intersect. The remark also holds for weak form-based objective functions (17). 392 

An easy way of detecting the redundancy in two model parameters is to plot the 393 
contour lines in the subspace j1×j2 of two objective functions (15) or (17) defined with 394 
two significantly different values of p (for instance, p = ½ and p = 2). If the contour lines 395 
of these two objective functions do not intersect, then the parameters can be suspected to 396 
be redundant. 397 

Plotting the contour lines of the objective function requires a systematic exploration of 398 
the parameter subspace. An alternative to this approach consists in computing the 399 
dimensionless gradients of the objective functions obtained with two different powers p 400 
and q: 401 

 (22) 402 

where L1 and L2 are scaling factors for the parameters j1 and j2 (e.g. the typical ranges of 403 
variation of these parameters), and checking colinearity via the dimensionless 404 
determinant 405 

 (23) 406 

where the operator  denotes the norm of the vector. The derivatives of the objective 407 
functions with respect to the parameters may be computed empirically from two values of 408 
Jp and Jq computed using two slightly different values of the parameters. The closer D to 409 
zero, the smaller the angle between the gradient vectors Gp and Gq, the more (locally) 410 
redundant the parameters j1 and j2. 411 

4. Application Example 1: Linear Single Reservoir Model 412 

4.1 Governing equations 413 
Consider a single reservoir, rainfall-runoff model with a linear discharge law: 414 

 (24a) 415 

 (24b) 416 
where A is the catchment area, c is the effective infiltration coefficient, k is the specific 417 
discharge coefficient, P(t) is the precipitation rate, U is the volume of water stored in the 418 
model and kU is the outlet discharge of the model. Note that Eq. (24a) can be written in 419 
the form (8) by defining g(U, j) = kU. Classically, A is known and c and/or k must be 420 
calibrated. 421 

This model verifies Eqs. (9–11) of assumptions (A1)-(A4), consequently U(t) is 422 
positive for all t. 423 

 424 
The governing equation for the sensitivity is 425 
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 (25a) 426 

 (25b) 427 
 428 
Two possibilities arise: 429 

(1) The parameter to be calibrated is the effective infiltration coefficient c. In this case, 430 
j = c and Eq. (25a) simplifies into 431 

 (26) 432 

 Eqs. (25a, 26) verify Eqs. (9–11) with AP>0, therefore s is positive for all times. 433 
 434 
(2) The parameter to be calibrated is the discharge coefficient k. In this case, j = k and 435 

Eq. (25a) becomes 436 

 (27) 437 

 Eqs. (25a, 27) verify Eqs. (9–11) with –U < 0, therefore s is negative for all times. 438 

4.2 Distance-based objective functions 439 
Assume that a distance-based measure is used for the objective function. If the model 440 

is to be calibrated against field measurements (or estimates) of the volume U of water 441 
stored in the catchment, then F(U) = U and Eq. (16a) becomes 442 

 (28) 443 

As shown in the previous subsection, the sign of s is constant over W. The particular 444 
case of the NSE or SE objective functions, (p = 2, w = 1) yields the following formula 445 

 (29) 446 

Assume now that the model is to be calibrated against the discharge Q = kU at the 447 
outlet of the catchment. Then F(U) = kU and . If the parameter to be 448 
calibrated is the coefficient c, then j = c and . If the parameter to be 449 
calibrated is the discharge coefficient k, then j = k and . Applying 450 
Eqs. (16) yields 451 

 (30a) 452 

 (30b) 453 

Note that the second equality in Eq. (30b) is obtained from Eq. (27). Since s is not 454 
monotone over W in the general case, both Q – V and ds/dt are liable to cancel over W and 455 
the objective function Jp in Eq. (30b) may have more than one extremum. This is an 456 
illustration of Remark (R10). In the particular case of the NSE or SE objective functions 457 
(p = 2, w = 1), the following formulae are obtained 458 
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 (31a) 459 

