N

N

Continuous semantic description of 3D meshes

Vincent Léon, Nicolas Bonneel, Guillaume Lavoué, Jean-Philippe Vandeborre

» To cite this version:

Vincent Léon, Nicolas Bonneel, Guillaume Lavoué, Jean-Philippe Vandeborre. Continuous semantic
description of 3D meshes. Computers and Graphics, 2016, 54, pp.47-56. 10.1016/j.cag.2015.07.018 .
hal-01196895

HAL Id: hal-01196895
https://hal.science/hal-01196895

Submitted on 10 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01196895
https://hal.archives-ouvertes.fr

Continuous Semantic Description of 3D Meshes

Vincent Léon?, Nicolas Bonneel?, Guillaume Lavoué®, and Jean-Philippe Vandeborre®

a

*CRIStAL, UMR 9189, Université Lillel
PCNRS, LIRIS UMR 5205
“Université de Lyon
dInstitut Mines-Télécom / Télécom Lille

Abstract

We propose a novel high-level signature for continuous se-
mantic description of 3D shapes. Given an approximately
segmented and labeled 3D mesh, our descriptor consists of a
set of geodesic distances to the different semantic labels. This
local multidimensional signature effectively captures both the
semantic information (and relationships between labels) and
the underlying geometry and topology of the shape. We il-
lustrate its benefits on two applications: automatic semantic
labeling, seen as an inverse problem along with supervised-
learning, and semantic-aware shape editing for which the
isocurves of our harmonic description are particularly rele-
vant.

1 Introduction

With the increasing popularity of digital 3D models in the
industry and for the general public, comes an increasing di-
versification in the use of this 3D content. New needs are
emerging from this diversification: organization of collections,
assisted modeling (both for professional and novice users), au-
tomatic shape synthesis, automatic skinning, smart filtering
of 3D scenes and so on. These new applications require high-
level shape description and understanding, as well as smart
shape distance measures. A huge amount of geometric shape
descriptors have been introduced by the scientific community
over the last 20 years [42] and even very recently [12, 25].
They describe the geometry of the shape either locally or
globally, with various degrees of invariance and robustness
(with respect to isometry, sampling, etc.). This geometric
description is the first step toward understanding and com-
paring shapes. However the geometric description remains
low-level and may not be sufficient for high-level tasks such
as, for instance, retrieving all chair backs in a database of
highly heterogeneous chairs. More recently, researchers have
tried to derive high-level descriptions of shapes in the form
of part labeling, e.g., each face of the 3D shape is labeled as
back, leg or seat, in the case of chair models. This high level
description may be obtained using supervised learning [19] or
by fitting a shape template [22]. Such semantic labeling may
be extremely useful in some applications such as database or-
ganization. However this approach has the drawback of being
constrained by the semantic domain of the database. More-
over it defines a hard classification of the mesh elements (one
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Figure 1: Illustration of our continuous semantic signature
for different points of the Horse model. This signature is
built from a prior labeling of the model and consists in the
set of geodesic distances to the different semantic parts. For
instance, p; is close to ears and head and far from torso and
legs. This signature conveys the spatially continuous nature
of the semantic.

single discrete label for each face among a finite set). As
an example, if one considers a labeling of a humanoid model
as arm, leg, torso and head, then how can the shoulder be
characterized or retrieved? In that context, we introduce a
new high level shape representation (illustrated in Figure 1)
which encodes both semantic and geometric information, in
the form of a multidimensional real-valued vector. The idea is
simple: each vertex is characterized by its geodesic distances
to every semantic part of the object. This rich and continuous
information allows us to much better characterize the seman-
tic context of a vertex, as well as the relationships between
semantic parts. Applications of this new representation are
numerous: shape labeling, skinning, geometry transfer, as-
sisted modeling and so on.

The rest of this paper is organized as follows: section 2
describes the related work about 3D shape description and
understanding. Then, section 3 presents our descriptor and
its properties. Finally, we present two applications: 3D-mesh
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labeling (section 4) and geometric detail transfer (section 5).

2 Related Work

An incredible amount of work has been devoted during the
last 20 years on 3D shape description and representation.
This topic is involved in many computer graphics areas such
as shape retrieval, segmentation or shape correspondence.
In this section, we first cover approaches that are most
closely related to our semantic context representation. We
refer the reader to recent surveys for more in-depth discus-
sions [42, 46, 48]. We then examine the relevant work in
shape editing, which is one of the main applications of our
representation.

