
HAL Id: hal-01196842
https://hal.science/hal-01196842

Submitted on 14 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A 3/2-approximation algorithm for some minimum-cost
graph problems

Basile Couëtoux, James M. Davis, David P. Williamson

To cite this version:
Basile Couëtoux, James M. Davis, David P. Williamson. A 3/2-approximation algorithm for
some minimum-cost graph problems. Mathematical Programming, 2015, 150 (1), pp.19–34.
�10.1007/s10107-013-0727-z�. �hal-01196842�

https://hal.science/hal-01196842
https://hal.archives-ouvertes.fr

Mathematical Programming Series B manuscript No.
(will be inserted by the editor)

A 3
2-Approximation Algorithm for Some

Minimum-Cost Graph Problems

Basile Couëtoux · James M. Davis ·
David P. Williamson

Received: date / Accepted: date

Abstract We consider a class of graph problems introduced in a paper of Goemans
and Williamson that involve finding forests of minimum edge cost. This class in-
cludes a number of location/routing problems; it also includes a problem in which we
are given as input a parameter k, and want to find a forest such that each component
has at least k vertices. Goemans and Williamson gave a 2-approximation algorithm
for this class of problems. We give an improved 3

2 -approximation algorithm.

1 Introduction

Consider the following graph problem: given an undirected graph G = (V,E) with
nonnegative edge costs c(e)≥ 0 for all e∈E, and a positive integer k, find a minimum-
cost set F of edges such that each connected component of (V,F) has at least k ver-
tices in it. If k = 2, the problem is the minimum-weight edge cover problem, and

This paper is the merger of two extended abstracts, the first due to the first author (which appeared in
ESA 2011 [4]) and the second due to the second and third authors (which appeared in ESA 2012 [5]). The
second author is supported by the National Science Foundation under Grant No. DGE-0707428. The third
author is supported in part by NSF grant CCF-1115256.

B. Couëtoux
Laboratoire d’Informatique Fondamentale de Marseille,
Université de la Mediterranée, Marseille, F-13288, Marseille Cedex 9, France.
E-mail: Basile.Couetoux@lif.univ-mrs.fr

J.M. Davis
School of Operations Research and Information Engineering,
Cornell University, Ithaca, NY 14853, USA.
E-mail: jmd388@cornell.edu

D.P. Williamson
School of Operations Research and Information Engineering,
Cornell University, Ithaca, NY 14853, USA.
E-mail: dpw@cs.cornell.edu

2

T1 T2 T3 T4

|T1|= |T4|= k |T2|= |T3|= d k
2 e

1
e1

1+ ε

e2

1
e3

Fig. 1: The Ti are cliques of cost zero edges, with |T1| = |T4| = k, and |T2| = |T3| =
d k

2e. {e1,e3,T1,T2,T3,T4} is a solution of cost 2 returned by the Imielińska et al.
algorithm, while {e2,T1,T2,T3,T4} is an optimal solution for this instance of cost
1+ ε .

if k = |V |, the problem is the minimum spanning tree problem; both problems are
known to be polynomial-time solvable. However, for any other constant value of k,
the problem is known to be NP-hard (see Imielińska, Kalantari, and Khachiyan [9]
for k ≥ 4 and Bazgan, Couëtoux, and Tuza [2] for k = 3).

For this reason, researchers have considered approximation algorithms for the
problem. An α-approximation algorithm is a polynomial-time algorithm that pro-
duces a solution of cost at most α times the cost of an optimal solution. The param-
eter α is sometimes called the performance guarantee of the algorithm. Imielińska,
Kalantari, and Khachiyan [9] give a very simple 2-approximation algorithm for this
problem, which they call the constrained forest problem. The algorithm is a variant of
Kruskal’s algorithm [10] for the minimum spanning tree problem: it considers edges
in order of increasing cost, and adds an edge to the solution as long as it connects
two different components (as in Kruskal’s algorithm) and one of the two components
has fewer than k vertices. Other 2-approximation algorithms based on edge deletion
(instead of, or in addition to, edge insertion) are given by Laszlo and Mukherjee [11,
12], who also perform some experimental comparisons. The performance guarantee
of the algorithm is tight, as can be seen in an example in Figure 1.

Goemans and Williamson [6] show that the Imielińska et al. algorithm can be
generalized to provide 2-approximation algorithms for a large class of graph prob-
lems. The graph problems are specified by a function h : 2V → {0,1} (actually, [6]
considers a more general case of functions h : 2V → N, but we will consider only the
0-1 case here). Given a graph G and a subset of vertices S, let δ (S) be the set of all
edges with exactly one endpoint in S. Then a set of edges F is a feasible solution to
the problem given by h if |F ∩ δ (S)| ≥ h(S) for all nontrivial subsets S of vertices.
Thus, for instance, the problem of finding components of size at least k is given by
the function h(S) = 1 iff |S| < k. Goemans and Williamson [6] consider functions h
that are downwards monotone; that is, if h(S) = 1 for some subset S, then h(T) = 1
for all T ⊆ S, T 6= /0. They then show that the natural generalization of the Imielińska
et al. algorithm is a 2-approximation algorithm for any downwards monotone func-
tion h; in particular, the algorithm considers edges in order of increasing cost, and
adds an edge to the solution if it joins two different connected components C and C′

and either h(C) = 1 or h(C′) = 1 (or both). Laszlo and Mukherjee [13] have shown
that their edge-deletion algorithms also provide 2-approximation algorithms for these
problems. Goemans and Williamson show that a number of graph problems can be
modeled with downwards monotone functions, including some location-design and

3

T1 T2 T3 T4

|T1|= |T2|= |T3|= |T4|= d k
2 e

1
e1

1− ε

e2

1
e3

Fig. 2: The Ti are cliques of cost zero edges, with |T1| = |T2| = |T3| = |T4| = d k
2e.

