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Abstract6

Practical engineering applications of open channel flow modelling involve geometric terms7

arising from variations in channel shape, bottom slope and friction. This paper presents the8

family of schemes that satisfy the generalised C-property for which static equilibrium is a9

particular case, in the framework of one-dimensional open channel flows. This approach,10

named Auxiliary Variable-based Balancing, consists of using an auxiliary variable in place of11

the flow variables in the diffusive part of the flux estimate. The auxiliary variable is defined12

so as to achieve a zero gradient under steady-state conditions, whatever the geometry. Many13

approaches presented in the litterature can be viewed as a particular AVB case. Three auxil-14

iary variables are presented in this paper: water elevation, specific force and hydraulic head.15

The methodology is applied to three classical Riemann solvers: HLL, Roe and the Q-scheme.16

The results are compared on five test-cases: three steady-state configurations including fric-17

tion, singular head losses and variations in bottom elevation, channel width and banks slope18

and two transient test-case (dam-break problems on rectangular and triangular channel).19

In each case, the auxiliary variable that best preserves the steady-state configuration is the20

hydraulic head. Besides, using the head as auxiliary variable allows head loss functions due21

to singularities to be incorporated directly in the governing equations, without the need22

for internal boundaries. However, it is generally less accurate when sharp transients are23

involved.24

Keywords25

Shallow water equations; Finite volume method; C-property; well-balancing; non-prismatic26

channel; trapezoidal channel; geometric source terms.27

1. Introduction28

In hydrodynamic modelling, real-world applications of computational open channel sim-29

ulations involve the discretization of source terms arising from bottom slope, non-prismatic30

channel, etc. Attempting to discretize the fluxes and source terms independently from each31

other usually leads to stability problems. An indispensable prerequisite is that the discretiz-32

ation of flux gradients and geometric source terms should allow static equilibrium conditions33

to be preserved. This is known as the C -property [4, 38]. The need for source term discret-34

ization techniques that preserve equilibrium conditions without introducing spurious oscilla-35

tions in the computed variables has led to the general notion of well-balanced schemes. Over36

the past two decades, substantial research effort has been devoted to the influence of source37

terms discretization techniques [32] and new definitions that preserve the C -property, includ-38

ing applications to high-order schemes such as WENO (weighted essentially non-oscillatory)39

methods (e.g. [7, 10, 13, 39]).40

The various existing source term discretization approaches may be classified into two41

broad families: (i) approaches where the source term discretization technique is adapted to42

the flux formulae, and (ii) approaches where the flux formulae are adapted from, or derived43

in a coupled way with, the source term discretization. Examples of the former approach44

are source term upwinding [4, 38] and derived techniques such as predictor-corrector [3]45

or introduction of the source terms in the flux formulation [9], divergence form for the46
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bed slope source term (DBF) [37], the quasi-steady wave propagation method [29], asymp-47

totic balancing [12] or the source term projection technique in discontinuous Galerkin tech-48

niques [27]. Examples of the latter are the well-balanced approach [1, 2, 8, 24, 31, 35],49

flux and source term splitting [11], characteristics-based approximate-state and augmen-50

ted Riemann solvers [10, 16, 18, 20, 30], the homogeneous approach [28] and other static51

equilibrium-preserving techniques [6, 19, 40].52

Various solutions have also been proposed to enforce the C -property in finite volume-53

based discretizations. One of the earliest solutions, proposed in [33] for the solution of the54

SWE and later extended in [40], consists in replacing the water depth with the free surface55

elevation. This option can be extended to the open channel equations in arbitrary-shaped56

channels, as shown in the present paper. It has the drawback that simple flow configurations57

such as uniform flow over a constant slope cannot be computed accurately (see section 3.2).58

Another option is to approximate the variations in the cross-sectional area with a consistent59

estimate taken from the balance between the specific force and the source term in the60

momentum equation [6]. The estimate is defined in such a way that it is zero under steady61

state conditions. Very similar formulae to that of [6] have been obtained using completely62

different approaches in [28, 30]. The approaches [6, 28, 30] have the common point that the63

gradient in one of the flow variables is replaced with the gradient in another variable, called64

auxiliary variable hereafter. This gradient is zero under static conditions. That different65

approaches yield the same formulae lead to wonder whether a general methodology can be66

derived to define auxiliary variables.67

In the present paper, the principle of Auxiliary Variable-based Balancing (AVB) is presen-68

ted for one-dimensional free surface flow calculations in non-prismatic, trapezoidal channels.69

This is motivated by the fact that in industrial open channel packages, the cross-sectional70

geometry is broken into a set of trapezoidal elements. The AVB approach is used to derive71

flux formulae that allow non-static, steady state flow conditions to be preserved, even at low72

orders of discretization, that is, when first-order schemes are used.73

The principle of the AVB method is presented for the water hammer and one-dimensional74

SWE in [25]. However, the one-dimensional shallow water equations are a very simplified75

description of free surface flows in natural channels. Besides, only one possible approach76

for source term discretization (a variant of source term upwinding) is considered in [25].77

The applicability of the approach to more complex cross-sections and other source term78

discretization approaches is not investigated in [25]. The objectives of the present paper are79

(i) to present the methodology of Auxiliary Variable-based Balancing (AVB), (ii) to apply80

the AVB approach to the open channel flow equations in a well-balanced, finite volume81

framework, (iii) to provide the flux and source term discretizations for a variety of Riemann82

solvers, and (iv) to analyse the accuracy of the numerical solutions obtained using a number83

of various AVB-based discretizations. As mentioned above, first-order space discretizations84

are retained for the sake of computational rapidity.85

The structure of the paper is as follows. Section 2 presents the governing equations86

and their discretisation. The AVB methodology is detailed in section 3 and its applica-87

tion to classical Riemann solvers presented in section 4. Section 5 provides computational88

examples, including steady-state configurations and transient test-cases as well as a con-89

vergence analysis for the classical dam-break problem (for which an analytical solution is90

available).91

2. Governing equations and solution method92

2.1. Governing equations93

The purpose is to solve 2×2 hyperbolic systems of conservation laws in the form94

∂U
∂t

+
∂F
∂x

= S (1)

where U, F and S are defined as95

U =
[
A
Q

]
,F =

[
Q
M

]
=

[
Q

Q2

A + P
ρ

]
,S =

[
0

(S0 − Sf )gA+ R
ρ

]
(2)

where A is the cross-sectional area, g is the gravitational acceleration, M is the specific force,96

P is the pressure force exerted on the wetted cross-sectional area, S0 and Sf are respectively97
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Figure 1: Channel geometry. Left) longitudinal view:bottom and water elevation. Right)
transversal view: channel width and depth.