2.1 Shape description

A great variety of geometric shape descriptors have been in-
troduced for the purpose of shape representation, understand-
ing and retrieval. The earliest ones were global — they repre-
sent a shape by a single signature. The first global descrip-
tors were only robust to rigid deformations (e.g., spherical
harmonics [14]), while more recent ones are also invariant to
non-rigid deformations like near-isometries. These latter de-
scriptors include spectral embeddings [32, 33] or histograms
of local shape descriptors [30, 15] including bag-of-word mod-
els [8, 28]. Local descriptors associate one signature per ver-
tex, face or local region of a 3D shape; they include simple
differential quantities (e.g., curvature), shape diameter [15],
histogram of gradients [50], the heat kernel signature [39],
shape context [25] or spin images [12]. In contrast to these ge-
ometric descriptors, topological representations are also very
popular for shape retrieval and understanding [4]. They in-
clude mostly graph representations like Reeb graphs [6, 5, 43]
or simpler region adjacency graphs obtained from a segmen-
tation [35].

These shape descriptors (both for geometry and topol-
ogy) are low-level and thus do not relate to the shape se-
mantics in any way. However, they may be used to derive
high-level representations like a semantic labeling. This gap
from low-level to high-level description may be filled using
manual annotations combined with an ontology describing
the semantic domain, as proposed by Attene et al. [2]. To
get rid of these manual interactions, recent data-driven tech-
niques [19, 29, 44, 47] benefit from the availability of large
semantically annotated 3D data collections to infer semantic
labels from large sets of low-level descriptors using supervised
learning. Co-analysis [17, 36, 45] can also infer consistent la-
bels within a collection. In slightly different ways, Kim et
al. [22] learn and then fit a shape template to obtain a consis-
tent labeling of a whole model collection, while Laga et al. [27]
and Zheng et al. [52] analyze the relationships between parts
for the same purpose. Such semantic labeling is perfectly
suited for several high level applications such as database ex-
ploration [13] or modeling by part assembly [10, 3]. However
it has two major drawbacks: (1) it is limited to a pre-defined
ontology (i.e., a finite set of predetermined labels) and (2)
it does not convey the continuous nature of semantics. For
instance, for a human being or an animal, there is no strict

semantic boundary between a leg and the torso but there exist
regions that belong to both parts in certain proportions.

Our representation solves these issues by encoding the se-
mantic in a continuous way, as well as geometric and topolog-
ical information in one single local multidimensional descrip-
tor.

2.2 Shape editing

Reusing existing geometry to synthesize new models is an
important challenge in computer graphics. The objective is
to ease the designers work and speed up the production of
these 3D models. Two main classes of methods have been
proposed so far: part assembly and geometry cloning.

Part assembly [10, 26, 20, 49, 18, 16] consists in gener-
ating (automatically or using an adapted interface) new 3D
models by gluing together existing parts from a pre-processed
database. The main weakness of these techniques is that they
rely on a prior segmentation/labeling and thus their degree of
freedom is limited by the pre-defined semantic domain. For
instance it is impossible to glue an ear on the head of a 3D
model, if these two components do not possess different labels
in the database.

On the other side of the spectrum are geometry cloning
tools which do not consider any semantic information or prior
segmentation, but rather consist in fully manual cut-and-paste
operations, either conducted on large geometric parts [34] or
on surface details [38, 41]. The main drawback of these ex-
isting works is that the precise location of the part or details
to be transferred from a source to a destination model has to
be manually determined — on both the source and the desti-
nation. However, such process could really benefit from se-
mantic information. For instance the geometric texture of a
shoulder region from a source object could be automatically
pasted on the shoulder region of the destination model.

Our continuous semantic representation allows for bridging
the gap between part assembly (which is too constrained by
a prior segmentation) and geometry cloning (which is fully
manual). It intrinsically encodes a smooth semantic map-
ping between two shapes, that allows for a smart automatic
geometry transfer. Note that such correspondence may also
be computed using surface mapping algorithms [21, 1]. How-
ever, these algorithms are clearly not suited for the real-time
interactions required by design applications.

3 Continuous Semantic Description

Given an approximately segmented and semantically labeled
mesh, our descriptor consists in a set of geodesic distances
to the different labels. This section describes in more details
this new, semantic, local descriptor, which accurately con-
veys the spatially continuous (contrary to uncertain) nature
of a mesh labeling as well as topological relationships within
the mesh. Good properties of this descriptor are illustrated
through various experiments.

