
HAL Id: hal-01196746
https://hal.science/hal-01196746v1

Submitted on 13 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification of material properties using indentation
test and shape manifold learning approach

Liang Meng, Piotr Breitkopf, Balaji Raghavan, Gerard Mauvoisin, Olivier
Bartier, Xavier Hernot

To cite this version:
Liang Meng, Piotr Breitkopf, Balaji Raghavan, Gerard Mauvoisin, Olivier Bartier, et al.. Identifica-
tion of material properties using indentation test and shape manifold learning approach. Computer
Methods in Applied Mechanics and Engineering, 2015, 297, pp.239-257. �10.1016/j.cma.2015.09.004�.
�hal-01196746�

https://hal.science/hal-01196746v1
https://hal.archives-ouvertes.fr


Identification of material properties using indentation test and

shape manifold learning approach

L. Menga∗, P. Breitkopfa, B. Raghavanb, G. Mauvoisinc, O. Bartierc, X. Hernotc

a Sorbonne Universités, Université de Technologie de Compiègne, CNRS
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Abstract

The conventional approach for the identification of the work hardening properties of a material

by an indentation test usually relies on the force-displacement curve. However, finite element

modeling of the indenter-specimen system is a complex task, and the unicity of the solution to

the inverse problem of identifying material parameters using the force-displacement curve is not

always guaranteed. Also, the precise measurement of the displacement of the indenter tip requires

the determination of the indenter frame compliance and indenter tip deformation. To alleviate

these problems, we propose in this work an approach based solely on the 3D indentation imprint

shape measured after indenter withdrawal, rather than relying on the minimization of the pointwise

discrepancy between the experimental and simulated indentation curve. We first build a mathe-

matical “shape space” of indentation shapes in which a lower-dimensional manifold of imprints

admissible according to a postulated material constitutive law is approximated. Then, we solve

the inverse problem by using a series of predictor-corrector algorithms minimizing the distance

between the estimated solution and the experimental imprint in this shape space. We finally apply

the proposed approach to indentation tests using a spherical tip indenter on two different materials:

a C100 steel specimen and a specimen of the AU4G (AA2017) aluminium alloy.

Keywords: Identification, Shape manifold learning, Indentation test, Reduced Order Modeling

1. Introduction

The identification of material work hardening properties by an indentation test [1, 2] is consid-

ered as non-destructive, especially when compared to the tensile test. With the help of indentation

tests carried out on different scales, a wide range of materials can be characterized: metals, alloys,
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ceramics, concrete [3] or even graded materials[4–8] and the test can also be applied to an actual

structure without the need for cutting-out a specimen for tensile testing.

Indentation-based assessment of material properties usually relies on the recorded force-displacement

curve (P-h curve) [9–12] obtained in two main phases. In the loading phase, a hard indenter is

pressed against the specimen surface. The applied load is increased while the indenter penetrates

into the specimen. This phase lasts until the force (or penetration depth) reaches an a priori defined

value and is followed by removing the indenter from the specimen (unloading phase). The force

exerted on the indenter is recorded against the penetration depth over a series of time instants. This

P-h curve (Fig.1) is then the primary information used for the identification of material properties.

A conventional deterministic identification approach is then applied to minimize the pointwise

discrepancy between the simulated and measured P-h curves

Jh(c) =

N1
∑

i=1

(

hs
i
(c) − he

i

he
max

)2

, (1)

where c is the vector of material parameters to be identified; hi is the instantaneous penetration

depth of indenter at time instant i = 1, 2, 3 · · ·N1; the superscript ’s’ refers to ’simulated’ by the

Finite Element Method (FEM), while the superscript ’e’ denotes ’experimental’. Mathematical

programming procedures are then used to identify the material properties c by solving

c∗ = Argmin
(

Jh(c)
)

. (2)

However, nearly identical P-h curves [13, 14] can often be obtained for different materials and
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Figure 1: Typical force-displacement (P-h) curve.

this makes the solution to the inverse problem non-unique. Another approach consists in taking

into account the residual deformation of the specimen’s surface at the conclusion of the indenta-

tion test, as additional information to complement the P-h curve [15, 16] since different materials
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generally exhibit diverse plastic piling-up (Fig.2) or elastic sink-in effects. A review of existing

literature reveals extensive research on combining the traditional indentation test with the map-

ping of residual deformation (indentation imprint) in order to provide more reliable information

for the identification of material properties [4, 17–22]. An atomic force microscope was adopted

by [4] to measure the maximum piling-up observed at the end of the test and eventually obtain a

well-defined inverse problem for the Al2024 alloy. Imprint mapping was also employed for the

identification of bi-dimensional states of stress [22]. This method was later applied to the identifi-

cation of graded material properties of thin layers on a substrate in [21]. In the inverse problem of

property identification using the imprint shape, the cost function Jh in Eq.(1) is replaced by

Ju(c) =

N2
∑

j=1

(

us
j
(c) − ue

j

ue
max

)2

, (3)

where u j denotes the vertical coordinate of a measured point j with the initial surface of speci-

men serving as the reference plane; N2 is the number of sample points chosen from the specimen

surface, and this value depends both on the resolution of the imprint scanning instrument and the

density of the FE mesh used.