{e1,e2,e3,T1,T2,T3,T4} is a solution of cost 3− ε returned by our algorithm, while
{e1,e3,T1,T2,T3,T4} is an optimal solution for this instance of cost 2.

location-routing problems; for example, they consider a problem in which every com-
ponent not only must have at least k vertices but also must have an open depot from
a subset D ⊆ V , where there is a cost c(d) for opening the depot d ∈ D to serve the
component.

In this paper we give a 3
2 -approximation algorithm for the class of problems in-

troduced by Goemans and Williamson. It is easiest to explain the basic idea of the
algorithm in the context of the original problem of Imielińska et al. In any partial
solution constructed by the algorithm, let us call a connected component small if it
has fewer than k vertices in it, and big otherwise. We call an edge good if it joins two
small components into a big component, and bad if it joins two components, at least
one small, into a small component. The algorithm behaves similarly to the Imielińska
et al. algorithm in that it considers adding edges to the solution in order of increasing
cost. However, when it considers adding an edge e to the solution (at cost c(e)), it also
considers all good edges e′ of cost c(e′) ≤ 2c(e). If such a good edge exists, it adds
the cheapest one; otherwise, it adds the edge e. The intuition for the algorithm is that
we want to try to decrease the number of small components of a partial solution until
there is no small component left. In order to choose the next edge to add to the partial
solution, we choose the edge which will decrease the number of small components
with minimal cost. Thus, we should be willing to pay up to twice as much for a good
edge as a bad edge.

The extension to the more general class of downwards monotone functions is
straightforward: a component C is small if h(C) = 1 and big otherwise.

In our analysis, we note that the algorithm can be viewed as a dual-growing al-
gorithm similar to many primal-dual approximation algorithms for network design
problems (see Goemans and Williamson [8] for a survey). However, in this case, the
dual is not a feasible solution to the dual of a linear programming relaxation of the
problem; in fact, it gives an overestimate on the cost of the tree generated by the
algorithm. But we show that a dual-fitting style analysis works; namely, if we scale
the dual solution down by a factor of 2/3, it gives a lower bound on the cost of any
feasible solution. This leads directly to the performance guarantee of 3

2 . Our analysis
is tight, as seen in Figure 2.

Our result is interesting for another reason: we know of very few classes of
network design problems such as this one that have a performance guarantee with
constant strictly smaller than 2. For individual problems such as Steiner tree and
prize-collecting Steiner tree there are approximation algorithms known with perfor-
mance guarantees smaller than 2 (see, for instance, Byrka et al. [3] for Steiner tree

4

F ← /0
while F is not a feasible solution do

Let e be the cheapest (good) edge joining two components C1, C2 of F with
h(C1) = h(C2) = 1 and h(C1 ∪C2) = 0 (if such an edge exists)

Let e′ be the cheapest edge joining two components C1, C2 of F such that
max(h(C1),h(C2)) = 1

if e exists and c(e)≤ 2c(e′) then
F ← F ∪{e}

else
F ← F ∪{e′}

Return F

Algorithm 1: The 3
2 -approximation algorithm.

and Archer et al. [1] for prize-collecting Steiner tree), but these results are isolated,
and do not extend to well-defined classes of problems. It would be very interesting,
for instance, to give an approximation algorithm for a class of functions known as
proper functions with a constant performance guarantee smaller than 2. This class
was introduced by Goemans and Williamson [7]; a function f : 2V →{0,1} is proper
if f (S) = f (V − S) for all S ⊆ V and f (A∪B) ≤ max(f (A), f (B)) for all disjoint
A,B⊂V . This class of functions includes several interesting problems, including the
Steiner tree and generalized Steiner tree problems.

The paper is structured as follows. In Section 2, we give the algorithm in more
detail. In Section 3, we turn to the analysis of the algorithm. We conclude with some
open questions in Section 4.

2 The algorithm

In this section we give the algorithm in slightly more detail; it is summarized in
Algorithm 1. As stated in the introduction, we start with an infeasible solution F = /0.
In each iteration, we first look for the cheapest good edge e with respect to F : a good
edge with respect to F has endpoints in two different components C1 and C2 of (V,F)
such that h(C1) = h(C2) = 1 and h(C1 ∪C2) = 0. Any edge that is not good is bad.
We then look for the cheapest bad edge e′ with respect to F that has endpoints in two
different components C1 and C2 such that max(h(C1),h(C2)) = 1. If the cost of the
good edge e is at most twice the cost of the bad edge e′, we add e to F , otherwise
we add e′ to F . We continue until we have a feasible solution. Note that if the step
of considering good edges is removed, then we have the previous 2-approximation
algorithm of Goemans and Williamson. A sample run of the algorithm is given in the
appendix.

