
HAL Id: hal-01196834
https://hal.science/hal-01196834

Submitted on 10 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Urban data visualisation in a web browser
Jérémy Gaillard, Alexandre Vienne, Rémi Baume, Frédéric Pedrinis, Adrien

Peytavie, Gilles Gesquière

To cite this version:
Jérémy Gaillard, Alexandre Vienne, Rémi Baume, Frédéric Pedrinis, Adrien Peytavie, et al.. Urban
data visualisation in a web browser. Web3D 2015, Web3D Consortium, Jun 2015, Heraklion, Greece.
pp.81-88, �10.1145/2775292.2775302�. �hal-01196834�

https://hal.science/hal-01196834
https://hal.archives-ouvertes.fr

Urban Data Visualisation in a web browser

Jérémy Gaillard
 (1,2)

 Alexandre Vienne
(1)

 Rémi Baume
(1)

 Frédéric Pedrinis
(1)

 Adrien Peytavie
(1)

 Gilles Gesquière
(1)

(1)

 Université de Lyon, LIRIS, CNRS, UMR5205, France
(2)

 Oslandia, Tour de l’Horloge, 4 place Louis Armand, 75012 PARIS, France

gilles.gesquiere@liris.cnrs.fr

Abstract

CityGML is a recent standard developed to describe, store and
exchange virtual city models. Numerous software programmes
have been proposed to construct, edit, modify and visualize city
models, but visualisation in a web browser is still challenging. In
this paper we propose a framework based on standards for
visualising a large amount of 3D city data. CityGML files are
processed automatically to provide a city model composed of
geometries, textures and semantics. Exchanges follow the pending
Open Geospatial standard named 3D portrayal. In this paper, we
also demonstrate that a solution where semantics and geometries
are exchanged together is possible. An effort has been made to
show that an approach based on progressive textures may also be
possible.

CR Categories: I.3.8 [Computer Graphics]: Applications; H.3.5
[Information Systems]: Online Information Services—Data
sharing; H.2.8 [Information Systems]: Database Applications—
Spatial databases and GIS;

Keywords: 3D Virtual City, WebGL, Spatial information,

Standards

1 Introduction

Producing 3D geo-referenced data is now possible with accurate
and semi-automatic processes based on aerial or terrestrial
acquisition campaigns. Many cities own their virtual double like
Lyon, Rotterdam or Berlin, for instance. A virtual model of a city
requires standards to be shared and uses a significant amount of
data. This represents a barrier for the spread of these 3D virtual
models, since the development of such standards is still in its
infancy and the storage size of this data complicates exchanges.
CityGML is a standard, which has been developed by the Open
Geospatial Consortium (OGC) since 2008, for exchanging virtual
3D cities. This standard seems promising but still remains mainly
used by universities: there is no mainstream solution to manage
and visualize CityGML files. In addition, these files are large to
store because of their respect for the semantics related to 3D city
objects and formatting based on the heavy XML. Full resolution
textures represent a large part of this amount of data. Therefore,
smooth navigation in a 3D mock-up using CityGML may not be
directly achievable. It is then necessary to find a solution which
would allow us to share 3D virtual models of cities while
maintaining the richness, in terms of semantic information, of
models contained in CityGML files. This solution should also be
able to propose different modes of representation according to the
needs of potential users. For instance, the view of the same city
may need to be different for a tourist and for a town planner. In
this 3D mock-up it may also be possible to aggregate additional
data available in datastores such as 3D points from LiDAR or 2D
shapes (points, lines, polylines or surfaces).

Sharing data continues to be a challenging problem. Data may be
provided in open access by cities. For instance, Lyon gives access
to around 550 square kilometres in CityGML, but a citizen may
still have difficulty visualizing several decades of Gigabytes. It is
also difficult to provide an entire view of such a dataset.
Therefore, it is interesting to propose a solution based on a web
browser which doesn’t require the installation of any plugins to
give an easier access to the data.

Figure 1: Virtual model of the city of Lyon visualized in a web browser.

In this paper, we propose a framework, Urban Data Viewer
(UDV), built heavily around standards, allowing the viewing of
urban data in a web browser. Access to semantic information is
possible as both the geometry and semantic information are
retrieved from the server. A configuration process lets us easily
set up different representation of a same city depending on the
user’s needs. Our solution is able to load the most relevant
information first, as defined by what we call a “strategy”. The use
of standards guarantees the compatibility of our framework with a
number of open data servers.

