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Abstract

We survey in�uential quantitative results on the convergence of the Newton iterator towards
simple roots of continuously di�erentiable maps de�ned over Banach spaces. We present a general
statement of Kantorovich's theorem, with a concise proof from scratch, dedicated to wide audience.
From it, we quickly recover known results, and gather historical notes together with pointers to
recent articles.

1 Introduction
During the last decades, the Newton operator has become omnipresent in numeric and symbolic
computations. On speci�c functions such as polynomials of degree two over real numbers, the behavior
of this operator may be simple, but in general it is a di�cult problem to determine whether the iterates
of a given point converge to a zero or not. More precisely, let �:R!R be a real function of class
C1, which means di�erentiable with �0 continuous. In theory, it is classical that Newton sequences
(rk)k>0 de�ned by rk+1= rk¡

�(rk)

�0(rk)
converge quadratically if their initial value r0 is su�ciently close

to a simple zero r¡ of �, which means �0(r¡)=/ 0. But for practice this information is not su�cient,
and one needs to quantify what is meant by �su�ciently close�.

r¡

�

r0 r1 r2

Figure 1. Graph of � and the �rst Newton iterates of r0.

In Figure 1, we illustrate the typical behavior of the Newton sequence in a neighborhood of a simple
zero r¡. It is a classical result that if � is decreasing and convex in a range [r0; R], if �(r0)> 0, and
�(R)<0, then there exits a unique zero r¡ of � in [r0;R], and the Newton sequence (rk)k>0 converges
to r¡. In a su�ciently small neighborhood of r¡ this convergence becomes quadratic, which means
that the number of digits of the zero is essentially doubled at each iteration.
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In general, for a complex function f :C!C, the set of initial values leading to a sequence that
converges to a prescribed zero of f are intricate fractal sets, called Julia sets of the meromorphic
function z 7! z ¡ f(z) / f 0(z). For practice, it is thus important to design simple criteria, with low
complexity, ensuring that an initial point converges to a unique zero in its neighborhood. And we only
expect necessary conditions, in the sense that if the criterion fails, then we cannot deduce whether the
convergence holds or not. Several such criteria are intensively used in practice. Choosing or designing
the most e�cient criterion for a given purpose might be quite tedious, because one has to discover
good compromises between speed and accuracy. The choice actually depends on the data structure
to represent the map f , the way its derivative can be obtained, and also on the type of underlying
arithmetic: hardware double precision, intervall or ball arithmetic, arbitrary precision, etc.

Our presentation begins with a standard extension of the seminal criterion due to Kantorovich.
Then we show how other old and recent criteria can be recovered from it. We also propose brief com-
parisons and discussions on how to design other criteria o�ering alternative compromises. Historical
notes are included at the end.

2 Kantorovich theorem
Until the end of the article, X and Y represent Banach spaces over C (typically Cn in practice)
endowed with the norm written k�k. The class of functions, with values in Y, having continuous
derivatives to order ` in an open subset 
 � X is written C`(
; Y). If f 2 C`(
; Y), then its
l-th derivative is written Dlf in general, and f (l) whenever X has dimension 1. The open ball
centered at a 2 
 and of radius r is written B(a; r) = fx 2 X j kx ¡ ak < rg; Its adherence is
B�(a; r)= fx2X j kx¡ ak6 rg. If A is a linear map acting on X, then we use the same notation for
the following norm: kAk= supkxk=1 kAxk. We begin with a very classical lemma.

Lemma 1. Let A:X!X be a linear operator such that kAk< 1, and let Id represent the identity
map on X. Then Id¡A is invertible, of inverse (Id¡A)¡1=

P
k>0A

k, and we have k(Id¡A)¡1k6
(1¡kAk)¡1:

Proof. Since kAk < 1 the sum B =
P

k>0A
k converges and has norm bounded by

P
k>0 kAk

k =

(1¡kAk)¡1. Then it su�ces to verify that (Id¡A)
P

k>0A
k actually converges to Id. �

For anyf 2C`(
;Y), any two points a; b in 
, and any integer l2f0; :::; `g, we write

Rl(f ; a; b) = f(b)¡
X
k=0

l

Dkf(a)
(b¡ a)k
k!

for the remainder of the Taylor expansion of f to order l, centered at a and evaluated at b. If l+16 `,
and if the segment [a; b] is included in 
, then it admits the integral form

Rl(f ; a; b) =

Z
[a;b]

Dl+1f(z)
(b¡ z)l

l!
dz:

From now, x0 is a point in 
 such that Df(x0) is invertible. We assume we are given a constant
� > kDf(x0)¡1 f(x0)k, and a continuous non-negative and non-decreasing function L: [0; R]!R>0
satisfying the following Lipschitzian condition:

kDf(x0)¡1 (Df(b)¡Df(a))k 6 L(r) kb¡ ak; for all r 2 [0; R] and all a; b2B�(x0; r)\
: (1)

We consider the function

�(r) = � ¡ r+
Z
0

r

L(s) (r¡ s) ds; (2)
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which is de�ned in [0; R]. In order to compute its �rst derivative, we take a parameter " in a
neighborhood of 0, and calculate:

R
0

r+"
L(s) (r + " ¡ s) ds ¡

R
0

r
L(s) (r ¡ s) ds =

R
r

r+"
L(s) (r + " ¡

s) ds+
R
0

r
L(s) ((r+ "¡ s)¡ (r¡ s)) ds= "

R
0

r
L(s) ds+O("2). We thus see that � admits continuous

derivatives to order 2 on (0;R): �0(r)=¡1+
R
0

r
L(s) ds and �00(r)=L(r). These derivatives naturally

extend continuously at 0 from right and at R from left.

