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Abstract8

The increasing availability of Very High Spatial Resolution images enables accurate9

digital maps production as an aid for management in the agricultural domain. In10

this study we develop a comprehensive and automatic tool for vineyard detection,11

delineation and characterization using aerial images and without any parcel plan12

availability. In France, vineyard training methods in rows or grids generate periodic13

patterns which make frequency analysis a suitable approach. The proposed method14

computes a Fast Fourier Transform on an aerial image, providing the delineation15

of vineyards and the accurate evaluation of row orientation and interrow width.16

These characteristics are then used to extract individual vine rows, with the aim of17

detecting missing vine plants and characterizing cultural practices. Using the red18

channel of an aerial image, 90% of the parcels have been detected (56.2% with cor-19

rect boundaries); 92% have been well classified according to their rate of missing20

vine plants and 81% according to their cultural practice (weed control method). The21

automatic process developed can be easily integrated into the final user’s Geograph-22

ical Information System and produces useful information for vineyard management.23

Key words: Remote-sensing, precision viticulture, cultural practices, missing vine24

plants, segmentation.25

1 Introduction26

Since they provide precise and frequent large scale information, remote-sensing27

data can be used as an aid to decision-making. In winegrowing regions, ac-28

curate digital vineyards maps could be very useful to help the monitoring29

of quality compliance, especially for Controlled Origin Denomination areas,30

Preprint submitted to Elsevier Science 3 October 2008



where strict criteria are imposed, such as a rate of missing vine plants below31

25%. The management of pollution, erosion and flood risks are other fields32

that can take advantage of such maps as these risks depend on soil surface33

conditions, which are directly linked to the kind of culture and cropping prac-34

tice (see for example Lennartz et al. [1997] or Takken et al. [2001]). Distributed35

hydrological models developed for cultivated catchments take into account the36

spatial heterogeneity of landscape through some characteristics of crop pattern37

and cultural practices. However, these characteristics are generally unknown38

and are thus simulated using geostatistical methods and some localized and39

costly field surveys. Consequently, information (even partial) on soil surface40

condition between rows could be usefully introduced in such models. Users’41

demands usually concern (1) vineyards location and delineation and (2) iden-42

tification of some characteristics that can be connected to cropping practices43

or crop quality, such as interrow width, row orientation, presence of grass be-44

tween rows or missing vine plants (Montesinos Aranda and Quintanilla [2006]).45

Many vineyard related studies in remote sensing (such as Lamb et al. [2004]46

or Zarco-Tejada et al. [2005]) use the infrared channel of low spatial resolution47

images to characterize vine vigour. On Very High Spatial Resolution (VHSR)48

images, the plantation and training patterns (often in rows or grids) become49

distinguishable, providing great discrimination and characterization poten-50

tialities. However, realizing this potential with automatic processes requires51

the development of new image processing approaches, allowing the analysis52

of textured image. Two kinds of approaches have been used to that aim for53

vineyard characterization: texture and frequency analysis. The former has re-54

cently been used by Da Costa et al. [2007] to extract vineyards boundaries55

from 0.15 cm resolution images. However, a main drawback of the approach56

relies on the necessity to select a window inside each vine block before pro-57

cessing and the efficiency of the method in not quantified since results were58

qualitatively validated through a non-exhaustive visual control. Moreover, a59

comparative study of methods for vineyards detection (Delenne et al. [2008a])60

has shown the inferiority of such kind of textural approach in comparison with61

a frequency analysis. This later, which takes advantage of the crop patterns62

periodicity, has been successfully used by Wassenaar et al. [2002] who applied63

a Fourier Transform to characterize already delineated vine blocks on 25 cm64

resolution images. This approach also enables the accurate estimation of in-65

terrow width and row orientation, which can be used to easily extract and66

characterize each vine row, contrary to the complex and time-consuming clas-67

sical methods of deformable models, such as used in Bobillet et al. [2003]. The68

‘vinecrawler’ algorithm presented in Hall et al. [2003] and successfully applied69

on Australian vineyards, would be difficultly usable in our case where vine70

rows and interrows rarely contain more than two or three pixels (see section71

‘Study area and data’). This paper addresses the issue of vineyard detection,72

delineation and characterization from VHSR aerial images using a frequency73

analysis approach. The originality of the developed method stands in the fact74

that it is entirely automatic and produces a geographic data base in a ‘shape-75
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file’ format, which can be integrated into any GIS used by vineyard managers.76

