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Textural approaches for vineyard detection and characterization using very highspatial resolution remote-sensing dataC. DELENNE∗†, S. DURRIEU†, G. RABATEL‡, M. DESHAYES†, J.S. BAILLY†, C. LELONG†, P.COUTERON§

† UMR TETIS, CEMAGREF - CIRAD - ENGREF, 34093 Montpellier, France
‡ UMR ITAP CEMAGREF - ENSA - CIRAD, 34196 Montpellier, France

§ French Institute of Pondicherry, PB 33, 605001 Pondicherry, India(Received 00 Month 200x; In �nal form 00 Month 200x)Vine-plot mapping and monitoring are crucial issues in land management, particularly for areas where vineyards are dominant like insome French regions. In this context, the availability of an automatic tool for vineyard detection and characterization would be veryuseful. The objective of the study is to compare two di�erent approaches to meet this need. The �rst one uses directional variations ofthe contrast feature computed from Haralick's cooccurrence matrices and the second one is based on a local Fourier Transform. For eachpixel, a `vine index' is computed on a sliding window. To foster large-scale applications, test and validation were carried out on standardvery high spatial resolution remote-sensing data. 70.8% and 86% of the 271 plots of the study area were correctly classi�ed using thecooccurrence and the frequency method respectively. Moreover, the latter enabled an accurate determination (less than 3% error) ofinterrow width and row orientation.Keywords: Texture; Image analysis; Cooccurrence; Fourier Transform; Vineyard1 IntroductionThanks to the increased availability of remote sensing data and of more powerful computers, automaticanalysis methods can be developed to build or update geographical databases for land management. Accu-rate digital mapping of vineyards for wine-growing regions such as Languedoc-Roussillon (France) could beextremely useful for many reasons. For example, these maps can be integrated within Geographical Infor-mation Systems (GIS) which can be used by winegrower cooperatives to improve the monitoring of qualitycompliance in areas registered in the list of Controlled Origin Denomination. The management of pollu-tion, erosion and �ood risks is another �eld that can take advantage of these maps. Indeed, these risks,depending on culture and soil surface condition, are worsened by mechanization and intensive croppingpractices (Wassenaar et al., 2005; Vincini et al., 2004).User demand usually concerns 1) locating vine plots and 2) identifying some characteristics that canbe connected to cropping practices or crop quality (interrow width, orientation of rows, presence of grassbetween rows. . . ).Most vineyard related studies using remote sensing data meet the second requirement by detecting vinerows (Bobillet et al., 2003) for example, or by characterizing training mode (Wassenaar et al., 2002) or foliardensity (Hall et al., 2003) for previously delimited plots. Those dealing with vineyard plots identi�cationand delineation often use multi-spectral information on over-metric spatial resolution images, provided bysatellites Landsat, Ikonos or airborne sensors (Rodriguez et al., 2006; Johnson et al., 2001; Gong et al.,2003). However, the increasing availability of Very High Spatial Resolution (VHSR) images o�ers a lotof new potential applications: the object shape and spatial structure are becoming more distinguishable,providing greater discrimination and characterization opportunities. Indeed, according to the Shannon-Nyquist theorem1, periodic patterns resulting from the spatial arrangement of vine plants (often in linesor grid), become perceptible with a spatial resolution that is at least twice as small as the pattern period.
1See any book on signal processing for more information about this theorem
