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Note de travail : mise en évidence des Limitations de la théorie des capes d'invisibilité thermiques (en conduction pure)

L. Krähenbühl,

Ces trois milieux emboités forment une partition de l'espace d'étude Ω. Il n'y a pas de source thermique2 dans Ω.

Le milieu ambiant Ω est fermé vers l'extérieur par des surfaces isothermes S séparées les unes des autres par des conditions de Neuman (densité normale de flux thermique nulle). Ces conditions de Neuman ne sont introduites que par commodité (au cas où des essais numériques seraient envisagés), elles ne jouent aucun rôle dans le raisonnement ; les sources S peuvent aussi être les surfaces de volumes isothermes dans Ω a , qui serait alors ouvert jusqu'à l'infini. Un cas particulier intéressant, que nous utiliserons aussi dans la suite, est celui où le volume Ω a est fermé vers l'extérieur par une seule surface isotherme, qui sera alors la seule source thermique.

Avant l'instant t=0, nous supposons que toutes les températures absolues sont identiques. Dans la suite, nous appelons « température » (notée T) les écarts à la température initiale (donc T=0 partout pour t<0). La température des surfaces source S sont notées T Si . Les autres grandeurs locales d'intérêt sont la densité de flux de chaleur -ߣ∇ܶ et la densité de chaleur accumulée depuis l'instant t=0 qui vaut ߩܿܶ. ρ est la masse volumique et c la capacité thermique massique (autrefois appelée chaleur spécifique).

Pour simplifier les écritures, nous noterons dans la suite ं = ߩܿ (capacité thermique spécifique) La conductivité thermique est notée ߣ. La contrainte technologique est de n'utiliser que des matériaux existants, ce que nous exprimons dans un premier temps uniquement par le fait que ߣ, et ं sont dans l'espace de travail continues par morceaux, non singulières, avec des valeurs locales strictement positives finies. L'équation de la chaleur relie ces grandeurs locales : la chaleur accumulée dans un petit volume quelconque entre t=0 et l'instant présent a pour source le flux de chaleur à travers la surface de ce petit volume, sur la même période temporelle. On écrit ainsi l'équation de la chaleur sans source :

∇(ߣ∇ܶ) = ं డ் ௗ௧
(1) On peut aussi écrire des bilans par région. Par exemple, la chaleur accumulée dans l'espace d'étude Ω depuis l'instant t=0 peut s'écrire de deux manières différentes : à partir de la densité de chaleur accumulée :

ܳ ஐ )ݐ( =  ,ݔ(ܶं ݒ݀)ݐ ஐ (2) 
à partir du bilan de chaleur entrante :

ܳ ஐ )ݐ( =  ቄ∑  ߣ డ் డ ݏ݀ ୗ ቅ ௧ (3) 
Dans le cas particulier où la température serait spatialement constante dans Ω à l'instant t, on peut écrire (2) sous la forme :

ܳ ஐ )ݐ( = )ݐ(ܶ  ݒ݀ं ஐ = .)ݐ(ܶ ܥ ஐ (4)
où ܥ ஐ est la capacité thermique de la région Ω.

Noter qu'on aura aussi à chaque instant :

ܳ ஐ )ݐ( = ܳ ஐ ೌ )ݐ( + ܳ ஐ )ݐ( + ܳ ஐ )ݐ( (5) 
Les expériences 1 et 2 nous permettent de donner une définition de ce qui est communément appelé « cape thermique » universelle parfaite. Nous montrons ensuite qu'une telle cape n'existe pas. Cette démonstration n'interdit pas l'existence de capes exactes « adaptées à un contenu », dans des conditions cependant extrêmement restrictives. Enfin, la construction de capes approximatives reste possible, ce travail aide à en cerner les limites, qui ne pourront jamais être dépassées, quelle que soit l'habileté des expérimentateurs.

La cape parfaite

Expérience 1 : Dans un premier temps, on affecte à Ω et Ω les même propriétés qu'à Ω (le volume Ω est donc homogène), et on calcule le comportement thermique transitoire ܶ ଵ ,ݔ( )ݐ correspondant par exemple à un saut de température de l'une des surfaces source ܶ ௌଵ à l'instant t=0.