The traditional approach for determination of plastic mechanical properties requires that the in-
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Figure 2: Typical imprint shape.

dentation load/Penetration depth (P-h) response be obtained with sufficient accuracy and precision

[23–25]. Two factors that can greatly affect this are the indentation frame/machine compliance and

the deformation of the indenter tip. As a result, the behavior of indenter has also been investigated.

The indenters were mainly simulated as perfectly rigid bodies to eliminate the nonlinear deforma-

tion during the indentation test [26, 27], while [28] corrected a possible elastic deformation of the

indenter by a system reduced modulus computed from the Young’s modulus and the Poisson’s ra-

tio of both the indenter and the specimen. Machine compliance can easily be influenced by tilting

or deforming the specimen [24]. The determination of the imprint area, which must be known

for the estimation of the machine compliance, is not easy, especially in nanometer scale [25, 29].

Various methods used for the determination of machine compliance can lead to different values

of compliance [10]. Presence of compound between the indenter and the indenterholder can lead

to a load dependent compliance [24]. An additional difficulty lies in determining the reference
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point, or detecting the moment when the indenter comes into contact with the specimen surface.

The importance of detecting start point has been pointed out by [30]. It is also recommended to

calculate the derivative of the indentation curve in order to limit the effects of a false determination

of the zero position [31].

It has been shown that even a small noise in the input data makes the accurate identification of

parameters difficult [11, 12]. The indentation curve is observed to be mesh-dependent due to large

oscillations with a coarse mesh [32]. A final issue is that the two sources of errors given by Jh(c)

and Ju(c) cannot be compared numerically. To alleviate this, [4] proposed calibrating each term

by a weighting coefficient so as to render them comparable, however, this approach is somewhat

arbitrary. This, then, is an additional argument in favor of solely using the imprint shape in place

of the indentation curve.

In the present work, we propose a novel material parameter identification protocol based only on

the imprint shape of the indentation test using Proper Orthogonal Decomposition [33, 34] and

manifold learning [35–37]. Following [38, 39], originally applied to the numerical assessment of

spring back for the deep drawing process, we build a “shape space” [40] and we apply the concept

of shape manifold to describe all the imprint shapes admissible for a postulated constitutive law.

The shape manifold is constructed by a series of simulated shape imprints using Design of Ex-

periments (DOE) and POD approach. We then propose a family of manifold walking algorithms

to determine the search direction in an inverse analysis. Finally, we demonstrate the application

of our protocol using an indentation test with a spherical tip indenter on C100 steel and AU4G

aluminium alloy.

The remainder of the paper is organized in the following manner: we describe the proposed

methodology in detail in Section 2. The Manifold learning algorithms are then presented in Sec-

tion 3. In Section 4, we apply the protocol to the identification of material hardening parameters

of the C100 steel, using the actual experimental indentation imprint obtained by using the Chro-

matic Confocal Imaging technique. A detailed discussion is also made at the end of this section to

demonstrate the robustness of the proposed method with respect to the number of retained modes,

order of polynomial basis as well as number of snapshots. In Section 5, the hardening properties

of a specimen of AU4G alloy is also studied, in which the experimental imprint is measured with

bigger noise. The paper ends with concluding comments and suggestions for future work.

2. Basic Approach

We first consider the numerical simulation of an axisymmetric indentation test on a specimen

using a spherical tip indenter. The typical FE model and the residual deformation of the specimen

are shown in Fig.3. The imprint shape obtained by simulation using the above FE model is char-

acterized by the vertical displacements of the surface nodes of the specimen, stored in a vector

s ∈ ℜn, where n is the number of surface nodes of the mesh in the domain of interest. The identi-

fication of the material properties then aims at finding a material properties set c∗ = (c1, c2 · · · cl)

(l is the number of parameters identified), which minimizes the error between the simulated and

experimental imprint. The fundamental hypothesis of our method is that the set of all possible

imprint shapes governed by a postulated constitutive law forms a smooth manifold in some m-

dimensional space (m ≪ n). The identification of material properties will be then carried out in
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Figure 3: FE simulation model of indentation test and residual displacement of the specimen.

this lower-dimensional space. We propose to approximate this space by successive applications of

DOE and POD.