This article is structured as follows: we start by reviewing state of
the art web city viewing techniques (Section 2), then we make a
short presentation of the standards used in our framework (Section
3), leading into the description of our proposed architecture
(Section 4). We propose an implementation of this architecture
and evaluate our results (Section 5), before concluding our paper
and discussing possible future work (Section 6).

2 State of the art
2.1 3D rendering on the web

The visualisation of urban data on the web raises a broader issue:
the rendering of 3D content on the web. A number of emerging
technologies have been developed in the last few years. A
complete state of the art has been proposed by Evans et al. [Evans
et al. 2014]. In this paper, the authors propose a classification of
3D rendering methods; like 2D web graphics, the existing 3D
rendering methods can be classified into two categories:
declarative methods and imperative methods (Figure 2).

Declarative methods are directly integrated into the Document
Object Model (DOM), they are highly interoperable and usually
have a fixed rendering pipeline. Imperative methods use a
procedural API and are, in contrast, more flexible. The X3DOM
[Behr et al. 2009] and XML3D [Sons et al. 2010] formats are the
two popular standards for declarative 3D browser-based
rendering. Both use an XML-inspired syntax. To our knowledge,
the use of progressive textures in X3DOM or XML3D has not
been addressed yet.

Imperative methods, which constitute the second approach, can be
divided in two groups. The first requires plug-ins, such as Flash,
SilverLight or Unity [Zhou et al. 2006], to work. Unfortunately,
this kind of method is heavily platform-dependent, Apple’s
refusal to port Flash to iOS being a harsh reminder of this.
WebGL is part of the the second, cross-platform approach. It is a
standard proposed by the Khronos group, an adaptation of the
OpenGL ES API, which allows the programmer to access the
GPU directly from the browser via JavaScript. WebGL being a
low-level API, it is no surprise that libraries proposing higher-

level APIs have been developed. Probably the most popular one is
ThreeJS, which proposes easy to use functions for rendering 3D
scenes.

2.2 Virtual 3D City

Web 3D city viewers are a trending usage of the new 3D
visualisation capabilities of browsers. Several applications are
already available or under development.
The well-known Google Maps has taken over the now
discontinued Google Earth’s 3D city viewing capabilities. It offers
a very fluid experience but uses its own data and protocols, which
can be detrimental to users valuing interoperability.
Cesium [Cesium] is a promising framework for the viewing of
geospatial data. While it is currently open source, it also pushes its
own data format CZML. Chatuverdi has proposed a solution
based on Cesium to render 3D City [Chatuverdi 2014]. Cesium is
attractive but is in a medium position between an open-source
development and a proprietary one. Additional work may be
useful to propose 3D visualisation of large datasets.
Cuardo is an application which enables the viewing of city data in
3D with a strong link to 3D databases [Cuardo]. Oslandia
provides this project as open source. It relies heavily on OGC
standards for its communication with data servers.
ArcGIS [ArcGIS] is ESRI’s application for geospatial data
viewing. It currently features scenes of 3D city models but doesn’t
provide an alternative to develop additional behaviours.
Another solution has been proposed by Gesquière and Manin
[Gesquière and Manin 2012]. It provides a WebGL visualisation
with tiled data (terrain and buildings). The authors propose a
strategy to exchange only additional buildings that have not
already been sent. In this solution based on JSON, it is possible to
exchange geometry and the semantics linked to city objects.
Unfortunately, textures are not taken into account.
OpenStreetMap offers a huge amount of crowdsourced geospatial
data. Therefore, some projects such as OSM Buildings [OSMB]
or ViziCities [VC] use OpenStreetMap as their database and
manage to display 3D models of a great number of cities around
the world. This method has the disadvantage of not allowing
buildings to be textured, since OpenStreetMap does not store such
information.
Fraunhofer has a web viewer that uses the declarative approach
for 3D rendering: CityServer3D View Service [CSVS] describes
the scene using X3DOM which is then drawn by the user’s
browser.
In the listed solutions, semantics and textured building are often
lacking. Furthermore progressive textures are not addressed.
Discussions with end users lead us to believe there is a need to
prioritise the loading of the data based on their relevance. Due to
these considerations, we propose in the next sections a new
method.