Plus généralement, on fera varier les températures source ܶ ௌ dans un intervalle de temps donné [0,t f ], et on observera les phénomènes thermiques jusqu'à la fin du régime transitoire (t=t ∞ > t f ).

Expérience 2 : Dans un second temps, on affecte à Ω et à Ω des propriétés thermiques (conductivité, capacité spécifique) différentes de celles de Ω , éventuellement non homogènes, et on recommence l'expérience, ce qui conduit à un comportement transitoire ܶ ଶ ,ݔ( .)ݐ

Définitions :

Cape parfaite adaptée. Ω est une cape parfaite adaptée à l'objet placé dans Réfutation de l'existence de capes thermiques parfaites universelles. 

Ω si ܶ ଵ ,ݔ( )ݐ et ܶ ଶ ,ݔ( )ݐ sont égaux dans Ω pour tout t>0 (en pratique pour t∈[0,t ∞ ]), quelles que soient les excitations ܶ ௌ )ݐ( dans l'intervalle [0,t f ],
ݐ∀ ≥ 0 ∶ ܳ ଵ )ݐ( = ܳ ଶ )ݐ( (6) 
La quantité de chaleur totale injectée dans Ω est également la même dans les deux cas, car elle peut être calculée à partir de l'intégrale de surface (3) qui ne dépend que de la répartition de la température dans Ω , identique à tout instant dans les deux expériences :

ݐ∀ ≥ 0 ∶ ܳ ଵ )ݐ( + ܳ ଵ )ݐ( + ܳ ଵ )ݐ( = ܳ ଶ )ݐ( + ܳ ଶ )ݐ( + ܳ ଶ )ݐ( (7) 
Il résulte de (6) -(5) que :

ݐ∀ ≥ 0 ∶ ܳ ଵ )ݐ( + ܳ ଵ )ݐ( = ܳ ଶ )ݐ( + ܳ ଶ )ݐ( (8) 
A la fin du régime transitoire thermique, la température est dans les deux situations uniformément égale à ܶ ௌ . En utilisant (4), on peut donc aussi (pour ݐ > ݐ ஶ ), exprimer les quantités de chaleurs dans la cape et dans l'objet uniquement à partir de ܶ ௌ et de la capacité thermique de chaque région :

ܳ ஐ , ݐ( > ݐ ஶ ) = ܶ ௌ  ݒ݀ं ஐ = ܶ ௌ ܥ ஐ , ݅ = 1,2 (9) 
ܳ ஐ , ݐ( > ݐ ஶ ) = ܶ ௌ  ݒ݀ं ஐ = ܶ ௌ ܥ ஐ , ݅ = 1,2 (10) 
On peut alors réécrire (8) sous une forme indépendante de l'expérience réalisée :

ܥ ஐ ,ଵ + ܥ ஐ ,ଵ = ܥ ஐ ,ଶ + ܥ ஐ ,ଶ (11) 
C'est une condition nécessaire pour que l'objet situé dans Ω puisse être dissimulé par le dispositif situé dans Ω . Pour reprendre l'analogie mécanique de l'introduction, cela signifie que la capacité thermique des objets de l'expérience 1 et de l'expérience 2 doivent être identiques (comme les masses devaient être égales dans l'introduction), ou encore que leurs capacités thermiques spécifiques moyennes doivent être égales.

Les deux termes du membre de gauche sont fixés dans l'expérience 1 par les propriétés thermiques du milieu ambiant Ω , et par le choix géométrique des volumes Ω et Ω occupés par la cape et l'objet. Leur somme représente la capacité thermique qu'aurait la région Ω ∪ Ω si elle avait les propriétés de Ω . Le terme ܥ ஐ ,ଶ correspond aux choix faits lors de la conception de la cape idéale. Une fois la cape conçue, ce terme est lui aussi fixé.

La première conséquence de (11) est la condition nécessaire :

ܥ ஐ ,ଶ = ܥ ஐ ,ଵ + ܥ ஐ ,ଵ -ܥ ஐ ,ଶ (12) 
c'est-à-dire que la capacité thermique de l'objet « caché » par une cape thermique donnée est obligatoirement fixée a priori (condition nécessaire, mais bien entendu pas suffisante).

