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Abstract

Practical engineering applications of open channel low modelling involve geometric terms
arising from variations in channel shape, bottom slope and friction. This paper presents the
family of schemes that satisfy the generalised C-property for which static equilibrium is a
particular case, in the framework of one-dimensional open channel flows. This approach,
named Auxiliary Variable-based Balancing, consists of using an auxiliary variable in place of
the flow variables in the diffusive part of the flux estimate. The auxiliary variable is defined
S0 as to achieve a zero gradient under steady-state conditions, whatever the geometry. Many
approaches presented in the litterature can be viewed as a particular AVB case. Three auxil-
iary variables are presented in this paper: water elevation, specific force and hydraulic head.
The methodology is applied to three classical Riemann solvers: HLL, Roe and the @-scheme.
The results are compared on five test-cases: three steady-state configurations including fric-
tion, singular head losses and variations in bottom elevation, channel width and banks slope
and two transient test-case (dam-break problems on rectangular and triangular channel).
In each case, the auxiliary variable that best preserves the steady-state configuration is the
hydraulic head. Besides, using the head as auxiliary variable allows head loss functions due
to singularities to be incorporated directly in the governing equations, without the need
for internal boundaries. However, it is generally less accurate when sharp transients are
involved.

Keywords

Shallow water equations; Finite volume method; C-property; well-balancing; non-prismatic
channel; trapezoidal channel; geometric source terms.

1. Introduction

In hydrodynamic modelling, real-world applications of computational open channel sim-
ulations involve the discretization of source terms arising from bottom slope, non-prismatic
channel, etc. Attempting to discretize the fluxes and source terms independently from each
other usually leads to stability problems. An indispensable prerequisite is that the discretiz-
ation of flux gradients and geometric source terms should allow static equilibrium conditions
to be preserved. This is known as the C-property [4, 38]. The need for source term discret-
ization techniques that preserve equilibrium conditions without introducing spurious oscilla-
tions in the computed variables has led to the general notion of well-balanced schemes. Over
the past two decades, substantial research effort has been devoted to the influence of source
terms discretization techniques [32] and new definitions that preserve the C-property, includ-
ing applications to high-order schemes such as WENO (weighted essentially non-oscillatory)
methods (e.g. [7, 10, 13, 39]).

The various existing source term discretization approaches may be classified into two
broad families: (i) approaches where the source term discretization technique is adapted to
the flux formulae, and (ii) approaches where the flux formulae are adapted from, or derived
in a coupled way with, the source term discretization. Examples of the former approach
are source term upwinding [4, 38] and derived techniques such as predictor-corrector [3]
or introduction of the source terms in the flux formulation [9], divergence form for the
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bed slope source term (DBF) [37], the quasi-steady wave propagation method [29], asymp-
totic balancing [12] or the source term projection technique in discontinuous Galerkin tech-
niques [27]. Examples of the latter are the well-balanced approach [1, 2, 8, 24, 31, 35],
flux and source term splitting [11], characteristics-based approximate-state and augmen-
ted Riemann solvers [10, 16, 18, 20, 30], the homogeneous approach [28] and other static
equilibrium-preserving techniques [6, 19, 40].

Various solutions have also been proposed to enforce the C-property in finite volume-
based discretizations. One of the earliest solutions, proposed in [33] for the solution of the
SWE and later extended in [40], consists in replacing the water depth with the free surface
elevation. This option can be extended to the open channel equations in arbitrary-shaped
channels, as shown in the present paper. It has the drawback that simple flow configurations
such as uniform flow over a constant slope cannot be computed accurately (see section 3.2).
Another option is to approximate the variations in the cross-sectional area with a consistent
estimate taken from the balance between the specific force and the source term in the
momentum equation [6]. The estimate is defined in such a way that it is zero under steady
state conditions. Very similar formulae to that of [6] have been obtained using completely
different approaches in [28, 30]. The approaches [6, 28, 30] have the common point that the
gradient in one of the flow variables is replaced with the gradient in another variable, called
auxiliary variable hereafter. This gradient is zero under static conditions. That different
approaches yield the same formulae lead to wonder whether a general methodology can be
derived to define auxiliary variables.

In the present paper, the principle of Auxiliary Variable-based Balancing (AVB) is presen-
ted for one-dimensional free surface flow calculations in non-prismatic, trapezoidal channels.
This is motivated by the fact that in industrial open channel packages, the cross-sectional
geometry is broken into a set of trapezoidal elements. The AVB approach is used to derive
flux formulae that allow non-static, steady state flow conditions to be preserved, even at low
orders of discretization, that is, when first-order schemes are used.

The principle of the AVB method is presented for the water hammer and one-dimensional
SWE in [25]. However, the one-dimensional shallow water equations are a very simplified
description of free surface flows in natural channels. Besides, only one possible approach
for source term discretization (a variant of source term upwinding) is considered in [25].
The applicability of the approach to more complex cross-sections and other source term
discretization approaches is not investigated in [25]. The objectives of the present paper are
(i) to present the methodology of Auxiliary Variable-based Balancing (AVB), (ii) to apply
the AVB approach to the open channel flow equations in a well-balanced, finite volume
framework, (iii) to provide the flux and source term discretizations for a variety of Riemann
solvers, and (iv) to analyse the accuracy of the numerical solutions obtained using a number
of various AVB-based discretizations. As mentioned above, first-order space discretizations
are retained for the sake of computational rapidity.

The structure of the paper is as follows. Section 2 presents the governing equations
and their discretisation. The AVB methodology is detailed in section 3 and its applica-
tion to classical Riemann solvers presented in section 4. Section 5 provides computational
examples, including steady-state configurations and transient test-cases as well as a con-
vergence analysis for the classical dam-break problem (for which an analytical solution is
available).