3 Analysis of the algorithm

At a high level, our analysis will work as follows. We first show that we can have
the algorithm implicitly construct a set of variables y(S) for S ⊆V , and we prove (in

5

F ← /0
y← 0
while F is not a feasible solution do

Increase y(C) uniformly for all components C with h(C) = 1 until either:
(1) ∑S:e∈δ (S) y(S)≥ c(e) for some good edge e; OR
(2) ∑S:a′∈δ+(S) y(S) = c(a′) for some bad arc a′ ≡ bad edge e′;
if (1) happens then

F ← F ∪{e}
else

F ← F ∪{e′}
Return F

Algorithm 2: A dual-based version of the algorithm.

Lemma 4) that the cost of the solution F found by the algorithm is at most the sum of
the variables ∑S⊆V y(S). Then we will show (in Lemma 5) that scaling down this sum
by 2/3 gives a lower bound on the cost of any feasible solution for the problem. These
two results together imply that the cost of the solution found by the algorithm is at
most 3/2 the cost of an optimal solution for the problem. At the end of the section,
we provide an alternate perspective on our analysis.

3.1 Some preliminaries

As stated above, we implicitly have the algorithm construct a set of variables y as
it runs; we refer to y as a dual solution. While we call y a dual solution, this is a
bit misleading; unlike typical primal-dual style analyses, we are not constructing a
feasible dual solution to a linear programming relaxation of the problem. However,
we will guarantee that it is feasible for a particular set of constraints, which we now
describe. Suppose we take the original undirected graph G = (V,E) and create a
mixed graph Gm = (V,E ∪A) by bidirecting every edge; that is, for each edge e =
(u,v) ∈ E of cost c(e) we create two arcs a = (u,v) and a′ = (v,u) of cost c(a) =
c(a′) = c(e) and add them to the original set of undirected edges. Let δ+(S) be the
set of arcs of Gm whose tails are in S and whose heads are not in S; note that no
undirected edge is in δ+(S). Then the dual solution we construct will be feasible for
the constraints

∑
S:a∈δ+(S)

y(S)≤ c(a) for all a ∈ A. (1)

Note that the constraints are only over the directed arcs of the mixed graph and not the
undirected edges. We say that a constraint is tight for some arc a if ∑S:a∈δ+(S) y(S) =
c(a). We will sometimes simply say that the arc a is tight.

We give a dual-based version of the algorithm in Algorithm 2. Initially we set
y(S) to 0 for all S ⊆ V , and we maintain a selected set of edges F , initially empty.
For a connected component C of F at some iteration of the algorithm, we say C
is active if h(C) = 1 and inactive otherwise. We increase y(C) uniformly for all
active components C until either ∑S:e∈δ (S) y(S) ≥ c(e) for some good edge e, or

6

∑S:a′∈δ+(S) y(S) = c(a′) for some bad arc a′ that is an orientation of bad edge e′.
In the former case, we add good edge e to F , otherwise we add bad edge e′.

For the purposes of analysis, it is also useful to maintain a quantity t, called the
time of the algorithm. It is initially zero, and in each iteration is increased by the same
amount as each y(C) is increased for active C.

We would like to prove that the two algorithms are equivalent. First we need the
following lemma.

Lemma 1 Consider any component C at the start of an iteration of the main loop of
Algorithm 2. For any arc (u,v) with u ∈C, v /∈C, and C active, ∑S:(u,v)∈δ+(S) y(S) = t
at the start of the iteration.

Proof We prove this by induction on Algorithm 2. The statement is true at the start
of the algorithm since t = 0 and all y(S) = 0. Suppose the statement is true at the
start of the kth iteration of the algorithm; we prove it is true at the start of the (k+
1)st iteration. Consider an arc (u,v) and an active component C from the (k+ 1)st
iteration, where u ∈ C and v /∈ C. Then note that since the algorithm only merges
components, whatever component C′ ⊆ C that contained u at the previous iteration
did not contain v, and since h is downwards monotone, C′ was also active. Thus at the
time t at the start of the kth iteration, ∑S:(u,v)∈δ+(S) y(S) = t. Since C′ is a component
at the start of the kth iteration and it is active, both sides of the equality increase by
the same amount in the kth iteration, and the equation continues to hold. ut

Now we can prove the equivalence.

Lemma 2 Algorithm 2 is equivalent to Algorithm 1.

Proof We show that in each iteration, the algorithms add the same edge. By Lemma
1, we have that for any arc (u,v) with u ∈C, C active, v /∈C, ∑S:(u,v)∈δ+(S) y(S) = t at
the start of the iteration. Thus for all such arcs a′ = (u,v), we can increase y(C) by at
most c(a′)− t before case (2) applies in Algorithm 2. Thus case (2) will apply to the
arc a′ = (u,v) of minimum cost such that u ∈C for active C and v /∈C. The edge e′

corresponding to a′ is then the cheapest bad edge joining two components C and C′

in the current solution, at least one of which is active. Case (1) in Algorithm 2 applies
to good edges e = (u,v). For such a good edge e = (u,v), it must be that u ∈ C,
v ∈ C′, and both C and C′ are active and distinct; then at the start of the iteration,
∑S:e∈δ (S) y(S) = ∑S:(u,v)∈δ+(S) y(S)+∑S:(v,u)∈δ+(S) y(S) = 2t by Lemma 1. Thus for
such edges, we can increase y(C) and y(C′) each by at most max(1

2 c(e)− t,0) before
case (1) applies, since after such an increase, ∑S:(u,v)∈δ+(S) y(S)+∑S:(v,u)∈δ+(S) y(S)≥
2t +c(e)−2t = c(e). Thus Algorithm 2 adds the cheapest good edge e instead of the
cheapest bad edge e′ exactly when max(1

2 c(e)− t,0) ≤ c(e′)− t, or when c(e) ≤
2c(e′), which implies that Algorithm 2 adds exactly the same edge in the iteration as
Algorithm 1. ut

Corollary 1 For any bad edge e′ = (u,v) added by the algorithm, if u ∈C such that
h(C) = 1, then the arc (u,v) is tight. For any good edge e added by the algorithm,
∑S:(u,v)∈δ+(S) y(S)+∑S:(v,u)∈δ+(S) y(S)≥ c(e).