Conclusions :

La cape thermique parfaite universelle, qui permettrait de « dissimuler » n'importe quel objet placé en son centre, n'existe donc pas, alors que rien n'interdit cette idée dans le cas de la cape optique.

Ces considérations n'interdisent pas l'existence d'une cape thermique parfaite adaptée à une famille d'objets de même capacité thermique.

Une seconde conséquence lourde de (12) est que, même si on construit une cape thermique adaptée à des objets dont la capacité thermique est fixée à l'avance, on ne pourra dans aucun cas dissimuler un objet dont la capacité thermique dépasse celle du volume du milieu ambiant qui a été enlevé pour y mettre la cape :

ܥ ஐ ,ଶ < ܥ ஐ ∪ஐ = ‪݉݁(Ωݑ݈ܸ ∪ Ω ). ं ஐ ೌ (13) 
l'écart correspondant à la capacité thermique de la cape elle-même.

On peut réécrire (13) à partir de la capacité thermique spécifique moyenne de l'objet caché et du rapport des volumes ܸ ஐ ∪ஐ /ܸ ஐ :

ं ത ஐ < ं ஐ ೌ . ܸ ஐ ∪ஐ /ܸ ஐ (14) 
Donc ou bien l'objet dissimulé est très petit par rapport au volume occupé (ܸ ஐ ≪ ܸ ஐ ∪ஐ ), ou bien l'objet caché à une capacité thermique spécifique moyenne proche de celle du milieu ambiant, ou inférieure à celle-ci (car la cape elle-même « consomme » aussi de la capacité thermique : ܥ ஐ ,ଶ n'est pas forcément petit) : cela est évidemment une restriction énorme.

Commentaire :

Cette remarque n'est pas sans conséquence, en raison de la gamme des variations possibles de la capacité thermique spécifique des matériaux réels. Ainsi, si le milieu ambiant (milieu de l'expérience 1) est de l'air, dont la capacité thermique spécifique est l'une de plus faibles qu'on peut trouver (beaucoup plus faible que celle d'objets techniques qu'on souhaiterait dissimuler, certains auteurs évoquant par exemple des composants électroniques), une cape thermique respectant (13) ne pourra guère être développée, puisque toute zone de Ω ∪ Ω à ं ଶ > ं ଵ devrait être compensée par une zone avec ं ଶ < ं ଵ , matériau difficile à trouver. C'est la raison pour laquelle les rares travaux expérimentaux réalisés ont tous utilisé pour le milieu ambiant un matériau à conductivité et capacité thermique spécifique relativement fortes, ce qui permet de créer des contrastes dans les deux sens pour la zone de la cape.

Toute application potentielle imaginée avec l'air comme milieu ambiant ne peut que laisser extrêmement sceptique.

Réfutation de la transformation de Pendry/Guenneau-Amra-Veynante

Enfin, il faut noter que la première transformation, issue de l'optique, qui a servi à concevoir une cape thermique théorique circulaire en 2D, consistait à concentrer la matière homogène d'un disque de rayon ܴ (correspondant dans notre raisonnement à Ω ∪ Ω ) vers un anneau entre deux rayons interne ܴ < ܴ et externe ܴ :

ं ஐ ,ଶ ݎ( ᇱ ) = ᇲ ିோ ᇱ ቀ ோ ோ ିோ ቁ ଶ ं ஐ ೌ (15) 
pour constituer la cape (région Ω ). Le principe même de cette transformation fait que :

 ं ஐ ,మ ݒ݀ ஐ =  ं ஐ ೌ ݒ݀ ஐ ∪ஐ = ं ஐ ೌ . ܸ ஐ ∪ஐ (16) 
en enlevant toute la matière pour ݎ ᇱ ߳ [0, ܴ ] (région Ω ), ce qui conduit à : ܥ ஐ ,ଶ = ܥ ஐ ,ଵ + ܥ ஐ ,ଵ et donc par l'équation (12) à : (17) ܥ ஐ ,ଶ = 0 (18) c'est-à-dire que l'objet caché a une capacité thermique nulle.