3.1 Semantic Sampling

To compute our descriptor, the first step is to sparsely
sample points on the mesh. The benefit of this is to avoid
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the need of a precise segmentation, which makes it robust
against segmentation mistakes inherent to most methods. As
such, we do not assume a particular segmentation method
and just assume we are provided with a coarsely segmented
mesh, along with a semantic labeling for each segment. By
semantic labeling, we assume, for instance, that a single
label “leg” is given to the four legs of a quadruped, rather
than a different label for each leg, and that this labeling
is consistent within a database of similar objects. Many
efficient algorithms are now able to compute such consistent
segmentation and labeling over a database of 3D models
[19, 44, 17, 36, 29, 45, 22, 47]. In practice, in the examples
of this paper, we consider the models from the Princeton
segmentation benchmark [11], segmented and labeled by the
method of Kalogerakis et al. [19]. Examples of this labeling
are illustrated in Figure 2.

Figure 2: Tllustration of some classes of models (labeled
by [19]) that we consider in the examples of this paper: Hu-
man (8 labels), Armadillo (11 labels), FourLeg (6 labels) and
Airplane (5 labels).

We consider an adaptive sampling strategy. For each label,
we determine a number of samples proportional to the area
of that label over the mesh (we add a minimum number of
samples to avoid under-represented labels such as the ears or
tail). We then randomly select faces according to their area
(and label) and sample within these faces. We use 10+ 100 x
area(l)/area(mesh) samples per label (where area(¥) is the
total area of the label ¢). A visualization of some sampled
labels can be seen in Figure 3.

o
J
4

Figure 3: Our label sampling strategy. Left to right: body,
head, tail.

3.2 Semantic Shape Signature

For each label ¢, we have obtained a set of samples S, as
described in Section 3.1. Our descriptor, denoted d, depends
on a predefined set of labels £, which corresponds to the entire

collection of labels present in a mesh database. For a given
point p on the mesh, the descriptor is computed as a vector of
|£] elements. Each element of the vector d(p), denoted d¢(p),
describes the relation between the point p and the label £.
In many cases, and in particular for heterogeneous databases,
a single model will only possess a subset of the entire set of
labels £. This makes the descriptor sparse, and some elements
of the descriptor will just be undefined.

The scalar dg(p) is computed as the geodesic distance from
p to the closest point in Sy, denoted g(p, S¢). As the points
in Sy may belong to different segments, this makes our de-
scriptor invariant to the number of occurrences of a label in a
shape. For instance, if we consider a dataset of human mod-
els, our descriptor would contain (among other relationships)
the geometric relationship between the points of the models
and the nearest of the two arms. Intuitively, the descriptor
indicates that a point on the shoulder of a human will be close
to the label arm but far from the label leg, in term of geodesic
distance. This is in contrast to probabilistic approaches which
would consider a point on the shoulder more likely to belong
to the arm than the leg. A probabilistic approach based on
geometric features is unable to tell that a point on a shoulder
is actually in-between the arm and the head, but can only
assign probabilities based on resemblance. Further, our use
of geodesic distances makes our descriptor robust to changes
in pose and sampling, as shown in Figure 5.

The descriptor is thus computed as:

d(p) = {de(p), £ € L}
de(p) = min(g(p. ) W
seSy

where g is the geodesic distance. When a label /¢ is not repre-
sented in a shape, a default value dy = oo is used. In practice,
we compute an exact geodesic distance with the algorithm of
Surazhsky et al. [40].

Figure 1 illustrates our descriptor for a few points of a mesh.
This signature smoothly encodes the semantic information
and its topology (i.e., relationships between labels) as well as
geometric information. Unlike a simple labeling, it is able to
easily discriminate different points having the same label but
different positions (e.g. P, and Ps). Figures 4 and 5 illus-
trates the d; scalar field for different labels . Once again,
these figures show that our signature describes a continous
semantic information, much richer than a simple labeling.

3.3 Properties

Our signatures exhibits several useful properties detailed be-
low.