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2 Textural approaches for vineyard detection and characterizationIn the study area, like in many wine-growing regions, the minimum distance between two vine rows, isabout 1.5 m; consequently, image spatial resolution should be lower than 0.75 m. However, as they dealwith spatial structures or shapes, these new applications also require new image processing approaches.In a recent study (Warner et al., 2005), a classi�cation algorithm based on an analysis of autocorrelogramswas developed and tested using Ikonos panchromatic imagery of Granger (Washington). This method,although providing good results in the application presented, could hardly be generalized in older Europeanwine-growing regions where the heterogeneity among researched patterns is high. Because of the periodicorganization of vineyards, frequency analysis appears as a suitable approach for vine detection. Waveletanalysis presented in (Ranchin et al., 2001) is applied to 25 cm resolution images for vine/non-vine pixelclassi�cation. Using a plot basis validation, 78 % of plots were accurately classi�ed; but this approachis complex and needs signi�cant user intervention. A Fourier Transform based analysis should be morestraightforward and quite as e�ective since this tool is perfectly suited for oriented and periodic texturedetection. Its e�ciency has been demonstrated to characterize and monitor natural periodic vegetation(Couteron and Lejeune, 2001; Couteron, 2002). Wassenaar (Wassenaar et al., 2002) successfully used it forvine/non-vine classi�cation and characterization of previously delimited plots on 25 cm resolution images.On a sample of 46 `extremely varied �eld patterns', vine/non vine classi�cation was correct for all the plotsand only �ve errors were encountered concerning training mode classi�cation of the 41 vine plots. Moreover,this method gave a very precise (less than 1 % error) estimation of interrow width and row orientation.Prat (Prat, 2002) employed a similar method to identify vine plots in an image. This one was �rst dividedinto small square windows (of 12.5 m side) on which �ve indices were deduced from Fourier spectrumand image radiometry. Then, a multidimensional supervised classi�cation using maximum likelihood led tocorrect classi�cation of 81 % of vine pixels.Other very popular approaches for textural analysis are based on Haralick's researches, according to whom`the texture information in an image is contained in the overall or �average� spatial relationship which thegray tones in the image have to one another' (Haralick et al., 1973). He then introduced the `gray-levelspatial dependency' (cooccurrence) matrices, which had remained unused for many years as they weretoo time-consuming. With the amazing increase of computer power, cooccurrence became one of the mostpopular characterization tools because it is based on second order statistics, well suited for the descriptionof textural properties, which the human eye is most sensitive to. A lot of studies have demonstrated itsrelevance for textural analysis (Chen et al., 1979) and its usefulness for many applications: urban planning(Morales et al., 2003), medicine (Smutek et al., 2003), scienti�c police (Verma et al., 2002), textile industry(Abdulhady et al., 2002). . . and even remote-sensing for agro-forestry (Arvis et al., 2004).The general objective of this work was to develop an automatic method for vineyard detection andcharacterization using very high spatial resolution remote-sensing data and without any a priori knowledgeof the parcel plan. Indeed, this latter is not available in most European wine-growing regions and, when ageoreferenced cadastre is available, it generally does not correspond to agricultural plots actually observablein the �eld. To foster large-scale applications, image used was a `standard' orthophotography in naturalcolour, with a 50 cm spatial resolution, similar to data available on the whole French territory. In thispaper, the relevance of cooccurrence based analysis is evaluated in comparison with a frequency approachto meet the need for vine plot detection. Moreover, characterizations of row orientation and/or interrowwidth, deduced from these approaches, are compared.2 Study areaThe study area is part of the La Peyne watershed (110 km2) and is located in the Languedoc-Roussillonregion - France (Figure 1). This zone is representative of the French Mediterranean coastal plain withrespect to geology, agricultural practices and vineyard management (Wassenaar et al., 2002). Two subsets,of 2 km2 and 1 km2, have been selected from this area near Roujan municipality (43◦ 30'N, 3◦ 18'E).Despite a general decrease, vine cultivation is still predominant and covers about 70 % of the 271 plots ofthe study area.The diversity of agricultural practices in the study area leads to a great heterogeneity among vineplots (di�erence of vigour, grass between rows, missing vine trees. . . ) which generally hampers the use of
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Figure 1. Localization of the study area in France and Europe.