The first part of this paper describes the proposed approach and the study77

area. Considering that the main objective of this paper is to present the whole78

workflow process, assessment of method efficiency is only presented for tests79

done on the red channel of an aerial image with a 50 cm spatial resolution.80

This choice (discussed in the section ‘Study area and data’) was guided by81

the increasing availability of such images in Europe and by results obtained82

in previous studies (Wassenaar et al. [2002], Delenne [2006]).83

2 Material and method84

In the following, the term ‘parcel’ will refer to an individual vineyard block85

with homogeneous characteristics (row orientation, interrow width, agricul-86

tural practice. . . ). The process workflow can be divided in three main steps:87

(1) vineyard detection, (2) initial parcel delineation, and (3) vine row extrac-88

tion, allowing boundaries refinement. At each step, some characteristics are89

derived, either to be directly added in the user’s geographical database or to90

be used in a further processing step.91

2.1 Study area and data92

The study area is the Roujan catchment (southern France), which has been93

an experimental site for hydrological studies since the beginning of the 90’s. In94

this Mediterranean coastal plain, the diversity of agricultural practices leads to95

a great heterogeneity among the vineyards to be detected on remote sensing96

data. However, according to training mode, two main patterns can be ob-97

served: grid or line. About a quarter of the vineyards considered in this study98

are trained in ‘goblet’, involving no wire or other support system and leading99

to a grid pattern, often square, with approximately 1.5 × 1.5 m spacing. The100

line pattern concerns most of the recent vineyards, which are trained using101

horizontal wires to which the fruiting shoots are tied. Spacing between vine102

plants in the same row is smaller than spacing between rows (often 1× 2.5 m103

spacing in the study area). More adapted to mechanization, this nowadays104

widespread training mode is named trellis or wire-training. Weed control prac-105

tices in the study area are based on three main methods: chemical weeding,106

mechanical weeding and grass cover. Cultural practices are characterized by107

either applying the same weed control practice on each interrow or alternating108

various weed control practices. The main combination modalities are: 1/1 (no109

alternation of practices), 1/2 (e.g. interrows alternatively grass covered and110

chemically weeded), 1/3 or 1/4. Data acquisition was made during the first111

week of July 2005, when foliar development was such that both vine and soil112
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were visible on aerial photographs, providing enhanced pattern visibility. Dig-113

ital cameras were used aboard an Ultra Light Aircraft to acquire RGB (three114

channels in the visible part of the electromagnetic spectrum: red, green and115

blue) and infrared images, with a spatial resolution of 50 cm. These character-116

istics have been chosen because they correspond to largely available data in117

Europe. Preliminary tests done on the Blue, Green, Red, Near Infrared chan-118

nels and on the NDVI and Green-NDVI indices (Delenne [2006]) have shown119

that best results are obtained with the Red channel. This is mainly due to the120

fact that the contrast between vine rows (vegetation) and interrows is gener-121

ally better in the red channel and especially when the interrows are covered122

by grass. The influence of resolution has also been studied and it was demon-123

strated that resolutions ranging from 30cm to 50cm were optimal according124

to the interrow widths encountered (Delenne [2006]). Thus, only results of125

the processing of the 50 cm resolution red channel will be presented in this126

paper. For result validation, ground-truth information was collected at the127

same time as image acquisition. The 121 vine parcels of the study area have128

been digitized in a GIS database which also contains information concern-129

ing land use and, for vineyards, characteristics of training mode (row or grid130

pattern), interrow width, orientation and soil surface condition between rows131

and under vine plants (covered by grass, chemically or mechanically weeded).132

Reference row orientations and interrow widths were obtained by precise on-133

screen measurements: row orientation was measured with a 1 precision and134

interrow width was calculated by dividing the width of the whole parcel by135

the number of interrows. In the following, this data base will be called the136

reference database.137

2.2 Vine parcel detection and boundaries extraction138

This part is based on previously published works and is thus briefly recalled139

here.140

Fourier theory (named after Joseph Fourier) states that almost any signal,141

including images, can be expressed as a sum of sinusoidal waves oscillating at142

different frequencies. Thanks to the Fast Fourier Transform (FFT) algorithm143

(Cooley and Tukey [1965]), the discrete Fourier transform of an image I can144

be quickly computed. Its amplitude, or Fourier spectrum, can be represented145

in the frequency domain as an image Î, symmetric with respect to its center.146

Each position (u, v) in the Fourier spectrum corresponds to a particular spatial147

frequency increasing the further it is from image center. A periodic pattern in148

the spatial image I will induce a high value of the associated pixel in image149

Î. The method is thus based on the fact that vineyards are, most of the150

time, organized in rows or grid and induce very located peaks. The location of151

these peaks also enables the precise estimation of row orientation and interrow152
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width, which will be useful in the next steps of vineyard characterization (see153