7

Lemma 3 At the end of the algorithm, the dual solution y is feasible for the con-
straints (1).

Proof The statement follows by construction of Algorithm 2; the algorithm maintains
the feasibility of the constraints. ut

We now show that the cost of the algorithm’s solution F is at most the sum of the
dual variables. We will prove this on a component-by-component basis. To do this it
is useful to think about directing most of the edges of the component. We now explain
how we direct edges.

Consider component C of F ; overloading notation, let C stand for both the set of
vertices and the set of edges of the component. At the start of the algorithm, each
vertex of C is in its own component, and these components are repeatedly merged
until C is a component in the algorithm’s solution F ; at any iteration of the algorithm
call the connected components whose vertices are subsets of C the subcomponents
of C. We say that a subcomponent has h-value of 0 (1, respectively) if for the set of
vertices S of the subcomponent h(S) = 0 (h(S) = 1 respectively). We claim that at any
iteration there can be at most one subcomponent of h-value 0. Note that the algorithm
never merges components both of h-value 0, and any merging of two components, one
of which has h-value 1 and the other 0, must result in a component of h-value 0 by the
properties of h. So if there were in any iteration two subcomponents of C both with
h-value 0, the algorithm would not in any future iteration add an edge connecting
the vertices in the two subcomponents, which contradicts the connectivity of C. It
also follows from this reasoning that at some iteration (perhaps initially) the first
subcomponent appears with h-value 0, and there is a single such subcomponent from
then on. If there is a vertex v ∈C with h({v}) = 0, then there is such a subcomponent
initially; otherwise, such a subcomponent is formed by adding a good edge e∗ to
merge two subcomponents of h-value 1. In the first case, we consider directing all
the edges in the component towards v and we call v the root of C. In the second case,
we think about directing all the edges to the two endpoints of e∗ and we call these
vertices the roots of C; the edge e∗ remains undirected. We say that directing the
edges of the component in this way makes the component properly birooted; let the
corresponding set of arcs (plus perhaps the one undirected edge) be denoted

−→
C .

We can now prove the needed lemma.

Lemma 4 At the end of the algorithm ∑e∈F c(e)≤ ∑S y(S).

Proof As above, we concentrate on a single connected component C of F . Then we
show that ∑e∈C c(e)≤∑S⊆C y(S). Summing this inequality over all components gives
the lemma statement.

By Corollary 1, we observe that whenever the algorithm adds a bad edge e′ =
(u,v) joining two components C1 and C2 with h(C1) = h(C2) = 1, then the constraints
for both arcs (u,v) and (v,u) are tight. If h(C1) = 1 and h(C2) = 0 with u ∈C1, then
the constraint for arc (u,v) is tight. Also if a good edge e = (u,v) is added, then
∑S:(u,v)∈δ+(S) y(S)+∑S:(v,u)∈δ+(S) y(S)≥ c(e).

It follows from these observations that all the arcs of
−→
C are tight; whenever we

add an edge (u,v) merging two subcomponents C1 and C2 of C with h(C1) = 1 and

8

h(C2) = 0, u∈C1 and v∈C2, the root(s) of C must be in C2, and the arc (u,v) is tight.
Additionally since all edges are directed towards the root(s), there is at most one arc
directed out of any subcomponent of C in any iteration of the algorithm, so for any
dual variable y(S)> 0 with S ⊆C, |δ+(S)∩−→C | ≤ 1; |δ+(S)∩−→C |= 0 if and only if
S contains the one root, or at least one of the two roots, of C. In the case of a single
root r, it then follows that

∑
e∈C

c(e) = ∑
a∈−→C

c(a) = ∑
a=(u,v)∈−→C

∑
S:(u,v)∈δ+(S)

y(S)

= ∑
S⊆C

y(S)|δ+(S)∩−→C |

≤ ∑
S⊆C

y(S).

In the case a good edge e∗ = (u,v) was added to C, and u,v are the roots of C, then

∑
e∈C

c(e) = c(e∗)+ ∑
a∈−→C

c(a)

= c(e∗)+ ∑
a=(x,y)∈−→C

∑
S:(x,y)∈δ+(S)

y(S)

= c(e∗)+ ∑
S⊆C:u,v/∈S

y(S)|δ+(S)∩−→C |

≤ ∑
S⊆C:(u,v)∈δ+(S)

y(S)+ ∑
S⊆C:(v,u)∈δ+(S)

y(S)+ ∑
S⊆C:u,v/∈S

y(S)

= ∑
S⊆C

y(S).

ut

3.2 Proof of the performance guarantee

We use a dual fitting argument to show the performance guarantee. For a feasible
solution F∗, let C∗ be some connected component. We say C∗ ∈ δ (S) for a subset
S of vertices if there is some edge e in C∗ such that e ∈ δ (S). We will show the
following lemma.

