
HAL Id: hal-01196687
https://hal.science/hal-01196687

Submitted on 10 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bounded Bases of Strong Partial Clones
Victor Lagerkvist, Magnus Wahlström, Bruno Zanuttini

To cite this version:
Victor Lagerkvist, Magnus Wahlström, Bruno Zanuttini. Bounded Bases of Strong Partial Clones.
45th International Symposium on Multiple-Valued Logic (ISMVL 2015), May 2015, Waterloo, Canada.
�10.1109/ISMVL.2015.33�. �hal-01196687�

https://hal.science/hal-01196687
https://hal.archives-ouvertes.fr

Bounded Bases of Strong Partial Clones
Victor Lagerkvist Magnus Wahlström Bruno Zanuttini

September 10, 2015

Abstract

Partial clone theory has successfully been applied to study the complex-
ity of the constraint satisfaction problem parameterized by a set of relations
(CSP(Γ)). Lagerkvist & Wahlström (ISMVL 2014) however shows that
the partial polymorphisms of Γ (pPol(Γ)) cannot be finitely generated for
finite, Boolean Γ if CSP(Γ) is NP-hard (assuming P6=NP). In this paper
we consider stronger closure operators than functional composition which
can generate pPol(Γ) from a finite set of partial functions, a bounded
base. Determining bounded bases for finite languages provides a complete
characterization of their partial polymorphisms and we provide such bases
for k-SAT and 1-in-k-SAT.

1 Introduction
A clone is a composition-closed set of functions containing all projection functions,
i.e., all functions πni of the form πni (x1, . . . , xi, . . . , xn) = xi. A strong partial
clone is a composition-closed set of partial functions containing all partial
projection functions. Clones and strong partial clones can equivalently well be
described through sets of relations. We say that a function f is a polymorphism of
a set of relations Γ if f(t1, . . . , tn) ∈ R for all R ∈ Γ and all t1, . . . , tn ∈ R, where
f is applied component-wise to t1, . . . , tn. Let Pol(Γ) (respectively pPol(Γ))
denote the (strong partial) clone consisting of all (partial) polymorphisms of
Γ. From a practical point of view clone theory has been successfully applied to
study the complexity of, e.g., the constraint satisfaction problem over a set of
relations Γ (CSP(Γ)). The set Γ is in this context referred to as a constraint
language. The CSP problem is well-studied and can for instance be used to model
classical NP-hard problems such as κ-SAT and κ-coloring. It is known (1) that
if Pol(Γ) ⊆ Pol(∆) then CSP(∆) is polynomial-time reducible to CSP(Γ) [4]
and (2) that if pPol(Γ) ⊆ pPol(∆) and CSP(Γ) is solvable in time O(cn), then
CSP(∆) is also solvable in time O(cn) [5]. Strong partial clones are therefore
useful when comparing the time complexity between NP-hard problems, and
have for instance been used to find the computationally easiest NP-hard CSP
problem for finite Boolean languages [5].

There are two kinds of clone theoretical investigations that are particularly
interesting when considering CSP problems. First, determining the lattice of

1

2 PRELIMINARIES 2

strong partial clones on a given domain, so as to obtain a complete understanding
of the relative complexity between CSP problems on this domain. Second, given
a set of relations Γ, characterizing the strong partial clone pPol(Γ), by finding a
base of partial functions that generate this strong partial clone. Such a base could
then, e.g., be used to efficiently check whether pPol(Γ) ⊆ pPol(∆). It should not
come as a surprise that both of these questions are difficult. For the first case it
is known that in contrast to Post’s lattice of Boolean clones, the cardinality of
the lattice of strong partial clones is uncountably infinite even for the Boolean
domain [1], and for the second case, Lagerkvist & Wahlström [6] prove that for
any finite Boolean set of relations Γ such that CSP(Γ) is NP-hard (assuming
P 6=NP), pPol(Γ) is of infinite order and cannot be finitely generated. This should
be compared to Post’s lattice where every clone is of finite order. Hence the
step from total polymorphisms to partial polymorphisms leads to interesting
applications but at the same time makes reasoning much more complex.