 (31b) 460 

4.3 Weak form-based objective function 461 
Assume now that the objective function is defined using the weak form-based 462 

approach. 463 
If the model is to be calibrated against field measurements (or estimates) of the 464 

volume of water stored in the catchment, then F(U) = U and Eq. (18) becomes 465 

 (32) 466 

Since s keeps the same sign over W, the derivative of Jp cannot cancel if w is nonzero. 467 
Then the points for which Jp = a (a being the optimum value for the objective function) 468 
define a line in the parameter space (c, k). In the particular case (p = 2, w = 1), one has 469 

 (33) 470 

If the model is to be calibrated using measurements of the outlet discharge Q = kU, 471 
then F = kU,  and Eqs. (18) gives 472 

 (34a) 473 

 (34b) 474 

 475 
An interesting, particular case is that of the Cumulative Error (CE), or Balance Error 476 

(BE) indicators (see Appendix A), obtained for (p = 1, w = 1): 477 

 (35a) 478 

 (35b) 479 

Two remarks may be made: 480 
(R13) It is visible from Eqs. (32, 34) that the derivative of the weak form-based objective 481 

function cannot be zero, except in the trivial case U = V  " t Î W. If the objective 482 
function is based on the outlet discharge Q=kU, the only possibility for its 483 
derivative to cancel occurs for k = 0, which is meaningful only in the trivial case 484 
kU = V = 0 " t Î W. 485 

(R14) Comparing Eqs. (35a) and (35b) indicates that the CE and BE indicators are 486 
extremely useful in calibrating the runoff coefficient c but are almost useless in 487 
calibrating the discharge coefficient k of the conceptual model. This well-known 488 
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result is confirmed by the following analysis. The ratio of the gradients computed 489 
via Eqs. (35a, b) gives 490 

 (36a) 491 

 (36b) 492 

 where is the average value of s over W. The numerator in K remains bounded. If 493 
the input time series is sufficiently long to be assumed stationary, the average value 494 
of s does not depend on the length of the time interval t2 – t1. Consequently the 495 
denominator is proportional to the time interval t2 – t1. Therefore K tends to zero as 496 
the length of the calibration interval increases. This means that the CE and BE 497 
indicators are insensitive to the value of k when long time series are used. 498 
Therefore, they cannot be used to calibrate k when the variable is the outflowing 499 
discharge. 500 

4.4 Numerical experiments 501 
The properties of distance- and weak form-based objective functions are investigated 502 

using the following numerical experiment. An artificial time series for the observed 503 
(measured) variable V is generated using a nonlinear conceptual model with artificially 504 
randomized input time series. The water level in the nonlinear reservoir and the 505 
outflowing discharge of the nonlinear model are considered as « reality », against which a 506 
linear conceptual model is to be fitted. The steps in the generation of the times series are 507 
the following. 508 
(1) An artificial rainfall time series is generated at a daily time step using the following 509 

model: 510 

 (37) 511 

 where Pmax is a constant, Ran is generated randomly from a uniform probability 512 
density function between 0 and 1, and a is a threshold value between 0 and 1. Ran 513 
is generated every time step independently from the realization at the previous time 514 
steps. The probability for a rainfall Rn to be nonzero over a given day n is 1 – a.  515 

 516 
(2) The generated rainfall signal is used as an input for a nonlinear conceptual model 517 

obeying the following equation: 518 

 (38a) 519 

 (38b) 520 

 where A is the catchment area, C is an infiltration constant, K and b are predefined 521 
constants (b ≠ 1) and W is the amount of water stored in the model. Eq. (38a) is 522 
solved numerically using an explicit formula at a daily time step: 523 

 (39) 524 
 where Pn is the average value of the rainfall rate between the time levels n and 525 

n + 1. The explicit approach corresponds to the most widespread implementation of 526 
conceptual models available in the literature. 527 

 528 
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(3) The numerical solution Wn is used as the observed variable V in the computation of 529 
the objective function. Two possibilities are considered hereafter: 530 

 (40a) 531 

 (40b) 532 

 Equation (40a) corresponds to the situation where the state variable W can be field-533 
estimated or measured and where the variable U in the linear model (24a) is 534 
considered to bear a physical meaning. Equations (40b) correspond to the more 535 
widespread calibration technique where the flow variable used in the computation 536 
of the objective function is the discharge at the outlet of the catchment. 537 