3 Formats and standards

Coupling a 3D viewer in a client with one or several servers is a
relevant challenge. An interoperable solution based on standards
may be chosen as a way to take up the challenge. Solutions are
currently being proposed by a joint collaboration between OGC
and Web 3D consortium. An experiment was also proposed by
OGC between 2010 and 2012. It demonstrated that such a solution
is possible [OGC3DIE]. These initiatives test identified candidate
standards like Web View Service [WVS] and Web 3D service
[W3DS]. These works are currently under discussion and may
lead to the proposition of a new standard, merging the two
previous ones, named 3D Portrayal [3DP]. Even if this standard is
not completely finalized, we will use, throughout this paper, the

Figure 2: Declarative vs. imperative approaches to web-

based graphics (Extracted from [Evans et al. 2014]).

proposed concepts and in particular the GetScene protocol to
query the data from client to server. The delivery of this data from
server to client may be done, for the geometry, with X3D, Collada
or GeoJSON (Geographic JavaScript Object Notation). GeoJSON
is limited to 2D, but several projects have already made their own
3D extensions. JSON can be compressed easily.
For the textures, regular formats like JPEG or PNG are used.
Unfortunately, to our knowledge, no attempt has been made to
provide a progressive stream for textures in a 3D city viewer in a
standardized way. The Direct Draw Surface (DDS) format from
Microsoft could be a good candidate. This format stores textures
compressed with the S3TC algorithm. It is a widely used format
and is supported by both DirectX and OpenGL. Five variations of
the S3TC exist (DXT1 through DXT5). For instance, the DXT1
variation does not handle transparency but offers the best
compression rate of the five. The usage of traditional image file
formats on the GPU takes a lot of space on the VRAM: the GPU
needs to decompress JPEG files in the VRAM in order to be able
to use them. DDS files are larger than JPEG files on the disk, but
can be read by the GPU while compressed, saving a lot of
graphical memory.
Another interesting OGC standard to visualize geometric data on
a 3D mock-up is Web Feature Service (WFS). This OGC standard
offers an interface for requesting geographical features. It
provides, in particular, “get” queries to retrieve features based on
spatial constraints, like inside a given tile. Many processes can be
carried out client-side. Providing 2D/3D vectorial data for the
client to render instead of a rasterized image seems to be a good
way to move geometrical analysis to the client side and to
decrease server load.
Finally, CityGML is an OGC standard for modeling and
exchanging urban data. It uses the XML data formalism to
organize geometric and semantic data. This standard allows the
exchange of data, but it is not possible to use it in a client-server
application. The data is too heavy (several decades of Gigabytes)
and reading XML based schemas is complex in a JavaScript
application.

In this paper, we propose an approach based as much as possible
on standards. The initial data is in CityGML. Each CityGML file
has its geometry, texture coordinates and semantic information
converted into JSON. These JSON files are provided to the client
with exchange strategies inspired from 3DP. For a progressive
texture mechanism, we propose a solution based on DDS. 2D
vectorial data are provided with WFS thanks to the JavaScript
library openlayer. This last choice brings the possibility of adding
additional formats, like KML, or other datastore access in an easy
and transparent manner.

4 Visualizing Urban Data in WebGL
4.1 General architecture

We present a framework based on a heavy client / light server
architecture. Figure 3 shows a simplified representation of our
architecture. The client and the server are developed in JavaScript.
We use WebGL through the ThreeJS library to render the city.

This solution of a light server has been preferred to the one
described by Gesquière and Manin [Gesquière and Manin 2012].
This new solution can manage a large number of clients.
 Nowadays, the increasing capacity of client devices offers the
possibility of transferring processes client side.

4.2 Preparing and providing data in the server
side

In this method, we provide a solution to visualize 3D city data
stored natively in a CityGML file. Data is converted and stored as
files on the server in an organized manner.
Geometries are stored in JSON files, instead of CityGML, on the
server. We convert all our CityGML files into this format,
keeping any semantic information that could be stored in city
objects. These CityGML files will have been cut into tiles
beforehand with fixed size with an automatic process.
Textures also have to be converted into a specific format, DDS, to
enhance the global performance of our solution.
These conversions are made with the software 3D-Use developed
by our team. This pre-processing pipeline is described in Figure 4.
All these pre-processes can be batched server-side. In the event of
the modification of data, the tiled data may be recomputed easily
and automatically.