the bottom and energy slope, R is the x -component of the reaction of the walls onto the98

water (if the channel is non-prismatic) and ρ is the water density.99

The forces P and R are derived from the assumption of a hydrostatic pressure distribution100

and obey the following definitions [14]:101

P

ρ
=
ˆ
A

(ζ − z)gdA =
ˆ h

0

(h− z′)gW (z′)dz′ (3)

R

ρ
=
ˆ h

0

(h− z′)g
(
∂W

∂x

)
h−z′=Const

(z′)dz′ (4)

where W (z ) is the width of the channel at the elevation z, h is the water depth (that is the102

distance between the lowest point in the cross-section and the free surface), z′ = z − zb is103

the elevation above the bottom lowest point and ζ is the free surface elevation (Figure 1).104

The energy slope is classically assumed to obey a turbulent-type friction law such as105

Manning’s law:106

Sf = n2
Mu

2R
−4/3
H (5)

where nM is Manning’s friction coefficient, u =Q/A is the flow velocity and RH is the107

hydraulic radius, defined as the ratio of the cross-sectional area A to the wetted perimeter108

χ, yielding109

Sf = n2
MQ

2A−10/3χ4/3 (6)

It is noted that the Jacobian matrix A of F with respect to U is given by110

A =
∂F
∂U

=
[

0 1
c2 − u2 2u

]
(7)

where the speed c of the waves in still water is defined as111

c2 ≡
∂(Pρ )

∂A
=
gA

b
(8)

where b = W (ζ) is the top width of the channel. The matrix A can be diagonalized into a112

matrix Λ defined as:113

Λ =
[
λ(1) 0

0 λ(2)

]
(9a)

λ(1) = u− c (9b)

λ(2) = u+ c (9c)

The problem is assumed to be properly posed hereafter, that is, the initial and boundary114

conditions are specified such that Eq. (1) can be solved uniquely for U at all points of a115

computational domain [0,L] for all times t >0.116
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2.2. Finite volume discretization117

Eq. (1) is discretized using a finite volume formalism as118

Un+1
i = Un

i +
∆t
∆xi

(
Fn+ 1

2
i− 1

2
− Fn+ 1

2
i+ 1

2

)
+ ∆tSn+ 1

2
i (10)

where the subscript i denotes a cell average, subscripts i± 1
2 denote estimates at the interfaces119

between the computational cells, the superscript n indicates that the variable is estimated120

a time level n, and the superscript n + 1
2 denotes an average value between time levels n121

and n +1, and where ∆xi is the width of he computational cell i. In explicit schemes, the122

variables with superscripts n+ 1
2 are computed using the known values at the time level n;123

in implicit schemes, the unknown values at the time level n +1 are used.124

In what follows, non-prismatic, trapezoidal cross-sections are considered. The reason for125

this is that in all commercial open channel packages, the channel geometry is discretized into126

a series of trapezia. Consequently, the capability to deal with trapezoidal cross-sections is127

seen as an indispensable prerequisite to a generalisation of the method to arbitrary-shaped128

channels. Note that rectangular and triangular cross-sections are obtained as particular129

cases of the proposed approach, as illustrated by a number of computational examples in130

Section 5.131

The geometric parameters of the cross-sections are defined at the interfaces between132

the computational cells. They are interpolated linearly within the cells. Consequently, the133

geometry is continuous at the cell interfaces. Assuming non-prismatic trapezoidal channel134

geometry, the width W (x,z ) at a given abscissa x and elevation z takes the form135

W (x, z) = W0(x) + (z − zb(x))W1(x) (11)

where W0(x) is the bottom width of the channel at the abscissa x, W1(x) is the derivative136

of W with respect to z and zb is the bed elevation at the abscissa x. As mentioned above,137

W0, W1 and zb are assumed to vary linearly with x within the cells. In the cell i, one has:138

W0(x) = W0,i− 1
2

+ (x− xi− 1
2
)W (x)

0,i (12)

W1(x) = W1,i− 1
2

+ (x− xi− 1
2
)W (x)

1,i (13)

zb(x) = zb,i− 1
2

+ (x− xi− 1
2
)z(x)
b,i (14)

where the superscript (x ) denotes the derivative with respect to x :139

W
(x)
0,i =

W0,i+ 1
2
−W0,i− 1

2

∆xi
(15)

W
(x)
1,i =

W1,i+ 1
2
−W1,i− 1

2

∆xi
(16)

z
(x)
b,i =

zb,i+ 1
2
− zb,i− 1

2

∆xi
= S0,i (17)

The cross-sectional area A is given as the integral of W between the bottom level and140

the free surface elevation:141

A(x) =
ˆ ζ

zb

W (x, z)dz =
[
W0(x) +W1(x)

h(x)
2

]
h(x) (18)

where h(x ) is the water depth at the abscissa x. Assuming that the free surface is horizontal142

in the cell i (which is true in the case of the first-order Godunov scheme), the average cell143

value A is given by144

Ai(ζ) ≡ 1
∆xi

ˆ x
i+ 1

2

x
i− 1

2

A(x)dx = αih
2
i− 1

2
+ βihi− 1

2
+ γi (19a)

hi− 1
2

= (ζ − zb)i− 1
2

(19b)
145

αi =
1
2
W1,i− 1

2
+

∆xi
4
W

(x)
1,i (19c)
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146

βi = W0,i− 1
2

+
∆xi

2

(
W

(x)
0,i + S0,iW1,i− 1

2

)
+

∆x2
i

3
S0,iW

(x)
1,i (19d)

147

γi =
∆xi

2
S0,iW0,i− 1

2
+

∆x2
i

6

(
2S0,iW

(x)
0,i + S2

0,iW1,i− 1
2

)
+

∆x3
i

8
S2

0,iW
(x)
1,i (19e)

2.3. Flux calculation148

Approximate Riemann solvers provide flux formulae that can be recast in the following149

form, derived from [17]:150

F = aFL + (1− a)FR + D(UL −UR) (20)

where L and R denote respectively the left and right states of the Riemann problem, a is a151

coefficient between 0 and 1 and D is a diffusion matrix that contributes to stabilise the nu-152

merical solution. The left and right states are obtained from an appropriate reconstruction,153

the simplest possible option (the first-order Godunov scheme [23]) being to use the average154

cell values. For a = 1/2, Eq. (20) is the sum of a centred flux and a so-called artificial vis-155

cosity term. Both a and D are functions of the wave speeds, in other words, the eigenvalues156

of the Jacobian matrix A of F with respect to U (Eq. 9).157

How the left and right states for the Riemann problem are to be computed from the158

average cell values is dealt with in Section 3.159

2.4. Source term discretization160

The momentum source term is discretized explicitly.161

The friction source term is computed by applying explicit estimates to the terms in162

Eq. (6):163

(Sf )ni = n2
M

(
u2R

4/3
H

)n
i

=

(
W0 + 1

2W1h

W0 + h (W 2
1 + 4)1/2

)n
i

(21)