 538 
Note that the governing equation (24a) for the linear reservoir model is also solved 539 

numerically using an explicit formula 540 
 (41) 541 

where c and k are the infiltration coefficient and the specific discharge coefficient for the 542 
linear conceptual model. The main motivation behind the choice of a nonlinear 543 
conceptual model to generate the reference time series is that no combination of the 544 
parameters c and k in the linear model (24a) allows the solution W of Eq. (38a) to be 545 
reproduced exactly, which is precisely the case when real-world time series are dealt 546 
with. 547 

The parameters used in the present experiment are summarized in Table 1. 548 
 549 
Figure 1 shows the contour lines obtained for two types of distance-based objective 550 

functions. The first objective function Jp,U is defined using the amount of water in the 551 
reservoir as in Eqs. (40a): 552 

 (42) 553 

The second objective function Jp,Q is computed from the outflow discharges as in 554 
Eqs. (40b): 555 

 (43) 556 

where the overbar denotes the average over W. Eqs. (42-43) are nothing but the 557 
Generalized Nash-Sutcliffe Efficiency (GNSE) presented in Appendix A. In hydrological 558 
modelling, it is more customary to use the discharge as a calibration variable than the 559 
volumes stored in the reservoirs. In Figure 1, the values used for p are ½, 1 and 2. 560 

 561 
Comparing the contour lines obtained using Eq. (42) (Figure 1a, 1c, 1e) and those 562 

obtained using Eq. (43) (Figure 1b, 1d, 1f) illustrates Remark (R11). The objective 563 
functions based on the water depth (or volume) and the objective functions based on the 564 
discharge have radically different contour line shapes. Using two different variables in the 565 
definition of the objective functions brings in more information than using the same 566 
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variables and changing the value of the power p in the GNSE. Obviously, the optimal 567 
values of the objective functions depend on the variable used in the calibration process 568 
and, to a lesser extent, on the value of the exponent p. Remarks (R9, R10) are illustrated 569 
by the zero contour line in Figure 1d. It is visible from Figure 1d that the derivative 570 

 cancels for small values of k around c = 1.0. This corresponds to the change 571 
in curvature of the zero contour line next to the c-axis. The objective function is not 572 
monotone with respect to k in this region of the parameter space. In the present case, 573 
however, this is not too serious a problem because (i) the extremum correponds to a 574 
minimum in the objective function, and (ii) it is located far away from the maximum of 575 
the objective function. However, in the general case, this is a potential source for local 576 
extrema in the objective function. 577 

 578 
Figure 2 shows the contour lines obtained for two types of weak form-based objective 579 

functions. The first objective function Jp,U is defined using the state variables U and W as 580 
in Eqs. (40a): 581 

 (44) 582 

The second objective function Jp,Q is computed from the outflow discharges as in 583 
Eqs. (40b): 584 

 (45) 585 

where the overbar denotes the average over W. Note that the denominator in Eqs. (44, 45) 586 
is similar to that in Eqs. (42, 43) and therefore the scaling is the same. In contrast with 587 
Eqs. (42, 43), the best model fit is achieved for Jp,U = 0 and Jp,Q = 0. Also note that for 588 
p = 1 (Figure 2d), Eq. (45) gives an information similar to the Cumulative Error (CE) or 589 
Balance Error (BE). 590 

 591 
Remarks (R9, R10) are illustrated by the zero contour line in Figure 2b. Indeed, the 592 

derivative  cancels for (k = 0.15, c = 0.2). This corresponds to the curved 593 
contour in the bottom right corner of the Figure. The objective function is not monotone 594 
with respect to k in this region of the parameter space.  595 

As in the case of the distance-based objective functions (42, 43), comparing Figures 596 
2a, 2c, 2e and Figures 2b, 2d, 2f illustrates Remark (R11) on the complementary 597 
character of the information brought by objective functions defined using different model 598 
variables. However, contrary to distance-based objective functions, it is possible to find 599 
parameter combinations for which the objective functions defined by both equations (44) 600 
and (45) are optimal.  601 

Remark (R13) on the strictly monotone character of the weak form-based objective 602 
functions is also confirmed. 603 