2.1. Construction of the shape space

We begin with M numerical experiments defined by an appropriate DOE for the varying set of

design parameters c(i), i = 1, 2 · · ·M representing the material parameters to be identified. Different

imprint shapes s(i) = s(c(i)) extracted from the numerical simulation results are then considered as

imprint snapshots (Fig.4). The centered snapshot matrix S is given by

S = [s(1) − s, s(2) − s, · · · s(M) − s], (4)

where s is the mean snapshot

s =
1

M

M
∑

i=1

s(i). (5)

Singular value decomposition [41] of S yields

S = ΦDVT, (6)

where the diagonal matrix D contains the singular values di, i = 1, 2 · · ·M; each column of

Φ = [φ(1),φ(2) · · ·φ(M)] is an eigenvector of the covariance matrix C = SST. The eigenvectors

φ(i) are also called the ith POD modes. Fig.5 gives the mean of all snapshots from Fig.4 and the

modes scaled by the corresponding eigenvalues λi = d2
i . Each snapshot s(i) can then be accurately

reconstructed by

s(i) = s +Φα(i) = s +

M
∑

j=1

α
(i)

j
φ( j), (7)
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Figure 4: A series of snapshots obtained for varying material parameters.

where α
(i)

j
is the projection coefficient for the ith snapshot on the jth mode

α
(i)

j
=

(

φ( j)
)T(

s(i) − s
)

, j = 1, 2 · · ·M. (8)

At this point, we build such a shape space, the origin of which is the mean snapshot and the POD

modes serve as the orthogonal basis. Consequently, each imprint snapshot can be described by its

coordinates in alpha space α(i), i = 1, 2 · · ·M by Eq.(8).

In standard POD, one considers only m ≪ M significant modes corresponding to the biggest

eigenvalues of the covariance matrix by referring to the following criterion

ǫ = 1 −

∑m
i=1 λi

∑M
j=1 λ j

. (9)

and by fixing a threshold for ǫ. However, the difficulty lies in the choice of a proper value for

ǫ. Here, instead of reducing the number of modes, we exploit the concept of the α−manifold

and analyze the dependence of projection coefficients αi with respect to the material parameters

c j, j = 1, 2 · · · l

αi = αi(c1, c2 · · · cl), i = 1, 2 · · ·M. (10)

Thus, we may use all the modes without truncation i.e. m = M. In this case, the approximation of

the imprint shape depending only on the l constitutive parameters but not on the number of modes

s̃(i) = s +

m=M
∑

j=1

α
(i)

j
(c1, c2 · · · cl)φ

( j). (11)

In the cases where the simulated imprints are already orthogonal, we will keep all the modes, but

the approximation in Eq.(11) will still depend only on l < M parameters. However, in most cases,

the reduction of the number of modes is still possible, and the effect of adopting different numbers

of modes is analyzed in Section 4.3.1.
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2.2. Manifold M of admissible shapes

For a set of M simulated imprint shapes, Eq.(8) gives their coordinates α(1), α(2) · · · α(M) in

α-space. We recall the fundamental assumption that all imprint shapes admissible with a given

material law lie on a smooth manifold

M(α) = 0. (12)

We use a parametric representation of M

αi(c) = p
T(c)a

(i), i = 1, 2 · · ·M, (13)

with polynomial basis p and the coefficient vectors a
(i) approximated for all α

( j)

i
, j = 1, 2 · · ·M by

minimizing least-square error

a
(i) = Argmin

1

2

M
∑

j=1

(

p
T(c( j))a

(i) − α
( j)

i

)2

. (14)

For each point in the design space defined by the constitutive parameter values, we can find a

corresponding point on the manifold by using Eq.(13). On the contrary, each point on the manifold

corresponds to an imprint snapshot and, by consequence, also to a set of parameter values in design

space. Thus a one-to-one relationship is built up between the design space and the shape manifold

in α-space (Fig.6). For the purpose of visualization, only a 3D section of the higher-dimensional

space is presented.

2.3. Identification of material properties

The goal of the identification procedure is then simply to minimize the distance between the

simulated and experimental imprint (sexp) shapes in α-space. The projection of the experimental
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imprint s̃exp is

s̃exp = s̄ +ΦΦT(sexp − s̄) = s̄ +Φαexp, (15)

and it is represented by the coordinates αexp in shape space. When comparing s̃exp with the ex-

perimental imprint sexp (Fig.7), we note that the measurement noise is smoothed out by linear

combinations of smooth POD modes. The projection of the experimental imprint in α-space may

be thus be considered as a physics-based smoothing procedure.

According to the fundamental hypothesis used in this paper, even assuming that the indented ma-

terial behaves exactly according to the postulated hardening law, the projection αexp will not lie

on the global manifold M (Fig.6). In this case, noise in measurement is the only reason for the

offset of the experimental imprint from the shape manifold. In the implementation of our method,

however, except for the measurement noise, there is an additional factor: the inaccuracy of local

manifold (since it is merely a lower order approximation of the global manifold). Generally, in

current work, since the manifold is being approximated in the vicinity of the snapshot, and consid-

ering the simplicity of the problem itself (only two parameters are involved, so the manifold will

not be particularly complex), we hold the idea that the error caused by measurement noise must

be dominant compared with that incurred by manifold inaccuracy. Thus, ignoring the inaccuracy

of local manifold, our goal is to find the closest point α∗ on M such that

c∗ = Argmin‖(αexp − α(c))‖, α(c) ∈ M. (16)

Therefore, the identification of material properties can be carried out in at most an M-dimensional

space. We recall that M ≪ n, where n is the dimensionality of the imprint shape vector s used in

Eq.(4). Taking into account Eq.(7) and (15), we note that the convergence criterion in Eq.(16) is

equivalent to

s∗ = s(c∗) = Argmin
s

‖s̃exp − s(c)‖. (17)
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We summarize the steps involved in our shape manifold-based identification in α-space as fol-

lows:

• Construct a shape space using an appropriate DOE;

• Project real experimental imprint shape into the shape space;

• On the manifold, find the coordinates of closet point to the experimental projection;

• Derive the material parameters in design space.