Lemma 2. Condition (1) is equivalent to: for all segment [a; b] � B(x0; R) such that ka ¡ x0k +
kb¡ ak6R,

kDf(x0)¡1 (Df(b)¡Df(a))k 6
Z
kx0¡ak

kx0¡ak+kb¡ak
L(s) ds: (3)

Proof. We let ra= ka¡ x0k and rb= ra+ kb¡ ak. We divide the segment [a; b] into N consecutive

subsegments [ci; ci+1] where ci = a + i
b¡ a
N

. We also let ri = ra + i
rb¡ ra
N

, so that we have
kci+1¡ cik= ri+1¡ ri and max (kci+1¡ x0k; kci¡ x0k)6 ri+1.

Assume that (1) holds, and apply it on each [ci; ci+1] as follows:

kDf(x0)¡1 (Df(b)¡Df(a))k =






X
i=0

N¡1

Df(x0)
¡1 (Df(ci+1)¡Df(ci))






 6 X
i=0

N¡1

L(ri+1) kci+1¡ cik:

The latter sum converges to
R
ra

rbL(s) ds when N tends to in�nity, which gives the �rst implication.
Conversely, assume that condition (3) holds. Without loss of generality we may assume that

kb ¡ x0k > ka ¡ x0k. Then, with N su�ciently large, precisely such that kb ¡ x0k + kb ¡ ak /
N 6 R, we have kDf(x0)

¡1 (Df(b) ¡ Df(a))k 6 P
i=0
N¡1 kDf(x0)

¡1 (Df(ci+1) ¡ Df(ci))k 6P
i=0
N¡1 R

kci¡x0k
kci¡x0k+kci+1¡cikL(s) ds6P

i=0
N¡1L(kci¡ x0k+ kci+1¡ cik) kci+1¡ cik6 L(kb ¡ x0k+ kb ¡

ak/N) kb¡ ak. The latter expression converges to L(kb¡x0k) kb¡ ak when N tends to in�nity. �

Lemma 3. For all segment [a; b]�B(x0; R) such that ka¡x0k+ kb¡ ak6R, we have:

kR1(Df(x0)¡1 f ; a; b)k 6 R1(�; ka¡x0k; ka¡x0k+ kb¡ ak):

Proof. We let ra= ka¡x0k, rb= ra+ kb¡ ak, and use Lemma 2 as follows:

kR1(Df(x0)¡1 f ; a; b)k = kDf(x0)¡1 (f(b)¡ f(a)¡Df(a) (b¡ a))k

=





Z
a

b

Df(x0)
¡1 (Df(z)¡Df(a)) dz






6

Z
ra

rb
Z
ra

r

L(s) dr ds =

Z
ra

rb
(�0(r)¡ �0(ra)) dr = R1(�; ra; rb): �

Built on these lemmas, the following theorem gives necessary conditions that ensure convergence
to a zero, and also uniqueness of this zero in a larger region. The central idea is the comparison of
the convergence of the Newton iterates for f with the ones for �.

Theorem 4. Let f 2C1(
;Y), and let x0 2 
 be such that Df(x0) is invertible. We assume we are
given a constant �> kDf(x0)¡1 f(x0)k, and a continuous non-negative and non-decreasing function
L: [0; R]!R>0 satisfying (1) and B(x0; R) � 
. The function �, as de�ned in (2), is supposed to
admit a unique zero r¡ in [0; R), and to satisfy �(R)6 0.
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Then the Newton sequence r0=0, rk+1= rk¡ �(rk)

�0(rk)
is well de�ned in [0; r¡], and converges to r¡.

The sequence xk+1 = xk ¡ Df(xk)
¡1 f(xk) is also well de�ned in B�(x0; r¡), and converges to the

unique zero � of f in B(x0;R). In addition, we have k� ¡xkk6 r¡¡ rk and kxk+1¡xkk6 rk+1¡ rk.

Proof. First, we examine the convergence of the sequence (rk)k>0. Since �00> 0, it is classical that
the sequence (rk)k>0 is non-decreasing, remains in [0; r¡], and therefore converges to r¡, as pictured
in Figure 1.