In this paper we tackle the problem of determining bases for strong partial
clones by considering stronger notions of closure than composition of partial
functions. After introducing the notions needed for the subsequent treatment
(Section 2), we show that the strong partial clone corresponding to any finite
language can be characterized by a finite set of functions, which we call the
bounded base of the language (Section 3). Next we prove that the bounded base
of a finite constraint language is expressive enough to generate all functions in
pPol(Γ), by defining an operator stronger than functional composition which
generates the strong partial clone from the bounded base (Section 4). Finally, we
turn to the problem of determining bounded bases of finite Boolean constraint
languages (Section 5). First we give some general results regarding Boolean
constraint languages that contain additional sign patterns, i.e., when constraints
can have negated arguments, and prove that in many cases the partial polymor-
phisms of such languages can be described in terms of simpler relations. Then
we provide descriptions of the bounded bases for 1-in-κ-SAT and κ-SAT which,
thanks to the notions introduced in this paper, have a particularly simple form.
We believe that these bases can be used as a starting point to determine bounded
bases of other constraint languages, in order to get a better understanding of
the seemingly large difference in complexity between various NP-hard CSP
problems.

2 Preliminaries
An n-ary partial function f on D ⊆ N is a map f : X → D where X ⊆ Dn

(n ≥ 1), that is, a function that is allowed to be undefined for some sequences
of arguments. Throughout this paper we always assume that D is finite. For a
partial function f : X → D, X ⊆ Dn, we let domain(f) = X and ar(f) = n. If
u = (x1, . . . , xn) ∈ domain(f) we often write f(u) instead of f(x1, . . . , xn). For a
finite set of partial functions we let ar(F) = maxf∈F (ar(f)). The partial function
g is said to be a subfunction of the partial function f if domain(g) ⊆ domain(f)
and g(x1, . . . , xn) = f(x1, . . . xn) for all (x1, . . . , xn) ∈ domain(g). We also say

2 PRELIMINARIES 3

that g is f restricted to X. Finally, a set of partial functions F is said to be
strong if for all (partial or total) functions f ∈ F and all subfunctions g of f , g
is also in F .

Given a relation R ⊆ Dκ (κ ≥ 1) over D ⊆ N we let #tuples(R) = |R|, i.e.,
the number of tuples in the relation, and ar(R) = κ be its arity. For a κ-ary
tuple t and 1 ≤ i ≤ κ, we write t[i] for the ith element of t. For κ ≥ 0 and
c ∈ {0, 1}, we write ~cκ for (c, . . . , c) (κ times), i.e., for a κ-ary sequence of 0’s or
1’s. If κ is clear from the context we simply write ~c. If R is a κ-ary relation and
t1, . . . , tn ∈ R a sequence of n tuples then we let Cols(t1, . . . , tn) be the sequence(
(t1[1], . . . , tn[1]), . . . , (t1[κ], . . . , tn[κ])

)
. In other words, Cols(t1, . . . , tn) are the

columns in the n × κ matrix formed by letting each element ai,j = ti[j]. For
instance, Cols((0, 1, 1), (1, 1, 1)) is the sequence of tuples ((0, 1), (1, 1), (1, 1)).
Whenever convenient we also use ColsSet(t1, . . . , tκ) for the set (instead of a
sequence) {(t1[1], . . . , tn[1]), . . . , (t1[κ], . . . , tn[κ])}.

A set of relations Γ is known as a constraint language, or simply language.
Given a finite language Γ we let #tuples(Γ) = maxR∈Γ(#tuples(R)) and ar(Γ) =
maxR∈Γ(ar(R)). Note that #tuples(Γ) ≤ |D|ar(Γ) always holds. A relation R is
said to be column-irredundant if for any two indexes i, j ≤ ar(R), there is a tuple
t ∈ R with t[i] 6= t[j]. A constraint language Γ is said to be column-irredundant if
all relations in Γ are column-irredundant. Clearly, if Γ is not column-irredundant,
it can easily be transformed into a column-irredundant language resulting in a
CSP problem with equivalent complexity. Observe that if Γ is a finite column-
irredundant constraint language over D, then ar(Γ) ≤ |D|#tuples(Γ) holds.

As a convention, we use the Greek letters κ and λ to denote arities of relations
and µ and ν for numbers of tuples in relations. For functions we instead use
Latin letters n and m for arities and k and ` for size of domains. We denote
tuples in relations by t, and tuples in the domain of functions by u.