Note that, the identification is performed in the α− space, and the procedure does not depend

on the number of retained modes m, but it depends on the intrinsic dimensionality d ≤ l of the

manifold.

3. Algorithm families

According to the fundamental hypothesis our current work is based on, a global manifold is

defined as a smooth hyper surface that connects all the imprint shapes admissible according to the

postulated constitutive law. Therefore, simply projecting the experimental imprint on the global

α−manifold and finding the closest point to the experimental snapshot will lead to the desired solu-

tion. However, this would demand extensive off-line simulations in most cases simply to construct

with sufficient accuracy a global manifold for identification, since it is always high-dimensional

and nonlinear. In the present work, we propose an on-line approach which constructs only the

useful portion of M (local manifold) progressively by using the predictor-corrector strategy issued

from our former work [38, 39]. Thus the manifold is represented by a series of local polynomials.

For illustration purposes, we adopt a global two-parameter-design space and a local design win-

dow, with the width and height referring to the range of variation of the two parameters at current

iteration.

3.1. panning

In this algorithm, the design window pans in the whole design space while the window size

remains unchanged (Fig.8). For the sake of clarity, only the snapshot located at the center of each
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DOE is depicted. For the first iteration step, we calculate a prediction with the initial design win-

dow. If the new prediction lies outside of this window, we limit it to the window boundary and the

next iteration window will be centered around this new prediction. We repeat this process until the

prediction is positioned in the current window and the convergence criterion in Eq.(16) is satisfied.

Design space exploration by panning

initial estimation

prediction

experimental

iter 1

iter 2

iter n

Design space 
width

heigth

Figure 8: Panning iterations.

3.2. zooming

In this algorithm, the first design of experiments covers the entire design space, after which the

window size is cut down with each subsequent iteration, as shown in Fig.9. Similar to the panning

algorithm, a new prediction is first computed with the current design window. We center the new

design window (of smaller size) around the estimate. This process is repeated until convergence.

Design space exploration by zooming

experimental

iter 1

iter 2

Design space 

iter 3

iter n

1 2
3

n

center of design space

Figure 9: Zooming iterations.
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3.3. panning & zooming

The panning & zooming method essentially combines both of the previous approaches. As

illustrated in Fig.10, the general idea behind this algorithm is the use of a panning search at the

beginning until the estimate for the next iteration lies inside the current design space instead of on

the boundary, after which the search scheme will be switched to zooming in order to improve the

accuracy of the local manifold.

Design space exploration by panning & zooming

initial estimation

prediction

experimental

iter 1

iter 2

iter n

Design space 

iter n+1

Figure 10: Combination of zooming and panning.

4. MAIN TEST CASE: C100 STEEL

4.1. Problem description

The methodology proposed in the previous sections was verified by an axisymmetric indenta-

tion test on C100 steel using a spherical tip indenter with a radius of 0.5 mm. This kind of indenter

does not give a useful P-h curve on account of the presence of compound between the indenter and

indenter holder, and thus the authors felt that it was a good candidate for our imprint-based iden-

tification protocol. The material was chosen for its homogeneous micro-structure, which ensures

the reproducibility of the indentation test. The specimen was carefully sectioned and polished

using fine emery papers (up to 1200 grit) and diamond suspensions (6 and 3 µm) in order to avoid

uncertainties due to roughness. The experimental (real) imprint shape was obtained using a metro-

logical machine Altisurf 500 based on the optical principle of chromatic confocal imaging.

A power Hollomon’s law is employed for the isotropic hardening of our test case since it is a good

approximation for most metals and alloys [42]. This law describes the relationship between the

equivalent stress and the plastic strain, while the elastic portion follows Hooke’s law. The conti-

nuity of the stress-strain curve at the elastic limit is enforced, resulting in

σ = σy

(

E

σy

)n

εn, (18)
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where σ is the equivalent stress, and ε refers to the total strain. The behavior law of the material is

thus described by three parameters: yield stress σy, strain hardening exponent n and Young’s mod-

ulus E. E is fixed at 21000MPa and Poisson’s ratio ν is fixed at 0.3, while two other parameters

that control the plastic properties will be identified. Even if we already have a general estimation

for the properties of the above-mentioned material (σy ≈ 100Mpa, n ≈ 0.3), the parameters are

identified in a large design space (n ∈ [0.1, 0.5], σy ∈ [50, 400]) so as to keep the material of

interest away from the boundaries [43]. This will ensure the accuracy during the inverse analysis

and allow to test the robustness of the proposed methodology.