Lemma 5 Let F∗ be a feasible solution to the problem, and let C∗ be any component
of F∗. Let y(S) be the dual variables returned by the algorithm. Then

∑
S:C∗∈δ (S)

y(S)≤ 3
2 ∑

e∈C∗
c(e).

From the lemma, we can easily derive the performance guarantee.

Theorem 1 Algorithm 1 is a 3
2 -approximation algorithm.

9

Proof Let F∗ be an optimal solution to the problem, and let C ∗ be its connected
components. Then

3
2 ∑

e∈F∗
c(e) =

3
2 ∑

C∗∈C ∗
∑

e∈C∗
c(e)≥ ∑

C∗∈C ∗
∑

S:C∗∈δ (S)
y(S),

where the last inequality follows by Lemma 5. Let F be the solution returned by the
algorithm. By Lemma 4, we have that

∑
e∈F

c(e)≤∑
S

y(S).

Since we only increased variables y(S) for subsets S with h(S) = 1, it is clear that if
y(S)> 0, then there must exist some C∗ ∈C ∗ with C∗ ∈ δ (S) in order for the solution
to be feasible. Thus

∑
e∈F

c(e)≤∑
S

y(S)≤ ∑
C∗∈C ∗

∑
S:C∗∈δ (S)

y(S)≤ 3
2 ∑

e∈F∗
c(e).

ut

We now turn to proving Lemma 5. The essence of the analysis is that the feasibil-
ity of the dual solution shows that the sum of most of the duals is no greater than the
cost of all but one edge e in the component (the edge e that gives the birooted prop-
erty). We then need to account for the duals that intersect this edge e or that contain
both of its endpoints. If the sum of these duals is sufficiently small, then Lemma 5
follows. If the sum of these duals is not small, then we can show that there must be
another edge e′ in the component that has a large cost, and we can charge these duals
to the cost of e′.

As a warmup to our techniques for proving Lemma 5, we prove a simple spe-
cial case of the lemma by orienting the arcs of the component and using the dual
feasibility (1).

Lemma 6 Given any connected component C∗ of a feasible solution F∗, if there is a
vertex v ∈C∗ such that h({v}) = 0, then ∑S:C∗∈δ (S) y(S)≤ ∑e∈C∗ c(e).

Proof If there is a vertex v ∈C∗ such that h({v}) = 0, we consider a directed version
of C∗ which we call

−→
C∗ in which all the edges are directed towards v. Because h

is downwards monotone and h({v}) = 0, any set S containing v has h(S) = 0 and
therefore y(S) = 0 since we only increase y on sets S′ with h(S′) = 1. We say that
−→
C∗ ∈ δ+(S) if there is some arc of

−→
C∗ with a tail in S and head not in S. Then by the

previous discussion ∑S:C∗∈δ (S) y(S) = ∑S:
−→
C∗∈δ+(S)

y(S). By (1),

∑
e∈C∗

c(e) = ∑
a∈
−→
C∗

c(a)≥ ∑
a∈
−→
C∗

∑
S:a∈δ+(S)

y(S)

= ∑
S:
−→
C∗∈δ+(S)

∑
a∈
−→
C∗:a∈δ+(S)

y(S)

≥ ∑
S:
−→
C∗∈δ+(S)

y(S) = ∑
S:C∗∈δ (S)

y(S).

ut

10

We would like to prove something similar in the general case; however, if we do
not have a vertex v with h({v}) = 0, then there might not be any orientation of the
arcs such that if C∗ ∈ δ (S) and y(S)> 0 then

−→
C∗ ∈ δ+(S), as there is in the previous

case. Instead, we will use a birooted component as we did previously, and argue that
we can make the lemma hold for this case. To orient the arcs of C∗, we order the edges
of C∗ by increasing cost, and consider adding them one-by-one, repeatedly merging
subcomponents of C∗. The first edge that merges two subcomponents of h-value 1
to a subcomponent of h-value 0 we call the undirected edge of C∗, and we designate
it e∗ = (u∗,v∗). We now let

−→
C∗ be the orientation of all the edges of C∗ except e∗

towards the two roots u∗,v∗; e∗ remains undirected. Let

t(u∗) = ∑
S:u∗∈S,v∗ /∈S

y(S),

t(v∗) = ∑
S:u∗ /∈S,v∗∈S

y(S), and

t(e∗) = ∑
S:u∗,v∗∈S

y(S).

We begin with an observation and a few lemmas. Throughout what follows we
will use the quantity t as an index for the algorithm. When we say “at time t”, we
mean the last iteration of the algorithm at which the time is t (since the algorithm
may have several iterations where t is unchanged). For a set of edges X , let max(X) =
maxe∈X c(e).

Observation 1 At time t, the algorithm has considered adding all edges of cost at
most t to the solution and any active component must consist of edges of cost at most
t. At time t, if component C is active, then any edge e ∈ δ (C) must have cost greater
than t.

Lemma 7 max{t(u∗)+ t(e∗), t(v∗)+ t(e∗)} ≤ c(e∗).

Proof Since
−→
C∗ is birooted, there is some connected set of edges X ⊆C∗ that contains

u∗ and v∗ with max(X) ≤ c(e∗) and h(X) = 0 (again treating X both as a connected
set of edges and the associated nodes). At time c(e∗), in the partial solution created
thus far by the algorithm, u∗ and v∗ must be in inactive components (possibly the
same component); if either u∗ or v∗ was not in an inactive component then, since
max(X) ≤ c(e∗), the algorithm would have connected some superset of the vertices
of X which, because h(X) = 0, is inactive. Thus at time c(e∗) the algorithm is no
longer increasing duals y(S) for S containing either u∗ or v∗, and thus the inequality
of the lemma must be true. ut

We will make extensive use of the following lemma, which tells us that the al-
gorithm finds components of small maximum edge cost. Let Ct

u be the connected
component constructed by the algorithm at time t that contains u (similarly, Ct

v).