2.1 Total and Partial Clones
Let D ⊆ N. For n ∈ N and i ∈ {1, . . . , n}, we write πni for the projection
function defined by πni (x1, . . . , xi, . . . , xn) = xi for all (x1, . . . , xn) ∈ Dn. We
write ΠD for the set of all projection functions over D ⊆ N, and Πp

D for the
set of all partial functions that are subfunctions of projections. If f is an
n-ary function and g1, . . . , gn are m-ary functions, then the composition of f
and g1, . . . , gn, denoted f◦(g1, . . . , gn), is the m-ary function defined by (f ◦
(g1, . . . , gn))(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)). Composition
of partial functions is defined in the same way but the result is only defined
when all involved function applications are defined. A clone over D is then a
set of functions C such that (1) C ⊇ ΠD and (2) C is closed under composition.
Similarly, a set of partial functions C is a strong partial clone if (1) C ⊇ Πp

D and
(2) C is closed under composition. Note that such C contains all subfunctions
of its (partial or total) functions [9], hence the term strong. For a set of total
functions F and a set of partial functions F ′ we let [F] be the smallest clone
containing F and [F ′]s be the smallest strong partial clone containing F ′. The
sets F and F ′ are said to be bases of [F] or [F ′]s. The order of a clone or a

2 PRELIMINARIES 4

strong partial clone is the cardinality of its smallest base. In particular, we are
interested in whether this order is finite or infinite.

Example 1 For any Boolean projection function πni we have that [{πni }] is the
smallest element in the lattice of Boolean clones, consisting only of projections.
If we instead let neg(0) = 1 and neg(1) = 0 then [{neg}] is the clone consisting of
compositions of unary negation and projection functions. Observe that [{πni }] ⊂
[{neg}]. From Post’s classification of Boolean clones [8] we also know that
[{neg}] is minimal, in the sense that there is no Boolean clone C with [{πni }] ⊂
C ⊂ [{neg}].

Clones and strong partial clones can also be characterized by sets of re-
lations. An n-ary function f : Dn → D (n ≥ 1) is said to be a polymor-
phism of a κ-ary relation R ⊆ Dκ if f(t1, . . . , tn) ∈ R for every sequence
t1, . . . , tn ∈ R (possibly with repetitions), where f(t1, . . . , tn) denotes the tuple(
f(t1[1], . . . , tn[1]), . . . , f(t1[κ], . . . , tn[κ])

)
, i.e., f applied to every element in

Cols(t1, . . . , tn). Similarly, a partial function f is said to be a partial polymor-
phism of R if f(t1, . . . , tn) ∈ R for every sequence (t1, . . . , tn) of tuples of R such
that all components of f(t1, . . . , tn) are defined. In both cases R is said to be
invariant under f , and that f preserves R, and we let Inv(F) denote the set of
all relations that are invariant under the set of (total or partial) functions F .
Dually, for a set of relations Γ we let Pol(Γ) denote the set of all polymorphisms
of Γ, and pPol(Γ) denote the set of all partial polymorphisms of Γ. We then
have the following Galois connections relating the operators together.

Theorem 1 ([2, 3, 9]) Let Γ, Γ′ be constraint languages. Then Inv(Pol(Γ′)) ⊆
Inv(Pol(Γ)) ⇐⇒ Pol(Γ) ⊆ Pol(Γ′) and Inv(pPol(Γ′)) ⊆ Inv(pPol(Γ)) ⇐⇒
pPol(Γ) ⊆ pPol(Γ′).

Sets of the form Inv(Pol(Γ)) are usually referred to as co-clones, and sets of
the form Inv(pPol(Γ)) as weak partial co-clones, or weak systems [11].

2.2 The Constraint Satisfaction Problem
Given D ⊆ N, the constraint satisfaction problem over a constraint language Γ
(CSP(Γ)) takes as input a set V of variables and a set C of constraint applications
of the form R(x1, . . . , xar(R)), with R ∈ Γ and x1, . . . , xar(R) ∈ V . The question
is whether there is a function s : V → D such that (s(x1), . . . , s(xar(R))) ∈ R for
all R(x1, . . . , xar(R)) in C. For the Boolean domain, this problem is typically
denoted by SAT(Γ). Jeavons [4] proved that for any finite constraint language
Γ, the computational complexity of CSP(Γ) is determined by Pol(Γ) up to
polynomial-time reductions. With this fact and Post’s classification of Boolean
clones we can rephrase Schaefer’s dichotomy theorem [10] for SAT as follows:
SAT(Γ) is NP-hard if and only if Pol(Γ) ⊆ [{neg}] where neg(0) = 1 and
neg(1) = 0. Jonsson et al. [5] give a classification similar to Jeavons’, by showing
that if pPol(Γ) ⊆ pPol(∆) and CSP(Γ) is solvable in time O(cn), then CSP(∆)
is also solvable in time O(cn), with n = |V |. Unfortunately, describing the

3 BOUNDED BASES 5

partial polymorphisms of finite languages is a very complex task since Lagerkvist
& Wahlström [6] proved that pPol(Γ) is of infinite order whenever CSP(Γ) is
NP-hard and Γ is a finite Boolean language (assuming P 6=NP).