The numerical simulation of the indenter test is carried out within the commercial software ABAQUS

[44] by using the FE model in Fig.3. Four-noded axisymmetric elements (CAX4) were used with

4394 elements for the specimen and 6070 elements for the indenter. The contact interface be-

tween the indenter and the specimen was characterized by a Coulomb friction coefficient of 0.1.

The indentation force is progressively increased up to a prescribed value (Fmax = 500N) and the

unloading phase is simulated in one step, resulting in a final imprint shape after spring back.

Due to the axisymmetric property of the model, the imprint shape (simulated) was obtained by ex-

tracting the vertical displacements of sample points on half of the imprint, while the experimental

indentation imprint shape was voxelized using a resolution of 200 × 200 by scanning the vicinity

of the center of the imprint. The step length along each direction was 10 µm which rests with the

resolution of the scanning machine.

4.2. Results and discussion

Three manifold learning algorithms are used for the resolution of identification problem of

this test case. A quadric polynomial basis (2D), containing 6 different terms, was applied for the

construction of the smooth manifold in Eq.(13). 7 snapshots were chosen in each DOE using

Latin Hyper Cubic sampling. These snapshots were then decomposed using POD with a full basis

of size 7, giving a set of α1, α2 · · ·α7 for each of the 7 snapshots. In the present work, we have

used a full basis without truncation, leading to a 7−dimensional shape space. For the purpose of

visualization, only the first three coordinates were chosen. We identify two plastic parameters of

C100 in this mathematical space by using the convergence criterion given in Eq.(16). The error in

identification by comparing the physical and simulated imprint shapes is calculated by

ε1 =
‖s̃exp − s(σy, n)‖

‖s̃exp‖
. (19)

In order to demonstrate the advantage of using this adaptive mathematical shape manifold, we

have also calculated the error between the imprint shape obtained by simulation using the identi-

fied parameters and the real experimental data

ε2 =
‖sexp − s(σy, n)‖

‖sexp‖
. (20)
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4.2.1. panning

Table 1: Iteration results using panning approach.

Iter σy n ∆σy ∆n ‖αexp − α
∗‖ ε1 ε2

1 205.0 0.225 30 0.05 0.0629 8.01% 8.78%

2 190.1 0.226 30 0.05 0.0327 4.15% 5.56%

3 175.1 0.239 30 0.05 0.0292 3.71% 5.16%

4 160.1 0.260 30 0.05 0.0219 2.79% 4.57%

5 145.1 0.275 30 0.05 0.0171 2.18% 4.20%

6 130.2 0.294 30 0.05 0.0118 1.50% 3.88%

7 115.4 0.312 30 0.05 0.0052 0.66% 3.58%

8 104.0 0.330 30 0.05 0.0030 0.38% 3.53%

Hardening coefficient n
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Figure 11: Panning iterations (Table.1).

The iteration history for identification using the panning algorithm is given in Table.1. Design

of experiments is centered around successive sets of σy and n. ∆σy and ∆n are the size of the

design window. The pattern of exploration of the total design space by panning the design window

is shown in Fig.11. Different symbols are used for odd and even iteration numbers for clearer

visualization. For overlapping windows, the snapshots can be reused in order to save computing

time.
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0.2870 0.2995 0.3120 0.3245 0.3370

100.3726

107.8726

115.3726

122.8726

130.3726

1

2

3

4

5

6

7

(7)

exp

*
= 0.0052

1

2

3

Window in design space (iteration 7) Shape manifold (iteration 7)

s
(7)

,

c*(7)

*(7)

Figure 13: Material parameters identification procedure by design space and local manifold 7 in α-space.

*(8)

0.3047 0.3172 0.3297 0.3422 0.3547

88.9795

96.4795

103.9795

111.4795

118.9795

1

2

3

4

5

6

7

(8)

exp

*
= 0.0030

1

2

3

c*(8)

s
(8)

,

Window in design space (iteration 8) Shape manifold (iteration 8)

Figure 14: Material parameters identification procedure by design space and local manifold 8 in α-space.

14



Successive design spaces and corresponding local manifolds are shown in Fig.12-14. The

green diamond, referring to the projection of experiment imprint in α-space, converges to the

center of the local coordinate system, which also implies that the estimated imprint convergences

to sexp. The black dot in design space represents the current estimation parameters corresponding

to the point on M closest to the projection of experimental imprint. The local manifolds in this

panning method are not accurately approximated for the simple reason that we are using only a

quadric surface to approximate M in a relatively wide range(∆σy = 30,∆n = 0.05). With the

panning method, we can only obtain a general estimate for the material parameters. The accuracy

can be improved by either increasing the degree of polynomial basis or by shrinking the size of

the window.