(Sf )ni = n2
M

(
Q2A2/3χ−4/3

)n
i

= n2
m

(
Q2

(
W0 +

1
2
W1h

)2/3(
W0 + h

√
W 2

1 + 4
)−4/3

)n
i
(22)

The geometric source term gAS0 + R
ρ is rather difficult to compute directly under the164

assumption of varying W0, W1 and zb. However, it can be estimated cell-wise from simple165

balance considerations. Consider static equilibrium conditions, i.e., Q=0 in all cells, then166

Eqs. (1) and (10) yield167 (
gAS0 +

R

ρ

)n
i

∆xi =
(
P

ρ

)n
i+ 1

2

−
(
P

ρ

)n
i− 1

2

(23)

Given the definition (Eq 11) of the channel width, and the specific pressure force P
ρ168

(Eq. 3), one has169

P

ρ
= g

ˆ h

0

(h− z′) (W0(x) + z′W1(x)) dz′ =
1
2
gW0(x)h2 +

1
6
gW1(x)h3 (24)

The value of the specific pressure force at the interface i− 1
2 is then easily computedas170 (

P

ρ

)n
i− 1

2

=
g

2
W0,i− 1

2
h2
i− 1

2
+
g

6
W1,i− 1

2
h3
i− 1

2
(25)

with the definition (19b) for hi− 1
2
. Since the purpose is to estimate the source term in the171

cell i, the free surface elevation to be used in Eq. (19b) is ζni . The same formulation can172

be obtained at interface i + 1
2 yielding the final estimate for the source term to be used in173

Eq. (10):174

(
gAS0 +

R

ρ

)n
i

∆xi =
g

2

(
W0,i+ 1

2
+

1
3
W1,i+ 1

2
hi+ 1

2 ,i

)
h2
i+ 1

2 ,i

−g
2

(
W0,i− 1

2
+

1
3
W1,i− 1

2
hi− 1

2 ,i

)
h2
i− 1

2 ,i
(26a)
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175

hi− 1
2 ,i

= ζni − zb,i− 1
2

(26b)
176

hi+ 1
2 ,i

= ζni − zb,i+ 1
2

(26c)

2.5. Balancing issues177

The discretization of the source term in the momentum equation usually poses no prob-178

lem. This issue has been dealt with abundantly in the literature, within a very wide variety179

of techniques [1, 2, 4, 6, 27, 28, 38, 40]. A remaining problem encountered in practical180

applications is related to the continuity equation and the difference often observed between181

the average cell values and the interface values for the volume discharge.182

Consider a solution U verifying steady state, ∂U∂t = 0. The first component of Eq. (1)183

imposes that Q be equal to a constant Q0 all throughout the computational domain. In184

particular, the discharge Q computed at the cell interfaces should be identical to that in the185

cell values. This, however, is not necessarily the case if Eq. (20) is used. Indeed, writing the186

first component of Eq. (20) leads to the following formula for the interface flux187

Q0 = (a+D12)QL + (1− a−D12)QR +D11(AL −AR) (27)

where D11 and D12 are the components on the first row of the artificial viscosity matrix D.188

Eq. (27) can be rewritten as189

(a+D12)QL + (1− a−D12)QR = Q0 +D11(AR −AL) (28)

Assume that the discretized solution has reached steady state. If the geometry of the190

channel is arbitrary (non-constant bottom slope and/or non-prismatic channel), in general191

AL 6= AR. It is then obvious from Eq. (28) that at least one of the discharges QL and QR192

is different from the uniform discharge Q0. Consequently, a non-uniform discharge profile193

is obtained. In particular, if the initial situation is static (Q0 = 0), non-zero discharges194

are computed. Artificial oscillations appear and propagate throughout the computational195

domain.196

The ability of a numerical scheme to preserve static equilibrium conditions has been197

introduced as the C -property in [4]. Specifying the C -property exactly or approximately198

has proved to lead to efficient source term balancing techniques. The most widespread199

approach consists in adapting the discretization of the source term to the formulation of200

the flux so as to satisfy the C -property. In the Auxiliary Variable-based Balancing (AVB)201

approach, the opposite approach is followed: the formulation of the flux gradients is adapted202

to that of the source term.203

3. Auxiliary Variable-based Balancing method204

3.1. Principle205

The AVB method is based on the following requirements: (i) the artificial viscosity term206

in Eq. (20) should be modified in such a way that diffusion becomes zero when steady state is207

reached; (ii) the source term in the momentum equation should be discretized in such a way208

that it does not influence the calculation of the flux in the intermediate region of constant209

state. The second issue has been addressed in subsection 2.4 (source term discretization);210

the first issue is dealt with in the following subsections.211

AVB uses an auxiliary variable V in the expression of the artificial viscosity term:212

F = aFL + (1− a)FR + DV(VL −VR) (29)

where V is a function of both the variable U and the parameter ϕ, V = V(U, ϕ). The dif-213

fusion matrix DV and the auxiliary variable V are chosen such that the following conditions214

are verified:215

(C1): under steady state conditions, VL = VR.216

(C2): for ϕ = Const, DV(VL −VR) = D(UL −UR)217

6



Condition (C1) is the so-called enhanced consistency condition for steady state flow, which is218

the desired property for scheme well-balancing. Condition (C2) means that the strengths of219

the artificial viscosity terms in Eqs. (20) and (29) are identical, thus preserving the stability220

properties of the numerical solution. The pending question is the determination of DV.221

It is observed that the artificial viscosity terms in Eqs. (20) and (29) are approximations222

of the following derivatives:223

DV(VL −VR) = −∆xDV
∂V
∂x

+ HOT(∆x) (30)

D(UL −UR) = −∆xD
∂U
∂x

+ HOT(∆x) (31)

with224

HOT(∆x) →
∆x→0

0 (32)

Noticing that V = V(U, ϕ), the derivative of V with respect to x is expressed as225

∂V
∂x

=
∂V
∂U

∂U
∂x

+
∂V
∂ϕ

∂ϕ

∂x
(33)

Substituting Eq. (33) into Eq. (30), comparing with Eq. (31) and imposing condition (C2)226

gives:227

DV
∂V
∂U

= D (34)

Consequently, DV is given by228

DV = D
(
∂V
∂U

)−1

(35)

3.2. Balancing option 1: free surface elevation229

One of the earliest examples of the use of an auxiliary variable is found in [33] for the230

solution of the shallow water equations where the free surface elevation ζ = zb + h is used231

in place of the water depth h. The rationale is that under static conditions, the free surface232

elevation is constant, consequently, both dζ and dQ are zero at equilibrium. Note that the233

approach has been extended to the reconstruction technique in higher-order schemes in [40].234