The server can be seen as a basic file server. It receives GetScene
requests as specified in the 3DP standard and sends back the
corresponding tiled data in JSON. The JSON can contain
geometry, texture coordinates or semantic information depending
on the requested layer. A layer is a subset of the geographical
information. For example, in our case, terrain and city objects are
in two different layers. We represent layers as 2D or 3D
geometries bundled with semantic attributes. The server can
accept separate data streams if necessary. For instance, a short
term goal is to manage data provided by the 3DCityDB solution
of VirtualCitySystems.
2D vectorial data can be queried via WFS on distant servers. The
configuration of these streams is available client-side.
The server is structured in such a way as to be able to handle
different layers and level of details. The JSON files corresponding
to a layer are all grouped in the same folder that is itself stored in
a folder corresponding to a specific Level of Detail (LoD). That
way, layers can have different representations in each LoD.

4.3 Managing 3D City Data in a web client

The computing capacity of client devices has increased drastically
in the last decade. However, it remains difficult to visualize
several hundred square kilometres (around one hundred Gigabytes
of data). The strategy of our method is to limit the access to a
small portion of this large amount of data. Figure 5 describes our
proposed architecture. It is based on two important concepts: the
scheduler and the tile / texture manager.
At each frame, the client will ask the scheduler if it is ready to
begin a new task. These tasks are created when the user changes
the position or the orientation of the camera. They are defined by
a data loading strategy, which is composed of two parts: layer
management and texture management. The strategy also assigns a
priority for each task. The scheduler interprets these priorities to

Figure 3: General architecture of the Client-server

application.

Figure 4: Pre-processing pipeline. CityGML files are

prepared before being stored on the server.

decide which tasks it has to do first, while the others are stacked
by order of priority and will be performed one by one.
The scheduler is built around three queues: a low priority queue, a
high priority queue and a top priority queue. The top priority
queue is used only for queuing unloading operations. The removal
of data from memory must be done before more is added to free
up space quickly and to be sure the memory won’t fill up
completely. The two other queues take all the other requests:
geometry loading, texture loading, etc. Whether the request goes
into the low-priority or high-priority queue depends on the
strategy that has been defined. This strategy can be specified by
the user, we will present in the fifth section the default strategy
that we implemented.

The scheduler will execute every top priority request before
executing high priority ones and then low priority ones. Individual
queues work in a first in first out (FIFO) fashion. This strategy
minimizes lags during the displacement of the user in the 3D
mock-up.

According to the current position and orientation of the camera,
we load a fixed number of tiles. This reduces the number of
geometries simultaneously loaded in the scene. We also unload
the tiles that are no longer in the current area of interest. For the
scheduler, we consider that the tiles nearest to the camera should
be listed as a priority.

If the virtual city model has multiple layers (DEM, Buildings,
Trees, etc.), which are stored in different files, we are able to load
them separately for each tile. Which layers are loaded for a tile
depends on its position relative to the camera and the current
strategy. The strategy can easily be adapted depending on the
available layers and the user’s needs. All layers’ data will not
necessarily be requested by the client with the same priority;
displaying the DEM might be considered more urgent than
displaying buildings for example. This configuration is made
client-side, which allows us to provide different representations of
city models with the same dataset.
Each layer can possess textures linked to its 3D geometries. Since
these textures play an important role in terms of the overall
performance of the viewer, we also have to choose how and when
we want to load them. We have at our disposal multiple
resolutions of these textures so we are able to choose different
display qualities for the tiles, according to the strategy
implemented. The strategy should strike a balance between

performance and appearance. If the textures are not activated by
the user, generic materials are applied according to the semantic
information linked to 3D polygons: walls are grey, roofs red and
the ground is white.
Trying to render the city only with the method presented up until
now will result in severe GPU load on the client. A city model is
most of the time composed of a multitude of small meshes as each
building has its own. This data organization is not optimized for
the GPU, as it struggles to display a vast number of unrelated
meshes. To solve this issue, we merge together all the meshes
from a layer. The number of meshes to manage is therefore
dramatically reduced. However, this method is not without
drawbacks. The semantic information of the buildings is harder to
obtain since there is no longer an association between a mesh and
a building. A possible way round this problem is to build an index
which links each triangle to the building it belongs to, but this is
put aside for future work.
We also use Mipmaps [Williams 1983] to allow progressive
texture rendering. While it increases texture size by ⅓, it also
reduces GPU load. With progressive textures, we can change
texture quality on-the-fly, making it possible to easily adapt the
rendering quality to the processing power of the device.