We shall prove by induction that kxk+1¡xkk6 rk+1¡ rk holds for all k> 0. For k=0 this is true
because kx1¡x0k=kDf(x0)¡1 f(x0)k6 �=r1¡r0. Now assume that the inequality holds up to some
k>0, and let us prove that it also holds for k+1. In order to bound kxk+1¡xkk=kDf(xk)¡1 f(xk)k,
we bound kDf(xk)¡1Df(x0)k and kDf(x0)

¡1 f(xk)k separately. As for the �rst expression, using
the induction hypothesis, we obtain

kxk¡x0k =
X
i=0

k¡1

kxi+1¡xik 6
X
i=0

k¡1

(ri+1¡ ri) = rk¡ r0 = rk 6 r¡;

so that Lemma 2 gives us kDf(x0)¡1 (Df(xk)¡Df(x0))k61+ �0(rk)<1, and Lemma 1 implies that
Df(xk) is invertible with norm

kDf(xk)¡1Df(x0)k 6
1

1¡kDf(x0)¡1 (Df(xk)¡Df(x0))k
6 1

�0(rk)
: (4)

Consequently xk+1 is well-de�ned. Then, in order to bound kDf(x0)¡1 f(xk)k, we write the Taylor
expansion of f at xk¡1, and use the de�nition of xk:

f(xk) = f(xk¡1)+Df(xk¡1) (xk¡xk¡1)+R1(f ;xk¡1; xk) = R1(f ;xk¡1; xk):

Combining Lemma 3, inequality kxk¡xk¡1k6 rk¡ rk¡1, and the de�nition of rk, we obtain:

kR1(Df(x0)¡1 f ;xk¡1; xk)k 6 R1(�; rk¡1; rk) = �(rk)¡ �(rk¡1)¡ �0(rk¡1) (rk¡ rk¡1) = �(rk):

We thus have achieved kDf(x0)¡1 f(xk)k6 �(rk), which combined to (4) leads to

kxk+1¡ xkk 6 ¡ �(rk)

�0(rk)
= rk+1¡ rk;

whence the induction hypothesis at k+1. At this point of the proof we know that (xk)k>0 is a Cauchy
sequence in B�(x0; r¡). Consequently it converges to a zero � of f in B�(x0; r¡). It remains to show
that � is the unique zero of f in B(x0; R).

Let � be a zero of f in B(x0; R), and let � = k�¡x0k
R

< 1. We shall prove by induction that
k� ¡ xkk6 �2

k
(R ¡ rk) holds for all k > 0, which will yield � = �. The induction hypothesis clearly

holds for k=0. Assume that it holds up to some value of k> 0.
Writing xk+1 ¡ � = Df(xk)

¡1 (f(�) ¡ f(xk) ¡ Df(xk) (� ¡ xk)), we aim at bounding
kDf(xk)

¡1Df(x0)k and kR1(Df(x0)
¡1 f ; xk; �)k. Using that �00 = L is non-decreasing, the latter

bound can been achieved via Lemma 3:

kR1(Df(x0)¡1 f ;xk; �)k 6 R1(�; rk; rk+ k� ¡xkk) =
Z
rk

rk+k�¡xkk
�00(s) (rk+ k�¡xkk¡ s) ds

6 �2
k+1

Z
rk

R

�00(s) (R¡ s) ds = �2
k+1

(�(R)¡ �(rk)¡ �0(rk) (R¡ rk)):

A short survey on Kantorovich-like theorems for Newton's method
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Combined to inequality (4), we deduce k� ¡ xk+1k6 �2
k+1 �(R)¡ �(rk)¡ �0(rk) (R¡ rk)

¡�0(rk)
. Since �(R)6 0,

this yields k�¡ xk+1k6 �2
k+1

(R¡ rk+1), whence the induction hypothesis at k+1. �

3 Other criteria
In this section we show how the latter theorem allows one to retrieve both Kantorovich's original
theorem, subsequent variants for higher orders, and recent formulations in terms of majorant series.

3.1 Order two
In order to use Theorem 4 in practice, it is worth considering functions L, and thus �, which are
polynomial of low degrees. Taking � of degree one would force L to be identically 0 hence Df to
be constant which is not of interest. Taking � of degree two corresponds to the original case due to
Kantorovich.

Corollary 5. Let f 2C1(
;Y), and let x0 2 
 be such that Df(x0) is invertible. We assume we are
given constants �, � satisfying � > kDf(x0)¡1 f(x0)k, 0< � � < 1/2, B(x0; r+)�
, and such that
for all a; b2B(x0; r+),

kDf(x0)¡1 (Df(b)¡Df(a))k 6 � kb¡ ak; where r¡=
2 �

1+ 1¡ 2 ��
p and r+=

1+ 1¡ 2 ��
p

�
:

Then, with '(r) = � r2/2¡ r + �, the Newton sequence r0= 0, rk+1= rk ¡ '(rk)

'0(rk)
is well de�ned in

[0; r¡], and converges to r¡. The sequence (xk)k>0 de�ned by xk+1 = xk ¡ Df(xk)
¡1 f(xk) is well

de�ned in B�(x0; r¡) and converges to the unique zero � of f in B(x0; r+).

Proof. We simply invoke Theorem 4 with L(r)=�, R= r+, so that �= '. �

This criterion is clearly sharp for equations of degree two, and more precisely when f = '. This
corollary may also be completed with an explicit formula for (rk)k>0, which is obtained from the
auxiliary sequence tk=

rk¡ r¡
rk¡ r+

, that satis�es tk+1= tk
2.

Example 6. Consider X=Y=C, f(x)=x3/128+x2/4¡x+9/10, x0=0, and �= jf(0)/f 0(0)j=
9/ 10. Since f 00(x) = 3 x / 64 + 1 / 2, for all candidate value for R, one necessarily takes � larger
than 3R/64+ 1/2. Since the closest root to x0 is � ' 1.4475, Corollary 5 does not apply. However
we shall show later that the Newton iterates of x0 converge to �.