3.3.1 Robustness

Since we compute exact geodesic distances on the surface, as
well as an adaptive semantic sampling, our descriptor is in-
variant to the mesh resolution, as can be seen in Figure 6. It
is also very robust to near-isometric deformations like skeletal
articulations as illustrated in Figure 5. Further, when increas-
ing the number of samples, our descriptor converges toward a
set of geodesic distances to segment boundaries — which would
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Figure 5: Visualization of dg¢(p) for two meshes of the Human category from the Princeton Benchmark [11].
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Figure 4: Visualization of d¢(p) (blue to red for low to high)
for two meshes of the Airplane category from the Princeton
Benchmark [11].

not be robust against small segmentation mistakes. Our sam-
pling strategy hence enforces robustness against segmentation
inaccuracies. In practice, within a segment with label ¢, the
distance corresponding to that label can be non-zero. How-
ever, we did not find this to be problematic in our experi-
ments.

3.3.2 A semantic-aware distance

A simple L? distance in our signature space defines a new
semantic-aware metric over the surface. Figure 7 shows uni-
formly sampled isocurves of the distance field from a point on
the right knee to the rest of the human body. For comparison
we also illustrate the geodesic distance field. Our metric well
reflects the semantic distance.

Figure 8 illustrates the use of the previously defined metric
for computing correspondences between different models. In
both examples (Armadillo, FourLeg and Chair classes), we
selected a point (in red) on the first model, and computed
the L? distance in descriptor space, from this point to ev-
ery vertices of every models (including itself). We see that

(X

hand

;

lowerleg

Figure 6: Visualization of dy(p) on two labels, with different
mesh resolutions (11015 and 2639 vertices respectively)

an accurate correspondence is found between models, illus-
trated by the semantic similarity between blue areas, even in
the case of strong pose changes (Armadillo) or shape varia-
tions (FourLeg, Chair). To summarize, starting from a coarse
corresponding labeling (see Figure 2), our signature defines a
dense correspondence between the models. This correspon-
dence may be very useful for many applications such as part-
in-shape retrieval and selection, as well as mesh editing and
geometry transfer. Existing work on dense mesh correspon-
dence such as the work of Ovsjanikov et al. [31] are based
on local geometry desciptors, and does not account for any
semantic information.

The top row in Figure 9 further illustrates the use of the
Lo distance in our descriptor space for models of the Human
class. The selected point on the elbow of the first model is
matched to the others. On the second row, faces are described
using the 608 geometric unary features proposed by Kaloger-
akis et al. [19] and the matching is performed using the Lo
distance on these descriptors. The bad correspondence ob-
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Figure 8: Correspondence between several models, computed using our signature. For each class (Armadillo, FourLeg and

Chair

) we compute the Lo signature distance from the red point to every vertices of every models of the class (illustrated in a

blue to red logarithmic scale). The semantic
correspondence is found between models.

Geodesic distance

Lo signature distance

Figure 7: Distance field from a point on the knee to the rest
of the model, computed with a simple geodesic distance (left)
and with the Ly distance in our signature space (right). We
observe than our signature-based metric integrates both geo-
metric and semantic information, as it captures variations of
the geodesic distances to all semantic labels.

tained in this latter case illustrates the fact that even a very
large set of geometric features cannot compete with our de-
scriptor in term of semantic correspondence.

similarity between the blue regions in each row illustrates that an accurate

3.3.3 Descriptive power

Our signature may also be useful to describe segments (i.e.
parts of a mesh). In that case, each segment is described by a
collection of |£| histograms, obtained by uniformly sampling
the segment and accumulating each sample’s signature. In
Figure 10, we depict the repartition of the segments of two
classes from the Princeton Benchmark [11] previously labeled
by [19], obtained by multi-dimensional scaling (MDS) applied
on a signature difference between segments. This signature
difference is defined as the sum of the Earth Movers distances
between histograms. Each point represents a segment, with
the color corresponding to the label. The apparent clustering
of points according to their labels appears to validate the
semantic quality of the L2 descriptor distance. Besides this
correct visual clustering, we observe that our descriptor also
provides insights about the geometry and the topology of the
segments which may bring valuable information. For instance
the engines of the Airplane class are not clustered together
because engines have a different context: some of them are
attached to the nose of the plane, some are attached on the
side, while other may be attached to the wings. Interestingly,
the respective positions of the clusters provide information
about the relationships between labels. For instance the body
cluster of the Airplane class is at the center of the other labels,
like the torso for the Human class. As another example, the
lowerArm cluster is at the opposite of the foot cluster. We
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Figure 9: Correspondence between models from the Human
class, comparison with the features from [19]. Top row: Lo
distance in our signature space. Bottom row: Lo distance on
the geometric descriptor set from [19] (608 dimensions).

will see in the next section that this rich descriptive power
may be useful for automatic region labeling.

