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A short survey on Kantorovich-like theorems for Newton's method

We survey inuential quantitative results on the convergence of the Newton iterator towards simple roots of continuously dierentiable maps dened over Banach spaces. We present a general statement of Kantorovich's theorem, with a concise proof from scratch, dedicated to wide audience. From it, we quickly recover known results, and gather historical notes together with pointers to recent articles.

Introduction

During the last decades, the Newton operator has become omnipresent in numeric and symbolic computations. On specic functions such as polynomials of degree two over real numbers, the behavior of this operator may be simple, but in general it is a dicult problem to determine whether the iterates of a given point converge to a zero or not. More precisely, let : R ! R be a real function of class C 1 , which means dierentiable with 0 continuous. In theory, it is classical that Newton sequences (r k ) k>0 dened by r k+1 = r k ¡ (r k ) 0 (r k ) converge quadratically if their initial value r 0 is suciently close to a simple zero r ¡ of , which means 0 (r ¡ ) = / 0. But for practice this information is not sucient, and one needs to quantify what is meant by suciently close. In Figure 1, we illustrate the typical behavior of the Newton sequence in a neighborhood of a simple zero r ¡ . It is a classical result that if is decreasing and convex in a range [r 0 ; R], if (r 0 ) > 0, and (R) < 0, then there exits a unique zero r ¡ of in [r 0 ; R], and the Newton sequence (r k ) k>0 converges to r ¡ . In a suciently small neighborhood of r ¡ this convergence becomes quadratic, which means that the number of digits of the zero is essentially doubled at each iteration.

In general, for a complex function f : C ! C, the set of initial values leading to a sequence that converges to a prescribed zero of f are intricate fractal sets, called Julia sets of the meromorphic function z 7 ! z ¡ f (z) / f 0 (z). For practice, it is thus important to design simple criteria, with low complexity, ensuring that an initial point converges to a unique zero in its neighborhood. And we only expect necessary conditions, in the sense that if the criterion fails, then we cannot deduce whether the convergence holds or not. Several such criteria are intensively used in practice. Choosing or designing the most ecient criterion for a given purpose might be quite tedious, because one has to discover good compromises between speed and accuracy. The choice actually depends on the data structure to represent the map f , the way its derivative can be obtained, and also on the type of underlying arithmetic: hardware double precision, intervall or ball arithmetic, arbitrary precision, etc.

Our presentation begins with a standard extension of the seminal criterion due to Kantorovich. Then we show how other old and recent criteria can be recovered from it. We also propose brief comparisons and discussions on how to design other criteria oering alternative compromises. Historical notes are included at the end.

Kantorovich theorem

Until the end of the article, X and Y represent Banach spaces over C (typically C n in practice) endowed with the norm written kk. The class of functions, with values in Y, having continuous derivatives to order `in an open subset X is written C `(; Y). If f 2 C `(; Y), then its l-th derivative is written D l f in general, and f (l) whenever X has dimension 1. The open ball centered at a 2 and of radius r is written B(a; r) = fx 2 X j kx ¡ ak < rg; Its adherence is B (a; r) = fx 2 X j kx ¡ ak 6 rg. If A is a linear map acting on X, then we use the same notation for the following norm: kAk = sup kxk=1 kA xk. We begin with a very classical lemma. Lemma 1. Let A: X ! X be a linear operator such that kAk < 1, and let Id represent the identity map on X. Then Id ¡ A is invertible, of inverse (Id ¡ A) ¡1 = P k>0 A k , and we have k(Id ¡ A) ¡1 k 6 (1 ¡ kAk) ¡1 : Proof. Since kAk < 1 the sum B = P k>0 A k converges and has norm bounded by ¡1 . Then it suces to verify that (Id ¡ A) P k>0 A k actually converges to Id.

P k>0 kAk k = (1 ¡ kAk)
For anyf 2 C `(; Y), any two points a; b in , and any integer l 2 f0; :::; `g, we write

R l (f ; a; b) = f (b) ¡ X k=0 l D k f (a) (b ¡ a) k k!
for the remainder of the Taylor expansion of f to order l, centered at a and evaluated at b. If l + 1 6 `, and if the segment [a; b] is included in , then it admits the integral form