2. Governing equations and solution method

2.1. Governing equations

The purpose is to solve 2x2 hyperbolic systems of conservation laws in the form

ouU OF
ot TS o
where U, F and S are defined as
1A el Q _ 0
U_{Q}’F_[M}_ . ’S_{(SO—SJ’)QA‘F}: @

where A is the cross-sectional area, ¢ is the gravitational acceleration, M is the specific force,
P is the pressure force exerted on the wetted cross-sectional area, Sy and Sy are respectively
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Figure 1: Channel geometry. Left) longitudinal view:bottom and water elevation. Right)
transversal view: channel width and depth.

the bottom and energy slope, R is the z-component of the reaction of the walls onto the
water (if the channel is non-prismatic) and p is the water density.

The forces P and R are derived from the assumption of a hydrostatic pressure distribution
and obey the following definitions [14]:

E — / (C — z)gdA /O (h — z’)gW(z')dz' (3)

R A ) N @

where W (z) is the width of the channel at the elevation z, h is the water depth (that is the
distance between the lowest point in the cross-section and the free surface), 2/ = z — z;, is
the elevation above the bottom lowest point and (¢ is the free surface elevation (Figurel).

The energy slope is classically assumed to obey a turbulent-type friction law such as
Manning’s law:

Sy = ”MUzR 8 (5)

where nps is Manning’s friction coefficient, v = Q/A is the flow velocity and Ry is the
hydraulic radius, defined as the ratio of the cross-sectional area A to the wetted perimeter
X, yielding

Sy = H%Q2A710/3X4/3 (6)
It is noted that the Jacobian matrix A of F with respect to U is given by

OF 0 1

A==l ele o] ™)
where the speed ¢ of the waves in still water is defined as

P
2 _ () _gA (8)
T 0A b

where b = W(() is the top width of the channel. The matrix A can be diagonalized into a
matrix A defined as:

AL 0
A= b (9)
A =y —¢ (9b)
A2 =y e (9¢)

The problem is assumed to be properly posed hereafter, that is, the initial and boundary
conditions are specified such that Eq. (1) can be solved uniquely for U at all points of a
computational domain [0, L] for all times ¢ > 0.
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2.2. Finite volume discretization

Eq. (1) is discretized using a finite volume formalism as

Ut = Uy +

At
where the subscript ¢ denotes a cell average, subscripts ii% denote estimates at the interfaces
between the computational cells, the superscript n indicates that the variable is estimated
a time level n, and the superscript n + % denotes an average value between time levels n
and n+ 1, and where Ax; is the width of he computational cell 7. In explicit schemes, the
variables with superscripts n + % are computed using the known values at the time level n;
in implicit schemes, the unknown values at the time level n 4 1 are used.

In what follows, non-prismatic, trapezoidal cross-sections are considered. The reason for
this is that in all commercial open channel packages, the channel geometry is discretized into
a series of trapezia. Consequently, the capability to deal with trapezoidal cross-sections is
seen as an indispensable prerequisite to a generalisation of the method to arbitrary-shaped
channels. Note that rectangular and triangular cross-sections are obtained as particular
cases of the proposed approach, as illustrated by a number of computational examples in
Section 5.

The geometric parameters of the cross-sections are defined at the interfaces between
the computational cells. They are interpolated linearly within the cells. Consequently, the
geometry is continuous at the cell interfaces. Assuming non-prismatic trapezoidal channel
geometry, the width W (x,z) at a given abscissa z and elevation z takes the form

n+i n+i n+i
F'2 FH_*;) +ALS!T (10)

)

W(x,z) = Wy(x) + (2 — zp(x)) Wi(x) (11)

where Wy(x) is the bottom width of the channel at the abscissa x, Wi(z) is the derivative
of W with respect to z and zp is the bed elevation at the abscissa z. As mentioned above,
Wo, W1 and z, are assumed to vary linearly with z within the cells. In the cell 7, one has:

Wol@) = W1 + (z — 2,1 )W (12)
Wi(z) =Wy 1+ (- mi,%)Wl(i) (13)
a(x) =2, 1 + (@ — 2, 1)57 (14)

where the superscript (z) denotes the derivative with respect to z:

. WO,i+% - WO,i—%

=~ (15)
Wi, 1 —W,. 1
(x) _ " Lits Li—3 1
Wl,z ACL‘Z‘ ( 6)
2yl — 2y, 1
Zl()i) _ b,l+2 : b,Z 2 _ SO’Z» (17)

The cross-sectional area A is given as the integral of W between the bottom level and
the free surface elevation:

¢ h(z)
A(z) = W(z,z)dz = |Wy(z) + W1 (I)T h(x) (18)
2
where h(z) is the water depth at the abscissa z. Assuming that the free surface is horizontal
in the cell ¢ (which is true in the case of the first-order Godunov scheme), the average cell
value A is given by

_ 1 ity 2
A= 5 [ A = 0k )+ By (192)
2
hi—r=(¢— Zb)i_% (19b)
a; = §W17i_% + 4 Wl(,l) (19C)
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Vi =

Az,

ﬂi = WO,ifé +
Aa:l

SO ZVVO i—3

2.8. Flux calculation

(WO(? + S W, Z,,) +

pu .
ze (QSO,iWO(’Z') + Sg,iWLi—

Az
i g i
3 7"

1)+

Az

Wiy

* SO zWI(:i)

(19d)

(19e)

Approximate Riemann solvers provide flux formulae that can be recast in the following
form, derived from [17]:

F=aF; + (1 — a)FR + D(UL — UR)

where L and R denote respectively the left and right states of the Riemann problem, a is a
coefficient between 0 and 1 and D is a diffusion matrix that contributes to stabilise the nu-
merical solution. The left and right states are obtained from an appropriate reconstruction,
the simplest possible option (the first-order Godunov scheme [23]) being to use the average
cell values. For a = 1/2, Eq. (20) is the sum of a centred flux and a so-called artificial vis-
cosity term. Both a and D are functions of the wave speeds, in other words, the eigenvalues
of the Jacobian matrix A of F with respect to U (Eq. 9).