This leads to the following possible definition for the auxiliary variable235

dV1 =
[

dζ
dQ

]
(36)

Since dA = bdζ, one has from the definition of U in Eq. (2):236

∂V1

∂U
=
[
b−1 0
0 1

]
,

(
∂V1

∂U

)−1

=
[
b 0
0 1

]
(37)

This leads to the following artificial viscosity term:237

DV(V1L −V1R) = D
[
b 0
0 1

] [
ζL − ζR
QL −QR

]
= D

[
(ζL − ζR)b
QL −QR

]
(38)

Note that in the case of the SWE, b=1 and Nujic’s [33] approach is retrieved.238

This option has the drawback that steady state, uniform flow cannot be maintained239

exactly. Indeed, under uniform flow conditions, QL = QR but the free surface elevations240

in two adjacent cells are not identical, ζL 6= ζR. Therefore, the artificial diffusion term in241

the continuity equation is non-zero and the interface flux is not equal to QL = QR. This is242

substantiated by the computational examples in Section 5.243
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3.3. Balancing option 2: specific force244

This is the option explored in [6]. Similar formulae were obtained for the one-dimensional245

shallow water equations in [28, 30, 18], albeit from different considerations. The latter246

three approaches, however, focus on rectangular channels, while the proposed approach is247

applicable to arbitrary-shaped channels.248

The specific force is used in place of the cross-sectional area in the first component of249

the auxiliary variable V. The motivation is that under dynamic equilibrium (that is, under250

steady state flow conditions), the variations in the specific force are balanced exactly by251

the source terms in the momentum equation noted SM . This leads to define the auxiliary252

variable V in differential form as253

dV =
[

dM − SM
dQ

]
(39)

Since dM = (c2 − u2)dA+ 2udQ, one has254

∂V
∂U

=
[
c2 − u2 2u

0 1

]
,

(
∂V
∂U

)−1

=
[

1
c2−u2 − 2u

c2−u2

0 1

]
(40)

This leads to the following artificial viscosity term:255

DV(VL −VR) = D
[

ML−MR−2u(QL−QR)−SM ∆x
c2−u2

QL −QR

]
(41)

where the source term SM is computed in average between the centres of the left- and256

right-hand cells. It is simply estimated as the average of the cell values given by Eq. (26a).257

Practical implementations [18, 30] indicate that in the neighbourhood of critical points,258

Eq. (41) induces a downwinding of the discharge and a discontinuous switch between sub-259

critical and supercritical flux formulae. Due to this, a different formula is proposed260

dV =
[

dM − 2udQ− SM
dQ

]
(42)

This leads to261

∂V
∂U

=
[
c2 − u2 0

0 1

]
,

(
∂V
∂U

)−1

=
[

1
c2−u2 0

0 1

]
(43)

and the following artificial viscosity term is obtained262

DV(VL −VR) = D
[

ML−MR−SM ∆x
c2−u2

QL −QR

]
(44)

This expression, however, remains invalid at critical points, for which c2 = u2. As263

proposed in [6], in the case of 1D SWEs on rectangular channel, the final estimate for dV264

is the minmod of the estimates given by the specific force option and the original approach:265

dV2 = minmod (dV,dU) (45)

where dV is defined by Eq. (42) and the minmod operator by:266

minmod(a, b) =

{
min (|a| , |b|) if ab ≥ 0
0 if ab < 0

(46)

3.4. Balancing option 3: hydraulic head267

In this option, presented in [25] (for 1D SWEs on rectangular channel), the hydraulic268

head H = ζ + u2

2g is used as auxiliary variable:269

dV =
[

dH − Sf
dQ

]
(47)

Since dH =
(

1
b −

u2

gA

)
dA+ u

gAdQ = 1
b

[(
1− F 2

)
dA+ F

c dQ
]
, one has270

∂V
∂U

=
[

1−F 2

b
F
bc

0 1

]
,

(
∂V
∂U

)−1

=

[
b

1−F 2 −
F
c

1−F 2

0 1

]
(48)
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This leads to the following artificial viscosity term:271

DV(VL −VR) = D

[
(HL−HR−Sf ∆x)b−F

c (QL−QR)

1−F 2

QL −QR

]
(49)

For the same reasons as Option 2, the following variation is proposed for Option 3:272

dV =
[

dH − Sf − F
c dQ

dQ

]
(50)

The Jacobian matrix of V with respect to U is given by:273

∂V
∂U

=
[

1−F 2

b 0
0 1

]
,

(
∂V
∂U

)−1

=
[

b
1−F 2 0

0 1

]
(51)

This leads to the following artificial viscosity term:274

DV(VL −VR) = D
[
b
HL−HR−Sf ∆x

1−F 2

QL −QR

]
(52)

As in option 2, this expression is not valid at critical points for which F = 1, the final275

estimate for dV is thus276

dV3 = minmod(dV,dU) (53)

where dV is defined by Eq. (50).277

Note that if a singular head loss ∆Hs is to be introduced, it can also be taken into278

account in the artificial viscosity term:279

DV(VL −VR) = D
[
b
HL−HR−∆Hs−Sf ∆x

1−F 2

QL −QR

]
(54)

4. Application to classical approximate Riemann solvers280

4.1. Application to the HLL solver281

The HLL solver [26] can be written in the form (20) by defining a and D as282

a =
λ+

λ+ − λ−
(55a)

D = − λ− λ+

λ+ − λ−
I (55b)

where I is the identity matrix and λ−, λ+ are respectively estimates of the fastest waves283

λ(1) and λ(2) defined in Eqs.. (9b, 9c) in the direction of negative and positive x [15, 17]:284

λ− = min (uL − cL, uR − cR, 0) (56a)
285

λ+ = max (uL + cL, uR + cR, 0) (56b)

4.2. Application to Roe’s solver286

Roe’s solver [34] can be written in the form (20) by setting287

a =
1
2

(57a)

D =
Ã±

2
(57b)

where Ã± is the matrix generated by the absolute values of the eigenvalues of A:288

Ã± = K̃
∣∣∣Λ̃∣∣∣ K̃−1

(58)

with289

K̃ =
[

1 1
λ̃(1) λ̃(2)

]
, K̃−1 =

1
λ(2) − λ(1)

[
λ̃(2) −1
−λ̃(1) 1

]
, ˜|Λ| =

[
|λ̃(1)| 0

0 |λ̃(2)|

]
(59)
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leading to the following expression for Ã±:290

Ã± =
[
a11 a12

a21 a22

]
(60a)

a11 =
λ̃(2)

∣∣∣λ̃(1)
∣∣∣− λ̃(1)

∣∣∣λ̃(2)
∣∣∣

λ̃(2) − λ̃(1)
(60b)

a12 =

∣∣∣λ̃(2)
∣∣∣− ∣∣∣λ̃(1)