R l (f ; a; b) = Z [a;b] D l+1 f (z) (b ¡ z) l l! dz:
From now, x 0 is a point in such that Df (x 0 ) is invertible. We assume we are given a constant > kDf (x 0 ) ¡1 f (x 0 )k, and a continuous non-negative and non-decreasing function L: [0; R] ! R >0 satisfying the following Lipschitzian condition: kDf (x 0 ) ¡1 (Df (b) ¡ Df (a))k 6 L(r) kb ¡ ak; for all r 2 [0; R] and all a; b 2 B (x 0 ; r) \ :

(1)

We consider the function

(r) = ¡ r + Z 0 r L(s) (r ¡ s) ds; (2) 
which is dened in [0; R]. In order to compute its rst derivative, we take a parameter " in a neighborhood of 0, and calculate: R

0 r+" L(s) (r + " ¡ s) ds ¡ R 0 r L(s) (r ¡ s) ds = R r r+" L(s) (r + " ¡ s) ds + R 0 r L(s) ((r + " ¡ s) ¡ (r ¡ s)) ds = " R 0 r L(s) ds + O(" 2
). We thus see that admits continuous derivatives to order 2 on (0; R): 0 (r) = ¡1 + R 0 r L(s) ds and 00 (r) = L(r). These derivatives naturally extend continuously at 0 from right and at R from left.

Lemma 2. Condition (1) is equivalent to: for all segment [a; b] B(x 0 ; R) such that ka ¡ x 0 k + kb ¡ ak 6 R, kDf (x 0 ) ¡1 (Df (b) ¡ Df (a))k 6 Z kx 0 ¡ak kx 0 ¡ak+kb¡ak L(s) ds: (3) 
Proof. We let r a = ka ¡ x 0 k and r b = r a + kb ¡ ak. We divide the segment

[a; b] into N consecutive subsegments [c i ; c i+1 ] where c i = a + i b ¡ a N . We also let r i = r a + i r b ¡ r a N , so that we have kc i+1 ¡ c i k = r i+1 ¡ r i and max (kc i+1 ¡ x 0 k; kc i ¡ x 0 k) 6 r i+1 .
Assume that (1) holds, and apply it on each [c i ; c i+1 ] as follows:

kDf (x 0 ) ¡1 (Df (b) ¡ Df (a))k = X i=0 N ¡1 Df (x 0 ) ¡1 (Df (c i+1 ) ¡ Df (c i )) 6 X i=0 N ¡1 L(r i+1 ) kc i+1 ¡ c i k:
The latter sum converges to R r a r b L(s) ds when N tends to innity, which gives the rst implication.

Conversely, assume that condition (3) holds. Without loss of generality we may assume that kb ¡ x 0 k > ka ¡ x 0 k. Then, with N suciently large, precisely such that kb ¡

x 0 k + kb ¡ ak / N 6 R, we have kD f (x 0 ) ¡1 (D f (b) ¡ D f (a))k 6 P i=0 N ¡1 kD f (x 0 ) ¡1 (D f (c i+1 ) ¡ D f (c i ))k 6 P i=0 N ¡1 R kc i ¡x 0 k kc i ¡x 0 k+kc i+1 ¡c i k L(s) ds 6 P i=0 N ¡1 L(kc i ¡ x 0 k + kc i+1 ¡ c i k) kc i+1 ¡ c i k 6 L(kb ¡ x 0 k + kb ¡ ak/N ) kb ¡ ak.
The latter expression converges to L(kb ¡ x 0 k) kb ¡ ak when N tends to innity.

Lemma 3. For all segment [a; b] B(x 0 ; R) such that ka ¡ x 0 k + kb ¡ ak 6 R, we have:

kR 1 (Df (x 0 ) ¡1 f ; a; b)k 6 R 1 (; ka ¡ x 0 k; ka ¡ x 0 k + kb ¡ ak):
Proof. We let r a = ka ¡ x 0 k, r b = r a + kb ¡ ak, and use Lemma 2 as follows:

kR 1 (Df (x 0 ) ¡1 f ; a; b)k = kDf (x 0 ) ¡1 (f (b) ¡ f (a) ¡ Df (a) (b ¡ a))k = Z a b Df (x 0 ) ¡1 (Df (z) ¡ Df (a)) dz 6 Z r a r b Z r a r L(s) dr ds = Z r a r b ( 0 (r) ¡ 0 (r a )) dr = R 1 (; r a ; r b ):
Built on these lemmas, the following theorem gives necessary conditions that ensure convergence to a zero, and also uniqueness of this zero in a larger region. The central idea is the comparison of the convergence of the Newton iterates for f with the ones for . Theorem 4. Let f 2 C 1 (; Y), and let x 0 2 be such that Df (x 0 ) is invertible. We assume we are given a constant > kDf (x 0 ) ¡1 f (x 0 )k, and a continuous non-negative and non-decreasing function L: [0; R] ! R >0 satisfying (1) and B(x 0 ; R) . The function , as dened in [START_REF] Amat | On a third-order Newton-type method free of bilinear operators[END_REF], is supposed to admit a unique zero r ¡ in [0; R), and to satisfy (R) 6 0.