3.2 Higher orders
Now we examine what happens when ` > 2. We still assume we are given a constant � >
kDf(x0)

¡1 f(x0)k, but also additional constants 
i > kDf(x0)
¡1 Dif(x0)k for i 2 f2; :::; `g, and

a continuous non-negative and non-decreasing function L`: [0; R]!R>0 satisfying:

kDf(x0)¡1 (D`f(b)¡D`f(a))k 6 L`(r) kb¡ ak; for all r 2 [0; R] and all a; b2B�(x0; r)\
: (5)

We consider the function �`(r) = � ¡ r + 
2
r2

2!
+ ��� + 
`

r`

`!
+

R
0

r
L`(s)

(r¡ s)`

`!
ds, de�ned in [0; R].

In order to compute its derivatives, we take a parameter " in a neighborhood of 0, and calculate:R
0

r+"
L`(s)

(r+ "¡ s)`
`!

ds ¡
R
0

r
L`(s)

(r¡ s)
`!

`
ds =

R
r

r+"
L`(s)

(r+ "¡ s)`
`!

ds +
R
0

r
L`(s)

�
(r+ "¡ s)`

`!
¡

(r¡ s)`
`!

�
ds = "

R
0

r
L`(s)

(r¡ s)`¡1
(`¡ 1)! ds + O("2). By a straightforward induction, this shows that the

derivative to order l6 ` of
R
0

r
L`(s)

(r¡ s)`
`!

ds exists and equals
R
0

r
L`(s)

(r¡ s)`¡l
(`¡ l)! ds. Consequently �`

is of class C`+1([0; R];R).
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Corollary 7. Let f 2 C`(
; Y), with ` > 2, and let x0 2 
 be such that Df(x0) is invertible. We
assume given �, 
2; :::; 
`, L` and �` as de�ned above, satisfying (5), and such that �` admits a unique
zero r¡ in [0; R), with B(x0; R)�
 and �(R)6 0.

Then the Newton sequence r0=0, rk+1= rk¡
�`(rk)

�`
0(rk)

is well de�ned in [0; r¡], and converges to r¡.

The Newton sequence xk+1=xk¡Df(xk)¡1 f(xk) is also well de�ned in B�(x0; r¡), and converges to
the unique zero � of f in B(x0;R). In addition, we have k�¡xkk6r¡¡rk and kxk+1¡xkk6rk+1¡rk.

Proof. We de�ne L(r) = �`
00(r) = 
2 + ��� + 
`

r`¡2

(`¡ 2)! +
R
0

r
L`(s)

(r¡ s)`¡2

(`¡ 2)! ds and ra = ka ¡ x0k. We

claim that kDf(x0)
¡1 D2f(a)k 6 L(ra), so that L satis�es hypotheses of Theorem 4 with �(r) =

� ¡ r +
R
0

r
L(s) (r ¡ s) ds= �`(r), which concludes the proof. In order to prove the latter claim, we

notice that Lemma 2 applied to D`¡1f yields kDf(x0)¡1 (D`f(a)¡D`f(x0))k6
R
0

raL`(s) ds, and we
begin with

D2f(a) =
X
l=2

`

Dlf(x0)
(a¡x0)l¡2
(l¡ 2)! +R`¡2(D

2f ;x0; a):

If `= 2, then R`¡2(Df(x0)
¡1D2f ; x0; a) =Df(x0)

¡1 (D2f(a)¡D2f(x0)), hence has norm at mostR
0

raL`(s) ds=R`¡2(�`
00; 0; ra). Otherwise, if `> 3, the integral form of the Taylor remainder of D2f

to order `¡ 3 leads to

R`¡2(Df(x0)
¡1D2f ;x0; a) = R`¡3(Df(x0)

¡1D2f ;x0; a)¡D`f(x0)
(a¡x0)`¡2
(`¡ 2)!

=

Z
[x0;a]

(D`f(z)¡D`f(x0))
(a¡ z)`¡3
(`¡ 3)! dz:

It follows that

kR`¡2(Df(x0)
¡1D2f ;x0; a)k 6

Z
0

ra
Z
0

r

L`(s)
(ra¡ r)`¡3
(`¡ 3)! dr ds = R`¡2(�`

00; 0; ra);

whence the claimed bound kDf(x0)¡1D2f(a)k6P
l=2
` 
l

ra
l¡2

(l¡ 2)! +R`¡2(�`
00; 0; ra)= �`

00(ra). �

The �rst case of use concerns ` = 2, with L(r) being a constant say �, so that �2(r) = � ¡ r +


2
r2

2!
+ �

r3

3!
. Since �2(r) admits a unique negative root, it admits two distinct positive roots r¡ and

r+ if, and only if, its discriminant is positive. In this case, the previous corollary applies with R= r+
in a way similar to the case `=1.

Example 8. With f as in Example 6, we may take ` = 2, � = jf 0(0)¡1f(0)j = 9/ 10, 
2 = 1/2,
L(r) = � = 3/64, so that �`(r) has positive discriminant. It follows that the Newton iterates of x0
converge quadratically to the root � of f , where �' 1.4475.