Lemma 8 Consider two vertices u and v and suppose the components Ct
u,C

t
v are

active for all times t < t ′ (they need not be disjoint). Then for any connected set of
edges C(u) in the original graph containing u (similarly C(v)) if h(C(u)∪C(v)) = 0
while h(Ct

u∪Ct
v) = 1 for all times t < t ′, then max(C(u)∪C(v))≥ t ′.

11

Proof Consider the algorithm at any time t < t ′. Since Ct
u and Ct

v are active, by Ob-
servation 1, any edge in δ (Ct

u) or δ (Ct
v) must have cost greater than t; also, any edge

in the components must have cost at most t. If max(C(u)∪C(v))≤ t, it must be that
the vertices of C(u) are a subset of those of Ct

u, and similarly the vertices of C(v) are a
subset of those of Ct

v. This implies C(u)∪C(v)⊆Ct
u∪Ct

v, and since h(·) is downward
monotone, h(C(u)∪C(v)) ≥ h(Ct

u ∪Ct
v), which is a contradiction. So it must be the

case that max(C(u)∪C(v)) > t. Since this is true for any time t < t ′, it follows that
max(C(u)∪C(v))≥ t ′. ut

We now split the proof into two cases, depending on whether min(t(u∗)+t(e∗), t(v∗)+
t(e∗))> 1

2 c(e∗) or not. We first suppose that it is true.

Lemma 9 If min(t(u∗)+t(e∗), t(v∗)+t(e∗))> 1
2 c(e∗), then C∗ must have some edge

e′ other than e∗ of cost c(e′)≥min(t(u∗)+ t(e∗), t(v∗)+ t(e∗)).

Proof First assume that t(e∗)> 0; this implies that t(u∗) = t(v∗) since u∗ and v∗ must
be in active components until the point in time (at time t(u∗) = t(v∗)) when they are
merged into a single component, which is then active until time t(u∗)+ t(e∗). Then
for all times t < min(t(u∗)+ t(e∗), t(v∗)+ t(e∗)), u∗ and v∗ are in active components
Ct

u∗ and Ct
v∗ , and for times t with t(u∗) ≤ t < t(u∗)+ t(e∗), in which u∗ and v∗ are

in the same component, h(Ct
u∗ ∪Ct

v∗) = 1. Let C(u∗) be the component containing u∗

in C∗− e∗ and C(v∗) be the component containing v∗ in C∗− e∗. Since h(C(u∗)∪
C(v∗)) = h(C∗) = 0, we can apply Lemma 8, and the lemma follows.

Now assume that t(e∗) = 0. In this case, u∗ and v∗ are never in an active compo-
nent together for any positive length of time (since y(S) = 0 for any S containing both
u∗ and v∗). Assume t(u∗) = min(t(u∗) + t(e∗), t(v∗) + t(e∗)) = min(t(u∗), t(v∗)) >
1
2 c(e∗). For all t < t(u∗), Ct

u∗ and Ct
v∗ are active components. Furthermore, since the

algorithm did not add edge e∗ during time 1
2 c(e∗) ≤ t < t(u∗), it must have been the

case that e∗ was not a good edge during that period of time: otherwise e∗ would have
been cheaper than whatever edge(s) the algorithm was adding in that period of time.
Since both Ct

u∗ and Ct
v∗ are active components for t < t(u∗), it must have been the

case that h(Ct
u∗ ∪Ct

v∗) = 1 since otherwise e∗ would have been a good edge. Thus we
can apply Lemma 8: again, let C(u∗) be the component containing u∗ in C∗− e∗ and
C(v∗) be the component containing v∗ in C∗−e∗. We know that h(C(u∗)∪C(v∗)) = 0
since h(C∗) = 0. Thus there must be an edge e′ in C(u∗)∪C(v∗) of cost at least t(u∗).

ut

Finally, we can prove Lemma 5.

Proof of Lemma 5: If there is v ∈ C∗ with h({v}) = 0, then the statement follows
from Lemma 6. If not, then we can get a directed, birooted version

−→
C∗ of C∗ with

undirected edge e∗ = (u∗,v∗). Without loss of generality, suppose that t(u∗)+ t(e∗) =

12

min(t(u∗)+ t(e∗), t(v∗)+ t(e∗)). If t(u∗)+ t(e∗)≤ 1
2 c(e∗), then

∑
S:C∗∈δ (S)

y(S)≤ ∑
S:
−→
C∗∈δ+(S)

y(S)+ ∑
S:u∗∈S,v∗ /∈S

y(S)+ ∑
S:u∗ /∈S,v∗∈S

y(S)+ ∑
S:u∗,v∗∈S

y(S),

≤ ∑
a∈
−→
C∗

∑
S:a∈δ+(S)

y(S)+ t(u∗)+ t(v∗)+ t(e∗),

≤ ∑
a∈
−→
C∗

c(a)+ t(u∗)+ t(e∗)+ t(v∗)+ t(e∗),

≤ ∑
a∈
−→
C∗

c(a)+
1
2

c(e∗)+ c(e∗),

≤ 3
2 ∑

e∈C∗
c(e∗).