section Results). Two methods, based on this principle, have been developed154

for vineyard boundaries extraction: the first one, at an inner-parcel scale,155

classifies each pixel in vine/non-vine using the FFT on its near-neighborhood156

(about 30 m2) before segmenting the resulting image in vine parcels (Delenne157

[2006] and Delenne et al. [2006]); the second one, at a more global scale, treats158

image subsets (about 500 m2) containing several vine parcels at the same159

time and performs the segmentation directly in a recursive process (Rabatel160

et al. [2008] and Delenne et al. [2008b]). The first method is much simpler161

to implement and provides equivalent results in terms of detected parcels but162

with less accuracy in boundaries location.163

2.3 Vine row extraction: a way to improve delineation and characterization164

The characteristics of row orientation and interrow width are used in this step165

to extract each vine row in the segmented parcel. The two main objectives of166

this extraction are the improvement of boundaries location by a precise ad-167

justment of each row and the foliar density characterization at row level (with168

the out-coming detection of missing vine plants). Row extraction includes 3169

steps: 1) identification of the rows inside the previously delineated parcels, 2)170

adjustment of the vine row network and 3) use of the final network to improve171

and complete the geographical database.172

2.3.1 Initial row network extraction173

The first step of vine row extraction consists in setting a row ‘network’ in-174

side the previously segmented parcels. Assuming that rows are parallel, the175

straightforward proposed approach firstly consists in filling the parcel with a176

high number of oriented segments (e.g. spaced by half a pixel). Then, segment177

corresponding to vine rows are selected using two constraints based on digital178

numbers (DN) values and interrow width. In general, vegetation reflectance is179

lower than soil one in red wavelengths. For vineyards, the pattern contrast is180

sharpened in the red spectral band, thanks to the vine plants shadow located181

under the row when the sun elevation is high. Based on the hypothesis that182

vine row DN are lower than soil ones, local minima are first identified to select183

vine rows. Some of these minima, which are not located on vine rows, are184

eliminated using a second selection constraint based on a minimum interrow185

width (Figure 1).186
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Fig. 1. Vine row detection. Left: row network initial setting; middle: elimination
of false rows using the constraint of digital number local minima; right: further
elimination using the constraint of minimum interrow width.

2.3.2 Network adjustment on the parcel neighbourhood187

The row network is precisely adjusted using four actions: two row length ad-
justments, shortening and lengthening, and two adjustments of row number,
elimination and addition. In the following, the two classes ‘row’ and ‘interrow’
are considered (the interrows being defined by translating the rows of half an
interrow width, perpendicularly to row orientation). The general algorithm of
this adjustment process is presented in Figure 2. For row length adjustment
(shortening and lengthening), one meter length segments - corresponding to
the mean interplant distance along a row encountered in the study area - are
considered at row ends. The mean DN of a segment is compared to the DN
distribution of the entire row and to the DN distribution of the both adjacent
interrows using the Mahalanobis distance (introduced by P. C. Mahalanobis
in 1936) defined by equation 1:

dM =

√

(v − µ)

σ2
(1)

with v the value to test, µ and σ2 the distribution mean and variance respec-188

tively. This distance (unlike the Euclidian one) is invariant to any change of189

scale and gives an estimation of the possibility for an element to belong to190

a class. Thus, if the segment mean DN is closer to the class ‘row’ than the191

class ‘adjacent interrows’, the segment is considered to belong to the row.192

Lengthening is first tested by adding a segment to the row until it is no more193

classified as ‘row’. If the initial lengthening fails, segment elimination is tried.194

Additional tests check the presence of interrow segments at both sides of the195

row to avoid some false detection due to objects having the same range of DN196

values as vine rows (such as trees). Once initial rows are adjusted, the next197

step consists in row elimination or addition based on the analysis of the whole198

row mean DN value. Concerning the elimination process, each row mean DN199

value is compared to the global distribution of the mean DN values of all the200

rows and interrows of the parcel. The removal occurs when the row mean DN201

value is closer to the interrows class than the row one. The same kind of test202

is carried out to try to add some rows at the edges of the parcel.203
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Fig. 2. chart of the adjustment process.

2.3.3 Parcel update in the geographical database204

When all the rows have been adjusted, the parcel boundaries need to be cor-205

rected accordingly. At this stage, if some rows belonging to different parcels206

but having the same orientation and interrow width overlap each other, the207

corresponding parcels are grouped. This enables the correction of some over-208

segmentation cases. On the contrary, when more than three consecutive rows209

have been eliminated, the parcel is split up into two new parcels. This en-210

ables the correction of some under-segmentation cases. Figure 3 shows some211

improvements of parcel delineation after row detection and adjustment (see212

section Results for more details).213

7



Fig. 3. Parcel boundaries improvement thanks to row adjustment (left), elimination
(middle) and addition (right). Continued lines: initial boundaries; discontinued lines:
adjusted ones.