When ` = 2, this corollary is sharp for polynomials of degree 3, and we could build upon it
conditions in degree 4, 5, etc. In fact using higher order Kantorovich conditions might be tempting to
work for instance with low �oating point precision. However computing even rough bounds on high
order derivatives becomes as much expensive as the dimension of the ambient space grows up. It is
therefore in general recommended to restrict to degree 2.
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3.3 Majorant series

In a context of analytic and meromorphic functions, it is natural to consider generating series of
norms of derivatives, thus taking poles into accounts. Considering the limit of the previous case when
` tends to in�nity, we obtain an other corollary:

Corollary 9. Let f 2 C1(
;Y), and let x0 2 
 be such that Df(x0) is invertible. We assume we
are given a constant �>kDf(x0)¡1 f(x0)k, and a sequence of constants 
i>kDf(x0)¡1Dif(x0)k for

i> 2. We de�ne the function �1: [0; R]!R as �1(r) = � ¡ r+
P

l>2 
l
rl

l!
, assuming that this sum

converges, and that �1 admits a unique zero r¡>0 in [0;R), such that B(x0;R)�
 and �1(R)60.
Then the Newton sequence r0=0, rk+1= rk¡

�1(rk)

�1
0 (rk)

is well de�ned in [0; r¡], and converges to r¡.

The Newton sequence xk+1=xk¡Df(xk)¡1 f(xk) is also well de�ned in B�(x0; r¡), and converges to
the unique zero � of f in B(x0;R). In addition, we have k�¡xkk6r¡¡rk and kxk+1¡xkk6rk+1¡rk.

Proof. We de�ne L(r)= �1
00 (r)=

P
l>2 
l

rl¡2

(l¡ 2)! . By considering the Taylor expansion of D2f at x0,

we obtain that kDf(x0)¡1D2f(a)k6 L(ka ¡ x0k) holds for all a 2B(x0; R), so that L satis�es the
hypothesis of Theorem 4 with �(r)= � ¡ r+

R
0

r
L(s) (r¡ s) ds= �1(r). �

The �rst case of practical interest is for when �1 is a rational function with a numerator of degree 2

and a denominator of degree 1. We thus assume given a constant 
 >



Df(x0)¡1 Dlf(x0)

l!




 1

l¡1 for all

l>2, and take 
l= l! 
l¡1 so that �1(r)= �¡r+ 
 r2

1¡ 
 r
=

� ¡ (�+1) r+2 
 r2

1¡ 
 r
, where �= � 
. Conditions

of Corollary 9 rewrite into R< 1/
, and �< 3¡ 2 2
p

. This special case is known as the �-Theorem.
This case of Kantorovich theorem has the advantage to �x the parameter R in terms of 
. It therefore
turns out to be useful for analyzing the complexity of numerical algorithms. In practice some speci�c
class of functions might bene�t from it, such as algebraic and holonomic functions, where one might
expect to rely on external machinery to compute candidate values for 
.

In terms of �, �, and 
, the sequence (rk)k>0 may be computed explicitly by introducing the
auxiliary sequence tk=

rk¡ r¡
rk¡ r+

:

tk+1 =
rk¡ r¡¡ �1(rk)

�1
0 (rk)

rk¡ r+¡ �1(rk)

�1
0 (rk)

= tk

�1
0 (rk)

�1(rk)
¡ 1

rk¡ r¡
�1
0 (rk)

�1(rk)
¡ 1

rk¡ r+

= tk

1

rk¡ r+
+




1¡ 
 rk
1

rk¡ r¡
+




1¡ 
rk

= tk
2 1¡ 
 r+
1¡ 
 r¡

:

4 Historical notes

Corollary 5 essentially corresponds to the �rst occurrence of Kantorovich's theorem in the literature,
published in [38, Ãëàâà IV, p. 170], which was requiring f 2C2(
;X) and was using separate bounds
on kDf(x0)

¡1k and kD2f(x0)k. Then variants and improvements have been proposed by various
authors [50, 52, 60], before being merged by Gragg and Tapia, who introduced the Lipschitzian
condition of Corollary 5, and detailed the limit case r¡= r+, where the quadratic convergence does
not hold anymore [33]. Gragg and Tapia also provided the sharp a priori convergence bound from the
explicit formula for rk that was borrowed from [51, Appendix F]. Our Section 3.1 is actually inspired
from [33].
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The extension to degree three (given as an example of Corollary 7) has been �rst presented in [37].
Explicit convergence bounds have then been given in [35]. Theorem 4 �rst appeared in [65], under
assumption (3), which is shown to be equivalent to the more classical Lipschitzian condition (1) in
our Lemma 2. Corollary 7 is inspired from [25, Theorem 1], which admits variants in [15, 24], that
had been developed independently of [65]. In fact our Section 3.2 highlights the fact that higher order
assumptions are essentially specializations of the general case handled by Theorem 4.

The �-theorem �rst appeared in an article by Smale [59] with the non-optimal condition � <
0.130707. At the same time a one dimensional version was also designed by Kim [40, 41]. Subsequent
improvements of the latter constant are due to Wang and Han [64] (see also [63]). Wang also made
explicit the relationship between the �-theorem and Kantorovich's theorem [65]. The systematic
treatment in terms of majorant series emerged in [32], from which Corollary 9 is extracted. Important
applications to complexity of numeric polynomial system solving started in [56, 57, 58].