Figure 2d confirms Remark (R14) that the specific discharge coefficient k cannot be 604 
calibrated using CE or BE because the CE and BE indicators have identical values for all 605 
k. At the same time, the CE or BE indicators are extremely useful in calibrating the 606 
infiltration coefficient because there is only one possible value of c for which J1,Q = 0. 607 

Moreover, the intersection of all the zero contour lines in Figure 2 are very close to the 608 
optimum values for the distance-based objective functions using the discharge as a 609 
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calibration variable (Figure 1b, 1d, 1f). This indicates that the set of distance-based 610 
objective functions may yield a calibration result close to that given by the commonly 611 
admitted distance-based approach, while eliminating the local extremum problem 612 
associated with distance-based objective functions. 613 

This example also illustrates the fact that optimum values obtained from distance-614 
based functions are often mutually exclusive, which is not the case with weak form-based 615 
functions. 616 

5. Application Example 2: a Multiple Reservoir Model with Threshold Function 617 

5.1 Model presentation 618 
The Medor model (Hreiche et al., 2003) is a three-reservoir model (Figure 3) initially 619 

designed for hydrological modelling over arid or semi-arid regions. A variation of this 620 
model has been applied recently to the modelling of karst catchments in the 621 
Mediterranean area (Fleury, 2005; Tritz et al., 2010). The top reservoir accounts for 622 
production. The input to this reservoir is the precipitation rate P, the outputs are the 623 
evapotranspiration rate E and the net precipitation rate I. E may be set equal to the 624 
potential rate, computed from standard evapotranspiration formulae (Fleury, 2005), or 625 
interpolated from monthly data (Tritz et al., 2010). E is limited only when the reservoir is 626 
empty (H = 0) and precipitations are insufficient (P < E). I is zero until the water level H 627 
in the production reservoir reaches the maximum value Hmax. In such a case, the net input 628 
P – E is transferred instantaneously to the other two reservoirs. From a conceptual point 629 
of view, the production reservoir represents the soil layer, from which previously 630 
precipitated water may be restituted to the atmosphere via evapotranspiration. Note that 631 
when the soil reservoir is empty, it remains so until P – E becomes positive again. 632 

The net precipitation is routed to a fast response and a slow response reservoir via a 633 
distribution coefficient x, 0 £ x ≤ 1. Each of these two reservoirs obeys a linear discharge 634 
law. The output hydrograph is the sum of the output discharges from the fast and slow 635 
reservoir. From a physical point of view, the two reservoirs may account for different 636 
flow routing paths over the catchment. From the point of view of the transfer function of 637 
the model, such a structure allows both the rapid recession part of hydrographs and the 638 
slower fluctuations of the base flow to be accounted for via linear laws. 639 

 640 
The governing balance equations are the following: 641 

 (46a) 642 

 (46a) 643 

 (46c) 644 

where H1 and H2 are respectively the water levels in the fast and slow reservoirs. I, Q1 645 
and Q2 are given by 646 

 (47a) 647 

 (47b) 648 

 (47b) 649 
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where k1 and k2 are the specific discharge coefficients of the two reservoirs. The total 650 
outflowing discharge is computed as the sum of Q1 and Q2. 651 

5.2 Principle of the parameter redundancy test 652 
It is first noticed that the total amount of water flowing to the outlets of the reservoirs 653 

is strongly conditioned by the maximum water level Hmax in the production reservoir. 654 
Indeed, I is nonzero only when H reaches Hmax. The larger Hmax, the smaller the time 655 
during which I is nonzero, the smaller the amount of water flowing to the reservoirs H1 656 
and H2. 657 

Consider now the configuration of the model where the specific discharge coefficient 658 
of one of the two reservoirs (say, k2) is zero. In this case, the water may accumulate 659 
indefinitely in this reservoir, while the outflowing discharge from this reservoir remains 660 
zero. In other words, if k2 = 0, the reservoir H2 acts as a loss and only a fraction xI of the 661 
total infiltration rates participates to the outflow. Therefore, x also controls the outflowing 662 
discharge to some extent. 663 