3 Bounded Bases
In this section we give our first contribution, namely, for the strong partial clone
pPol(Γ) associated to any finite constraint language Γ, we define a finite set
of partial functions which completely determines pPol(Γ). The construction of
pPol(Γ) from its bounded base will be investigated in Section 4. We start with
an investigation of how functions with small arities characterize the set of all
partial polymorphisms of Γ (of any arity). Intuitively, if f has “high” arity, we
will consider sets of variables which have the same value in all the tuples over
which f is defined, and consider the contraction of f obtained by removing such
duplicates.

Definition 1 (redundant variable) Let g be an n-ary partial function over
arguments x1, . . . , xn. A variable xi is said to be redundant with xj for g (j 6= i),
if u[i] = u[j] for all u ∈ domain(g).

If f is an n-ary function and σ is a permutation on [n], then we denote
by g ◦ σ the function defined by g ◦ σ(x1, . . . , xn) = g(xσ(1), . . . , xσ(n)) for all
x1, . . . , xn.

Definition 2 (contraction, stretching) Let g be an n-ary partial function
over arguments x1, . . . , xn. If there is a permutation σ of [n] and a function γ
from {m+ 1, . . . , n} to [m] such that for all i ∈ {m+ 1, . . . , n}, xi is redundant
with xγ(i) for g ◦σ, then the m-contraction of g with respect to σ and γ is the m-
ary function g′ defined by g′(x1, . . . , xm) = g ◦ σ(x1, . . . , xm, xγ(m+1), . . . , xγ(n)).
In this case g is also said to be an n-stretching of g′ with respect to σ and γ.

If g′ is the m-contraction of g with respect to some permutation σ and function
γ, we simply say that g′ is an m-contraction of g (and that g is an n-stretching
of g′). If an n-ary function f has no m-contractions for some m < n, then we
say that f is uncontractable to arity m. For instance, if f is an n-ary function
defined only on tuples of Hamming weight 1, then it is uncontractable to arity
n− 1 since for all variables xi 6= xj , there is a tuple in the domain of f which
assigns 1 to xi and 0 to xj and hence, xi is not redundant with xj for f . Note
that if f is uncontractable to arity m, then it is a fortiori uncontractable to any
arity m′ ≤ m.

Given a set of partial functions F , we write Sn(F) for the set of all n-ary
partial functions that are an n-stretching of some f ∈ F , and Cm(F) for the set
of all m-ary partial functions that are an m-contraction of some f ∈ F . For
m ≤ n we let Umn be the set of all n-ary partial functions uncontractable to arity
m. The following is a simple but essential property. We omit the proof since it
easily follows from the definitions.

3 BOUNDED BASES 6

Lemma 1 Let g′ be an m-contraction of an n-ary partial function g. Then
[{g′}]s = [{g}]s holds.

The notions of contraction and stretching will allow us to bound the arities
of the functions needed to characterize a strong partial clone. Dually, we now
introduce the notion of a k-restriction, which will allow us to bound the size of
the domain of these functions.

Definition 3 (k-restriction) Let f be an n-ary partial function, and k be an
integer with |domain(f)| ≥ k. An n-ary function g is said to be a k-restriction
of f if g is a subfunction of f and |domain(g)| = k holds.

For a partial function f and an integer k, we write Rk(f) for the set of all
functions that are a k-restriction of f if |domain(f)| ≥ k holds, and otherwise
we define Rk(f) = ∅. If F is a set of partial functions, then Rk(F) denotes⋃
f∈F Rk(f). The following lemma, which relates partial polymorphisms with

their restrictions and contractions, is the cornerstone of our study.

Lemma 2 Let R be a relation, let κ ≥ ar(R) and n > µ ≥ #tuples(R), and
let f be an n-ary partial function. Then f ∈ pPol({R}) holds if and only if
Cµ(Rκ′(f)) ⊆ pPol({R}) holds for all κ′ ≤ κ.