Then the Newton sequence r

0 = 0, r k+1 = r k ¡ (r k ) 0 (r k ) is well dened in [0; r ¡ ], and converges to r ¡ . The sequence x k+1 = x k ¡ D f (x k ) ¡1 f (x k
) is also well dened in B (x 0 ; r ¡ ), and converges to the unique zero of f in B(x 0 ; R). In addition, we have k

¡ x k k 6 r ¡ ¡ r k and kx k+1 ¡ x k k 6 r k+1 ¡ r k .
Proof. First, we examine the convergence of the sequence (r k ) k>0 . Since 00 > 0, it is classical that the sequence (r k ) k>0 is non-decreasing, remains in [0; r ¡ ], and therefore converges to r ¡ , as pictured in Figure 1.

We shall prove by induction that kx k+1 ¡ x k k 6 r k+1 ¡ r k holds for all k > 0. For k = 0 this is true because

kx 1 ¡ x 0 k = kDf (x 0 ) ¡1 f (x 0 )k 6 = r 1 ¡
r 0 . Now assume that the inequality holds up to some k > 0, and let us prove that it also holds for k + 1. In order to bound

kx k+1 ¡ x k k = kDf (x k ) ¡1 f (x k )k, we bound kDf (x k ) ¡1 D f (x 0 )k and kD f (x 0 ) ¡1 f (x k )k separately.
As for the rst expression, using the induction hypothesis, we obtain

kx k ¡ x 0 k = X i=0 k¡1 kx i+1 ¡ x i k 6 X i=0 k ¡1 (r i+1 ¡ r i ) = r k ¡ r 0 = r k 6 r ¡ ; so that Lemma 2 gives us kDf (x 0 ) ¡1 (Df (x k ) ¡ Df (x 0 ))k 6 1 + 0 (r k ) < 1, and Lemma 1 implies that Df (x k ) is invertible with norm kDf (x k ) ¡1 Df (x 0 )k 6 1 1 ¡ kDf (x 0 ) ¡1 (Df (x k ) ¡ Df (x 0 ))k 6 1 0 (r k ) : (4) 
Consequently x k+1 is well-dened. Then, in order to bound kDf (x 0 ) ¡1 f (x k )k, we write the Taylor expansion of f at x k ¡1 , and use the denition of x k :

f (x k ) = f (x k ¡1 ) + Df (x k ¡1 ) (x k ¡ x k ¡1 ) + R 1 (f ; x k ¡1 ; x k ) = R 1 (f ; x k¡1 ; x k ):
Combining Lemma 3, inequality kx k ¡ x k¡1 k 6 r k ¡ r k¡1 , and the denition of r k , we obtain:

kR 1 (Df (x 0 ) ¡1 f ; x k¡1 ; x k )k 6 R 1 (; r k¡1 ; r k ) = (r k ) ¡ (r k¡1 ) ¡ 0 (r k ¡1 ) (r k ¡ r k ¡1 ) = (r k ):
We thus have achieved kDf (x 0 ) ¡1 f (x k )k 6 (r k ), which combined to (4) leads to

kx k+1 ¡ x k k 6 ¡ (r k ) 0 (r k ) = r k+1 ¡ r k ;
whence the induction hypothesis at k + 1. At this point of the proof we know that (x k ) k>0 is a Cauchy sequence in B (x 0 ; r ¡ ). Consequently it converges to a zero of f in B (x 0 ; r ¡ ). It remains to show that is the unique zero of f in B(x 0 ; R). Let be a zero of f in B(x 0 ; R), and let

= k ¡ x 0 k R < 1.
We shall prove by induction that k ¡ x k k 6 2 k (R ¡ r k ) holds for all k > 0, which will yield = . The induction hypothesis clearly holds for k = 0. Assume that it holds up to some value of k > 0.