4 Application to Semantic Labeling

As detailed in section 3, our descriptor requires a complete
labeling of the mesh, which does not seem suitable at first
for a mesh labeling application. In this section, we demon-
strate that a combinatorial optimization step along with su-
pervised learning allows for the semantic labeling of an unla-
beled shape.

As our descriptor describes the relationship between the
geometry and labels in a set of shapes, we consider the la-
beling task as an inverse problem. Specifically, we find the
best labeling maximizing the probability of a label, given the
descriptor, outputted by a random forest classifier given a
pre-labeled dataset.

4.1 Labeling as a Inverse Problem

We consider an input 3D model Q with m unlabeled segments,
that may come from any segmentation algorithms [51, 23]. By
using a database of segmented and labeled models, we infer
the labels of Q. We proceed in two steps: the training step,
for which a random forest classifier learns from the labeled
database, and the inference step which estimates the most
probable labeling of the input model.

4.1.1 Training

For every shape in the training set, we extract a set of source
points Sy for each label ¢ € £ using the method described in
Section 3.1.

We perform supervised learning by considering a feature
vector for each segment of each model associated with its
ground-truth label. The feature vector consists of a collection
of |£| histogram statistics. Specifically, we uniformly sam-
ple the input model and compute our descriptor d for all the

samples according to the ground-truth labels. For each label
£, we bin the descriptors dy at these sample points to produce
a histogram, and compute their mean, standard deviation,
skewness and kurtosis. These statistical features are classi-
cally used for describing distributions [37]. We thus obtain a
feature vector of size 4 x |L]. If the label is not represented
in the shape, the corresponding element of the feature vector
is not used for this shape.

With this training set, we train a multi-class Random For-
est Classifier [7] on the ground-truth labels.

4.1.2 Inference

Given an input model with m segments, we wish to label it
using the previously trained classifier. However, we recall that
our descriptor requires a per-segment labeling: we tackle this
challenge by evaluating hypotheses on possible labelings.

First, we sample each segment s; by a set of source point
P;. We then compute a matrix M of m x m histograms. The
element M; ; of the matrix contains a histogram of shortest
geodesic distances between all sample points P; and their cor-
responding closest point in P;.

We then evaluate a candidate labeling using our classifier.
For every segment s; of the input model, the classifier out-
puts the probability P(label(s;) = £) of the segment s; to be
assigned the label /. We determine a score for a complete
labeling hypothesis L by taking the product of all these prob-
abilities for each segment

m

P(L) = || P(label(s;) = ¢)

=0

(2)

While this assumes labels are independent of each other, this
simplifying assumption works reasonably well for our purpose
(see Section 4.2). A statistically correct approach would be
intractable since descriptors (and hence P(label(s;) for all seg-
ments) rely on the label of all other segments.

We generate the combinatorial, yet reasonably small, set of
possible labelings, and retain the one maximizing this score.
While we attempted more heuristic approaches such as simu-
lated annealing, this solution was significantly degrading the
quality of our results.

4.2 Results

We test our labeling method on the Princeton Segmentation
Benchmark [11] which contains 19 categories, each of 20 ob-
jects, ranging from humans to man-made objects. We use
the segmentation method and ground truth of Kalogerakis et
al. [19]. In practice, there are |£|™ possible labelings. This
remains tractable within the benchmark (each category con-
tains on average |£| = 5 labels and m = 7 segments per
object, yielding around 80000 evaluations). Our unoptimized
implementation takes 5 minutes for training our classifier on
an entire class of 20 meshes. The inference takes between
56 seconds (for Glasses) and 30 hours (for Armadillos which
have the largest number of labels and segments), and the me-
dian time is 18 minutes. Parallelization and simple heuristics
on label cardinality can be used to lower the inference time.
For instance, early experiments shown a three-fold speedup
on the Bird class by assuming the cardinality of each label
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Figure 10: Multi-dimensional scaling analysis of the segments of the Airplane and Human categories from the Princeton

Benchmark [11]

known in advance (e.g., two wing segments, one tail etc.),
without loss of accuracy. This heuristic could be considered
when the mesh to be segmented is consistent with the training
database.