Proof First assume f ∈ pPol({R}). Then g ∈ pPol({R}) holds for all sub-
functions g of f , and all µ-contractions g′ of such g’s are in pPol({R}) by
Lemma 1 and Theorem 1. For the other direction, towards contradiction
assume f /∈ pPol({R}). Then there is a sequence of tuples t1, . . . , tn ∈ R
with f(t1, . . . , tn) = (f(t1[1], . . . , tn[1]), . . . , f(t1[ar(R)], . . . , tn[ar(R)])) /∈ R.
Note that at least n − µ of these tuples must be repeated since we assume
n > µ ≥ #tuples(R). Let λ ≤ ar(R) ≤ κ be the number of distinct tuples
in Cols(t1, . . . , tn), and let g be the λ-restriction g of f defined only on these
tuples. Since all but at most µ tuples are repeated in t1, . . . , tn there is at least
one µ-contraction g′ of g with g′(ti1 , . . . , tiµ) = g(t1, . . . , tn) = f(t1, . . . , tn) /∈ R.
This contradicts that all µ-contractions of all λ-restrictions of f are in pPol({R}).
�

We immediately get the following generalization to constraint languages
(instead of single relations). The proof follows easily by applying Lemma 2.

Corollary 1 Let Γ be a finite constraint language, let κ ≥ ar(Γ), n > µ ≥
#tuples(Γ), and let f be an n-ary partial function. Then f ∈ pPol(Γ) if and
only if Cµ(Rκ′(f)) ⊆ pPol(Γ) for all κ′ ≤ κ.

Corollary 1 implies that the partial polymorphisms of a finite constraint
language can be derived from those with bounded arity and domain (with
bounds depending on the language). We now define these to constitute the
bounded base of the constraint language.

Definition 4 (bounded base) Let Γ be a finite constraint language with κ =
ar(Γ) and µ = #tuples(Γ). The bounded base of Γ, B(Γ), is defined to be

B(Γ) = {f | f ∈ pPol(Γ), ar(f) ≤ µ, |domain(f)| ≤ κ}.

4 CLOSURE OF BOUNDED BASES 7

The following proposition shows that representing languages by their bounded
bases suffices to distinguish languages with different expressivity. The proof is
straightforward and omitted due to space constraints.

Proposition 1 Let Γ,Γ′ be finite column-irredundant constraint languages with
B(Γ) = B(Γ′). Then pPol(Γ) = pPol(Γ′) holds.

It may be the case that two different languages generate the same weak partial
co-clone but have different bounded bases because their arities or numbers of
tuples are different, but as we show in Section 4, we can still compare their
expressivity using bounded bases.

4 Closure of Bounded Bases
In this section we show how, for a finite constraint language Γ, the whole
strong partial clone pPol(Γ) can be recovered from the functions in the finite
base B(Γ), which is done using a notion of closure stronger than functional
composition. With this we investigate how bounded bases can be used to compare
the expressivity of finite constraint languages. We first need some preliminary
definitions to cope with the fact that the bounded base is a finite set.

Definition 5 (covering) Let G be a set of n-ary partial functions, and let
k ≥ 1. Then G is said to be k-covering if for all U ⊆ ∪g∈Gdomain(g) satisfying
|U | ≤ k, there is a function g ∈ G with domain(g) = U .

We say that a set of n-ary partial functions G is consistent if for all g, g′ ∈ G
and all (x1, . . . , xn) ∈ domain(g) ∩ domain(g′), it holds that g(x1, . . . , xn) =
g′(x1, . . . , xn). Consistency ensures that g can be chosen arbitrarily in the next
definition.

Definition 6 (union) Let G be a consistent set of n-ary partial functions. The
union ofG, written u(G), is the n-ary partial function defined by u(G)(x1, . . . , xn) =
g(x1, . . . , xn) for all (x1, . . . , xn) such that some g ∈ G is defined on (x1, . . . , xn),
and undefined for other tuples.

Given a function f and k ≥ 1, we define the k-covering of f as the set of
functions Gk(f) =

⋃k
k′=1Rk′(f). Observe that u(Gk(f)) = f holds. Next recall

that Sn(F) denotes the set of all functions that are an n-stretching of some
function in F , and that Umn denotes the set of all n-ary partial functions that
have no m-contractions. We are now ready to define our notion of closure.

Definition 7 (closure) Let F be a finite set of partial functions, and let m =
ar(F). Let k ≥ 1, n ≥ 1 be integers. The k, n-closure of F , written Clk,n(F), is
the set of n-ary functions defined by Clk,n(F) = {u(G) | G ⊆ F, ar(G) = n, G is
k-covering and consistent} for n ≤ m and Clk,n(F) = {u(G) | G ⊆ Sn(F) ∪ Umn
and G is k-covering and consistent} for n > m. The k-closure of F is defined to
be Clk(F) =

⋃∞
n=1 Clk,n(F).