Table 2: Iteration results using regular zooming approach.

Iter σy n ∆σy ∆n ‖αexp − α
∗‖ ε1 ε2

1 250.0 0.250 320 0.3 0.2512 31.97% 32.16%

2 99.79 0.394 160 0.15 0.0155 1.97% 4.25%

3 98.32 0.336 80 0.08 0.0150 1.90% 3.89%

4 98.65 0.331 40 0.04 0.0056 0.71% 3.59%

5 112.44 0.327 20 0.02 0.0147 1.87% 3.57%

6 105.80 0.326 10 0.01 0.0092 1.16% 3.54%

7 105.46 0.326 5 0.005 0.0079 1.01% 3.57%

8 105.79 0.326 2.5 0.002 0.0069 0.87% 3.57%
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Figure 15: Zooming steps (Table.2).
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4.2.2. zooming

For this algorithm,the convergence of the material properties is shown in Table.2, where σy

stabilized around 105 and n around 0.326. Clearly, the standard error ε2 has stabilized at 3.6%

after only 3 iteration steps, while the proposed error ε1 drops to around 1% by using the projected

imprint in shape space. Even the error ε1 in the 4th iteration is smaller than the last one, we still

prefer the material identified in the last step for the reason that the local manifold is more accurate

so as to obtain the projection of the experimental imprint. The last manifold is considered accurate

since the identification is carried out in a small window size and the material parameters vary only

in a small range: 2.5 for σy and 0.002 for n. The iteration procedure in design space is shown

in Fig.15. Also, imprint snapshots at various stages and the experimental imprint are compared

(Fig.16). It is clear that the simulated imprint shapes will concentrate around the experimental one

when the local manifold patch decreases in size along with subsequent iterations.
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4.2.3. panning & zooming

Finally, a combined algorithm of panning and zooming is applied. A similar estimation of

material properties is obtained (Table.3). In the first four steps, the panning method is introduced

to iteratively locate the most promising zone, and during these steps the design window remains

the same size. Next, the zooming algorithm is adopted in order to improve the accuracy of the local

manifold for better identification. The first searching algorithm is automatically switched to the

second one as soon as the estimate for the next iteration is located inside the current design space

rather than on the boundary. The pattern of exploration in design space is visualized in Fig.17.

Table 3: Iteration results using panning & zooming.

Iter σy n ∆σy ∆n ‖αexp − α
∗‖ ε1 ε2

1 175.0 0.300 40 0.04 0.1989 25.31% 25.56%

2 155.0 0.280 40 0.04 0.0697 8.87% 9.62%

3 135.2 0.287 40 0.04 0.0175 2.22% 3.98 %

4 120.5 0.307 40 0.04 0.0083 1.05% 3.68%

5 107.0 0.326 20 0.02 0.0059 0.75% 3.54%

6 108.0 0.323 10 0.01 0.0121 1.53% 3.57%

7 106.7 0.323 5 0.005 0.0089 1.13% 3.56%

8 107.0 0.324 2.5 0.002 0.0096 1.22% 3.57%

Hardening coefficient n
0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

Y
ie

ld
 s

tr
e

s
s
 σ

y

80

90

100

110

120

130

140

150

160

170
Design space exploration by panning & zooming

Initial 

Figure 17: Combination of zooming and panning (Table.3).

4.2.4. Comparison of three methods

For the purpose of comparison, the convergence patterns of material parameters identified by

the three different algorithms are depicted in Fig.18. The robustness of the identification procedure
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in lower-dimensional α−space is confirmed by using different initial points for the three algorithms

which lead to identical material parameters. In addition, it may also be concluded from the itera-

tion histories that the combined zooming & panning approach gives the best convergence of both

parameters. Therefore, In the following section, we retain the panning & zooming algorithm.

The identification error ε1 is shown in Fig.19. Obvious decreases are observed, and these stabilize

at around 1%. It is worth mentioning that this error is more reliable if the design space is smaller

for each iteration step. That’s why we prefer the result in the 8th iteration to that in the 4th iteration

in Table.2.
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Figure 18: Convergence patterns for the parametric identification of n and σy.
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with identified parameters and the reconstructed experimental imprint with POD modes.
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4.3. Verification of robustness

4.3.1. Truncation on POD modes

In our work, we aim to minimize the distance between the experimental and simulated imprints

in shape space. Thus, it is unnecessary to perform any truncation like in the traditional POD

method. First of all, the optimization problem is already placed in a rather low dimensional space,

and computing the Eulerian distance is straightforward and easy. In addition, for the sake of higher

precision, we retain all POD modes, and we do not choose a threshold value for POD truncation

either. Moreover, the first several modes are dominant, while the others are merely numerical noise

with negligible amplitude (the corresponding α−coordinates tend to zero). By consequence, their

influence on the convergence criterion is fairly limited. To verify this, we performed a series of

identifications by employing different number of modes (Table 4).