How the left and right states for the Riemann problem are to be computed from the
average cell values is dealt with in Section 3.

2.4. Source term discretization

The momentum source term is discretized explicitly.
The friction source term is computed by applying explicit estimates to the terms in

Eq. (6):

(Sp);

(Sf) = ”M( 2R4/3)Z_ <
1 2/3 —4/3\ "
’I’Lfn <Q2 (WO + 2W1h) (Wo + hy/ W12 + 4) |

— 2, <Q2A2/3X—4/3)j _

The geometric source term gASy + %

balance considerations. Consider static equilibrium conditions, i.e.,

Egs. (1) and (10) yield

Given the definition (Eq 11) of the channel width, and the specific pressure force "

Wo + lVVlh

Wo+h (WE+4

>”2>

(20)

(21)

(22)

is rather difficult to compute directly under the
assumption of varying Wy, Wy and z,. However, it can be estimated cell-wise from simple

s -,
P/ P/t P

(Eq. 3), one has

P

p

n
)i1
2

= hh (W, "W- d’—1W h? 1W h3
=g [ (=) Mo(o) + M) 42" = ZaWo(@)? + oW o)

@=0 in all cells, then

(23)

i

(24)

The value of the specific pressure force at the interface i — % is then easily computedas

(P>n
PJi-1

with the definition (19b) for h,_

gvm_,h2 ,

g
i3 EWLZ—l

h3

i—3

(25)

1 Since the purpose is to estimate the source term in the

cell 4, the free surface elevation to be used in Eq. (19b) is ¢/*. The same formulation can
be obtained at interface i + % yielding the final estimate for the source term to be used in

Eq. (10):

(gASo + i) Ax;

(VRS

1
2
(Wo,z'+§ t3Wiirshing | hiyy s

9
2

<WO i—1 L+ Wl =

1h 1

5'Yi—5,0

2
) hi—%,i

(26a)
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hi—%,i =( - Zbi—1 (26b)

hi+%,i =¢' - Zhyitd (26¢)

2.5. Balancing issues

The discretization of the source term in the momentum equation usually poses no prob-
lem. This issue has been dealt with abundantly in the literature, within a very wide variety
of techniques [1, 2, 4, 6, 27, 28, 38, 40]. A remaining problem encountered in practical
applications is related to the continuity equation and the difference often observed between
the average cell values and the interface values for the volume discharge.

Consider a solution U verifying steady state, %—Itj = 0. The first component of Eq. (1)
imposes that @ be equal to a constant )y all throughout the computational domain. In
particular, the discharge ) computed at the cell interfaces should be identical to that in the
cell values. This, however, is not necessarily the case if Eq. (20) is used. Indeed, writing the

first component of Eq. (20) leads to the following formula for the interface flux

Qo= (a+Di12)Qr + (1 —a—D12)Qr + D11 (AL — AR) (27)

where D11 and D5 are the components on the first row of the artificial viscosity matrix D.
Eq. (27) can be rewritten as

(@a+D12)Qr+ (1 —a—Di2)Qr =Qo+ D11(Ar — ApL) (28)

Assume that the discretized solution has reached steady state. If the geometry of the
channel is arbitrary (non-constant bottom slope and/or non-prismatic channel), in general
Ap # Ag. It is then obvious from Eq. (28) that at least one of the discharges Q1 and Qg
is different from the uniform discharge QQg. Consequently, a non-uniform discharge profile
is obtained. In particular, if the initial situation is static (Qo = 0), non-zero discharges
are computed. Artificial oscillations appear and propagate throughout the computational
domain.

The ability of a numerical scheme to preserve static equilibrium conditions has been
introduced as the C-property in [4]. Specifying the C-property exactly or approximately
has proved to lead to efficient source term balancing techniques. The most widespread
approach consists in adapting the discretization of the source term to the formulation of
the flux so as to satisfy the C-property. In the Auxiliary Variable-based Balancing (AVB)
approach, the opposite approach is followed: the formulation of the flux gradients is adapted
to that of the source term.

3. Auxiliary Variable-based Balancing method

3.1. Principle

The AVB method is based on the following requirements: (i) the artificial viscosity term
in Eq. (20) should be modified in such a way that diffusion becomes zero when steady state is
reached; (ii) the source term in the momentum equation should be discretized in such a way
that it does not influence the calculation of the flux in the intermediate region of constant
state. The second issue has been addressed in subsection 2.4 (source term discretization);
the first issue is dealt with in the following subsections.

AVB uses an auxiliary variable V in the expression of the artificial viscosity term:

F=aF;, +(1—-a)Fg+Dvy(Vy,—Vpg) (29)

where V is a function of both the variable U and the parameter ¢, V. = V(U, ¢). The dif-
fusion matrix Dy and the auxiliary variable V are chosen such that the following conditions
are verified:

(C1): under steady state conditions, Vi, = V.

(C2): for ¢ = Const, Dv(Vy — Vi) =D(U, — Upg)
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Condition (C1) is the so-called enhanced consistency condition for steady state flow, which is
the desired property for scheme well-balancing. Condition (C2) means that the strengths of
the artificial viscosity terms in Egs. (20) and (29) are identical, thus preserving the stability
properties of the numerical solution. The pending question is the determination of Dy .