where the penultimate inequality follows by our assumption and by Lemma 7. If
t(u∗)+ t(e∗)> 1

2 c(e∗), then by Lemma 9, there is an edge e′ ∈C∗, e′ 6= e∗, of cost at

least t(u∗)+t(e∗). Let a′ be the directed version of e′ in
−→
C∗. Since c(a′)≥ t(u∗)+t(e∗)

and by Lemma 7 c(e∗)≥ t(v∗)+ t(e∗)≥ t(u∗)+ t(e∗), then t(u∗)+ t(e∗)≤ 1
2 (c(a

′)+
c(e∗)). Then following the inequalities above, we have

∑
S:C∗∈δ (S)

y(S)≤ ∑
a∈
−→
C∗

c(a)+ t(u∗)+ t(e∗)+ t(v∗)+ t(e∗)

= ∑
a∈
−→
C∗,a6=a′

c(a)+ c(a′)+
1
2
(c(a′)+ c(e∗))+ c(e∗)

= ∑
a∈
−→
C∗,a6=a′

c(a)+
3
2

c(a′)+
3
2

c(e∗)

≤ 3
2 ∑

e∈C∗
c(e),

and we are done. ut

3.3 An alternate perspective

We now give an alternate perspective on the analysis above: our algorithm creates
an infeasible dual solution for the dual of a linear programming relaxation of a par-
ticular integer programming formulation of the problem. The integer programming
formulation includes a primal variable x(

−→
C) for each possible birooted component

−→
C . Define γ(S) to contain all birooted components

−→
C such that

−→
C has an arc leav-

ing S, or S contains one (or both) of the roots of
−→
C . Then the integer programming

formulation is attempting to find a minimum-cost collection of birooted components
such that each set S with h(S) = 1 contains some

−→
C ∈ γ(S) with x(

−→
C) = 1. Let c(

−→
C)

13

be the cost of the arcs and edge in
−→
C . Then the formulation is

Min ∑
−→
C

c(
−→
C)x(

−→
C)

subject to:

∑
−→
C :
−→
C ∈γ(S)

x(
−→
C)≥ h(S), ∀S⊂V,S 6= /0,

x(
−→
C) ∈ {0,1}, ∀−→C .

We can relax this to a linear program by replacing the integrality constraints with
x(
−→
C)≥ 0. The dual of the LP relaxation is then

Max ∑
S

h(S)z(S)

subject to:

∑
S:
−→
C ∈γ(S)

z(S)≤ c(
−→
C), ∀−→C ,

z(S)≥ 0, ∀S⊂V,S 6= /0.

Note that given variables y that obey the constraints (1), the solution z = y is almost
feasible for the dual above, since the sum of the duals z(S) containing the arcs of
a birooted component

−→
C are at most the cost of the arcs; it is only the duals z(S)

containing the root (or roots) of
−→
C that might be more than the cost of the undirected

edge of
−→
C . The proof of the previous subsection shows that scaling z down by 2/3

gives a feasible solution for the above dual of the linear programming relaxation.
Our proof also shows that the integrality gap of the integer programming formulation
above is 3/2.

4 Conclusion

Goemans and Williamson [6] give a 2-approximation algorithm for functions h :
2V → N, if whenever S ⊆ T , h(S) ≥ h(T). In this case, we wish to select a multi-
set of edges F (that is, we may choose multiple copies of the same edge) such that
for each S⊂V , the number of copies of edges in F with exactly one endpoint in S is
at least h(S). It would be interesting to know whether the ideas of this paper can be
extended to give a better approximation algorithm for that case.

Also, as we have already mentioned, it would be very interesting to extend this
algorithm from the class of downwards monotone functions to the class of proper
functions defined by Goemans and Williamson [7]. Recall that a function f : 2V →
{0,1} is proper if f (S) = f (V −S) for all S⊆V and f (A∪B)≤max(f (A), f (B)) for
all disjoint A,B ⊂ V . This class includes problems such as the Steiner tree problem
and the generalized Steiner tree problem; currently no ρ-approximation algorithm
for constant ρ < 2 is known for the latter problem. However, our algorithm makes
extensive use of the property that we grow duals around active components until they

14

are inactive, then no further dual is grown around that component; the algorithm of
[7] may start growing duals around components that were previously inactive. The
first step in extending the algorithm of this paper to proper functions might well be
to consider the Steiner tree problem, since the dual-growing algorithm of [7] in this
case does have the property that once a component becomes inactive, no further dual
is grown around it.

Acknowledgements

We thank anonymous reviewers of this paper for useful comments.

References

1. Archer, A., Bateni, M., Hajiaghayi, M., Karloff, H.: Improved approximation algorithms for prize-
collecting Steiner tree and TSP. SIAM Journal on Computing 40, 309–332 (2011)

2. Bazgan, C., Couëtoux, B., Tuza, Z.: Complexity and approximation of the Constrained Forest prob-
lem. Theoretical Computer Science 412, 4081–4091 (2011)

3. Byrka, J., Grandoni, F., Rothvoß, T., Sanitá, L.: An improved LP-based approximation for Steiner
tree. In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing, pp. 583–592
(2010)

4. Couëtoux, B.: A 3
2 approximation for a constrained forest problem. In: C. Demetrescu, M.M.

Halldórsson (eds.) Algorithms – ESA 2011, 19th Annual European Symposium, no. 6942 in Lec-
ture Notes in Computer Science, pp. 652–663. Springer (2011)