We demonstrate the accuracy of our method using a leave-
one-out cross-validation on each category of object. This ex-
periment assumes the class of the object is known, but this
restriction can be alleviated at the expense of larger inference
times. In Table 1, we report the number of labels |£| consid-
ered for each category, and the percentage of faces correctly la-
beled by our method. We also present, for comparison, results
obtained using a simple geometric descriptor (an histogram of
Shape Indices [24] combined with segment areas) and results
obtained using the large feature vector from Kalogerakis et
al. [19]. In this latter case, as for our signature, we feed the
random forest classifier with the mean, standard deviation,
skewness and kurtosis of the distributions of the 608 unary
features resulting in a 2432-dimensional feature vector. We
also present results when combining this large set of geometric
features with our signature. Results show that the combina-
tion of geometric and semantic information provides the best
results; however, our descriptor alone (which has an average
of 20 dimensions) performs reasonably well given its low di-
mensionality — albeit less than the high-dimensional geometric
descriptor of Kalogerakis et al.

In Figure 11, we illustrate labeling results on the Air-
plane and Bird classes of the Princeton Segmentation Bench-
mark. The last examples are not correctly labeled, when com-
pared to the ground truth labels provided by Kalogerakis et
al. [19].For one plane, a stabilizer is labeled as rudder, since
the two parts are similar in both geometry and semantic con-
text.

To further assess the robustness of our method with re-
spect to inaccurate segmentations, we used our technique
to label under and over-segmented meshes (three birds and
three cups), compared to the training database (figure 12).
We merged the body and head segments of two bird meshes
and connected the two wings in one of them. We also over-
segmented another bird and three cups into seven parts (the
training dataset consists in two segments only). For under-
segmented meshes our automatic labeling often remains cor-

Category | # labels | ours [24] [19] ours—+[19]
Airplane 5 87.6 36.5 96.0 98.5
Ant 5 83.0 28.0 99.2 99.2
Armadillo 11 76.3 20.3 98.1 98.1
Bearing 6 57.1 2.0 85.2 84.1
Bird 5 87.5 3.8 95.4 94.0
Bust 8 65.4 2.6 68.1 67.7
Chair 4 59.0 1.7 99.7 99.7
Cup 2 92.1 87.5 95.1 95.1
Fish 3 82.4 78.2 100 90.5
FourLeg 6 80.0 25.0 97.8 97.7
Glasses 3 81.1 64.8 100 97.4
Hand 6 91.1 4.9 87.5 90.9
Human 8 79.3 13.2 92.1 92.0
Mech 5 75.9 14.9 84.7 87.6
Octopus 2 78.6 52.3 55.0 100
Plier 3 61.8 12.9 100 100
Table 2 84.3 89.2 97.8 97.8
Teddy 5 70.2 13.8 100 100
Vase 5 77.2 1.2 85.0 93.8

[ Average | 5 [ 77.3 ] 29.1 [ 91.4 | 93.7 |

Table 1: Performance on the Princeton Segmentation Bench-
mark (ground-truth from [19]). For each category, we show
the number of labels and percentage of correct labels per
face using our 20-dimensional descriptor, simple geometric
descriptors (segment area and Shape Indices [24]), 2432-
dimensional statistical moments from the 608-dimensional
unary geometric potentials of Kalogerakis et al. [19], and com-
bining our descriptor with these geometric potentials. Com-
bining both geometry and semantic gives the best result,
but our semantic descriptor alone achieves reasonable success
given its low-dimensionality.
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Figure 11: Labeling results for the Airplane and Bird classes of the Princeton Segmentation Benchmark. Green (resp. red)

boxes represent correct (resp. incorrect) labeling.

Figure 12: Labeling results using segmentations inconsistent
with the training set. Green (resp. red) boxes represent cor-
rect (resp. incorrect) labelings. On the top-left, birds are
under-segmented: the body and head are merged or the wings
are connected. Given this under-segmentation, the labeling
is correct. On the top-right, the bird is over-segmented into
7 parts which results in parts of the wings being misclassi-
fied as body. In the bottom row, cups are over-segmented
into seven segments, which can result in part of the handle to
be misclassified as inside (bottom right). In general, under-
segmentations do not pose particular problems for our label-
ing, while problems may occur with over segmentations.

rect, while over-segmentations occasionally misclassify seg-
ments (right column).