(a) (b)Figure 2. Vine training modes: a) Goblet (grid pattern), b) Trellis (row pattern).spectral information for vineyard detection. However, on VHRS remote sensing data, two main patternscan be observed according to training mode (�gure 2):
• Grid pattern: about a quarter of the vineyard considered in this study is trained as `goblet'. This oldmethod of vine training involves no wires or other system of support: vine stocks are planted according toa grid pattern, often square, with approximately 1.5 m × 1.5 m spacing in the study area but sometimeup to 3 m spacing in dry regions.
• Line pattern: most of the recent vineyards are trained using horizontal wires to which the fruiting shootsare tied. Spacing separating two wires is higher than spacing between vine stocks guided by the samewire (often 1 m × 2.5 m spacing in the study area), which leads to row patterns. More adapted tomechanization, this training mode named trellis or wire-training, is mainly used.These patterns can be observed on each spectral band and are less dependant on the previously citedheterogeneities. Then, with vineyard detection in aim, methods should be more robust when dealing withtextural aspects than spectral ones.
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4 Textural approaches for vineyard detection and characterization

0 50 10025
Meters ´Figure 3. Zoom on the study area. All the plots of the study area have been surveyed and integrated with their characteristics in ageodatabase.3 Data acquisitionData acquisition was made during the �rst week of July 2005, when foliar development was such that bothvine and soil were visible on aerial photographs. A digital camera was used aboard an Ultra Light Motorized(U.L.M.) to acquire photographs in natural colours (Red, Green and Blue). Images were geometricallycorrected and georeferenced using ArcGisr (ESRI), mosaicked using ERDASr Imagine (Leica Geosystem)and resampled to a 50 cm resolution. The resulting images have characteristics similar to those of the BD-Orthor coverage of the French geographic institute (IGN), which is widely used and covers almost all theFrench territory.For result validation, ground-truth information was collected at the same time as image acquisition.Each of the 271 vine and non-vine plots of the site has been digitized in a GIS database (�gure 3) whichalso contains information concerning land use and a series of characteristics for vine plots: training mode,interrow width, orientation, rough estimates of vine height and width, soil surface condition. . . Roworientation and interrow width were obtained by precise on-screen measurements: row orientation wasmeasured with a 1◦ precision and interrow width was calculated by dividing the width of the whole plotby the number of interrows.4 Textural analysis methodsBoth methods compared in this paper were implemented to calculate textural characteristics on the sur-rounding of each pixel using a sliding window.4.1 Cooccurrence analysis: use of Haralick's contrast featureThe �rst method presented in this study has been developed from cooccurrence matrices de�ned in (Haralicket al., 1973). Element pi,j of each matrix Pdx,dy

contains the number of transitions from grey level i to jbetween two pixels of image I, distant from dx pixels in column and dy in line (equation 1):
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Figure 4. Cooccurrence calculation distances vs orientations. Left: nearest neighbours. Right: more orientations implies longercalculation distances (greater than interrow widths).
pi,j = Pdx,dy

(i, j) = #

{

((x, y), (x′, y′)) / x′ = x + dx, y′ = y + dy;

(Ix,y = i & Ix′,y′ = j) or (Ix,y = j & Ix′,y′ = i)

} (1)where # denotes the number of elements in the set and Ix,y is the grey level of pixel of coordinate (x,y).Each cooccurrence matrix is then symmetric and for a Ng grey level image, its size is equal to Ng × Ng.Depending on the spatial resolution used (50 cm) and row spacing encountered (from 1.4 m to 2.5 m)analysis must be done on transitions between one pixel and its direct neighbours in order to characterizesoil-vine transition: |dx|, |dy| ∈ {0, 1}. Only four directions are then explored: θ = 0◦, 45◦, 90◦ or 135◦. Withimage coordinates increasing from upper left to lower right corner: d0 = (dx, dy) = (0,−1), d45 = (1,−1),
d90 = (1, 0) and d135 = (1, 1). Search for more directions would imply longer calculation distances, unsuitedto interrow widths (�gure 4).From cooccurrence matrices, Haralick de�ned 14 textural characterization features, some of which beingcorrelated. As preliminary comparative analysis (unpublished), they have been computed on a slidingwindow applied on a synthetic image imitating 3 vine plots (with row oriented at 0◦, 45◦ and 90◦) as wellas a non-vine plot, modeled by a random texture. Some features (e.g. correlation or angular second moment)could be used to highlight vine plots, but their histogram have a high dispersion, which would hamper agood pixel classi�cation in vine/non-vine. That is not the case for contrast feature (equation 2), whichappeared to be well suited for vineyard detection. The higher the local variations in the sliding window,the higher the contrast, strongly depending on orientations of both vine row and feature calculation.Consequently, contrast is high when calculated in a direction that is perpendicular to vine rows and verylow when calculated in row direction.