Clearly, Hmax and x exert a similar influence on the outflowing discharge when k2 = 0. 664 
In other words, they are redundant with respect to total discharge, for k2 = 0. 665 
Consequently, plotting two different objective functions (18a-b) with two different values 666 
of p in the parameter space (Hmax, x) should yield non-intersecting contour lines for the 667 
two objective functions. 668 

5.3 Catchment and modelling data 669 
The Medor model was used to simulate daily discharge at the outlet of the Bani 670 

catchment (Figure 4). This large west-African catchment is characterized by a monsoon 671 
climate with a strong north-south rainfall gradient, and considerable rainfall variability 672 
since the mid-20th century. As a result, the flow at the Douna gauging station (Figure 4) 673 
fell by 68% from 1952–1970 to 1971–2000, with a decrease in the deep water recharge 674 
and in base runoff contribution to the annual flood (Ruelland et al., 2009). Some of the 675 
low-water periods were severe to the point that river flow at Douna stopped at times 676 
during the 1980s.  677 

The Medor model may seem too simple at first sight for an operation at a daily time 678 
step given the dimensions of the catchment and the time  scale of the discharge signal. 679 
However, experiments carried out using models of varying complexity have shown that 680 
complex transfer functions involving signal delay (such as the unit hydrograph 681 
convolution approach) do not contribute to improve model performance significantly 682 
(Ruelland et al., 2010). In a similar fashion, using spatially distributed rainfall inputs and 683 
model parameters was not seen to improve the quality of the simulated hydrographs 684 
significantly. The inertia of the linear reservoirs in the Medor model are seen to be 685 
sufficient to model the rainfall-discharge transformation in a satisfactory way. This 686 
simpler model is thus retained for the analysis. 687 

The model was applied to the 1967–1985 period, for which the discharge record was 688 
continuous at the Douna station. Daily rain series were derived from 72 rain gauges 689 
covering the area (Figure 4). An average of 70 gauges (with a minimum of 66) were used 690 
to interpolate daily rainfall maps by the inverse distance method, which proved to 691 
perform best (Ruelland et al., 2008). Potential evapotranspiration forcing consisted of 692 
monthly maps produced by the Climatic Research Unit (University of East Anglia, UK) 693 
from ~100 stations spread over West Africa, using Penman’s method and spline 694 
interpolation (New et al., 2000). Since potential evapotranspiration varies slowly over the 695 
year, monthly data were disaggregated evenly to the daily time step within each month. 696 
The first five years of simulation were used as model warm-up, to eliminate the influence 697 
of initial conditions. This five year period was determined from the order of magnitude of 698 
the specific discharge coefficients in the model. Indeed, as shown in Appendix B (section 699 
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B.3), a model with a specific discharge coefficient k requires a warm-up period of at least 700 
a few times 1/k for the influence of initial conditions to be eliminated. The parameters 701 
used in the experiment are given in Table 2. The catchment area A is known from 702 
previous studies (Ruelland et al., 2008), while the specific discharge coefficient k1 is 703 
taken equal to the value that allows the NSE index to be maximized. 704 

5.4 Redundancy test results 705 
Figure 5 shows the contour lines obtained for the distance-based and weak form-based 706 

objective functions. The powers used in Eqs. (43) and (45) are p = ½ and p = 2. 707 
 708 
Figure 5e is a superimposition of Figures 5a and 5c, while Figure 5f results from the 709 

superimposition of Figures 5b and 5d. In Figures 5e-f, the dashed and solid lines are 710 
respectively the contour lines of the objective functions for p = ½ and p = 2. Except in the 711 
upper left part of the diagram, the contour lines do not intersect, which confirms that the 712 
parameters Hmax and x become redundant over most of the parameter space when k1 = 0 or 713 
k2 = 0. 714 

6. Conclusions 715 
Model performance assessment and objective functions classically used in 716 

hydrological modelling may be classified into distance-based and weak form-based 717 
objective functions.  718 

 719 
Distance-based objective functions have the advantage that the calibration problem is 720 

transformed into a straightforward, single-criterion optimization problem. Their drawback 721 
is the possible appearance of local extrema in the response surface of the model, thus 722 
triggering the failure of classical gradient-based methods and requiring the use of more 723 
computationally demanding global optimization algorithms. 724 