It is observed that the artificial viscosity terms in Egs. (20) and (29) are approximations
of the following derivatives:

Dv(VL . VR) =—-Azx Dvaa% + HOT(A.’E) (30)
ou
D(U;, — Ug) = ~Az D= + HOT(Aq) (31)
T
with
HOT(Az) — 0 (32)

Noticing that V = V (U, ), the derivative of V with respect to z is expressed as
oV _ovou  ovop
dr OU dx  Oyp Ox

Substituting Eq. (33) into Eq. (30), comparing with Eq. (31) and imposing condition (C2)
gives:

(33)

ov

Dv—=D 4
\&Ti; (34)
Consequently, Dv is given by
py-p(¥ - (35)
V- \au

8.2. Balancing option 1: free surface elevation

One of the earliest examples of the use of an auxiliary variable is found in [33] for the
solution of the shallow water equations where the free surface elevation ¢ = z, + h is used
in place of the water depth h. The rationale is that under static conditions, the free surface
elevation is constant, consequently, both d{ and d@ are zero at equilibrium. Note that the
approach has been extended to the reconstruction technique in higher-order schemes in [40].
This leads to the following possible definition for the auxiliary variable

_ | d¢
dVv; = { 40 } (36)
Since dA = bd(, one has from the definition of U in Eq. (2):
1 -1
oV, _ |0 0 7 oV, _|b 0 (37)
ou 0 1 ou 0 1
This leads to the following artificial viscosity term:
b 0 (L —Cr (CL — Cr)b ]
Dv(Vir —Vir)=D =D 38
v v =g V[ g | =0 G0 (3)

Note that in the case of the SWE, b =1 and Nujic’s [33] approach is retrieved.

This option has the drawback that steady state, uniform flow cannot be maintained
exactly. Indeed, under uniform flow conditions, QQ; = Qg but the free surface elevations
in two adjacent cells are not identical, (;, # (r. Therefore, the artificial diffusion term in
the continuity equation is non-zero and the interface flux is not equal to Q@ = Qg. This is
substantiated by the computational examples in Section 5.
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8.8. Balancing option 2: specific force

This is the option explored in [6]. Similar formulae were obtained for the one-dimensional
shallow water equations in [28, 30, 18], albeit from different considerations. The latter
three approaches, however, focus on rectangular channels, while the proposed approach is
applicable to arbitrary-shaped channels.

The specific force is used in place of the cross-sectional area in the first component of
the auxiliary variable V. The motivation is that under dynamic equilibrium (that is, under
steady state flow conditions), the variations in the specific force are balanced exactly by
the source terms in the momentum equation noted Sp;. This leads to define the auxiliary
variable V in differential form as

dV:[dM—SM]

dQ
Since dM = (¢? — u?)dA + 2udQ, one has

oV [ —u? 2u ov _1_ e S e 40
ou 0 1 |"\ou) | 0 1 (10)

This leads to the following artificial viscosity term:

MLfMR72u(QL7QR)7SM AZE
] (a1)

_ — 2 —uy?
Dvvi -V =D | ST
where the source term Sy, is computed in average between the centres of the left- and
right-hand cells. It is simply estimated as the average of the cell values given by Eq. (26a).

Practical implementations [18, 30] indicate that in the neighbourhood of critical points,
Eq. (41) induces a downwinding of the discharge and a discontinuous switch between sub-
critical and supercritical flux formulae. Due to this, a different formula is proposed

av = [ dM - ngQ ~Su } (42)
This leads to
o[ () <[ @
ou 0 1]7\oU 0 1
and the following artificial viscosity term is obtained
Mp—Mg—Sy Az
Dy (VL —Vg)=D { QEQZUEQR } (44)
This expression, however, remains invalid at critical points, for which ¢ = u2. As

proposed in [6], in the case of 1D SWEs on rectangular channel, the final estimate for dV
is the minmod of the estimates given by the specific force option and the original approach:

dV2 = minmod (dV, dU) (45)
where dV is defined by Eq. (42) and the minmod operator by:

min (|a|, |b]) if ab>0

46
0 if ab< 0 (46)

minmod(a,b) = {

3.4. Balancing option 3: hydraulic head
In this option, presented in [25] (for 1D SWESs on rectangular channel), the hydraulic
head H =( + 72‘—; is used as auxiliary variable:

[ dH -8
dv = [ 0 } (47)
Since dH = (} = 23) dA+ 24dQ = } [(1 - F2) dA + £4Q], one has
2 -1 F
N _15= w ] (YY) 2| e e (48)
au o 1 | \ouU 0 1




271 This leads to the following artificial viscosity term:

( ) (HL—Hr—S;Az)b—£(Q1L-Qr) (49)
Dv(Vy,—-Vg)=D 1-F? 49
QrL—CQr
272 For the same reasons as Option 2, the following variation is proposed for Option 3:
[ dH -8y - £dQ
dV = { o (50)
273 The Jacobian matrix of V with respect to U is given by:
1-F? -1 b
OV _ 5= 0] (VY | 0 (51)
ou 0 1 ou 0 1
274 This leads to the following artificial viscosity term:
bHLfHRfsf'ACE
DVVL—VR _D|: 1-F? :| 52
( ) QrL—CQr (52
275 As in option 2, this expression is not valid at critical points for which F' = 1, the final
276 estimate for dV is thus
dV3 = minmod(dV, dU) (53)
a7z where dV is defined by Eq. (50).
278 Note that if a singular head loss AH; is to be introduced, it can also be taken into
270 account in the artificial viscosity term:
bHLfHRfAI‘g_g*SfACE
Dvy(Vy,—-Vg)=D 1-F 54
viVi=Va) QL —Qr 54
2s0 4. Application to classical approximate Riemann solvers
201 4.1. Application to the HLL solver
282 The HLL solver [26] can be written in the form (20) by defining a and D as
At
a = ﬁ (553)
AT AT
D=—7—"I 55b
At — A~ (55b)

2ss where I is the identity matrix and A\~, AT are respectively estimates of the fastest waves
s A1) and A®) defined in Egs.. (9b, 9¢) in the direction of negative and positive z [15, 17]:

AT =min (ug, — ¢p,ur — ¢g,0) (56a)
285

AT =max (ur, + cr,ug + cgr,0) (56b)

286 4.2. Application to Roe’s solver

207 Roe’s solver [34] can be written in the form (20) by setting
1
a=g (57a)
Ai
D="—1 (57b)
2
2s where A¥ is the matrix generated by the absolute values of the eigenvalues of A:
- e ~—1
A*=K ‘A‘ K (58)