Writing

x k+1 ¡ = D f (x k ) ¡1 (f () ¡ f (x k ) ¡ D f (x k ) ( ¡ x k ))
, we aim at bounding kD f (x k ) ¡1 D f (x 0 )k and kR 1 (Df (x 0 ) ¡1 f ; x k ; )k. Using that 00 = L is non-decreasing, the latter bound can been achieved via Lemma 3:

kR 1 (Df (x 0 ) ¡1 f ; x k ; )k 6 R 1 (; r k ; r k + k ¡ x k k) = Z r k r k +k ¡x k k 00 (s) (r k + k ¡ x k k ¡ s) ds 6 2 k+1 Z r k R 00 (s) (R ¡ s) ds = 2 k+1 ((R) ¡ (r k ) ¡ 0 (r k ) (R ¡ r k )): Combined to inequality (4), we deduce k ¡ x k+1 k 6 2 k+1 (R) ¡ (r k ) ¡ 0 (r k ) (R ¡ r k ) ¡ 0 (r k )
. Since (R) 6 0, this yields k ¡ x k+1 k 6 2 k+1 (R ¡ r k+1 ), whence the induction hypothesis at k + 1.

Other criteria

In this section we show how the latter theorem allows one to retrieve both Kantorovich's original theorem, subsequent variants for higher orders, and recent formulations in terms of majorant series.

Order two

In order to use Theorem 4 in practice, it is worth considering functions L, and thus , which are polynomial of low degrees. Taking of degree one would force L to be identically 0 hence D f to be constant which is not of interest. Taking of degree two corresponds to the original case due to Kantorovich.

Corollary 5. Let f 2 C 1 (; Y), and let x 0 2 be such that Df (x 0 ) is invertible. We assume we are given constants , satisfying > kDf (x 0 ) ¡1 f (x 0 )k, 0 < < 1 /2, B(x 0 ; r + ) , and such that for all a; b2B(x 0 ; r + ),

kDf (x 0 ) ¡1 (Df (b) ¡ Df (a))k 6 kb ¡ ak; where r ¡ = 2 1 + 1 ¡ 2 p and r + = 1 + 1 ¡ 2 p :
Then, with '(r) = r 2 / 2 ¡ r + , the Newton sequence r 0 = 0,

r k+1 = r k ¡ '(r k ) ' 0 (r k ) is well dened in [0; r ¡ ],
and converges to r ¡ . The sequence (x k ) k>0 dened by

x k+1 = x k ¡ D f (x k ) ¡1 f (x k ) is well dened in B (x 0 ; r ¡ ) and converges to the unique zero of f in B(x 0 ; r + ).
Proof. We simply invoke Theorem 4 with L(r) = , R = r + , so that = '. This criterion is clearly sharp for equations of degree two, and more precisely when f = '. This corollary may also be completed with an explicit formula for (r k ) k>0 , which is obtained from the auxiliary sequence

t k = r k ¡ r ¡ r k ¡ r + , that satises t k+1 = t k 2 .
Example 6. Consider X = Y = C, f (x) = x 3 /128 + x 2 /4 ¡ x + 9/10, x 0 = 0, and = jf (0)/ f 0 (0)j = 9 / 10. Since f 00 (x) = 3 x / 64 + 1 / 2, for all candidate value for R, one necessarily takes larger than 3 R /64 + 1/2. Since the closest root to x 0 is ' 1.4475, Corollary 5 does not apply. However we shall show later that the Newton iterates of x 0 converge to .

Higher orders

Now we examine what happens when `> 2. We still assume we are given a constant > kD f (x 0 ) ¡1 f (x 0 )k, but also additional constants i > kD f (x 0 ) ¡1 D i f (x 0 )k for i 2 f2; :::; `g, and a continuous non-negative and non-decreasing function

L `: [0; R] ! R >0 satisfying: kDf (x 0 ) ¡1 (D `f (b) ¡ D `f (a))k 6 L `(r) kb ¡ ak; for all r 2 [0; R] and all a; b 2 B (x 0 ; r) \ : (5) 
We consider the function

`(r) = ¡ r + 2 r 2 2! + + `r! + R 0 r L `(s) (r ¡ s) ! ds, dened in [0; R].
In order to compute its derivatives, we take a parameter " in a neighborhood of 0, and calculate: R

0 r+" L `(s) (r + " ¡ s) ! ds ¡ R 0 r L `(s) (r ¡ s) `! `ds = R r r+" L `(s) (r + " ¡ s) ! ds + R 0 r L `(s) (r + " ¡ s) ! ¡ (r ¡ s) ! ds = " R 0 r L `(s) (r ¡ s) `¡1
(`¡ 1)! ds + O(" 2 ). By a straightforward induction, this shows that the derivative to order l 6 `of

R 0 r L `(s) (r ¡ s) ! ds exists and equals R 0 r L `(s) (r ¡ s) `¡l (`¡ l)! ds. Consequently ìs of class C `+1 ([0; R]; R).
Corollary 7. Let f 2 C `(; Y), with `> 2, and let x 0 2 be such that D f (x 0 ) is invertible. We assume given , 2 ; :::; `, L `and `as dened above, satisfying [START_REF] Argyros | Extending the applicability of Newton's method by improving a local result due to Dennis and Schnabel[END_REF], and such that `admits a unique zero r ¡ in [0; R), with B(x 0 ; R) and (R) 6 0.