∣∣∣
λ̃(2) − λ̃(1)

(60c)

a21 = −λ̃(1)λ̃(2)a12 (60d)

a22 =
λ̃(2)

∣∣∣λ̃(2)
∣∣∣− λ̃(1)

∣∣∣λ̃(1)
∣∣∣

λ̃(2) − λ̃(1)
(60e)

In Roe’s approach [34], the eigenvalues λ̃(1) = (ũ− c̃) and λ̃(2) = (ũ+ c̃) in the diagonal291

matrix Λ̃ are obtained from Roe’s averages [21, 22] :292

c̃ =
[
g

2

(
AL
bL

+
AR
bR

)]1/2

(61a)
293

ũ =
cLuL + cRuR
cL + cR

(61b)

4.3. Application to the Q-scheme294

The Q-scheme uses the same formula as Roe’s formula, except that the matrix Ã in295

Eq. (58) is estimated from the average of the left and right-hand cells296

Ã = Ã
(

UL + UR

2

)
(62)

yielding to the following approximation for the eigenvalues:297

c̃ = g

(
ALR

b̃

)1/2

(63a)

298

ũ =
QLR
ALR

(63b)

where b̃ = W0,i− 1
2

+ hLRW1,i− 1
2
and XLR = (XL +XR) /2 (X ∈ {A,Q, h}).299

4.4. Summary of formulae - Algorithmic aspects300

From an algorithmic point of view, the steps in the solution process are the following:301

1. For each cell, compute the free surface elevations ζL and ζR from the left and right302

states UL and UR, using the correspondence between A and h, Eq (19a). Use the free303

surface elevations to compute the geometric source term from Eqs (26).304

2. For each interface, compute the flux F using Eq (29) with the fluxes on both sides of305

the interface (FL, FR), the auxiliary variables VL, VR according to the AVB option306

chosen and with a depending on the solver.307

3. Compute the friction source term as in Eq (21).308

4. Apply the balance equation (10) to compute the hydrodynamic variable at the next309

time step.310
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Symbol Meaning Value
g Gravitational acceleration 9.81 m s−2

L Length of the domain 3, 000 m
S0 Bottom slope 10−3

W0 Channel width 1 m
W1 Derivative of the width with respect to z 0
h0 Initial water depth 1 m
zds Prescribed surface elevation downstream 1 m
Qup Prescribed discharge upstream 1 m3 s−1

nM Manning’s friction coefficient 0.025 m−1/3 s
∆x Computational cell width 1 m
∆t Simulation time 20, 000 s

Table 1: Test 1 - steady state flow in a prismatic, rectangular channel. Parameters of the
test case.
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Figure 2: Test 1 - steady state flow in a prismatic, rectangular channel. Top: water elevation
z and hydraulic head H, down: discharge Q obtained with V = U (Initial) and with the
three different AVB options, using the HLL solver (the results obtained with the Roe’s and
the Q-scheme solvers are identical).

5. Computational examples311

5.1. Steady state configurations312

5.1.1. Test 1: steady state flow in a prismatic, rectangular channel313

In this test case, the various AVB options are applied to steady state flow in a prismatic,314

rectangular channel (i.e. with a constant value ofW0 and withW1 = 0) including friction. A315

transient simulation is carried out from an initial state at rest until steady state is obtained.316

The parameters of the test case are given in Table 1.317

Figure 2 shows the results obtained from the initial formulation i.e. with V = U and318

with the three different AVB options. Only the HLL solver is shown in this case because319

the results obtained with the two other solvers are identical. The profiles of the free surface320

elevation z and the hydraulic head H are identical regardless of the AVB option used (note321

that the water elevation and the hydraulic head are nearly identical because of a small322

velocity).323

However, under steady-state conditions, the discharge Q is expected to be uniform over324

the entire domain and equal to Qup. The only option that provides the correct value of Q325

over the whole domain but the downstream boundary, is the third one, i.e. based on the326

hydraulic head.327

Figure 3 shows results of the same test case but with the introduction of a singular328

head loss in the middle of the channel. The head loss is computed using a classical Borda329

relationship:330

∆Hs = α
v2

2g

where α is arbitrarily chosen to α = 5 in this case, but can be estimated from any empirical331

law. Figure 3a presents results using HLL solver. Each option provides a good estimate of332
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Figure 3: Test 1b - steady state flow in a prismatic, rectangular channel with an arbitrary
singular head loss in the middle of the channel. Top: water elevation z and hydraulic head
H, down: discharge Q obtained with V = U (Initial) and with the three different AVB
options, using a) HLL solver, b) Roe’s solver (identical to Q-scheme).

the hydraulic head and water elevation. In addition to the behaviour previously observed,333

the singular head loss triggers a spike in the discharge profiles when the HLL solver is used.334

Option 3, that explicitly takes into account the singular head loss in the flux computation,335

is the only one that provides a constant value Q = Qup with Roe’s and Q-scheme solvers336

(Figure 3b).337

5.1.2. Test 2 : frictionless steady state flow in a non-prismatic, rectangular channel338

The channel profile is shown in Figure 4; it contains two consecutive narrowings of the339

cross-section: the first one due to the width narrowing (minimum width at 25% of the340

channel length) and the second one to a bump in the bottom elevation (maximum elevation341

at 75% of the channel length). This is a frictionless test case, the parameters of which are342

given in Table 2. As for the first test case, a transient simulation is run for a sufficiently343

long time, so that the transient regime vanishes and steady state is reached. The prescribed344

discharge and downstream water level are chosen such that the flow regime is subcritical345

upstream of both the narrowing and the bump, yielding two hydraulic jumps.346

Figure 5 shows results obtained with the different AVB options and the three solvers347

(note that the results obtained with Roe’s solver and Q-scheme are identical). The profiles348

obtained for the hydraulic head H and water elevation z with the different solvers and349

options bear similarities except for the points upstream the channel narrowing. In constrast,350

substantial differences can be observed for the discharge Q. As for the first test case, the351

steady state configuration theoretically implies a constant value for the discharge. It can352

be seen that the same profile is obtained using the initial formulation (i.e. V=U) for the353

three solvers, and that this profile is the most different from the constant value of Q = Qup.354

Option 2 also give a strongly variable discharge in space when used with HLLC, but not355

with Roe’s solver or Q-scheme. Option 3 gives better results: it is very close to Q = Qup356
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Figure 4: Test 2 - Frictionless steady state flow in a non-prismatic, rectangular channel.
Channel profile: left, bottom elevation; right, left- and right-bank profile.