5 Application to Mesh Editing

In this section, we illustrate the use of our descriptor for
semantic-aware mesh editing purposes, such as the addition
of geometric details or filtering. The continuous semantic na-
ture of our descriptor and the semantic meaning of its asso-
ciated L? metric allow to obtain natural-looking shape mod-
ifications. We present here three usage scenarios:

1. The user selects a semantic label (e.g. wupper leg) and
the geometric modification is applied to the whole re-
gions for which the corresponding dp is the smallest di-
mension of the descriptor. On the border of the region,
the strength of the modification decreases as the corre-
sponding dimension of the descriptor, normalized over all
dimensions, increases.

2. The user selects a point on the mesh, and the geometric
modification is applied around this point and decreases
according to the L? distance in the descriptor space.

3. The user selects a point and an isoline (produced using
the L? metric), and then the modification is applied on
the whole region bounded by the isoline. Once again the
strength is decreased as we go further from the selected
isoline (in the descriptor space). Thanks to the isolines,
the user can very easily selects a semantic region not ini-
tially defined in the prior labeling, such as the shoulder,
in the case of a humanoid.

In these three scenarios, we have used a Gaussian function
N (= 0,02%) of the distances, with 02 = 50 when applying
on descriptor-space L? distance and ¢? = 30 when we use
only one geodesic distance. In all scenarios, distances are
normalized by the size of the mesh.

Scenarios 1 and 2 are illustrated in Figure 13 for which we

apply an additive Perlin noise on the torso and a smoothing
on the upper legs of an Armadillo model. For the smooth-
ing operation, we select the upper leg label (scenario 1). We
thus only use one dimension of our descriptor: we smooth the
whole area for which the smallest dimension corresponds to
this label. The strength of the smoothing is represented by
the opacity of the green color.
For the noise addition we select the point highlighted in white
(scenario 2) then the modification is applied around this point
according to the L? signature distance. We can see that the
procedural noise has been naturally spread all over the torso
region. Regions such as the hands or the head remain intact.
Figure 13 (d) illustrates the model after both modifications.
As another example, in Figure 14 we select the red point on
the shoulder of a humanoid model as well as the isoline illus-
trated in red (scenario 3). We then extrude all vertices within
the isolines. Note that since we are measuring distances in the
descriptor space, vertices on the other shoulder are automat-
ically extruded as well; this symmetry comes for free thanks
to the semantic information.

6 Conclusion
We have described a simple yet effective shape signature,

based on geodesic distances to semantic labels. Unlike a sim-
ple labeling, this descriptor conveys the spatially continuous
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(b)

Figure 13: Application to mesh editing - (a) Original Armadillo model - (b) Result after Laplacian smoothing when selecting
the upperleg label - (c) Noise added by selecting a point (in white) on the torso - (d) Final Armadillo model after both
smoothing and noise addition. Note that the distance in our descriptor space allows a smooth naturally-looking decreasing
of the strength of the geometric modifications (illustrated by the opacity of the colors).

Figure 14: Application to mesh editing - (a) Original Human
model - a point (in red) is selected on the shoulder /upperarm
region of the original model as well as the isolines (in red) -
(b) Vertices bounded by the isolines are extruded with smooth
transition at the borders (illustrated by the opacity of the
color). Note that the editing is symmetrical due to the sym-
metry of the labeling.

nature of the semantic as well as its topology (i.e. the rela-
tionships between semantic parts). We have demonstrated its
benefit on two applications: automatic semantic labeling and
semantic-aware shape editing.

In the future, we plan to exploit our shape signature for
data-driven shape editing and design (i.e., using a database of
existing preprocessed models to support the design/editing).
Producing tools to assist and support the graphic designer
in her modeling task becomes a fundamental research issue
since the production of massive amount of 3D content is now
a major concern for the global production chain of digital en-
tertainment products. In this work, we showed that our shape
signature was perfectly suited for semantic-aware shape edit-
ing. To create a complete system for data-driven shape edit-
ing, we now plan to devise complementary tools like a smart
user interface for semantic-aware mesh selection. Some recent
user interfaces dedicated to innovative 3D content creation [9]
may be inspiring for this task.

Besides shape editing, we would also like to explore other
applications like automatic skinning and database explo-
ration. We believe that our descriptor may be highly relevant
in such cases where semantic is a key ingredient.
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