Conclusion :

La cape ainsi conçue est certes une cape parfaite adaptée exacte, mais elle ne peut « cacher » que du vide.

Commentaire :

En plus, cette approche conduit à des propriétés non physiques, la conductivité radiale et capacité thermique spécifique tendant vers 0 pour le rayon ݎ ᇱ = ܴ , ce qui est une manière déguisée d'introduire un isolant thermique parfait sur la face interne de la cape.

L'expérience avec un gradient de température unidirectionnel comme source

Les articles publiés jusqu'ici s'intéressent à une situation moins générale que celle que nous venons de décrire, l'invisibilité évoquée ne concernant que la situation où les sources externes servant à l'expérience sont deux plans parallèles, l'un des deux étant soumis à un saut de température à l'instant 0. A la fin du transitoire thermique, le gradient de température est uniforme dans Ω . Cette seule expérience n'est naturellement pas suffisante pour démontrer l'invisibilité d'une structure pour toute expérience de conduction thermique menée depuis l'extérieur, mais lorsque la cape et son contenu possèdent une symétrie (géométrique et physique) par rapport à leur plan médian Γ, parallèle aux plans des sources, on retrouve néanmoins le résultat précédent : même avec cette définition plus étroite de l'invisibilité, les mêmes contraintes très restrictives s'appliquent.

Preuve.

On note ܶ la température atteinte pour ݐ > ݐ ஶ en Γ ∩ Ω . Les symétries font qu'un point ܲ ଵ et son symétrique ܲ ଶ par rapport à Γ sont à la fin du régime transitoire tels que :

ሾ்( భ )ା்( భ )ሿ ଶ = ܶ ݐ > ݐ ஶ (19)

  Si cette condition est réalisée, il est en effet impossible, par des expériences menées en conduction avec des sources hors de Ω ∪ Ω , de « détecter » la présence de la cape avec l'objet dans Ω , quel qu'il soit. Pour l'équation des ondes, aucun argument théorique ne s'oppose à l'existence d'une telle cape universelle. Nous montrons dans la suite que ce n'est pas le cas pour les capes thermiques.

	Commentaire :
	Si cette condition est réalisée, il est en effet impossible, par des expériences menées en conduction
	avec des sources hors de Ω ∪ Ω , de « distinguer » les 2 situations : d'une part celle du milieu
	homogène, d'autre part le même milieu mais contenant la cape et l'objet spécifique pour lequel elle
	a été conçue.

pour des propriétés thermiques données (conductivité, capacité thermique spécifique) de l'objet dans Ω .

Cape parfaite universelle :

Ω est une cape parfaite universelle si elle est une cape parfaite adaptée à Ω , quel que soient les propriétés thermiques de l'objet dans Ω .

Commentaire :

  Réalisons les expériences 1 et 2 en entourant entièrement le volume Ω d'une seule surface source S et en portant la température de cette surface à la valeur ܶ ௌ constante et non nulle à partir de l'instant t=0.A la fin du régime transitoire de ces deux expériences, (temps que nous noterons ݐ > ݐ ஶ ), la température dans Ω est constante et uniforme, de valeur ܶ ௌ .Nous supposons maintenant que la configuration de l'expérience 2 est celle d'une cape parfaite (adaptée ou universelle, on ne le sait pas à ce stade). Les propriétés thermiques du milieu Ω n'ayant pas été modifiées entre les deux expériences, et la répartition de la température étant dans les 2 cas identique à tout instant dans le volume Ω , la chaleur stockée dans ce volume pendant les deux expériences est la même à chaque instant (et donc aussi à la fin du régime transitoire) :

Rappelons que la capacité thermique d'un objet est égale à la quantité de chaleur nécessaire pour élever sa température de 1K.

Cette condition est essentielle : elle est toujours imposée dans le détail des raisonnements des auteurs qui étudient ces capes, même s'ils ne l'indiquent pas explicitement ; par contre, la plupart des applications potentielles évoquées par les mêmes auteurs concernent la « protection » ou l' « invisibilité » d'objets qui sont des sources de chaleur (éléments électroniques, personnes, matériels militaires …).