f2(Pdx,dy
) =

Ng−1
∑

n=0

n2







∑

|i−j|=n

pi,j







(2)We then propose a `vine index' based on this property, which can be used to distinguish row patterns fromother non-oriented high contrasted patterns (e.g. checkerboard-like). Indeed, vineyard will be characterizedby a high di�erence of contrast calculated in two perpendicular directions. For each pixel, signed di�erencesbetween the four pairs of perpendicular directions are compared. The highest di�erence is the vine indexand the two directions associated provide a class of row orientation to the focal pixel. Theoretically, whencalculated on vineyards with row orientation θ ∈ [23, 68], contrast should be high for direction d135 and lowfor d45, so that these vineyards should be classi�ed in class C45; likewise, class C90 corresponds to vine roworientations in θ ∈ [69, 112], C135 to θ ∈ [113, 158], and C180 to θ ∈ [158, 180] or θ ∈ [1, 23]. Contrast is allthe more interesting as it can be computed directly on image without previous calculation of cooccurrencematrices; this considerably reduces calculation time. Figure 5 describes the classi�cation method appliedon a synthetic image.
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6 Textural approaches for vineyard detection and characterization
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C45Figure 5. Vineyard detection using Haralick's contrast. 1) Contrast calculation on sliding window in orientations: 0◦, 45◦, 90◦ and135◦. The brighter the pixel, the higher the contrast. 2) Di�erence of contrast between two orthogonal directions. 3) The maximumvalue of the di�erences gives the `vine index' and an estimation of row orientation with a classi�cation in four classes.4.2 Frequency analysis: use of local Fast Fourier TransformThe second method developed in this study is based on the works of (Wassenaar et al., 2002) who used theFourier Transform to characterize already delimited plots. Here, we test the same kind of approach whenthe only available data is the aerial image (the main goal being vineyard detection).Fourier theory states that almost any signal, including images, can be expressed as a sum of sinusoidalwaves oscillating at di�erent frequencies. The discrete Fourier transform (FT) of an image is computedusing the Fast Fourier Transform (FFT) algorithm. Taking the modulus of the complex-valued FFT resultsyields the FT amplitude (or spectrum), which can be represented in the frequency domain as an imageof the same size as the initial image, I. In the conventional representation, this image is symmetric withrespect to its centre, which contains the average of I i.e. the amplitude of the null frequency F0. Each pixelcorresponds to a particular spatial frequency increasing the further it is from centre. Its value codes theamplitude of Fourier spectrum, which depends on the frequency presence in image I. The amplitude of thediscrete Fourier Transform of I is de�ned by equation 3:
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∥
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(3)where (Nx,Ny) is the size (column, line) of both images, x = 0 . . . Nx − 1, y = 0 . . . Ny − 1 are spatialindexes (in image I) and u = 0 . . . Nx −1, v = 0 . . . Ny −1 are frequency indexes (in the Fourier spectrum).The method consists in applying the FFT algorithm on a sliding window. When this window containsvineyard arranged in rows, two peaks will be present on the Fourier image, and will be symmetric withrespect to the centre; for the grid pattern of a goblet vine, four peaks will be present at 90◦ (see �gure 6).The FFT algorithm assumes that the data is periodical, i.e. the image repeats from end to end in�nitely.Therefore, FFT calculation on a �nite window may lead to aliasing artefacts (Gibbs' phenomenon) whenpixel values at the edges of the window do not match. To avoid these artefacts, which could introduceadditional peaks, pixel values are �rst of all multiplied by a Hanning window (by Von Hann) which shapeis half a cycle of a cosine wave and is null at the edges (see �gure 7). Three characteristics can be deducedfrom the peak value and position:
• The distance r of the peaks from the image centre corresponds to the pattern frequency in the windowand, consequently, is connected to the vineyard interrow width, which is equal to the size N of the slidingwindow divided by r. Peaks can then be sought in an annular ring, corresponding to potential vineyardinterrow widths to avoid confusion with other periodic patterns (e.g. orchards, characterized a by largerinterrow).
• The angle θ, between horizontal line and one peak, determines the wave direction in a polar coordinate
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Figure 6. Examples of Fourier Transform. The left-hand side shows 3 images, which are the same size as the sliding window, extractedfrom a goblet vine (up), a trellis vine (middle) and a non-vine (down); the centre shows their respective Fourier Transform and theright-hand side shows the frequencies remaining after thresholding (the same threshold is used for the three images).
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Figure 7. Vineyard detection using Fourier Transform (FT). 1) Use of a Hanning sliding window of size N × N. 2) FT calculation onthe window. 3) Search for the maximum FT amplitude among the potential vineyard frequencies; for each pixel, this value is saved as`vine index' and its position gives row orientation and interrow width.system, which is equal to row direction in a geographical coordinate system (90◦ o�set).
• Peak amplitude is the `vine index': the higher the amplitude, the higher the probability of the windowbeing in a vineyard.5 Implementation of the textural analysis methodsBoth methods were implemented in C language and applied on the study area.A sensitivity analysis to the window size has been carried out since accuracy of detection and characteri-zation depends on the number of pixels in the window. On one hand, this window must be large enough totake into account the repetition of row or grid patterns, so a large window provides more precise informationwhen located inside a plot. On the other hand it decreases classi�cation results near plots boundaries as itcan contain several patterns at the same time, and of course, increases the calculation times. Eight windowsizes have been tested from 11 × 11 to 39 × 39 pixels. For the frequency based method, results becomeacceptable for a 27×27 window size. (13% of badly classi�ed pixels) and the lowest rate of misclassi�cation(12.2%) is reached for 31× 31. Extending window size up to 39× 39 pixels does not improve results (12.4%
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8 Textural approaches for vineyard detection and characterization