Weak form-based objective functions transform the calibration exercise into a root 725 
finding problem.  726 

 727 
The theoretical considerations in Sections 2-3 and the application examples in 728 

Sections 4-5 lead to the following conclusions. 729 
(C1) Weak form-based objective functions are more monotone than distance-based 730 

objective functions when applied to conceptual hydrological models. Monotony 731 
can be proved mathematically for models verifying Assumptions (A1–4) in 732 
Subsection 3.1. 733 

(C2) The subset of zero values of weak form-based objective functions form 734 
hypersurfaces in the parameter space. A model with N parameters can be calibrated 735 
by defining N weak form-based objective functions and finding the intersection of 736 
the corresponding N hypersurfaces in the parameter space. Since the weak form-737 
based objective functions are monotone, the intersection is unique. This allows 738 
classical gradient-based algorithms to be used without the need for more 739 
sophisticated optimum search techniques. The N different objective functions may 740 
be defined by using (i) different observation variables, (ii) transformations of these 741 
variables, (iii) different values for the power p used in the formulation of the weak 742 
form-based function (see equation (7)). Note that the need for a number of 743 
independent criteria matching the number of parameters to be calibrated was 744 
already pointed out by Gupta et al. (2008). 745 

(C3) In contrast, distance-based objective functions yield mutually exclusive optimal 746 
parameter sets when different calibration variables are used. Using weak form-747 



Guinot & al. Objective function definition in ODE-based model calibration 19 

based objective functions allows this drawback to be eliminated. This allows for 748 
multi-objective calibration without the inconvenience of multiple solutions.  749 

(C4) Distance-based objective functions being widely recognized in the field of 750 
hydrological modelling, they could also be used in combination with weak form-751 
based objective functions in the framework of multi-criteria optimization 752 
algorithms. A typical multicriteria optimization problem may then consist in 753 
maximizing the distance-based objective function under the constraint that all the 754 
weak form-based objective functions are zero. 755 

(C5) Using the same type of objective function (distance-based, see Eqs. (48) or weak 756 
form-based, see Eqs. (49)) with two different values of p yields two families of 757 
contour surfaces in the parameter space. Non-intersecting families of contour 758 
surfaces in the parameter space indicate redundancy between two or more 759 
parameters.  760 

(C6) The theoretical analysis in Section 3 and the application example in Section 4 show 761 
that using the volume stored in the reservoir as a calibration variable for the 762 
discharge coefficient may be more appropriate than using the discharge. 763 
Conversely, the outlet discharge may be a more appropriate variable to calibrate an 764 
infiltration (or net rainfall) coefficient via a weak form-based objective function. 765 

(C7) Assuming that weak form-based objective functions are to be used, the calibration 766 
problem is best posed when the hypersurfaces as defined in (C2) are as orthogonal 767 
to each other as possible. Therefore, it is advisable to define such objective 768 
functions using as many different model state variables as possible (e.g. discharges 769 
between various reservoirs in the model, volumes stored in the various reservoirs, 770 
etc.). 771 

(C8) A necessary condition for (C5-6) to be applicable, however, is that the internal 772 
variables and fluxes in the model bear a physical reality and be field-measurable. 773 
Due to hydrological/hydraulic variability, translating field measurements (e.g. of 774 
soil moisture, or piezometric head in aquifers) into variations of model internal 775 
variables is not an easy task. This most probably calls for the definition of a 776 
different kind of objective functions. For instance, the trends (rising or falling; 777 
increasing or decreasing) of the measured and model internal variables over certain 778 
periods may be used in the form of indicators. Note that internal variables may not 779 
necessarily be useful only to the calibration of a model. Even if not incorporated 780 
into the objective function, they may be used to discriminate between different 781 
models (or different parameter sets within the same model) giving similar values of 782 
objective functions computed from the outflowing fluxes. 783 

(C9) The result of the calibration/validation process may be biased if the model has not 784 
been run over a sufficiently long warm-up period for the influence of possibly 785 
inaccurate initial conditions to be eliminated (see section B.2 in Appendix B). The 786 
minimum length of the warm-up period is a function of the parameters of the 787 
model. Consequently, it should not only be defined a priori: an a posteriori check is 788 
needed once the model has been calibrated. 789 