Classical books for Kantorovich's theorem and historical notes are [8, 13, 23, 39, 49]. For the
�-theorem and its applications to polynomial system solving by homotopy methods, we refer the
reader to [18, 21]. Let us also mention the survey [53], and the article [20] for detailled recent proofs
of Kantorovich's original theorem with slight variants.

A plethora of literature is dedicated to variations of assumptions on f and its derivatives: Other
kinds of Lipschitzian conditions (centered, or in balls or annuli) and comparisons between them [3,
4, 6, 26, 28, 30, 61, 66]; Mixed centered Lipschitzian conditions extending the �-theorem [14]; Weak
continuity of the derivative [12]; Hölder conditions [19]. Convergence rate and error bounds have been
re�ned in [5, 47]; A posteriori bounds can be found in [54, 69, 70, 71, 72].

Finally, let us mention that Kantorovich's technique has been successfully applied and extended
to other Newton-like operators in wider contexts: Robust variant [67]; Modi�ed Newton method [22,
44]; Inexact Newton method [7, 17, 31, 34, 48, 55, 68]; Gauss�Newton method [11, 36, 42, 43]; Halley's
method (extension of Newton operator to order 3) [2, 9, 16, 16, 27, 45, 46]; Extensions to di�erential
vector �elds on Riemannian manifolds [1, 10, 29, 62] (Theorem 4 is for instance extended in [1]).

Bibliography

[1] F. Alvarez, J. Bolte, and J. Munier. A unifying local convergence result for Newton's method in Riemannian
manifolds. Found. Comput. Math., 8(2):197�226, 2008.

[2] S. Amat, C. Bermúdez, S. Busquier, and S. Plaza. On a third-order Newton-type method free of bilinear operators.
Numer. Linear Algebra Appl., 17(4):639�653, 2010.

[3] I. K. Argyros. A new Kantorovich-type theorem for Newton's method. Appl. Math. (Warsaw), 26(2):151�157,
1999.

[4] I. K. Argyros. A new semilocal convergence theorem for Newton's method in Banach space using hypotheses on
the second Fréchet-derivative. J. Comput. Appl. Math., 130(1-2):369�373, 2001.

[5] I. K. Argyros and D. González. Extending the applicability of Newton's method by improving a local result due
to Dennis and Schnabel. Se~MA J., 63:53�63, 2014.

[6] I. K. Argyros and S. K. Khattri. Weaker Kantorovich type criteria for inexact Newton methods. J. Comput.
Appl. Math., 261:103�117, 2014.

[7] Ioannis K. Argyros. Concerning the convergence of inexact Newton methods. J. Comput. Appl. Math.,
79(2):235�247, 1997.

[8] Ioannis K. Argyros. Convergence and applications of Newton-type iterations . Springer, New York, 2008.
[9] Ioannis K. Argyros, Yeol Je Cho, and Saïd Hilout. On the semilocal convergence of the Halley method using

recurrent functions. J. Appl. Math. Comput., 37(1-2):221�246, 2011.
[10] Ioannis K. Argyros and Saïd Hilout. Newton's method for approximating zeros of vector �elds on Riemannian

manifolds. J. Appl. Math. Comput., 29(1-2):417�427, 2009.

A short survey on Kantorovich-like theorems for Newton's method

8



[11] Ioannis K. Argyros and Saïd Hilout. Extending the applicability of the Gauss-Newton method under average
Lipschitz-type conditions. Numer. Algorithms , 58(1):23�52, 2011.

[12] Ioannis K. Argyros and Saïd Hilout. Newton-Kantorovich approximations under weak continuity conditions. J.
Appl. Math. Comput., 37(1-2):361�375, 2011.

[13] Ioannis K. Argyros and Saïd Hilout. Computational methods in nonlinear analysis. E�cient algorithms, �xed
point theory and applications . World Scienti�c Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.

[14] Ioannis K. Argyros, Saïd Hilout, and Sanjay K. Khattri. Expanding the applicability of Newton's method using
Smale's �-theory. J. Comput. Appl. Math., 261:183�200, 2014.

[15] Ioannis K. Argyros and Ángel Alberto Magreñán Ruiz. General convergence conditions of Newton's method for
m-Fréchet di�erentiable operators. J. Appl. Math. Comput., 43(1-2):491�506, 2013.

[16] Ioannis K. Argyros and Hongmin Ren. Ball convergence theorems for Halley's method in Banach space. J. Appl.
Math. Comput., 38(1-2):453�465, 2012.

[17] Ioannis K. Argyros and Livinus U. Uko. A semilocal convergence analysis of an inexact Newton method using
recurrent relations. Punjab Univ. J. Math. (Lahore), 45:25�32, 2013.

[18] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and real computation . Springer-Verlag,
New York, 1998.

[19] Filomena Cianciaruso. A further journey in the �terra incognita� of the Newton-Kantorovich method. Nonlinear
Funct. Anal. Appl., 15(2):173�183, 2010.

[20] Philippe G. Ciarlet and Cristinel Mardare. On the Newton-Kantorovich theorem. Anal. Appl. (Singap.),
10(3):249�269, 2012.