2.3.4 Detection of missing vine plants214

The missing plant detection is processed in a similar way as row length ad-215

justment. Each row is divided in 1m length segments and the mean DN value216

of each segment is compared to the DN distribution of the row and the both217

adjacent interrows. When the distance to the interrow class is smaller than218

the one to the row class, the segment is considered to correspond to a miss-219

ing vine plant. The non-detection of missing vine plants can be due to the220

presence of grass under the row (so that the interrow radiometry is close to221

the row one) or to the fact that the gap has been filled by the two neighbour222

plants. On the contrary, some plants can be wrongly considered as missing for223

several reasons: the missing vine plant has been recently replaced and is not224

yet visible on the image; the plant is not missing but is not very sturdy; the225

interrow is covered by grass so that the difference between row and interrow226

is poor. . . (see section Results for more details).227

2.3.5 Soil surface characterization: alternation of weed control methods228

When alternation of weed control methods is observed, another periodical pat-229

tern appears on the image with a frequency twice or three or four times smaller230

as the one characterizing the row (according to the combination modality).231

To automatically assess this secondary pattern, the one dimensional Fourier232

transform is computed for each parcel on the signal made by the interrows DN233

means. Then, knowing the interrow frequency f , the process seeks for a second234

local maximum and estimates its frequency f2. There will be alternation if the235

frequency f2 is approximately equal to f/2, f/3 or f/4.236
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Case Meaning

1. Good segmentation
The common covering surface is higher than 70% of both
manually and automatically segmented parcels.

2. Over-segmentation
Several parcels are automatically segmented within one
real parcel.

3. Under-segmentation
One automatically segmented parcel includes several real
parcels.

4. Partial segmentation Only one part of the real parcel is detected.

5. Larger segmentation
The automatically segmented parcel spills over one or more
parcels.

6. Missing segmentation Vine parcels not automatically segmented.

7. Extra segmentation Non-vine parcels automatically segmented as vine.

8. Other cases
All other cases such as both over and under segmentation
or both under and partial segmentation.

Table 1
Segmentation result classification: 8 different cases can be considered.

3 Results237

3.1 Segmentation results before and after row adjustment238

For the validation process, the results of vine parcel segmentation are classified239

using the 8 different cases defined in Table 1, according to their compliance240

with the reference boundaries (see Rabatel et al. [2008] for more details).241

Segmentation results obtained on the red channel of the image are presented242

in Table 2 before and after row adjustment. These results have been obtained243

with the first cited approach (Delenne et al. [2006]). As presented in Rabatel244

et al. [2008], On the former results, only 12 parcels (10%) are not detected,245

all of them - except one - being smaller than 0.5 ha and thus leading to weak246

amplitude peak in the Fourier spectrum. Even the very young parcels of the247

study area (less than three years old) have been detected, thanks to the en-248

hancement of the image contrast. Nearly half the parcels have been correctly249

segmented (case 1), and many have been under (14.8%) or partially segmented250

(10.7%). As shown in the second column of Table 2, the rows detection and251

adjustment process enhances these first results in many ways, leading to a252

raise of correctly segmented parcel rate from 48% to 56.2%. No further im-253

provement step can be envisaged concerning the case of missing segmentation,254

which contains one more parcel after a too important shortening of its rows.255

However, this case concerns less than 5% of the study area and these kinds256
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Case Before row adjustment After row adjustment

1. Good 58 (48 %) 68 (56.2%)

2. Over 3 (2.5%) 1 (0.8%)

3. Under 18 (14.8%) 19 (15.7%)

4. Partial 13 (10.7%) 9 (7.5%)

5. Larger 8 (6.6%) 3 (2.5%)

6. Missing 12 (10%) 13 (10.7%)

7. Extra 7 (-) 3 (-)

8. Other 9 (7.4%) 8 (6.6%)

Table 2
Segmentation results (in parcel and percentage) obtained on the red channel of a
50cm resolution image, before and after row adjustment, for the 121 vine parcel of
the Roujan study site.