 790 
The theoretical considerations presented in this paper are valid for hydrological 791 

models obeying first-order differential equations. Whether such conclusions also hold for 792 
models involving delay functions (e.g. the GR3J model (Edijatno et al., 1999) that 793 
embeds a unit hydrograph transformation) or other functions not verifying exactly the 794 
governing assumptions in Section 3 is the subject of ongoing research. Future research 795 
should also focus on (i) the robustness of weak form-based objective functions compared 796 
to the well-established distance-based approach and (ii) the effects of data uncertainty on 797 
the behaviour of the objective function. Although only conceptual models were 798 
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considered in this study, the approach might be applicable to the calibration of some 799 
physically-based hydrological models, e.g. when backwater effects are insignificant, 800 
however such extrapolation should be subject to further theoretical investigation. 801 
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 806 

Appendix A. Classical Objective Functions 807 
The functions are classified in Table A.1 into to Distance-based (D) and Weak form-808 

based (W) objective functions. a, b and p in Table A.1 are respectively the offset 809 
constant, the scaling constant and the power used in equations (4) and (7). 810 

 811 
(Table A.1 here) 812 

Appendix B. Proofs 813 

B.1 Sign of the solution U of Eq. (8) 814 
Assume that Eq. (8) holds, with assumptions (A1-4) verified. From Assumption (A3), 815 

at any time t there exists U0(t) > 0 such that dU/dt = 0 for U = U0. U0 verifies Eq. (11), 816 
that is: 817 

 (B.1) 818 
If U(t) is smaller than U0, then dU/dt = R – g is positive because of Assumption (A2), 819 

and U can only increase at time t. Hence, U(t) is either greater than U0 or increasing, and 820 
thus can never be negative for t > t1 since U(t1)³0 (Assumption (A4)). 821 

 822 

B.2 Sign of the sensitivity s in Eqs. (13) 823 
The sensitivity equations (13) are rewritten as 824 

 (B.2a) 825 

 (B.2b) 826 

 (B.2c) 827 

 (B.2d) 828 

From assumption (A2), a is negative and b has a constant sign. The case b = 0 leads 829 
to the trivial solution s = 0 and is not considered hereafter. 830 

 831 
Consider first the case b > 0. In this case, there exists an equilibrium value  832 

for the sensitivity, with ds/dt = 0 for s = s0 in Eq. (B.2a). Since a is negative and b is 833 
positive, s0 is always positive. If s < s0, ds/dt = as + b > 0. Hence, s is either larger than 834 
the positive value s0 or increasing. Since s(t1) = 0 (Eq. (13b)), ds/dt > 0 at t = t1 and 835 
s(t) > 0 for all t > t1. 836 

 837 
Reasoning by symmetry leads to the conclusion that s(t) < 0 for all t > t1 when b < 0. 838 

B.3 Sensitivity to initial conditions and model warm-up period 839 
The purpose is to study the sensitivity of model output to the initial conditions. 840 

Consider the linear model 841 
 (B.3a) 842 
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 (B.3b) 843 

If the purpose is to study the influence of initial conditions, the parameter j is  844 
In this case, a and b in equation (B.2a) are given by 845 

 (B.4a) 846 
 (B.5a) 847 

Considering that the sensitivity of U with respect to the initial condition is equal to 1 848 
for t = 0, the solution of equations (B.2a, B.4a, B.4b) is a decreasing exponential: 849 

 (B.6) 850 
The sensitivity of U (and therefore of any function F(U)) becomes negligible after a 851 

simulation period equal to a few times 1/k. The warm-up period, that is necessary to 852 
eliminate the influence of a possible wrongly defined initial condition, should therefore 853 
be taken equal to a few times 1/k. For instance, s(3/k) = 4.98 %; s(4/k) = 1.8 % and 854 
s(5/k) = 0.7 %. In other words, only 0.7 % of the initial sensitivity to the initial conditions 855 
remains after a simulation period 5/k. 856 
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