Then the Newton sequence r 0 = 0, r k+1 = r k ¡ `(r k ) 0(r k ) is well dened in [0; r ¡ ], and converges to r ¡ . The Newton sequence x k+1 = x k ¡ Df (x k ) ¡1 f (x k ) is also well dened in B (x 0 ; r ¡ ), and converges to the unique zero of f in B(x 0 ; R). In addition, we have k ¡

x k k 6 r ¡ ¡ r k and kx k+1 ¡ x k k 6 r k+1 ¡ r k . Proof. We dene L(r) = 00 (r) = 2 + + `r`¡2 (`¡ 2)! + R 0 r L `(s) (r ¡ s) `¡2 (`¡ 2)! ds and r a = ka ¡ x 0 k. We claim that kD f (x 0 ) ¡1 D 2 f (a)k 6 L(r a ), so that L satises hypotheses of Theorem 4 with (r) = ¡ r + R 0 r L(s) (r ¡ s) ds = `(r)
, which concludes the proof. In order to prove the latter claim, we notice that Lemma 2 applied to

D `¡1 f yields kDf (x 0 ) ¡1 (D `f (a) ¡ D `f (x 0 ))k 6 R 0 r a L `(s)
ds, and we begin with

D 2 f (a) = X l=2 `Dl f (x 0 ) (a ¡ x 0 ) l¡2 (l ¡ 2)! + R `¡2 (D 2 f ; x 0 ; a): If `= 2, then R `¡2 (Df (x 0 ) ¡1 D 2 f ; x 0 ; a) = Df (x 0 ) ¡1 (D 2 f (a) ¡ D 2 f (x 0 )), hence has norm at most R 0 r a L `(s) ds = R `¡2 ( 00 ; 0; r a ). Otherwise, if `> 3, the integral form of the Taylor remainder of D 2 f to order `¡ 3 leads to R `¡2 (Df (x 0 ) ¡1 D 2 f ; x 0 ; a) = R `¡3 (Df (x 0 ) ¡1 D 2 f ; x 0 ; a) ¡ D `f (x 0 ) (a ¡ x 0 ) `¡2 (`¡ 2)! = Z [x 0 ;a] (D `f (z) ¡ D `f (x 0 )) (a ¡ z) `¡3 (`¡ 3)! dz:
It follows that

kR `¡2 (Df (x 0 ) ¡1 D 2 f ; x 0 ; a)k 6 Z 0 r a Z 0 r L `(s) (r a ¡ r) `¡3 (`¡ 3)! dr ds = R `¡2 ( 00 ; 0; r a ); whence the claimed bound kDf (x 0 ) ¡1 D 2 f (a)k 6 P l=2 `l r a l¡2 (l ¡ 2)! + R `¡2 ( 00 ; 0; r a ) = 00 (r a ).
The rst case of use concerns `= 2, with L(r) being a constant say , so that

2 (r) = ¡ r + 2 r 2 2! + r 3
3! . Since 2 (r) admits a unique negative root, it admits two distinct positive roots r ¡ and r + if, and only if, its discriminant is positive. In this case, the previous corollary applies with R = r + in a way similar to the case `= 1.

Example 8. With f as in Example 6, we may take `= 2, = jf 0 (0) ¡1 f (0)j = 9 / 10, 2 = 1 / 2, L(r) = = 3 / 64, so that `(r) has positive discriminant. It follows that the Newton iterates of x 0 converge quadratically to the root of f , where ' 1.4475.

When `= 2, this corollary is sharp for polynomials of degree 3, and we could build upon it conditions in degree 4, 5, etc. In fact using higher order Kantorovich conditions might be tempting to work for instance with low oating point precision. However computing even rough bounds on high order derivatives becomes as much expensive as the dimension of the ambient space grows up. It is therefore in general recommended to restrict to degree 2.