280 with

- 1 1 _— 1 A2 1] - A0
K= { A0 @) } K™= A2 2O [ S (CONT A= 0 |A@) (59)
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leading to the following expression for A*:

At — { air a2 } (60a)
a21 A22
xﬂxﬂ_xwxﬂ
= 3@ a0 (60b)
o e
aiz = So 50 (60c)
ag1 = - AP q, (60d)
meﬂ_xwx%
Q9o = (60e)

A2 — D

In Roe’s approach [34], the eigenvalues 2D = (4 — &) and A® = (@ + &) in the diagonal
matrix A are obtained from Roe’s averages [21, 22] :

1/2
~ g AL AR
= |5\ 72 T3 1
c {Q(bL+bR>} (61a)
U= CLUL T CRUR (61D)
cr, +Cr

4.8. Application to the QQ-scheme

The @-scheme uses the same formula as Roe’s formula, except that the matrix A in
Eq. (58) is estimated from the average of the left and right-hand cells

A=A (UL;UR) (62)

yielding to the following approximation for the eigenvalues:

A 1/2
c=yg ( £R> (63a)

~  QLr

u =
ArLr

L and Xpp = (XL+XR)/2 (XE {A,Q,h})

(63b)

where b = Wit +horWy

2

4.4. Summary of formulae - Algorithmic aspects

From an algorithmic point of view, the steps in the solution process are the following:

1. For each cell, compute the free surface elevations (;, and (g from the left and right
states Uy, and Ug, using the correspondence between A and h, Eq (19a). Use the free
surface elevations to compute the geometric source term from Eqs (26).

2. For each interface, compute the flux F using Eq (29) with the fluxes on both sides of
the interface (Fr, Fg), the auxiliary variables V, Vg according to the AVB option
chosen and with a depending on the solver.

3. Compute the friction source term as in Eq (21).

4. Apply the balance equation (10) to compute the hydrodynamic variable at the next
time step.
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Symbol  Meaning Value

g Gravitational acceleration 9.81ms2
L Length of the domain 3,000 m
So Bottom slope 1073

Wo Channel width 1m

Wi Derivative of the width with respect to z 0

ho Initial water depth 1m

2ds Prescribed surface elevation downstream 1m

Qup Prescribed discharge upstream 1m3s™!
ns Manning’s friction coefficient 0.025m™ /35
Ax Computational cell width 1m

At Simulation time 20,000s

Table 1: Test 1 - steady state flow in a prismatic, rectangular channel. Parameters of the
test case.

5 - Hz (m) 5- Hz(m) 5. Hz (m)

z - initial
z - option 1

z - initial z - initial

z - option 2

z - option 3

X (m) 3000 0 X (m) 3000 0 x (m) 3000

0
1.005 1 Q (m%s) 1.005 1 Q (m%s) 1.005 1 Q (m%s)
w=Q - initial ==Q - initial —Q - initi.al
——Q - option 1 ——AQ - option 2 ——Q - option 3
1 1 N 1 N‘
0.995 | 0.995 | 0.995 |
0 x (m) 3000 0 X (m) 3000 0 x (m) 3000

Figure 2: Test 1 - steady state flow in a prismatic, rectangular channel. Top: water elevation
z and hydraulic head H, down: discharge @ obtained with V = U (Initial) and with the
three different AVB options, using the HLL solver (the results obtained with the Roe’s and
the @-scheme solvers are identical).

5. Computational examples

5.1. Steady state configurations

5.1.1. Test 1: steady state flow in a prismatic, rectangular channel

In this test case, the various AVB options are applied to steady state flow in a prismatic,
rectangular channel (i.e. with a constant value of Wy and with W; = 0) including friction. A
transient simulation is carried out from an initial state at rest until steady state is obtained.
The parameters of the test case are given in Table 1.

Figure 2 shows the results obtained from the initial formulation i.e. with V = U and
with the three different AVB options. Only the HLL solver is shown in this case because
the results obtained with the two other solvers are identical. The profiles of the free surface
elevation z and the hydraulic head H are identical regardless of the AVB option used (note
that the water elevation and the hydraulic head are nearly identical because of a small
velocity).

However, under steady-state conditions, the discharge @ is expected to be uniform over
the entire domain and equal to Q,p. The only option that provides the correct value of @
over the whole domain but the downstream boundary, is the third one, i.e. based on the
hydraulic head.

Figure 3 shows results of the same test case but with the introduction of a singular
head loss in the middle of the channel. The head loss is computed using a classical Borda

relationship:
2

v
AH, = a—
29
where « is arbitrarily chosen to o = 5 in this case, but can be estimated from any empirical
law. Figure 3a presents results using HLL solver. Each option provides a good estimate of

11



51 H (m) 5 H(m) 5 H(m)

===H - initial ===H - initial = H - initial
——H - option 1 o ——H-option 2 ——H - option 3
t 1 0+ 1
0+
0 X (m) 3000 0 x (m) 3000 0 x (m) 3000
1017 Q (m%s 1.01 - 3 1.01 4 m8) e - initi
¢ ) ==Q - initial Q (mss) = Q - initial Q (mfs) Q- |nm.a|
——Q- option 1 —+—Q - option 2 —T—Q- option 3
1 1 1
Q ~J -~
0.99 | 0.99 | 0.99 |
0 x (m) 3000 0 X (m) 3000 0 x (m) 3000
(a)
51 H(m) 5, H(m) 5- H (m)

———H - initial ———H - initial ———H - initial
——H - option 1 ——H - option 2 ——H - option 3
ol 04 . ol :
0 X (m) a0 O X (m) 3000 0 x (m) 3000
1017 Q(m%s 1.01 4 3 1.01 - m®/:
0 L S — 01 QM) g initia 019 Q(ms) Q- initial
——AQ - option 1 ——Q - option 2 ——Q-option 3
1 1 1
0.99 099 . 099 ‘
0 x (m) 3000 0 x (m) 3000 ) x (m) 3000

Figure 3: Test 1b - steady state flow in a prismatic, rectangular channel with an arbitrary
singular head loss in the middle of the channel. Top: water elevation z and hydraulic head
H, down: discharge @ obtained with V = U (Initial) and with the three different AVB
options, using a) HLL solver, b) Roe’s solver (identical to Q-scheme).

the hydraulic head and water elevation. In addition to the behaviour previously observed,
the singular head loss triggers a spike in the discharge profiles when the HLL solver is used.
Option 3, that explicitly takes into account the singular head loss in the flux computation,
is the only one that provides a constant value @ = @, with Roe’s and @-scheme solvers
(Figure 3b).