(a) (b) (c)Figure 8. Results on a subset of the study area. a) original image, b) vine-index issued from the contrast method, c) vine-index issuedfrom the frequency method. The manual segmentation is supperposed in grey on each image.of misclassi�ed pixels) while doubling computational time. Consequently, the best trade-o� for the windowsize is about 31× 31 pixels, which can contain from �ve to ten vine rows in the study area. Through visualassessment of the di�erent window sizes, this latter also appears to be the best for the contrast approach.The methods have been tested on each of the three channels of the image. Vine index, produced by bothmethods, is an indicator of the probability for a pixel to belong to a vineyard. For vineyard detection,a threshold has been de�ned to separate two classes: `vine' and `non vine'. The pixels whose vine indexis lower than the threshold are classi�ed as `non vine', the others as `vine'. Threshold determination isoften empirical; here, it was chosen to minimize global classi�cation error for a representative sample ofthe database plots. Therefore, omission error (vine detected as non vine) is chosen lower but almost equalto commission error (non vine detected as vine). Some tests have shown that a sample containing 10 % ofthe plots was large enough to determine a threshold value that is very close to the one obtained using allthe plots. The sample must be representative enough of the study area, particularly in terms of land useand vineyard training mode.6 Validation methodValidation is performed on a plot basis using all the 271 vine and non-vine digitized plots of the studyarea. A simple classi�cation rule is employed: a plot is classi�ed as `vine' if at least 75 % of its pixelsare `vine', as `non vine' if at least 75 % of its pixels are `non vine' and not classi�ed otherwise. Then,vine plot characteristics (orientation class obtained by Haralick's contrast and orientation and interrowwidth given by Fourier Transform) are chosen to be the majority value among the pixels of the plot. Forvalidation, results of plot classi�cation and characterization are compared to the information contained inthe ground-truth database.7 ResultsBest results were obtained with the Red channel, probably because it provides the highest contrast betweenvine and soil surface, even when covered by grass. Therefore, we only present results derived while usingthis channel. Figure 8 shows vine-index of both methods on a subset of the study area.7.1 Classi�cation resultsTable 1 gives confusion matrices which enable the estimation of plot classi�cation quality by comparing itto ground truth data. Considering both vine and non-vine plots, 70.8 % of the 271 plots are well-classi�edwith contrast method and 86 % with frequency method.
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DELENNE et al. 9Table 1. Confusion matrices (row: ground truth, column: methods). Classi�cation in % of the 190 vineand 81 non vine plots using Red channel: a plot is well-classi�ed if at least 75 % of its pixels are well-classi�ed,badly classi�ed if less than 25 % of its pixels are well-classi�ed, not classi�ed otherwise.Contrast method Frequency methodvine non vine not classi�ed Total vine non vine not classi�ed TotalVine 72% 7% 21% 100% 89% 5% 6% 100%Non vine 1% 68% 31% 100% 2% 79% 19% 100%Because of the threshold chosen, both methods lead to a worse classi�cation for non vine than for vineplots. The main cause of non detection is when the vine is too young i.e. less than three years old. Vegetationis thus not su�ciently developed for the rows to be visible on aerial photographs; consequently, these vineplots have good classi�cation rates of only 26 % and 47 % for contrast and frequency methods respectively(see �gure 9b for an example).Globally, results provided by contrast method are poorer than those provided by frequency method. Fornon vine plots, one explanation may be that contrast does not take into account the periodicity of patterns:a road, for example, can lead to a di�erence of contrast in two orthogonal directions that is as high as thatof a vine but does not have a peak of frequency corresponding to vine interrow width. Figure 9a shows anexample of non vine detected as vine by contrast method but not by frequency method. Likewise, confusioncould theoretically appear between vine and orchards. However, since the sliding window size is adaptedto vineyards interrow widths, vine index will be lower on orchards because their interrow widths are muchlarger.For vine plots, results must be analyzed according to training mode. Indeed, goblet vines bene�t froma good classi�cation rate of only 49 % using contrast method against 89.7 % for `adult' trellis vines (allgoblet vines are adult). Likewise, frequency method leads to a good classi�cation rate of 88.6 % for gobletvines and 95.7 % for `adult' trellis vines.For both methods, the poorer results obtained for goblet vines mainly have two origins which lead to alow visibility of soil between rows. Firstly, goblet vines are not stressed by wires and can grow freely in alldirections; secondly, interrow widths of goblet vines are generally smaller than those of trellis vines (on thestudy area, 67 % of the goblet vines have an interrow width lower than 160 cm against only 2 % of thetrellis vines).Concerning goblet vine classi�cation, the big di�erence (39.6 %) between methods is due to the factthat goblet vines are often planted on a square grid so that contrast is identical in both perpendiculardirections, which hamper detection by the contrast method (see �gure 9c for example). In fact, most gobletvines properly identi�ed by the contrast method are pruned along one direction, which leads to a highercontrast in the perpendicular direction.7.2 Results of vine plot characterizationEstimation of orientation and interrow width obtained by both methods are now examined.With the contrast method, 78 % of the plots correctly classi�ed as vine have been allocated with thecorrect orientation class (among the four used). As evoked previously, de�ning more than four orientationclasses cannot be considered with this resolution because it would imply, for contrast calculation, a distancetoo large in front of interrow width (�gure 4). Indeed, if a 30◦ class is sought, the distance in pixels neededto compute contrast feature will be at least (dx, dy) = (5, 3) i.e. an Euclidian distance of about 2.9 m (for30.96◦ and 10.98 m for 30.07◦), larger than most of interrow width.Figure 10a shows characterization results for well classi�ed vine plots, using frequency method. FourierTransform leads to more accurate results for vine row orientation. Indeed, between on-screen measurementsand method estimation, an average absolute di�erence of 3.5◦ was found, which is less than a 2 % error.Moreover, error distribution is almost centered (�gure 10b).Interrow width calculation is also very precise with an average absolute di�erence of 6.2 cm, i.e. about3 % error (see �gure 10d for error distribution). The four outliers shown in �gure 10c, concern two vineplots covered by grass only one interrow out of two, which leads to a pattern period twice as large as
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10 Textural approaches for vineyard detection and characterization