Table 4: Identified results with truncated POD modes.

Parameters m=2 m=3 m=4 m=5 m=6

σy 245 108.0 106.0 105.8 106.0

n 0.175 0.321 0.326 0.326 0.326

We observe that the values of σy and n almost stabilized for m ≥ 4. Thus, we would like to

conclude that in order to identify material properties using the shape manifold learning approach,

the size of minimum orthogonal basis of the reduced shape space is m = 2l, where l is the number

of parameters. However, this is still open to discussion, and it is one of the reasons why we prefer

using all the modes without truncation.

4.3.2. Sensitivity to different prescribed loads

In this section, we have tested our method with a prescribed force of 300N (instead of the

previously used 500N). Due to the absence of experimental indentation data for this value, we first

generated a pseudo imprint shape using the same simulation model and the pre-defined material

parameter set: σy = 107MPa, n = 0.324. Next, a 3% random noise was introduced and finally, the

’missed’ parameters were identified (results shown in Table 5).

As the table indicates, acceptable errors are obtained (lower than the percentage of introduced

Table 5: Identified results with prescribed force of 300N.

Parameters Identified value reference value relative error

σy 109.7 107 2.52%

n 0.3208 0.324 0.99%

noise) when comparing with the pre-defined ones, and we may attribute this error to the inaccuracy

of the manifold and noise introduced. However, it must be mentioned that, when using our method,

the maximum force needs to be large enough to involve plastic deformations. Otherwise, imprint-

based identification would be impossible since all the deformation would be recovered after elastic

spring back.
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4.3.3. Inaccuracy of local manifold

In the previous section, we mentioned that when we project the experimental imprint onto the

shape space, even assuming that the indented material behaved exactly according to the postulated

plastic hardening law, the projection will never lie exactly on the manifold due to noise in the

measured data. While this statement is theoretically based on the fundamental hypothesis, and it

is only true for the an ”exact” manifold.

In the implementation of the current work, the local manifold is described by its parametric form

using least squares approximation, and thus it is inexact. Consequently, the offset of experimental

imprint from the local manifold may be attributed to two factors (assuming again that the indented

material hardens according the power law):

1. inaccuracy of manifold;

2. measurement noise.

In order to quantify these two errors, we adopt the manifold in Fig.14, and project a smooth imprint

simulated with the parameter set σy = 107 and n = 0.324 onto the α− space. We obtain a distance

of the projection to the manifold is 7.0×10−4, compared with 3.0×10−3 for the imprint with noise.

Thus, we may conclude that since the manifold is approximated in the vicinity of the snapshot,

and considering the simplicity of the problem itself, the error caused by measurement error needs

to be dominant compared with the error incurred by manifold inaccuracy. This statement could be

further explained by observing the accuracy of identification using even lower-order polynomial

basis in the next section.

4.3.4. The effect of polynomial basis

In present work, the higher-dimensional global manifold is approximated progressively by

lower-dimensional local ones based on a set of snapshots in the vicinities of current evaluation

point. A quadratic polynomial basis is adopted as it allows for gradient and Hessian evaluation.

However, the number of terms of quadratic basis increases rapidly with the number of parameters.

Therefore, we investigate a lower order bilinear basis for the sake of reduction in the number of

snapshots per iteration. The essential significance of lower order polynomial basis will be firmly

highlighted when more parameters need to be identified. For example, in the case where 5 param-

eters are involved, the number of snapshots per iteration needed for bilinear and quadratic basis is

16 and 32, respectively.

By choosing the same initial evaluation for the two parameters, a comparison of bilinear and

quadratic basis are conducted and the results are given in Table.6. Excepting for the almost identi-

cal results, it is also observed that, as expected, the total numbers of simulations for bilinear basis

is less than that for quadratic basis, 50 compared with 56.

Table 6: Identified results derived by adopting different polynomial basis.

Polynomial basis σy n Iterations Snapshots Total simulations

Quadratic 107.0 0.324 8 7 56

Bilinear 108.4 0.321 10 5 50
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4.3.5. The effect of number of snapshots M

In our fist test case on C100 steel, the local manifolds are approximated by a quadratic bivari-

ate polynomial basis, in which 6 coefficients need to be determined. However, considering the

numerical instability of simulation, we have chosen 7 snapshots to construct the local manifold so

as to guarantee the unicity of solution to Eq.(13) in the case where one of the simulations does not

converge.

To have a better understanding of the influence of the number of snapshots for each iteration, with

the same specimen as in Section 4, we performed several identification procedures by adopting

even more snapshots, and the stability can be observed form Table.7

Table 7: Identified results using different number of snapshots.

Parameters M = 7 M = 8 M = 9 M = 10

σy 104.0 105.6 106.6 105.0

n 0.330 0.324 0.325 0.322

5. SECOND TEST CASE: AU4G aluminum alloy

Our first test-case involved a material (C100 steel) that exhibited a hardening behavior rela-

tively close to that predicted by the Hollomon’s power law. In addition, there was little noise in

the imprint measurement. Both of these factors contributed to an accurate identification of the two

power law parameters, since the numerical imprint assuming power law hardening differed by less

than 4% from the experimental imprint with noise (Table.1-3).