4.4 Providing additional data to the client

Besides the 3D rendering of the city, the framework we suggest
can also display various available urban data. Thanks to
Openlayers, which is used in our architecture, it is possible to
access numerous sources of data. For instance, by using standard
WFS streams, we can fetch additional data from distant servers
and view them directly on our model. Each data type is stored
inside its own layer so the user can choose which data he wants to
view. These layers are processed the same way as the geometry
layer. Filters provided by WFS allow to propose a tiled and tuned
representation of data. Point clouds are also supported; we are
thus able to visualize LiDAR data that can be superimposed over
other 3D geometries in our scene. In this case, data are pre-
processed from LAS format to JSON, tiled and made available on
the server.

5 Implementation and results

In this section, we propose to demonstrate the capacities of our

client-server application. A snapshot of our client is shown in

Figure 6.

Figure 6: A view of Lyon (France) in Urban Data Viewer.

Tests have been made on real data provided by the city of Lyon
(France) which provides 3D data covering more than 500 km² of
territory (http://data.grandlyon.com/). This data is stored in

Figure 5: Client architecture. Depending on the camera

position, layers and related textures are loaded according

to scheduler calls.

CityGML files and is divided into different layers: Buildings,
Remarkable Buildings (like monuments) and Digital Elevation
Models are the ones that interest us. These gigabytes of 3D
textured data represent an interesting dataset on which we
developed our solution. We decided to focus on the densest area;
we only retained the 9 districts of the city of Lyon and the city of
Villeurbanne, which represent 62 km² of data (Figure 7), to
demonstrate our viewer. Our tiling process gives us the possibility
of covering a larger area easily.

Each district is stored in a CityGML file. We set up an automatic
cut according to a global and regular grid depending on the
coordinate system.

A tile can contain data from two neighbouring districts, so we
need to take this into account during the tiling process. With this
cut, we can provide a CityGML file for each layer and for each
tile. The size of these tiles can be configured according to our
needs. We have established them as 500 m x 500 m squares.
We set up a rendering strategy as shown in Figure 8. The camera
is on the bottom corner tile; red tiles will have all the layers while
green ones will only load the DEM layer. None of the other tiles
will be loaded and this tile selection process will be refreshed at
each camera movement. DEM geometries are loaded as a priority
without textures, and then come the geometries of the buildings.
Our scheduler always begins with the tile where the camera is.
After that, if textures are activated, the scheduler will load the
textures of the DEM, with higher resolutions for red tiles than for
green ones. It will finish by loading the textures of the buildings.
If the user moves the camera before the end of all these processes,
new tasks will be added at the end of the queues.

The described strategy is fully editable. The information is
recorded in a configuration file stored client-side. Figure 9 is a
caption of this configuration file. It contains the tiling strategy, the
tiling description, and the camera location. A layer list is
described afterwards. This allows some layers to be loaded in a
mandatory or optional way. “Places” gives the possibility of

Figure 7: The city of Lyon (France) dataset used.

Figure 9: The viewer can be tuned with a configuration file stored client side.

Figure 8: Rendering strategy based on our tiled city representation.

moving to another localisation by clicking on the given link.
Finally, “OpenLayerData” describes the WFS streams that we
want to access in this mock-up. Some of this information can be
configured directly in the web menu provided with the client
application, as we can see in Figure 10.

We have generated multiple texture resolutions for the data of the
city of Lyon (stored in DDS, generated with the DXT1 algorithm,
with Mipmap strategy). The user can choose if he wants to load
textures for terrain and buildings.

If the “Textured Mode” is activated in the menu, several
resolutions are proposed. The user can switch from a low
resolution to a full one. In the example of Figure 11, we zoom in
on a small part of the 3D view presented in Figure 6. In the upper
left-hand image, no texture is loaded. In the second image, upper
right, a low resolution texture is provided. It is immediately

replaced by a better one when the scheduler has time to load it
(Figure 11, bottom left). In the bottom right-hand image, we have
the highest texture quality. In Figure 11, we can also see that
some buildings are displayed at the horizon. They are part of the
Remarkable Buildings layer. Since the buildings contained in this
layer are important landmarks, we experimented with a strategy
that loads them from a greater distance. We did not merge
remarkable buildings’ meshes, so we can access its semantic data
if it is available. The user can display it by clicking it (Figure 12).