Symbol Meaning Value
g Gravitational acceleration 9.81 m s−2

L Length of the domain 20 m
W0, zb Channel width and bottom elevation Figure 4
W1 Derivative of the width with respect to z 0
z0 Initial free surface elevation 1.1 m
zds Prescribed surface elevation downstream 1.1 m
Qup Prescribed discharge upstream 2 m3 s−1

nM Manning’s friction coefficient 0 m−1/3 s
∆x Computational cell width 0.1 m
∆t Simulation time 400 s

Table 2: Test 2 - Frictionless steady state flow in a non-prismatic, rectangular channel.
Parameters of the test case.

over the whole domain except in the immediate vicinity of the hydraulic jump (x ≈ 17m).357

5.1.3. Test 3: frictionless steady-state flow in a non-prismatic trapezoidal channel358

The channel profile is shown in Figure 6. It presents two simultaneous reductions of the359

cross-section (bump and width narrowing), located at the same abscissa. The channel is not360

prismatic with a variable bank slope yielding a transition from a trapezoidal shape at the361

boundaries to a rectangular shape at half length. The parameters used for this steady-state,362

frictionless test case are given in Table 3.363

The simulated free surface elevation z, hydraulic head H and discharge Q, obtained364

with the three AVB options and the three solvers are given in Figure 7. In this case again,365

all three AVB options provide improved solutions compared to that given by the initial366

formulation, for which the transition from subcritical to supercritical conditions (and vice-367

versa) is observed to induce strong variations in the estimation of the discharge. This368

statement however is to be moderated concerning Option 2 combined with HLLC solver369

that also yields such variations. In a largely lesser extent, option 1 also exhibits some small370

variations in the discharge. Moreover, it can be seen that the abscissa of the hydraulic jump371

is not exactly located using Option 1 with Roe’s solver or Q-scheme, with an increase in372

hydraulic head upstream the jump.373

Symbol Meaning Value
g Gravitational acceleration 9.81 m s−2

L Length of the domain 20 m
W0, W1 Channel width and its derivative with respect to z Figure 6
zb Bottom elevation Figure 6
z0 Initial free surface elevation 1.2 m
zds Prescribed surface elevation downstream 1.2 m
Qup Prescribed discharge upstream 4 m3 s−1

nM Manning’s friction coefficient 0 m−1/3 s
∆x Computational cell width 0.1 m
∆t Simulation time 200 s

Table 3: Test 3 - Frictionless steady state flow in a non-prismatic trapezoidal channel.
Parameters of the test case.
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Figure 5: Test 2 - Frictionless steady state flow in a non-prismatic, rectangular channel.
Up: water elevation z and hydraulic head H, down: discharge Q obtained with V = U
(Initial) and with the three different AVB options, using a) HLL solver, b) Roe’s solver.
The Q-scheme gives similar results to the Roe’s solver.
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Option 3 gives a uniform value for the discharge everywhere, except across the hydraulic374

jump, regardless the solver used. Once again, Option 3 is thus deemed more suitable to deal375

with transcritical flows.376

5.1.4. Test 4: steady state flow in a Venturi flume377

This test case involves the simultaneous presence of all source terms: friction, bottom378

slope and width variation. It is a real world test case for which experiment validation has379

been carried out in a channel of 67 cm wide. The Venturi flume used is 2.5 m long with380

narrow section of 10 cm wide (Figure 8). The flume is made of aluminium plates, with a381

Manning friction coefficient nM = 10–2 m−1/3 s calibrated from experiments in a straight382

channel made of the same material.383

In the experiment, steady state was obtained under a discharge of 40 litres per second.384

The elevation of the free surface along the walls and axis of the channel was measured every385

5 cm. Figure 9 shows numerical results obtained with Roe’s solver and the different AVB386

options. The three AVB options give similar results. The unit-discharge is better estimated387

upstream than with the initial formulation. Option 2 and 3 give erroneous results with the388

HLL solver and the Q-scheme. Figure 10 shows the longitudinal profiles of the measured389

and simulated free surface. As can be seen from the figure, the simulation agrees well with390

the measurement upstream and downstream of the narrowing. In contrast, the free surface391

elevation is overestimated by the numerical model in the narrow section of the Venturi flume.392

Besides, the curvature of the simulated free surface profile is wrong. These results invalidate393

the shallow water assumption of a hydrostatic pressure distribution but this is beyond the394

scope of the present paper.395

5.2. Transient test cases396

There is no guarantee that an accurate well-balanced approach for steady state flows,397

gives correct results on transient configurations. The following transient test cases are thus398

performed.399

5.2.1. Test 5: frictionless dam-break problem in a rectangular channel with flat bottom400

The dam-break problem is an initial-value problem in which the water is initially at rest401

and the water levels are different on both sides of the dam. The solution of the dam-break402

problem in rectangular channels is similar to that of the one-dimensional shallow water403

equations. The properties of the analytical solution are presented in [36]. The dam-break404

problem is a Riemann problem defined as:405

h(x, 0) =
{
hL forx ≤ x0

hR forx > x0
(64a)

q(x, 0) = 0 ∀x (64b)

The solution is made of a rarefaction wave and a moving shock separated by a region of406

constant state. For the dam-break problem without source terms (friction or bottom slope),407

the profile obeys the following equations in the rarefaction wave408

u(x, t) =
2
3

(
cL +

x

t

)
(65a)

409

c(x, t) =
1
3

(
2cL −

x

t

)
(65b)

from which the expression of the flow solution U is straightforward using A = c2/g and410

Q = uA. In the other parts of the domain, the profile is piecewise constant (see [36] for411

more details).412

The parameters used in this test case are given in Table 4. Profiles of free surface413

elevation, hydraulic head and discharge, obtained with the initial formulation and the three414

AVB options are given in Figure 11 for the three solvers. Contrarily to previous test cases,415

the discharge Q is correctly estimated by each option included initial formulation except416

for the combinations HLL/Option 2 (Figure 11b) and Q-scheme/Option 3 (Figure 11d).417

For these latter, the free surface elevation and hydraulic head are discontinuous accross the418

critical point (Note that this problem was pointed out in [30, 18] where a specific treatment419

of the critical point was proposed).420
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Figure 7: Test 3 - Frictionless steady state flow in a non-prismatic trapezoidal channel. Top:
water elevation z and hydraulic head H, down: discharge Q obtained with V = U (Initial)
and with the three different AVB options, using a) HLL solver, b) Roe’s solver, c) Q-scheme.
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Figure 8: Test 4 - Dimensions of the Venturi flume used in the experiment. Top: plan view.
Bottom: bird eye’s view with a vertical scale magnified by a factor 5.
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Figure 9: Test 4 - Steady state flow in a Venturi flume. Top: water elevation z and hydraulic
head H, down: discharge Q obtained with V = U (Initial) and with the three different AVB
options, using Roe’s solver.
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Figure 10: Test 4 - Steady state flow in a Venturi flume. Comparison between numerical
results and experimental data.
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Figure 11: Test 5 - Dam-break problem in a rectangular channel. a) analytical solution;
b) HLL solver; c) Roe’s solver; d) Q-scheme. Top: water surface elevation z and hydraulic
head H, bottom: discharge Q, obtained with V = U (Initial) and with the three different
AVB options.
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Symbol Meaning Value
g Gravitational acceleration 9.81 m s−2

L Length of the domain 1, 000 m
W0 Channel width 1 m
W1 Derivative of the channel width with respect to z 0
zb Bottom elevation 0 m
hL Initial free surface elevation on the left-hand side of the dam 10 m
hR Initial free surface elevation on the right-hand side of the dam 1 m
nM Manning’s friction coefficient 0 m−1/3 s
∆x Computational cell width 1 m
∆t Simulation time 30 s

Table 4: Test 5 - dam-break problem in a rectangular channel. Parameters of the test case.