5.1.2. Test 2 : frictionless steady state flow in a non-prismatic, rectangular channel

The channel profile is shown in Figure 4; it contains two consecutive narrowings of the
cross-section: the first one due to the width narrowing (minimum width at 25% of the
channel length) and the second one to a bump in the bottom elevation (maximum elevation
at 75% of the channel length). This is a frictionless test case, the parameters of which are
given in Table 2. As for the first test case, a transient simulation is run for a sufficiently
long time, so that the transient regime vanishes and steady state is reached. The prescribed
discharge and downstream water level are chosen such that the flow regime is subcritical
upstream of both the narrowing and the bump, yielding two hydraulic jumps.

Figure 5 shows results obtained with the different AVB options and the three solvers
(note that the results obtained with Roe’s solver and Q-scheme are identical). The profiles
obtained for the hydraulic head H and water elevation z with the different solvers and
options bear similarities except for the points upstream the channel narrowing. In constrast,
substantial differences can be observed for the discharge Q. As for the first test case, the
steady state configuration theoretically implies a constant value for the discharge. It can
be seen that the same profile is obtained using the initial formulation (i.e. V=U) for the
three solvers, and that this profile is the most different from the constant value of @ = Qup.
Option 2 also give a strongly variable discharge in space when used with HLLC, but not
with Roe’s solver or ()-scheme. Option 3 gives better results: it is very close to @ = Qup

12
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2z, (M)

2
1.0
e Bottom 1.5
elevation 1
0.5 e Right-bank
0.5 e eft-bank
0.0 T \ 0 - 7 |
0 x (m)10 20 0 x (m) 10 20

Figure 4: Test 2 - Frictionless steady state flow in a non-prismatic, rectangular channel.
Channel profile: left, bottom elevation; right, left- and right-bank profile.

Symbol Meaning Value

g Gravitational acceleration 9.81ms—2
L Length of the domain 20m
Wo, 2z Channel width and bottom elevation Figure 4
Wy Derivative of the width with respect to z 0

20 Initial free surface elevation 1.1m

Zds Prescribed surface elevation downstream 1.1m
Qup Prescribed discharge upstream 2m3s!
nar Manning’s friction coefficient Om~1/3s
Ax Computational cell width 0.1m

At Simulation time 400s

Table 2: Test 2 - Frictionless steady state flow in a non-prismatic, rectangular channel.
Parameters of the test case.

over the whole domain except in the immediate vicinity of the hydraulic jump (z ~ 17m).

5.1.8. Test 3: frictionless steady-state flow in a non-prismatic trapezoidal channel

The channel profile is shown in Figure 6. It presents two simultaneous reductions of the
cross-section (bump and width narrowing), located at the same abscissa. The channel is not
prismatic with a variable bank slope yielding a transition from a trapezoidal shape at the
boundaries to a rectangular shape at half length. The parameters used for this steady-state,
frictionless test case are given in Table 3.

The simulated free surface elevation z, hydraulic head H and discharge @, obtained
with the three AVB options and the three solvers are given in Figure 7. In this case again,
all three AVB options provide improved solutions compared to that given by the initial
formulation, for which the transition from subcritical to supercritical conditions (and vice-
versa) is observed to induce strong variations in the estimation of the discharge. This
statement however is to be moderated concerning Option 2 combined with HLLC solver
that also yields such variations. In a largely lesser extent, option 1 also exhibits some small
variations in the discharge. Moreover, it can be seen that the abscissa of the hydraulic jump
is not exactly located using Option 1 with Roe’s solver or @Q-scheme, with an increase in
hydraulic head upstream the jump.

Symbol  Meaning Value

g Gravitational acceleration 9.81ms2
L Length of the domain 20m
Wo, Wi Channel width and its derivative with respect to z  Figure 6
Zp Bottom elevation Figure 6
20 Initial free surface elevation 1.2m

Zds Prescribed surface elevation downstream 1.2m
Qup Prescribed discharge upstream 4m3s!
N Manning’s friction coefficient Om~1/3s
Az Computational cell width 0.1m

At Simulation time 200s

Table 3: Test 3 - Frictionless steady state flow in a non-prismatic trapezoidal channel.
Parameters of the test case.
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(b) Roe (identical to @Q-scheme)

Figure 5: Test 2 - Frictionless steady state flow in a non-prismatic, rectangular channel.
Up: water elevation z and hydraulic head H, down: discharge @) obtained with V =U
(Initial) and with the three different AVB options, using a) HLL solver, b) Roe’s solver.

The @-scheme gives similar results to the Roe’s solver.

x (m) 20

10

Bottom

W(x,z=1m)

T
10

Figure 6: Test 3 - Frictionless steady state flow in a non-prismatic trapezoidal channel.

15

20

Channel profile: top, bottom elevation; down, Wy(z) and W (z, z = 1).
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Option 3 gives a uniform value for the discharge everywhere, except across the hydraulic
jump, regardless the solver used. Once again, Option 3 is thus deemed more suitable to deal
with transcritical flows.