[21] Jean-Pierre Dedieu. Points �xes, zéros et la méthode de Newton , volume 54 of Mathématiques & Applications
(Berlin). Springer, Berlin, 2006.

[22] J. E. Dennis, Jr. On the Kantorovich hypothesis for Newton's method. SIAM J. Numer. Anal., 6:493�507, 1969.
[23] J. E. Dennis, Jr. and Robert B. Schnabel. Numerical methods for unconstrained optimization and nonlinear

equations , volume 16 of Classics in Applied Mathematics . Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1996. Corrected reprint of the 1983 original.

[24] J. A. Ezquerro, D. González, and M. A. Hernández. A modi�cation of the classic conditions of Newton-Kan-
torovich for Newton's method. Math. Comput. Modelling , 57(3-4):584�594, 2013.

[25] J. A. Ezquerro, D. González, and M. A. Hernández. On the local convergence of Newton's method under
generalized conditions of Kantorovich. Appl. Math. Lett., 26(5):566�570, 2013.

[26] J. A. Ezquerro, D. González, and M. A. Hernández-Verón. A semilocal convergence result for Newton's method
under generalized conditions of Kantorovich. J. Complexity , 30(3):309�324, 2014.

[27] J. A. Ezquerro, J. M. Gutiérrez, and M. A. Hernández. A construction procedure of iterative methods with
cubical convergence. II. Another convergence approach. Appl. Math. Comput., 92(1):59�68, 1998.

[28] José Antonio Ezquerro, Daniel González, and Miguel Ángel Hernández. A general semilocal convergence result
for Newton's method under centered conditions for the second derivative. ESAIM Math. Model. Numer. Anal.,
47(1):149�167, 2013.

[29] O. P. Ferreira and B. F. Svaiter. Kantorovich's theorem on Newton's method in Riemannian manifolds. J.
Complexity , 18(1):304�329, 2002.

[30] O. P. Ferreira and B. F. Svaiter. Kantorovich's majorants principle for Newton's method. Comput. Optim. Appl.,
42(2):213�229, 2009.

[31] O. P. Ferreira and B. F. Svaiter. A robust Kantorovich's theorem on the inexact Newton method with relative
residual error tolerance. J. Complexity , 28(3):346�363, 2012.

[32] M. Giusti, G. Lecerf, B. Salvy, and J.-C. Yakoubsohn. On location and approximation of clusters of zeros: case
of embedding dimension one. Found. Comput. Math., 7(1):1�49, 2007.

[33] W. B. Gragg and R. A. Tapia. Optimal error bounds for the Newton-Kantorovich theorem. SIAM J. Numer.
Anal., 11:10�13, 1974.

[34] Xue-Ping Guo and Iain S. Du�. Semilocal and global convergence of the Newton-HSS method for systems of
nonlinear equations. Numer. Linear Algebra Appl., 18(3):299�315, 2011.

[35] José M. Gutiérrez. A new semilocal convergence theorem for Newton's method. J. Comput. Appl. Math.,
79(1):131�145, 1997.

[36] W. M. Häussler. A Kantorovich-type convergence analysis for the Gauss-Newton-method. Numer. Math.,
48(1):119�125, 1986.

[37] Zheng Da Huang. A note on the Kantorovich theorem for Newton iteration. J. Comput. Appl. Math.,
47(2):211�217, 1993.

[38] L. V. Kantorovi£. Functional analysis and applied mathematics. Uspehi Matem. Nauk (N.S.), 3(6(28)):89�185,
1948.

Grégoire Lecerf, Joelle Saadé

9



[39] L. V. Kantorovich and G. P. Akilov. Functional analysis in normed spaces . Translated from the Russian by D.
E. Brown. Edited by A. P. Robertson. International Series of Monographs in Pure and Applied Mathematics,
Vol. 46. The Macmillan Co., New York, 1964.

[40] Myong-Hi Kim. Computational Complexity of the Euler Type Algorithms for the Roots of Complex Polynomials .
PhD thesis, City University of New York, 1985.

[41] Myong-Hi Kim. On approximate zeros and root�nding algorithms for a complex polynomial. Math. Comp.,
51(184):707�719, 1988.

[42] S. Kim. A Kantorovich-type convergence analysis for the quasi-Gauss-Newton method. J. Korean Math. Soc.,
33(4):865�878, 1996.

[43] Chong Li, Nuchun Hu, and Jinhua Wang. Convergence behavior of Gauss-Newton's method and extensions of
the Smale point estimate theory. J. Complexity , 26(3):268�295, 2010.

[44] Rongfei Lin, Yueqing Zhao, Zden¥k �marda, Yasir Khan, and Qingbiao Wu. Newton-Kantorovich and Smale
uniform type convergence theorem for a deformed Newton method in Banach spaces. Abstr. Appl. Anal., pages
Art. ID 923898, 8, 2013.

[45] Rongfei Lin, Yueqing Zhao, Zden¥k �marda, Qingbiao Wu, and Yasir Khan. Newton-Kantorovich convergence
theorem of a new modi�ed Halley's method family in a Banach space. Adv. Di�erence Equ., pages 2013:325, 11,
2013.