SOLV1_AVB1 Initial SOLV1_AVB2 Option 1
Dx Err h Err q Dx Err h Err q
1.0000000E-01 2.9381734E-02 3.1109247E-01 1.0000000E-01 2.9381734E-02 3.1109247E-01
2.0000000E-01 3.5730105E-02 3.9994524E-01 2.0000000E-01 3.5730105E-02 3.9994524E-01
5.0000000E-01 4.8899681E-02 5.3429398E-01 5.0000000E-01 4.8899681E-02 5.3429398E-01
1.0000000E+00 8.2037535E-02 9.0205580E-01 1.0000000E+00 8.2037535E-02 9.0205580E-01
2.0000000E+00 1.0682094E-01 1.0177771E+00 2.0000000E+00 1.0682094E-01 1.0177771E+00
5.0000000E+00 1.8137234E-01 1.7204365E+00 5.0000000E+00 1.8137234E-01 1.7204365E+00
1.0000000E+01 2.7775996E-01 2.3118179E+00 1.0000000E+01 2.7775996E-01 2.3118179E+00
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Figure 12: Test 5 - Dam-break problem in a rectangular channel. Convergence analysis
using HLL solver and the three AVB options. L2-norm between the computed output water
depth (left) or unit discharge (right) and analytical solution.

Since the analytical solution is available for the dam-break problem, a convergence ana-421

lysis is performed on this test case using the three AVB options and HLL solver. Figure 12422

shows that options 1 and 3 have almost the same convergence as initial formulation (slightly423

faster for Option 3), and confirms the non-convergence of Option 2 used with HLL solver.424

5.2.2. Test 6: frictionless dam-break problem in a triangular channel with flat bottom425

This test case is identical to the previous one (dam-break problem in a rectangular426

channel, without bottom slope or friction) except that the cross-section of the channel has427

a triangular shape. The parameters of the test case are the same as given in Table 4 for428

Test 5 except that W0 = 0 and W1 = 2 in the whole domain.429

The analytical solution is givent by [25]:430

u∗ + 4c∗ = uL + 4cL (66a)
431

Q∗ −QR = (A∗ −AR) cs (66b)
432 (

Q2

A
+
gA2

2

)
∗
−
(
Q2

A
+
gA2

2

)
R

= (Q∗ −QR) cs (66c)

where the subscript ∗ denotes the intermediate region of constant state.433

Equation (66a) expresses the invariance of the Riemann invariant (u+ 4c) across the434

rarefaction wave. Equations (66b) and (66c) are the jump relationships across the shock435

moving at the speed cs. The unknown shock speed can be eliminated from the system by436

combining the second and third equations. The system can then be solved iteratively to437

find the values of A and Q in the intermediate region of constant state using A = c2/g and438

Q = uA. Across the rarefaction wave, u and c verify:439

u+ 4c = uL + 4cL (67a)
440

u− c =
x

t
(67b)

yielding the following profile for u and c in the rarefaction wave:441

u(x, t) =
4
5

(
cL +

x

t

)
(68a)
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Symbol Meaning Value
L Length of the domain 1, 000 m
W0 Channel width 1 m
W1 Derivative of the channel width with respect to z 0
zbL Bottom elevation on the left-hand side of the dam 0 m
zbR Bottom elevation on the right-hand side of the dam 5 m
hL Initial free surface elevation on the left-hand side of the dam 15 m
hR Initial free surface elevation on the right-hand side of the dam 1 m
nM Manning’s friction coefficient 0 m−1/3 s
∆x Computational cell width 1 m
∆t Simulation time 30 s

Table 5: Test 5 - dam-break problem in a rectangular channel. Parameters of the test case.

442

c(x, t) =
1
5

(
4cL −

x

t

)
(68b)

from which A and Q profiles can be determined.443

Results of water elevation z, hydraulic head H and discharge Q, obtained with the three444

AVB options and the three solvers are given in Figure 13. In this case again, Roe’s solver445

gives satisfactory results with the 3 options as well as the initial formulation. However,446

very strong discontinuities at the critical point can be seen with Option 2 and 3 combined447

with HLL solver and Q-scheme, yielding to an underestimation of the maximum discharge.448

Moreover, the shock is incorrectly located with Option 2/HLL.449

5.2.3. Test 7: frictionless dam-break problem on a bottom step450

The parameters of this test case are given in Table 5. A bottom step of 5 m is located at451

the same abscissa as the initial water depth discontinuity. The analytical solution (that can452

be found for example in [1, 5]) as well as results obtained with the three AVB options and453

Roe’s solver are given in Figure 14. HLL solver and Q−scheme provide erroneous solutions454

with Option 2 and 3.455

6. Discussion - Conclusions456

In practical engineering applications, geometrical source terms arising e.g. from bottom457

slope or the non prismatic character of the channel are to be accounted for in the govern-458

ing equations. These source terms can in general not be discretized independently of the459

conservation part. Riemann-solver based techniques compute the fluxes from the average460

cell values on the left and right hand of the interface. The flux can be seen as a combin-461

ation of the average cell fluxes, augmented with a diffusion term involving the gradient in462

the conserved variable. Artificial oscillations may appear in the computed profiles if the463

gradients (and hence the diffusive part of the flux) is not estimated properly. The Auxiliary464

Variable-Based balancing, consists of using an “auxiliary” variable instead of the conserved465

one in the flux function, defined so as to allow the steady-state condition (of which static466

equilibrium is only a particular case) to be preserved. It is applied to the one-dimensional467

open channel equations in the present paper.468

Three different options of AVB have been tested in this paper in addition to the classical469

flux formulation that uses the gradient of the conserved variables: 1) free surface elevation;470

2) specific force and 3) hydraulic head. The application of the method to three classical471

approximate Riemann solvers (HLL, Roe and Q-scheme) is also presented.472

Various steady-state test cases including singular head losses, friction, bottom and width473

variation, non-prismatic configurations, have been implemented to assess the ability of the474