5.1.4. Test 4: steady state flow in a Venturi flume

This test case involves the simultaneous presence of all source terms: friction, bottom
slope and width variation. It is a real world test case for which experiment validation has
been carried out in a channel of 67 cm wide. The Venturi flume used is 2.5 m long with
narrow section of 10 cm wide (Figure 8). The flume is made of aluminium plates, with a
Manning friction coefficient ny; = 102m~/3s calibrated from experiments in a straight
channel made of the same material.

In the experiment, steady state was obtained under a discharge of 40 litres per second.
The elevation of the free surface along the walls and axis of the channel was measured every
5 cm. Figure 9 shows numerical results obtained with Roe’s solver and the different AVB
options. The three AVB options give similar results. The unit-discharge is better estimated
upstream than with the initial formulation. Option 2 and 3 give erroneous results with the
HLL solver and the @-scheme. Figure 10 shows the longitudinal profiles of the measured
and simulated free surface. As can be seen from the figure, the simulation agrees well with
the measurement upstream and downstream of the narrowing. In contrast, the free surface
elevation is overestimated by the numerical model in the narrow section of the Venturi flume.
Besides, the curvature of the simulated free surface profile is wrong. These results invalidate
the shallow water assumption of a hydrostatic pressure distribution but this is beyond the
scope of the present paper.

5.2. Transient test cases

There is no guarantee that an accurate well-balanced approach for steady state flows,
gives correct results on transient configurations. The following transient test cases are thus
performed.

5.2.1. Test 5: frictionless dam-break problem in a rectangular channel with flat bottom

The dam-break problem is an initial-value problem in which the water is initially at rest
and the water levels are different on both sides of the dam. The solution of the dam-break
problem in rectangular channels is similar to that of the one-dimensional shallow water
equations. The properties of the analytical solution are presented in [36]. The dam-break
problem is a Riemann problem defined as:

| hp forz <z
h(z,0) = { hg forxz > xg (64a)
q(z,0) =0Vz (64b)

The solution is made of a rarefaction wave and a moving shock separated by a region of
constant state. For the dam-break problem without source terms (friction or bottom slope),
the profile obeys the following equations in the rarefaction wave

u(z,t) = ; (CL + %) (65a)
o, ) = % (2e - %) (65b)

from which the expression of the flow solution U is straightforward using A = ¢?/g and
@ = uA. In the other parts of the domain, the profile is piecewise constant (see [36] for
more details).

The parameters used in this test case are given in Table 4. Profiles of free surface
elevation, hydraulic head and discharge, obtained with the initial formulation and the three
AVB options are given in Figure 11 for the three solvers. Contrarily to previous test cases,
the discharge @ is correctly estimated by each option included initial formulation except
for the combinations HLL/Option 2 (Figure 11b) and @-scheme/Option 3 (Figure 11d).
For these latter, the free surface elevation and hydraulic head are discontinuous accross the
critical point (Note that this problem was pointed out in [30, 18] where a specific treatment
of the critical point was proposed).
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Figure 7: Test 3 - Frictionless steady state flow in a non-prismatic trapezoidal channel. Top:
water elevation z and hydraulic head H, down: discharge @ obtained with V = U (Initial)
and with the three different AVB options, using a) HLL solver, b) Roe’s solver, ¢) Q-scheme.
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Figure 8: Test 4 - Dimensions of the Venturi flume used in the experiment. Top: plan view.
Bottom: bird eye’s view with a vertical scale magnified by a factor 5.
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Figure 9: Test 4 - Steady state flow in a Venturi flume. Top: water elevation z and hydraulic

head H, down: discharge @ obtained with V = U (Initial) and with the three different AVB
options, using Roe’s solver.
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Figure 10: Test 4 - Steady state flow in a Venturi flume. Comparison between numerical
results and experimental data.
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Figure 11: Test 5 - Dam-break problem in a rectangular channel. a) analytical solution;
b) HLL solver; c¢) Roe’s solver; d) Q-scheme. Top: water surface elevation z and hydraulic
head H, bottom: discharge @, obtained with V = U (Initial) and with the three different
AVB options.
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Symbol  Meaning Value

g Gravitational acceleration 9.81ms2
L Length of the domain 1,000 m
Wo Channel width 1m

Wy Derivative of the channel width with respect to z 0

2p Bottom elevation Om

hr, Initial free surface elevation on the left-hand side of the dam 10m

hgr Initial free surface elevation on the right-hand side of the dam 1m

N Manning’s friction coefficient Om~'/3g
Ax Computational cell width 1m

At Simulation time 30s

Table 4: Test 5 - dam-break problem in a rectangular channel. Parameters of the test case.

10 &n(m) 10,0 &a(m)
+ + + + + *
= &
® + + + + R
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+ Option 2 + Option 2
SF X Option 3 dx (m) SF XOption3 gy (m)
0.0 ey ey 0.1 iy ey
0.1 1.0 10.0 0.1 1.0 10.0

Figure 12: Test 5 - Dam-break problem in a rectangular channel. Convergence analysis
using HLL solver and the three AVB options. Ls-norm between the computed output water
depth (left) or unit discharge (right) and analytical solution.

Since the analytical solution is available for the dam-break problem, a convergence ana-
lysis is performed on this test case using the three AVB options and HLL solver. Figure 12
shows that options 1 and 3 have almost the same convergence as initial formulation (slightly
faster for Option 3), and confirms the non-convergence of Option 2 used with HLL solver.

5.2.2. Test 6: frictionless dam-break problem in a triangular channel with flat bottom

This test case is identical to the previous one (dam-break problem in a rectangular
channel, without bottom slope or friction) except that the cross-section of the channel has
a triangular shape. The parameters of the test case are the same as given in Table 4 for
Test 5 except that Wy = 0 and W; = 2 in the whole domain.

The analytical solution is givent by [25]:

Usx + 4cy = uyg, + 4cy, (66&)
Q*_QR:(A*_AR)CS (66b)
Q? 9A2) (Q2 9A2)
L) (S +E) = Q- Qr)es 66
(5+%) - (5+%) -@-ane (66

where the subscript * denotes the intermediate region of constant state.