Majorant series

In a context of analytic and meromorphic functions, it is natural to consider generating series of norms of derivatives, thus taking poles into accounts. Considering the limit of the previous case when `tends to innity, we obtain an other corollary: Corollary 9. Let f 2 C 1 (; Y), and let x 0 2 be such that Df (x 0 ) is invertible. We assume we are given a constant > kDf (x 0 ) ¡1 f (x 0 )k, and a sequence of constants i > kDf (x 0 ) ¡1 D i f (x 0 )k for i > 2. We dene the function

1 : [0; R] ! R as 1 (r) = ¡ r + P l>2 l r l
l! , assuming that this sum converges, and that 1 admits a unique zero r ¡ > 0 in [0; R), such that B(x 0 ; R) and 1 (R) 6 0.

Then the Newton sequence r 0 = 0,

r k+1 = r k ¡ 1 (r k ) 1 0 (r k ) is well dened in [0; r ¡ ],
and converges to r ¡ . The Newton sequence

x k+1 = x k ¡ Df (x k ) ¡1 f (x k
) is also well dened in B (x 0 ; r ¡ ), and converges to the unique zero of f in B(x 0 ; R). In addition, we have k ¡ x k k 6 r ¡ ¡ r k and kx k+1 ¡ x k k 6 r k+1 ¡ r k .

Proof. We dene L(r) = 1 00 (r) = P l>2 l r l¡2

(l ¡ 2)! . By considering the Taylor expansion of D 2 f at x 0 , we obtain that kDf (x 0 ) ¡1 D 2 f (a)k 6 L(ka ¡ x 0 k) holds for all a 2 B(x 0 ; R), so that L satises the hypothesis of Theorem 4 with (r

) = ¡ r + R 0 r L(s) (r ¡ s) ds = 1 (r).
The rst case of practical interest is for when 1 is a rational function with a numerator of degree 2 and a denominator of degree 1. We thus assume given a constant >

Df (x 0 ) ¡1 D l f (x 0 ) l! 1 l¡1
for all l > 2, and take l = l! l¡1 so that 1 (r) = ¡ r +

r 2 1 ¡ r = ¡ ( + 1) r + 2 r 2 1 ¡ r
, where = . Conditions of Corollary 9 rewrite into R < 1/ , and < 3 ¡ 2 2 p . This special case is known as the -Theorem. This case of Kantorovich theorem has the advantage to x the parameter R in terms of . It therefore turns out to be useful for analyzing the complexity of numerical algorithms. In practice some specic class of functions might benet from it, such as algebraic and holonomic functions, where one might expect to rely on external machinery to compute candidate values for .

In terms of , , and , the sequence (r k ) k>0 may be computed explicitly by introducing the auxiliary sequence

t k = r k ¡ r ¡ r k ¡ r + : t k+1 = r k ¡ r ¡ ¡ 1 (r k ) 1 0 (r k ) r k ¡ r + ¡ 1 (r k ) 1 0 (r k ) = t k 1 0 (r k ) 1 (r k ) ¡ 1 r k ¡ r ¡ 1 0 (r k ) 1 (r k ) ¡ 1 r k ¡ r + = t k 1 r k ¡ r + + 1 ¡ r k 1 r k ¡ r ¡ + 1 ¡ r k = t k 2 1 ¡ r + 1 ¡ r ¡ :

Historical notes

Corollary 5 essentially corresponds to the rst occurrence of Kantorovich's theorem in the literature, published in [38, Ãëàâà IV, p. 170], which was requiring f 2 C 2 (; X) and was using separate bounds on kD f (x 0 ) ¡1 k and kD 2 f (x 0 )k. Then variants and improvements have been proposed by various authors [START_REF] James | The Newton-Kantorovich theorem[END_REF][START_REF] Ostrowski | La méthode de Newton dans les espaces de Banach[END_REF][START_REF] Tapia | Classroom Notes: The Kantorovich Theorem for Newton's Method[END_REF], before being merged by Gragg and Tapia, who introduced the Lipschitzian condition of Corollary 5, and detailed the limit case r ¡ = r + , where the quadratic convergence does not hold anymore [START_REF] Gragg | Optimal error bounds for the Newton-Kantorovich theorem[END_REF]. Gragg and Tapia also provided the sharp a priori convergence bound from the explicit formula for r k that was borrowed from [51, Appendix F]. Our Section 3.1 is actually inspired from [START_REF] Gragg | Optimal error bounds for the Newton-Kantorovich theorem[END_REF].