(a) (b) (c) (d)Figure 9. Examples of plots. a) Non cultivated plot recognized as vine by contrast method: an oriented pattern is visible but with noparticular frequency. b) Very young trellis vine, badly classi�ed by both methods: rows are hardly visible. c) Goblet vine classi�ed asnon vine by contrast method and well-classi�ed (with 98 % of pixels) by frequency method. d) Trellis vine, well classi�ed by bothmethods.
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c) d)Figure 10. Orientation and interrow characterization using frequency method. Right: comparison of retrieved characteristics and plotmeasurements; regression and bisector lines are almost confounded. Left: error distributions.interrow width, and two vine plots ploughed between rows, for which interrow width determined is halfon-screen measurement. Characterization results highly depend on the size of the calculation window (seebelow), which is why (Wassenaar et al., 2002), who applied the FFT algorithm on the entire plot, obtained1 % errors for both orientation and interrow width.8 Conclusion and discussionTwo methods were compared for vineyard detection and characterization from aerial photograph presenting`standard' characteristics. The �rst one was based on Haralick's cooccurrence analysis, which had beensuccessfully tested on many applications but not yet for vineyard detection. The second one was based onFourier analysis, a well-tried approach for periodic and oriented pattern recognition.The originality of the proposed cooccurrence approach lies in the comparison of the contrast featurecalculation in two orthogonal directions. However, this method leads to a poorer vine/non-vine classi�cation
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• non-vine: contrast is sometimes higher in one direction than for its perpendicular, due to ploughingor roads for example, and this leads to a classi�cation as `vine' of 32 % of non-vine plots. However,the resulting patterns have no particular frequency and are globally well-classi�ed by frequency method(21 % of commission error).
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