AVB approach to deal with transcritical flows, the critical points being well-known to intro-475

duce instabilities. In the steady-state test cases, the three options generally gives a better476

estimate of the uniform discharge than the initial formulation. Option 3, based on the hy-477

draulic head, is the one that gives a uniform discharge equal to the prescribed one with478

the best accuracy, for each steady-state test case and in the whole domain, except across479

hydraulic jumps where a small spike remains. It is important to check the validity of these480

approaches for unsteady states configurations. Indeed, some examples in the literature that481

give correct results in steady state configurations (such as [28]) have revealed incorrect on482
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Figure 13: Test 6 - Dam-break problem in a triangular channel. a) Analytical solution,
b) HLL solver, c) Roe’s solver and d) Q-scheme. For each sub-figure, top: hydraulic head
H and water elevation z, bottom: discharge Q, obtained with V = U (Initial) and with the
three different AVB options.
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g PhiL hL PhiR hR Dzb t x0
9.81 1 15 1 1 5 30 500

Inconnues
h1 11.923502 xi x u c h zb z q
q1 31.365813 -24.26108 -227.8324 0 12.13054 15 0 15 0
h0 4.6460231 région L -12.13054 136.0838 0 12.13054 15 0 15 0
q0 31.365813 -11.735952 147.92144 0.2630587 11.999011 14.676479 0 14.676479 3.8607759
h2 4.077074 -11.341364 159.75909 0.5261175 11.867481 14.356484 0 14.356484 7.5531972
q2 31.005482 -10.946776 171.59673 0.7891762 11.735952 14.040017 0 14.040017 11.080047
cs 10.076287 -10.552188 183.43437 1.0522349 11.604423 13.727077 0 13.727077 14.44411

-10.157599 195.27202 1.3152937 11.472893 13.417663 0 13.417663 17.648168
Fonctions à annuler -9.7630113 207.10966 1.5783524 11.341364 13.111777 0 13.111777 20.695005
Eq.(1) 0 -9.3684232 218.9473 1.8414112 11.209834 12.809418 0 12.809418 23.587404
Eq. (2) 0 -8.9738351 230.78495 2.1044699 11.078305 12.510585 0 12.510585 26.32815
Eq. (3) 0 -8.579247 242.62259 2.3675286 10.946776 12.21528 0 12.21528 28.920025
Eq. (4) -3.36E-09 -8.1846589 254.46023 2.6305874 10.815246 11.923502 0 11.923502 31.365813
Eq. (5) 0 Région 1 0 500 2.6305874 10.815246 11.923502 0 11.923502 31.365813
Eq. (6) -1.137E-08 0 500 6.75111 6.75111 4.6460231 5 9.6460231 31.365813
Eq. (7) -3.23E-07 0.0640295 501.92089 6.7937964 6.7297669 4.6166934 5 9.6166934 31.364875

0.128059 503.84177 6.8364827 6.7084237 4.5874565 5 9.5874565 31.362067
L1 L -12.13054 0.1920885 505.76266 6.879169 6.6870805 4.5583125 5 9.5583125 31.357402
L1 1 -8.1846589 0.256118 507.68354 6.9218554 6.6657373 4.5292614 5 9.5292614 31.350892
L1 2 1.2805901 0.3201475 509.60443 6.9645417 6.6443942 4.5003032 5 9.5003032 31.342549

0.384177 511.52531 7.007228 6.623051 4.4714378 5 9.4714378 31.332384
0.4482065 513.4462 7.0499144 6.6017078 4.4426653 5 9.4426653 31.32041
0.512236 515.36708 7.0926007 6.5803647 4.4139857 5 9.4139857 31.306638

0.5762655 517.28797 7.135287 6.5590215 4.3853989 5 9.3853989 31.29108
0.640295 519.20885 7.1779734 6.5376783 4.356905 5 9.356905 31.273748

0.7043245 521.12974 7.2206597 6.5163352 4.328504 5 9.328504 31.254654
0.768354 523.05062 7.2633461 6.494992 4.3001958 5 9.3001958 31.23381

0.8323836 524.97151 7.3060324 6.4736488 4.2719806 5 9.2719806 31.211228
0.8964131 526.89239 7.3487187 6.4523057 4.2438581 5 9.2438581 31.18692
0.9604426 528.81328 7.3914051 6.4309625 4.2158286 5 9.2158286 31.160897
1.0244721 530.73416 7.4340914 6.4096193 4.1878919 5 9.1878919 31.133171
1.0885016 532.65505 7.4767777 6.3882762 4.1600481 5 9.1600481 31.103755
1.1525311 534.57593 7.5194641 6.366933 4.1322972 5 9.1322972 31.07266
1.2165606 536.49682 7.5621504 6.3455898 4.1046392 5 9.1046392 31.039899
1.2805901 538.4177 7.6048367 6.3242467 4.077074 5 9.077074 31.005482

Région 2 10.076287 802.28862 7.6048367 6.3242467 4.077074 5 9.077074 31.005482
10.076287 802.28862 0 3.132092 1 5 6 0
20.152575 1104.5772 0 3.132092 1 5 6 0
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Figure 14: Test 07 - Dam-break problem on a bottom step. a) Analytical solution; b) top:
water surface elevation z and hydraulic head H, bottom: discharge Q, obtained using Roe’s
solver with V = U (Initial) and with the three different AVB options.

transient test cases, such as shown in the three unsteady configurations presented (dam-483

break in rectangular or triangular channels and over a bottom step) where Option 2 gives484

bad results when used with HLL or Q-scheme.485

Finally, when used with Roe’s solver, Option 3 is the only one that produces correct486

results for all the test cases. An interesting feature of this option is that it allows head loss487

functions (stemming from e.g. bridges or other singularities) to be accounted for directly488

within the discretized equations. In contrast with what is classically done in commercially489

available river packages, the AVB method eliminates the need for internal boundaries across490

hydraulic singularities.491

492

In the present paper, the geometric source term is accounted for by integrating the493

bottom slope over the surface of the (non-horizontal) computational cell. This procedure is494

rather easy to carry out when the cell is full. But in the case of wetting/drying, the water495

does not occupy the full length of the cell. Computing the integral of the term ghS0 over496

only part of the cell becomes a very complex and time-consuming task. The approach to497

source term estimation proposed in the present paper is thus not the best possible option498

to the discretization of real-world geometries and practical river problems. An alternative499

option is currently under study. It consists in considering each cell as prismatic and lumping500

the geometric source term at the cell interfaces. This approach, however, requires that a501

proper splitting of the lumped source terms between the adjacent cells to the interfaces be502

devised. This point is currently under study.503

Finally, this paper deals with finite volume Godunov-type discretizations, but if higher-504

order schemes are to be designed, the AVB method may be applied by reconstructing the505

auxiliary variable.506
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