The extension to degree three (given as an example of Corollary 7) has been rst presented in [START_REF] Da | A note on the Kantorovich theorem for Newton iteration[END_REF]. Explicit convergence bounds have then been given in [START_REF] José | A new semilocal convergence theorem for Newton's method[END_REF]. Theorem 4 rst appeared in [START_REF] Wang | Convergence of Newton's method and inverse function theorem in Banach space[END_REF], under assumption (3), which is shown to be equivalent to the more classical Lipschitzian condition (1) in our Lemma 2. Corollary 7 is inspired from [25, Theorem 1], which admits variants in [START_REF] Ioannis | General convergence conditions of Newton's method for m-Fréchet dierentiable operators[END_REF][START_REF] Ezquerro | A modication of the classic conditions of Newton-Kantorovich for Newton's method[END_REF], that had been developed independently of [START_REF] Wang | Convergence of Newton's method and inverse function theorem in Banach space[END_REF]. In fact our Section 3.2 highlights the fact that higher order assumptions are essentially specializations of the general case handled by Theorem 4.

The -theorem rst appeared in an article by Smale [START_REF] Smale | Newton's method estimates from data at one point[END_REF] with the non-optimal condition < 0.130707. At the same time a one dimensional version was also designed by Kim [START_REF] Kim | Computational Complexity of the Euler Type Algorithms for the Roots of Complex Polynomials[END_REF][START_REF] Kim | On approximate zeros and rootnding algorithms for a complex polynomial[END_REF]. Subsequent improvements of the latter constant are due to Wang and Han [START_REF] Hua | On dominating sequence method in the point estimate and Smale theorem[END_REF] (see also [START_REF] Hua | Some results relevant to Smale's reports[END_REF]). Wang also made explicit the relationship between the -theorem and Kantorovich's theorem [START_REF] Wang | Convergence of Newton's method and inverse function theorem in Banach space[END_REF]. The systematic treatment in terms of majorant series emerged in [START_REF] Giusti | On location and approximation of clusters of zeros: case of embedding dimension one[END_REF], from which Corollary 9 is extracted. Important applications to complexity of numeric polynomial system solving started in [START_REF] Shub | Computational complexity: on the geometry of polynomials and a theory of cost[END_REF][START_REF] Shub | Computational complexity. On the geometry of polynomials and a theory of cost[END_REF][START_REF] Smale | The fundamental theorem of algebra and complexity theory[END_REF].

Classical books for Kantorovich's theorem and historical notes are [START_REF] Ioannis | Convergence and applications of Newton-type iterations[END_REF][START_REF] Ioannis | Computational methods in nonlinear analysis. Ecient algorithms, xed point theory and applications[END_REF][START_REF] Dennis | Numerical methods for unconstrained optimization and nonlinear equations[END_REF][START_REF] Kantorovich | Functional analysis in normed spaces[END_REF][START_REF] Ortega | Iterative solution of nonlinear equations in several variables[END_REF]. For the -theorem and its applications to polynomial system solving by homotopy methods, we refer the reader to [START_REF] Blum | Complexity and real computation[END_REF][START_REF] Dedieu | Points xes, zéros et la méthode de Newton[END_REF]. Let us also mention the survey [START_REF] Polyak | Newton-Kantorovich method and its global convergence[END_REF], and the article [START_REF] Ciarlet | On the Newton-Kantorovich theorem[END_REF] for detailled recent proofs of Kantorovich's original theorem with slight variants.