This information can be directly linked with CityGML attributes
or with other data transferred into the JSON (for instance, a link to
the Wikipedia page for a given building as shown here).
We are also able to view multiple layers of data. In Figure 13, we
can see two layers of data directly embedded in the city model.
The data was retrieved from Smart Data Lyon’s WFS stream. The
use of a standard in the development of our framework allows us
to combine data from several different sources (here our own
server and Smart Data Lyon) with minimal effort. If the elevation
linked to the 2D data is not provided, a client side process
computes an elevation for each point.

Figure 10: Configuration menu provided with

our client. The user can choose which layer he

wishes to display.

Figure 11: Buildings and terrain can have textures of

different resolutions.

Figure 12: Semantic data linked to a remarkable building.

Figure 13: Symbolized trees (in green) and bike

stations (blue) in Villeurbanne’s “Gratte Ciel”

district, France.

As said earlier in the previous section, it is possible to make
LiDAR data available in the 3D mock-up (Figure 14). In this first
version, LiDAR has been tiled by a 500 m x 500 m grid.

With the data of the city of Lyon, we manage to handle more than
30 Gigabytes of data while maintaining an interactive frame rate
on the client and even at a steady 60 fps when the data was fully
loaded. Our scenes are composed of up to a few hundred textured
buildings. Tables 1 and 2 show the performance obtained on a
computer with an Intel© i5 4590 @ 3.3GHz CPU and an NVidia
GTX970 GPU. Loading time is low when the data is compressed.
This demonstrates that tiling based on a 500 m x 500 m grid is
sufficient when we are in a dense urban district. Unfortunately,
the bottleneck is for textures and LiDAR. The use of progressive
textures minimizes the texture bottleneck. The Atlases proposed
in the Lyon data set may also be optimized; they generally contain
large bands of black pixels in order to provide square images. In
the LiDAR case, the size of the tiles may be decreased to allow a
more progressive load.

Our server can run on both Linux and Windows operating systems.
The client is compatible with most internet browsers, including
Mozilla Firefox, Google Chrome and Opera.

6 Conclusions

The advancement of web 3D standards has made it possible to
display 3D content on the web without the need of plug-ins.
Nevertheless, client capacity remains limited and managing
hundreds of GigaBytes of geometries, semantic information and
textures is still a challenging task.

In this paper, we showed that even complex scenes like cities can
be rendered fluidly on the web. The framework presented in this
paper allows the use of a wide variety of data available online,
thanks to standards such as WFS. This is particularly useful for
users who wish to seamlessly analyze data from different sources.
Likewise, the use of CityGML files as input favors access to most
open GIS data.

In future works, some additional optimization may be added to
our framework. Most importantly, the use of Web Workers could
help us make greater use of today’s parallel CPU design. It could
also reduce the slight stuttering the user may experience when a
lot of data must be processed by keeping the application’s main
thread free for it to handle user commands. Streaming the
geometries using progressive meshes (see [Malgo et al. 2015] for
a survey of possible compression algorithm) could offer a more
comfortable experience: it will enable a smoother loading of the
buildings and terrain. The addition of a simple lighting system
could greatly improve the overall quality of the rendering of our
scenes.
As textures are such a big part of the data, we plan on doing a
more thorough study of texture compression. Alternatives to DDS,
such as ETC or ASTC, may be better suited for our needs and
may relieve us of S3TC's patent constraints.

We are also working on modification of the geometries in order to
provide multiple representations of a same city. Multiple lower
Levels of Detail could be generated for buildings, in order to offer
more possibilities for displaying data as proposed in [Mao 2011],
[Glander and Döllner 2009]. These different representations can
allow the desired building to be highlighted and reduce the global
cost of scene rendering, which would also enable, for example, an
increase in the number of displayed tiles.

Figure 14: Visualisation of a LiDAR layer combined with

3D buildings and terrain.

Table 2: Texture size and loading time.

Table 1: Measured performance of the viewer for different data layers.

7 Acknowledgements

This work was supported by the LABEX IMU (ANR-10-LABX-
0088) of Université de Lyon, within the program “Investissements
d'Avenir” (ANR-11-IDEX-0007) operated by the French National
Research Agency (ANR). We would like to thank the French
company Oslandia who will fund the future extensions of this
work through the phd thesis of Jérémy Gaillard. CityGML data
are provided by “Lyon metropole” [DGL].

8 Bibliography

Behr, J., Eschler, P., Jung, Y. and Zöllner, M. 2009. X3DOM: A

DOM-based HTML5/X3D Integration Model. Proceedings of
the 14th International Conference on 3D Web Technology
(2009), DOI = http://doi.acm.org/10.1145/1559764.1559784,
127-135.