While the first may not be the case each and every time we perform an indentation-based identifi-

cation, it is a relatively simple matter to use a different or higher hardening law for conducting the

FE simulations, since the order of the law and thus the number of parameters to be identified do

not in any way change the application of the protocol. For the second issue, imprint measurement

using our, and for that matter, any technique can generate noisy data despite taking every possible

measure to minimize this.

In order to demonstrate the robustness of the proposed protocol, we now present a second test-case

where the second of the above previously fulfilled criteria is not necessarily satisfied, i.e. noisy

measurement of the indentation imprint. For this, we performed axisymmetric indentation on a

specimen of the aluminium alloy AU4G (or AA2017) using a spherical tip indenter with a radius

of 0.5 mm for two different maximum loads: 240KN and 360 KN. The elastic properties of this

alloy are shown in Table.8.

The imprint was measured by chromatic confocal imaging with the Altisurf 500 machine used

previously. Once again, we have used the 2 parameter Hollomon’s power law with isotropic hard-

ening to generate the simulated imprints. As mentioned in the previous section, the combined

panning & zooming is the most reliable protocol for identification, thus the iteration histories

derived from panning & zooming are listed in Table.9 and Table.10, considering two different ex-

perimental setups (maximum penetration force Fmax equals to 240N and 360 respectively).
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Table 8: Elastic properties for AU4G alloy and indenter used for the FE simulations.

Material properties Specimen Indenter

Young’s moudulus 70GPa 600GPa

Poisson’s ratio 0.33 0.23

Table 9: Iteration results for AU4G alloy (Fmax = 240N).

Iter σy n ‖αexp − α
∗‖ ε1 ε2

1 300.00 0.250 0.0746 32.24% 32.59%

2 280.01 0.230 0.0532 23.02% 23.57%

3 260.03 0.210 0.0304 13.14% 14.12%

4 241.57 0.193 0.0060 2.60% 5.09%

5 239.70 0.192 0.0042 1.83% 4.90%

6 239.85 0.192 0.0040 1.72% 4.90%

7 241.57 0.193 0.0041 1.76% 4.88%

8 241.57 0.191 0.0039 1.67% 4.89%

9 240.52 0.190 0.0038 1.65% 4.90%

10 240.91 0.191 0.0043 1.86% 4.90%

Table 10: Iteration results for AU4G alloy (Fmax = 360N).

Iter σy n ‖αexp − α
∗‖ ε1 ε2

1 300.00 0.250 0.1280 33.39% 33.95%

2 280.00 0.230 0.0898 23.41% 24.30%

3 260.01 0.210 0.0472 12.31% 13.22%

4 242.54 0.194 0.0050 1.29% 4.17%

5 253.25 0.180 0.0029 0.76% 4.01%

6 251.22 0.182 0.0036 0.95% 4.00%

7 251.72 0.183 0.0032 0.82% 4.00%

8 251.49 0.182 0.0022 0.57% 4.00%

9 251.49 0.182 0.0024 0.64% 4.00%

10 251.89 0.181 0.0026 0.67% 4.00%

A slight difference between the parameters identified for two different maximum force can be

seen in the table. The reason should be resulted in the fact that the imprint profile for Fmax = 240N

is measured with bigger noise: 4.90% compared with 4.00% obtained by Fmax = 360N.

Besides, very similar identified results were obtained for the other two iteration algorithms. Thus,

we consider our protocol as a stable method for identifying material plastic properties by consid-

ering only the imprint profile after an indentation test.
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6. Conclusions and perspectives

In this paper, we propose a complete protocol for the identification of material work hardening

properties, using only the imprint shape of an instrumented indentation test. By adopting the

concept of the shape manifold, satisfactory results were obtained using a variety of algorithms.

The main contributions may be listed as follows:

• The constructed α-manifold provides us a natural/physics-based way of smoothing the im-

print data of a real experiment. This smoothing is based on the modes that capture the intrinsic

features of imprint shapes governed by a given constitutive law. This approach also allows us

to directly compare the imprints obtained by FE simulation (in the inverse analysis) with those

obtained by actual indentation on the sample specimens.

• Almost identical power law work hardening parameter sets (σy, n) are obtained with different

convergence algorithms even when starting from very different initial points. The error between

the experimental imprint and simulated imprint with identified parameters can be controlled to

a considerably low level, around 1%.

Though, our protocol can and should be improved in order to reuse the imprints in the cur-

rent iteration when they are situated in the design window of next iteration, as this will yield a

significant reduction in computation time. Besides, we may also study the possibility of our pro-

tocol for anisotropic materials and sharp indenters in our next work. From the methodological

point of view, further comparisons should be done with Isomap or Locally Linear Embedding

methods.
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