A plethora of literature is dedicated to variations of assumptions on f and its derivatives: Other kinds of Lipschitzian conditions (centered, or in balls or annuli) and comparisons between them [START_REF] Argyros | A new Kantorovich-type theorem for Newton's method[END_REF][START_REF] Argyros | A new semilocal convergence theorem for Newton's method in Banach space using hypotheses on the second Fréchet-derivative[END_REF][START_REF] Argyros | Weaker Kantorovich type criteria for inexact Newton methods[END_REF][START_REF] Ezquerro | A semilocal convergence result for Newton's method under generalized conditions of Kantorovich[END_REF][START_REF] Antonio Ezquerro | A general semilocal convergence result for Newton's method under centered conditions for the second derivative[END_REF][START_REF] Ferreira | Kantorovich's majorants principle for Newton's method[END_REF][START_REF] Livinus | A generalized Kantorovich theorem on the solvability of nonlinear equations[END_REF][START_REF] Wang | A unied convergence theory for Newton-type methods for zeros of nonlinear operators in Banach spaces[END_REF]; Mixed centered Lipschitzian conditions extending the -theorem [START_REF] Ioannis | Expanding the applicability of Newton's method using Smale's -theory[END_REF]; Weak continuity of the derivative [START_REF] Ioannis | Newton-Kantorovich approximations under weak continuity conditions[END_REF]; Hölder conditions [START_REF] Cianciaruso | A further journey in the terra incognita of the Newton-Kantorovich method[END_REF]. Convergence rate and error bounds have been rened in [START_REF] Argyros | Extending the applicability of Newton's method by improving a local result due to Dennis and Schnabel[END_REF][START_REF] Miel | The Kantorovich theorem with optimal error bounds[END_REF]; A posteriori bounds can be found in [START_REF] Potra | Sharp error bounds for Newton's process[END_REF][START_REF] Yamamoto | A unied derivation of several error bounds for Newton's process[END_REF][START_REF] Yamamoto | A method for nding sharp error bounds for Newton's method under the Kantorovich assumptions[END_REF][START_REF] Yamamoto | A convergence theorem for Newton-like methods in Banach spaces[END_REF][START_REF] Yamamoto | Ball-convergence theorems and error estimates for certain iterative methods for nonlinear equations[END_REF].

Finally, let us mention that Kantorovich's technique has been successfully applied and extended to other Newton-like operators in wider contexts: Robust variant [START_REF] Wang | A semi-local convergence theorem for a robust revised Newton's method[END_REF]; Modied Newton method [START_REF] Dennis | On the Kantorovich hypothesis for Newton's method[END_REF][START_REF] Lin | Newton-Kantorovich and Smale uniform type convergence theorem for a deformed Newton method in Banach spaces[END_REF]; Inexact Newton method [START_REF] Ioannis | Concerning the convergence of inexact Newton methods[END_REF][START_REF] Ioannis | A semilocal convergence analysis of an inexact Newton method using recurrent relations[END_REF][START_REF] Ferreira | A robust Kantorovich's theorem on the inexact Newton method with relative residual error tolerance[END_REF][START_REF] Guo | Semilocal and global convergence of the Newton-HSS method for systems of nonlinear equations[END_REF][START_REF] Moret | A Kantorovich-type theorem for inexact Newton methods[END_REF][START_REF] Shen | Kantorovich-type convergence criterion for inexact Newton methods[END_REF][START_REF] Xu | Semilocal convergence analysis for inexact Newton method under weak condition[END_REF]; GaussNewton method [START_REF] Ioannis | Extending the applicability of the Gauss-Newton method under average Lipschitz-type conditions[END_REF][START_REF] Häussler | A Kantorovich-type convergence analysis for the Gauss-Newton-method[END_REF][START_REF] Kim | A Kantorovich-type convergence analysis for the quasi-Gauss-Newton method[END_REF][START_REF] Li | Convergence behavior of Gauss-Newton's method and extensions of the Smale point estimate theory[END_REF]; Halley's method (extension of Newton operator to order 3) [START_REF] Amat | On a third-order Newton-type method free of bilinear operators[END_REF][START_REF] Ioannis | On the semilocal convergence of the Halley method using recurrent functions[END_REF][START_REF] Ioannis | Ball convergence theorems for Halley's method in Banach space[END_REF][START_REF] Ioannis | Ball convergence theorems for Halley's method in Banach space[END_REF][START_REF] Ezquerro | A construction procedure of iterative methods with cubical convergence. II. Another convergence approach[END_REF][START_REF] Lin | Newton-Kantorovich convergence theorem of a new modied Halley's method family in a Banach space[END_REF][START_REF] Lin | Convergence theorem for a family of new modied Halley's method in Banach space[END_REF]; Extensions to dierential vector elds on Riemannian manifolds [START_REF] Alvarez | A unifying local convergence result for Newton's method in Riemannian manifolds[END_REF][START_REF] Ioannis | Newton's method for approximating zeros of vector elds on Riemannian manifolds[END_REF][START_REF] Ferreira | Kantorovich's theorem on Newton's method in Riemannian manifolds[END_REF][START_REF] Wang | Convergence of Newton's method for sections on Riemannian manifolds[END_REF] (Theorem 4 is for instance extended in [START_REF] Alvarez | A unifying local convergence result for Newton's method in Riemannian manifolds[END_REF]).

Bibliography

2 Figure 1 .

 21 Figure 1. Graph of and the rst Newton iterates of r 0 .

Grégoire Lecerf, Joelle Saadé