[46] Rongfei Lin, Yueqing Zhao, Qingbiao Wu, and Jueliang Hu. Convergence theorem for a family of new modi�ed
Halley's method in Banach space. J. Appl. Math., pages Art. ID 468694, 8, 2014.

[47] G. J. Miel. The Kantorovich theorem with optimal error bounds. Amer. Math. Monthly , 86(3):212�215, 1979.
[48] Igor Moret. A Kantorovich-type theorem for inexact Newton methods. Numer. Funct. Anal. Optim., 10(3-

4):351�365, 1989.
[49] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several variables , volume 30

of Classics in Applied Mathematics . Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
2000. Reprint of the 1970 original.

[50] James M. Ortega. The Newton-Kantorovich theorem. Amer. Math. Monthly , 75(6):658�660, 1968.
[51] A. M. Ostrowski. Solution of equations and systems of equations . Second edition. Pure and Applied Mathematics,

Vol. 9. Academic Press, New York-London, 1966.
[52] Alexandre Ostrowski. La méthode de Newton dans les espaces de Banach. C. R. Acad. Sci. Paris Sér. A-B ,

272:A1251�A1253, 1971.
[53] B. T. Polyak. Newton-Kantorovich method and its global convergence. Zap. Nauchn. Sem. S.-Peterburg. Otdel.

Mat. Inst. Steklov. (POMI), 312(Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 11):256�274, 316, 2004.
[54] Florian-A. Potra and Vlastimil Pták. Sharp error bounds for Newton's process. Numer. Math., 34(1):63�72, 1980.
[55] Weiping Shen and Chong Li. Kantorovich-type convergence criterion for inexact Newton methods. Appl. Numer.

Math., 59(7):1599�1611, 2009.
[56] M. Shub and S. Smale. Computational complexity: on the geometry of polynomials and a theory of cost. II.

SIAM J. Comput., 15(1):145�161, 1986.
[57] Mike Shub and Steven Smale. Computational complexity. On the geometry of polynomials and a theory of cost.

I. Ann. Sci. École Norm. Sup. (4), 18(1):107�142, 1985.
[58] Steve Smale. The fundamental theorem of algebra and complexity theory. Bull. Amer. Math. Soc. (N.S.),

4(1):1�36, 1981.
[59] Steve Smale. Newton's method estimates from data at one point. In The merging of disciplines: new directions

in pure, applied, and computational mathematics (Laramie, Wyo., 1985), pages 185�196. Springer, New York, 1986.
[60] R. A. Tapia. Classroom Notes: The Kantorovich Theorem for Newton's Method. Amer. Math. Monthly ,

78(4):389�392, 1971.
[61] Livinus U. Uko and Ioannis K. Argyros. A generalized Kantorovich theorem on the solvability of nonlinear

equations. Aequationes Math., 77(1-2):99�105, 2009.
[62] J. H. Wang. Convergence of Newton's method for sections on Riemannian manifolds. J. Optim. Theory Appl.,

148(1):125�145, 2011.
[63] Xing Hua Wang. Some results relevant to Smale's reports. In From Topology to Computation: Proceedings of the

Smalefest (Berkeley, CA, 1990), pages 456�465. Springer, New York, 1993.
[64] Xing Hua Wang and Dan Fu Han. On dominating sequence method in the point estimate and Smale theorem.

Sci. China Ser. A, 33(2):135�144, 1990.
[65] Xinghua Wang. Convergence of Newton's method and inverse function theorem in Banach space. Math. Comp.,

68(225):169�186, 1999.
[66] Xinghua Wang, Chong Li, and Ming-Jun Lai. A uni�ed convergence theory for Newton-type methods for zeros

of nonlinear operators in Banach spaces. BIT , 42(1):206�213, 2002.

A short survey on Kantorovich-like theorems for Newton's method

10



[67] Zhengyu Wang and Xinyuan Wu. A semi-local convergence theorem for a robust revised Newton's method.
Comput. Math. Appl., 58(7):1320�1327, 2009.

[68] Xiubin Xu, Yuan Xiao, and Tao Liu. Semilocal convergence analysis for inexact Newton method under weak
condition. Abstr. Appl. Anal., pages Art. ID 982925, 13, 2012.

[69] T. Yamamoto. A uni�ed derivation of several error bounds for Newton's process. In Proceedings of the interna-
tional conference on computational and applied mathematics (Leuven, 1984), volume 12/13, pages 179�191, 1985.

[70] Tetsuro Yamamoto. A method for �nding sharp error bounds for Newton's method under the Kantorovich
assumptions. Numer. Math., 49(2-3):203�220, 1986.

[71] Tetsuro Yamamoto. A convergence theorem for Newton-like methods in Banach spaces. Numer. Math.,
51(5):545�557, 1987.

[72] Tetsuro Yamamoto and Xiao Jun Chen. Ball-convergence theorems and error estimates for certain iterative
methods for nonlinear equations. Japan J. Appl. Math., 7(1):131�143, 1990.

Grégoire Lecerf, Joelle Saadé

11


	1 Introduction
	2 Kantorovich theorem
	3 Other criteria
	3.1 Order two
	3.2 Higher orders
	3.3 Majorant series

	4 Historical notes
	Bibliography