Chatuverdi, K. 2014. Web based 3D analysis and visualization

using HTML5 and WebGL (2014)

Evans, A., Romeo, M., Bahrehmand,A., Agenjo,J., and Blat, J.

2014. 3D graphics on the web: A survey. Computers &
Graphics vol. 41 (2014), DOI =
http://dx.doi.org/10.1016/j.cag.2014.02.002, 43-61.

Gesquière, G. and Manin, A. 2012. 3D Visualization of Urban

Data Based on CityGML with WebGL. International Journal
of 3-D Information Modeling vol. 3 (2012), DOI =
http://dx.doi.org/10.4018/ij3dim.2012070101, 1-15.

Glander T. and Döllner J. 2009. Abstract representations for

interactive visualization of virtual 3D city models. Computers,
Environment and Urban Systems 33(5) (2009), 375-387.

Malgo, A., Lavoué, G., Dupont, F. and Hudelot, C. 2015. 3D

Mesh Compression: Survey, Comparisons, and Emerging
Trends. ACM Computing Surveys vol.47 (2015), DOI =
http://dx.doi.org/10.1145/2693443.

Mao, B. 2011. Visualisation and Generalisation of 3D City

Models.

Sons, K., Klein, F., Rubinstein, D., Byelozyorov, S. and Slusallek,

P. 2010. XML3D: interactive 3D graphics for the web. Web3D
'10: Proceedings of the 15th International Conference on Web
3D Technology (2010), DOI =
http://doi.acm.org/10.1145/1836049.1836076, 175-184.

Williams, L. 1983. Pyramidal parametrics. SIGGRAPH '83

Proceedings of the 10th annual conference on Computer
graphics and interactive techniques (1983), DOI =
http://dx.doi.org/10.1145/800059.801126, 1-11.

Zhou G., Tan Z., Cen M. and Li C. 2006. Customizing

Visualization in Three-Dimensional Urban GIS via Web-Based
Interaction. Journal of Urban Planning and Development
(2006), 132(2), 97-103. DOI =
http://dx.doi.org/10.1061/(ASCE)0733-9488(2006)132:2(97).

[3DP] 3D Portrayal Working Group. Retrieved March 30, 2015

from http://www.opengeospatial.org/projects/groups/3dpswg

[ArcGIS] ArcGIS. Retrieved March 30, 2015 from

http://www.arcgis.com/features/

[Cesium] Cesium - WebGL Virtual Globe and Map Engine.

Retrieved March 30, 2015 from http://cesiumjs.org/

[CSVS] CityServer3D VIEW Service. Retrieved March 30, 2015

from http://www.cityserver3d.de/en/

[Cuardo] Cuardo. Retrieved March 30, 2015 from

https://github.com/Oslandia/cuardo/

[DGL] Data Grand Lyon. Retrieved May 13, 2015 from

http://data.grandlyon.com/

[OGC3DIE] 3D Portrayal Interoperability Experiment. Retrieved

March 30, 2015 from
http://www.opengeospatial.org/projects/initiatives/3dpie

[OSMB] OSM Buildings. Retrieved March 30, 2015 from

https://github.com/kekscom/osmbuildings/

[VC] ViziCities. Retrieved March 30, 2015 from

http://vizicities.com/

[W3DS] Web 3D Service. Retrieved March 30, 2015 from

http://w3ds.org/

[WVS] Web View Service. Retrieved March 30, 2015 from

http://www.webviewservice.org/

http://doi.acm.org/10.1145/1559764.1559784
http://dx.doi.org/10.1016/j.cag.2014.02.002
http://dx.doi.org/10.4018/ij3dim.2012070101
http://dx.doi.org/10.1145/2693443
http://doi.acm.org/10.1145/1836049.1836076
http://dx.doi.org/10.1145/800059.801126
http://dx.doi.org/10.1061/(ASCE)0733-9488(2006)132:2(97)
http://www.arcgis.com/features/
http://cesiumjs.org/
http://www.cityserver3d.de/en/
https://github.com/Oslandia/cuardo/
http://data.grandlyon.com/
http://www.opengeospatial.org/projects/initiatives/3dpie
https://github.com/kekscom/osmbuildings/
http://vizicities.com/
http://w3ds.org/
http://www.webviewservice.org/