Equation (66a) expresses the invariance of the Riemann invariant (u + 4c) across the
rarefaction wave. Equations (66b) and (66c) are the jump relationships across the shock
moving at the speed c;. The unknown shock speed can be eliminated from the system by
combining the second and third equations. The system can then be solved iteratively to
find the values of A and @ in the intermediate region of constant state using A = ¢?/g and
Q = uA. Across the rarefaction wave, u and c verify:

u+4e=ur +4cg, (67a)
u—c= % (67Db)
yielding the following profile for w and c in the rarefaction wave:
4
u(z,t) = R (CL + %) (68a)
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Symbol Meaning Value

L Length of the domain 1,000 m
Wy Channel width 1m

Wi Derivative of the channel width with respect to z 0

2L Bottom elevation on the left-hand side of the dam Om

ZbR Bottom elevation on the right-hand side of the dam 5m

hr, Initial free surface elevation on the left-hand side of the dam 15m

hr Initial free surface elevation on the right-hand side of the dam 1m

na Manning’s friction coefficient Om~1/3s
Az Computational cell width 1m

At Simulation time 30s

Table 5: Test 5 - dam-break problem in a rectangular channel. Parameters of the test case.

o) = % (4er - %) (68b)

from which A and @ profiles can be determined.

Results of water elevation z, hydraulic head H and discharge @), obtained with the three
AVB options and the three solvers are given in Figure 13. In this case again, Roe’s solver
gives satisfactory results with the 3 options as well as the initial formulation. However,
very strong discontinuities at the critical point can be seen with Option 2 and 3 combined
with HLL solver and @-scheme, yielding to an underestimation of the maximum discharge.
Moreover, the shock is incorrectly located with Option 2/HLL.

5.2.8. Test 7: frictionless dam-break problem on a bottom step

The parameters of this test case are given in Table 5. A bottom step of 5 m is located at
the same abscissa as the initial water depth discontinuity. The analytical solution (that can
be found for example in [1, 5]) as well as results obtained with the three AVB options and
Roe’s solver are given in Figure 14. HLL solver and @)—scheme provide erroneous solutions
with Option 2 and 3.

6. Discussion - Conclusions

In practical engineering applications, geometrical source terms arising e.g. from bottom
slope or the non prismatic character of the channel are to be accounted for in the govern-
ing equations. These source terms can in general not be discretized independently of the
conservation part. Riemann-solver based techniques compute the fluxes from the average
cell values on the left and right hand of the interface. The flux can be seen as a combin-
ation of the average cell fluxes, augmented with a diffusion term involving the gradient in
the conserved variable. Artificial oscillations may appear in the computed profiles if the
gradients (and hence the diffusive part of the flux) is not estimated properly. The Auxiliary
Variable-Based balancing, consists of using an “auxiliary” variable instead of the conserved
one in the flux function, defined so as to allow the steady-state condition (of which static
equilibrium is only a particular case) to be preserved. It is applied to the one-dimensional
open channel equations in the present paper.

Three different options of AVB have been tested in this paper in addition to the classical
flux formulation that uses the gradient of the conserved variables: 1) free surface elevation;
2) specific force and 3) hydraulic head. The application of the method to three classical
approximate Riemann solvers (HLL, Roe and @-scheme) is also presented.

Various steady-state test cases including singular head losses, friction, bottom and width
variation, non-prismatic configurations, have been implemented to assess the ability of the
AVB approach to deal with transcritical flows, the critical points being well-known to intro-
duce instabilities. In the steady-state test cases, the three options generally gives a better
estimate of the uniform discharge than the initial formulation. Option 3, based on the hy-
draulic head, is the one that gives a uniform discharge equal to the prescribed one with
the best accuracy, for each steady-state test case and in the whole domain, except across
hydraulic jumps where a small spike remains. It is important to check the validity of these
approaches for unsteady states configurations. Indeed, some examples in the literature that
give correct results in steady state configurations (such as [28]) have revealed incorrect on
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Figure 13: Test 6 - Dam-break problem in a triangular channel. a) Analytical solution,
b) HLL solver, ¢) Roe’s solver and d) @-scheme. For each sub-figure, top: hydraulic head

H and water elevation z, bottom: discharge @, obtained with V = U (Initial) and with the
three different AVB options.
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Figure 14: Test 07 - Dam-break problem on a bottom step. a) Analytical solution; b) top:
water surface elevation z and hydraulic head H, bottom: discharge ), obtained using Roe’s
solver with V = U (Initial) and with the three different AVB options.

transient test cases, such as shown in the three unsteady configurations presented (dam-
break in rectangular or triangular channels and over a bottom step) where Option 2 gives
bad results when used with HLL or @-scheme.

Finally, when used with Roe’s solver, Option 3 is the only one that produces correct
results for all the test cases. An interesting feature of this option is that it allows head loss
functions (stemming from e.g. bridges or other singularities) to be accounted for directly
within the discretized equations. In contrast with what is classically done in commercially
available river packages, the AVB method eliminates the need for internal boundaries across
hydraulic singularities.

In the present paper, the geometric source term is accounted for by integrating the
bottom slope over the surface of the (non-horizontal) computational cell. This procedure is
rather easy to carry out when the cell is full. But in the case of wetting/drying, the water
does not occupy the full length of the cell. Computing the integral of the term ghSy over
only part of the cell becomes a very complex and time-consuming task. The approach to
source term estimation proposed in the present paper is thus not the best possible option
to the discretization of real-world geometries and practical river problems. An alternative
option is currently under study. It consists in considering each cell as prismatic and lumping
the geometric source term at the cell interfaces. This approach, however, requires that a
proper splitting of the lumped source terms between the adjacent cells to the interfaces be
devised. This point is currently under study.

Finally, this paper deals with finite volume Godunov-type discretizations, but if higher-
order schemes are to be designed, the AVB method may be applied by reconstructing the
auxiliary variable.
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