5. Davis, J.M., Williamson, D.P.: A dual-fitting 3
2 -approximation algorithm for some minimum-cost

graph problems. In: L. Epstein, P. Ferragina (eds.) Algorithms – ESA 2012, 20th Annual European
Symposium, no. 7501 in Lecture Notes in Computer Science, pp. 373–382. Springer (2012)

6. Goemans, M.X., Williamson, D.P.: Approximating minimum-cost graph problems with spanning tree
edges. Operations Research Letters 16, 183–189 (1994)

7. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest prob-
lems. SIAM Journal on Computing 24, 296–317 (1995)

8. Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation algorithms and its
application to network design problems. In: D.S. Hochbaum (ed.) Approximation Algorithms for
NP-hard Problems, chap. 4. PWS Publishing, Boston, MA, USA (1996)

9. Imielińska, C., Kalantari, B., Khachiyan, L.: A greedy heuristic for a minimum-weight forest problem.
Operations Research Letters 14, 65–71 (1993)

10. Kruskal, J.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceed-
ings of the American Mathematical Society 7, 48–50 (1956)

11. Laszlo, M., Mukherjee, S.: Another greedy heuristic for the constrained forest problem. Operations
Research Letters 33, 629–633 (2005)

12. Laszlo, M., Mukherjee, S.: A class of heuristics for the constrained forest problem. Discrete Applied
Mathematics 154, 6–14 (2006)

13. Laszlo, M., Mukherjee, S.: An approximation algorithm for network design problems with
downwards-monotone demand functions. Optimization Letters 2, 171–175 (2008)

Appendix

We illustrate a run of Algorithm 1 on the problem in which we want to find a minimum-
cost set of edges such that each component has at least four vertices. We give an in-
stance of the problem in which the graph contains edges of cost 0, 1, 2, or 2+ ε to
keep things simple.

15

0e1

0e2

1
e6

1
e10

0
e3

1e9

1
e8

0
e4

2+ ε

e13

2e5
2

e11

2+ ε

e12

1
e7

F∗

0e1

0e2

1
e6

1
e10

0
e3

1e9

1
e8

0
e4

2+ ε

e13

2e5
2

e11

2+ ε

e12

1
e7

F

Fig. 3: The graph on the left gives an optimal solution of cost 6+ ε and the graph on
the right gives a solution produced by the algorithm of cost 8.

0e1

0e2

1
e6

1
e10

0
e3

1e9

1
e8

0
e4

2+ ε

e13

2e5
2

e11

2+ ε

e12

1
e7

0e1

0e2

1
e6

1
e10

0
e3

1e9

1
e8

0
e4

2+ ε

e13

2e5
2

e11

2+ ε

e12

1
e7

Fig. 4: The first four iterations of the algorithm pick the four edges of cost 0 (shown
on the left). On the right, in the next iteration the algorithm picks e5 as a good edge.

The instance is described in the Figure 3; we give an optimal solution and a solu-
tion produced by the algorithm. We draw good edges with a double line.

In Figure 4, in the first four iterations, the algorithm picks all four edges of cost
0. In the next iteration, the cheapest good edge (e5) has cost 2, and the remaining bad
edges all have cost 1, so the algorithm chooses the good edge e5.

0e1

0e2

1
e6

1
e10

0
e3

1e9

1
e8

0
e4

2+ ε

e13

2e5
2

e11

2+ ε

e12

1
e7

0e1

0e2

1
e6

1
e10

0
e3

1e9

1
e8

0
e4

2+ ε

e13

2e5
2

e11

2+ ε

e12

1
e7

Fig. 5: The algorithm adds e6 and e7 to the partial solution.

16

In Figure 5, the algorithm now picks a bad edge of cost 1, e6, since this is less
than half the cost of the cheapest good edge (e12, of cost 2+ ε). Adding this edge to
the solution makes the edge e7 a good edge. Since e7 is of cost 1, the algorithm adds
it as a good edge. After this, e12 is no longer a good edge.

0e1

0e2

1
e6

1
e10

0
e3

1e9

1
e8

0
e4

2+ ε

e13

2e5
2

e11

2+ ε

e12

1
e7

0e1

0e2

1
e6

1
e10

0
e3

1e9

1
e8

0
e4

2
e13

2e5
2

e11

2
e12

1
e7

Fig. 6: The algorithm adds e8 and e9 to the partial solution.

In Figure 6, there are only bad edges; the algorithm picks e8, which is of cost 1.
The addition of e8 makes e13 a good edge. Then the algorithm picks e9, after which
e13 is no longer a good edge.

0e1

0e2

1
e6

0
e3

1e9

1
e8

0
e4

2+ ε

e13

2e5
2

e11

2+ ε

e12

1
e7

0e1

0e2

1
e6

0
e3

1e9

1
e8

0
e4

2e5
2

e11

1
e7

Fig. 7: On the left, e10 and e11 has been examined. On the right the two last edges e12
and e13 has been examined and removed.

In Figure 7, edge e10 is the last bad edge of cost 1 and, when it is examined, its
addition would link two big trees, therefore it isn’t added to the partial solution. Edge
e11 is one of the bad edges of cost 2 remaining; the algorithm adds it to the solution.
Now edge e12 would form a cycle with the partial solution and edge e13 would link
two big trees, so neither of them are added to the solution. The algorithm returns the
indicated set of edges, and each component has at least 4 vertices in it.