of small parcels tends to be no more exploited due to the general increase of257

mechanization.258

3.1.1 Characterization results259

3.1.1.1 Interrow width and row orientation Between on-screen mea-260

surements and method-derived estimates, average absolute differences of less261

than 1o and 3.3 cm have been found respectively for row orientation and262

interrow width. As shown in Figure 4, the coefficients of determination R2
263

obtained when comparing computed parameters to reference data are almost264

equal to 1 for both characteristics. Moreover, it could be visually assessed in265

the step of row extraction that the reference rows orientations (obtained by266

photo-interpretation) are less accurate than the automatically computed ones.267

3.1.1.2 Missing vine plants detection Figure 5 shows some examples268

of results obtained with the proposed method. An exhaustive validation could269

not be done because of the lack of ground data. The following classification270

(done by photo-interpretation) is thus used: (1) less than 15% of missing vine271

plants, (2) between 15% and 30%, (3) more than 30%. The confusion matrix272

of this classification is given in Table 3 for all the vine parcels of the study273

area except seven very young vineyards for which vine plants are not visible274

by photo-interpretation. These results are very satisfactory since 92% of the275

parcels have been well classified. This kind of information will be useful for276

vineyard managers, for example to target the parcels which will need a more277

specific attention.278
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Fig. 4. Interrow width and row orientation: on-screen measurements vs automatic
estimation.

Fig. 5. Examples of missing vine plants detection. Image subsets in parcels having
more than 25% (left) and less than 15% (middle) of missing plants; detection error
due to the presence of grass under the row (right).

3.1.1.3 Soil surface characterization: alternation of weed control279

methods Confusion matrix for ‘alternated parcels’ detection is given in Ta-280

ble 4. 81% of the 121 parcels have been well classified. Nearly all the classifica-281

tion errors concern alternated parcels for which the periodic pattern is poorly282

contrasted in the image (Figure 6a). As a consequence, results obtained con-283

cerning parcels with some interrows covered by grass are much satisfactory,284

with only 4 wrong classifications over 18. The two non alternated parcels which285

have been wrongly classified contain some interconnecting farm roads, which286

induce a secondary and confusing pattern.287
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< 15% 15% < − < 30% > 30%

< 15% 82 4 0

15% < − < 30% 1 14 1

> 30% 2 1 9

Amount of correct classifications: 105/114 (92%)

Table 3
Confusion matrix concerning vineyard classification in three classes according to
their rate of missing vine plants (automatic process in line, photo-interpretation in
column).

1/1 1/2 2/3 3/4

1/1 85 16 2 0

1/2 1 13 0 0

2/3 0 0 0 0

3/4 1 0 0 3

Amount of correct classifications: 98/121 (81%)

Table 4
Confusion matrix concerning vineyard classification according to their cultural
practice (alternation of weed control methods). Automatic process in line, photo-
interpretation in column.

0 f

original peak

f/2

A
m
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tu
d

e

Frequency

FFT
secondary peak

Fig. 6. Left: example of an undetected alternation 1/3 (invisible at naked eye); right:
example of an alternation 1/2 and its Fourier spectrum.

4 Discussion and conclusions288

In this study, a comprehensive process for vineyard detection, delineation and289

intra-parcel characterization has been proposed. The main advantages of this290

method are: its easy implementation, processing speed and the limited amount291

of parameters. It has been implemented in a completely automatic way and292

exports results into GIS format (.shp) with an associated database containing293

characteristics such as area, perimeter, interrow width, row orientation, miss-294

ing vine plants rate and cultural practices. This process, easily integrated in295

the GIS used by vineyards managers, will enable a considerable reduction of296
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the cost previously needed to obtain all these characteristics using on-ground297

surveys or photo-interpretation. Indeed, the survey done for the validation298

of this study took two days when it only consisted in checking several char-299

acteristics of the parcel without carrying out the differential GPS survey of300

boundaries. Meanwhile, only about one hour is needed for the automatic pro-301

cess on a personal computer, which may be the same for a manual digitization302

but do not need such user intervention. Moreover, it has been shown that the303

automatic estimation of vine row orientation and interrow width are more ac-304

curate than those obtained by photo interpretation or ground measurements.305

As the method description is relatively long, we have chosen to present only306

the best results, obtained with the red channel of the image. These make us307

confident regarding the interest of the method as only 10% of the vine parcels308

have not been detected in the first step of segmentation, mainly concerning309

small parcels which tend to be no longer exploited due to their inadequacy310

with the general mechanization used in viticulture. Although not validated311

exhaustively, the missing vine plant detection seems to be correctly assessed312

as 92% of the parcels have been correctly classified according to three classes313

of missing plants rate. The results of cultural practices characterization are314

slightly poorer, except concerning practices involving grass cover. As said in315

introduction, this information, even partial, will be useful to introduce in dis-316

tributed hydrological models. As a perspective, a complete evaluation of the317

method according to different types of input data (resolution, spectral bands,318

Lidar data. . . ) will be done and presented in a further paper.319
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