5 DETERMINING BOUNDED BASES OF BOOLEAN CONSTRAINT LANGUAGES8

Example 2 As a simple example let R0 = {(0)}. Note that pPol({R0}) =
[{x1 ∧ x2, x1 ⊕ x2}]s [7]. The bounded base B({R0}) consists of all unary
f ∈ pPol({R0}) satisfying |domain(f)| = 1. Thus B({R0}) = {f1, f2, f3} where
f1, f2, f3 are defined as f1(0) = 0, f2(1) = 1, f3(1) = 0, and undefined
otherwise. To exemplify 1,2-closure we see that x1 ∧ x2 = u(G)(x1, x2) where
G = {g1, g2, g3, g4} and g1(0, 0) = 0, g2(0, 1) = 0, g3(1, 0) = 0, g4(1, 1) = 1,
and undefined for all other values. Since g1 ∈ S2({f1}) , g4 ∈ S2({f2}), and
g2, g3 ∈ U1

2 , it follows x1 ∧ x2 ∈ Cl1,2({f1, f2, f3}).

Note that we slightly abuse the term “closure”, since the k-closure operator
fails to satisfy all properties normally associated with closure operators.

With this in hand, we can now show that our notion of closure captures
exactly what we want, namely, that the ar(Γ)-closure of the bounded base of Γ
is exactly pPol(Γ).

Theorem 2 Let Γ be a finite constraint language. Then Clar(Γ)(B(Γ)) =
pPol(Γ) holds.

Proof Write κ = ar(Γ) and µ = #tuples(Γ), and first let f ∈ Clκ(B(Γ)) be
an n-ary partial function. For n ≤ µ, by definition of closure the κ-covering
Gκ(f) of f satisfies Gκ(f) ⊆ B(Γ) ⊆ pPol(Γ). Since all relations in Γ are at
most κ-ary, any application of f to tuples from such a relation is in fact an
application of some f ′ in the κ-covering of f , hence f preserves Γ. Now for
n > µ we have by definition of closure that for all κ′ ≤ κ and all κ′-restrictions
g of f , either g is uncontractable to arity µ or g is the stretching of a function
g′ in B(Γ) ⊆ pPol(Γ). In the latter case all µ-contractions of g are in pPol(Γ)
by Lemma 1, and this also holds vacuously in the former case. Hence we get
f ∈ pPol(Γ) by Corollary 1. Conversely, let f ∈ pPol(Γ) be an n-ary function.
For n ≤ µ, by definition the κ-covering Gκ(f) of f consists of functions of arity
n that are defined on at most κ tuples, and which are in pPol(Γ) as subfunctions
of f . It follows that Gκ(f) ⊆ B(Γ) and hence, f = u(Gκ(f)) is in Clκ(B(Γ)).
Finally, for n > µ, let g be a function in the κ-covering Gκ(f) of f . We get
Cµ(g) ⊆ pPol(Γ) from Corollary 1, and hence either g ∈ Uµn holds or g has at
least one µ-contraction g′, which is in pPol(Γ) and hence in B(Γ). In the latter
case g is a stretching of g′, and finally, Gκ(f) ⊆ Sn(B(Γ))∪ Uµn , which concludes
the proof. �

To exemplify this result, let R0 and f1, f2, f3 be defined as in Example 2.
From Theorem 2 we get Cl1({f1, f2, f3}) = pPol({R0}), i.e., the set of all total
or partial functions that are 0-reproducing. The proof of Theorem 2 also makes
it clear why we need the sets Uµn of uncontractable functions.

5 Determining Bounded Bases of Boolean Con-
straint Languages

We now turn to the problem of determining bounded bases of Boolean constraint
languages. We start with a general construction for retrieving the partial

5 DETERMINING BOUNDED BASES OF BOOLEAN CONSTRAINT LANGUAGES9

polymorphisms of the language obtained from another one by allowing some
arguments to be negated in constraint applications, and then determine bounded
bases for two of the most studied languages corresponding to NP-hard SAT
problems, namely monotone 1-in-κ-SAT and κ-SAT.

5.1 Sign Patterns
It is natural to ask how the complexity of CSP(Γ) is influenced by negated
arguments in constraint applications. To handle this we extend Γ by additional
relations, representing the cases where one or more arguments are negated.
Formally, if R is a κ-ary Boolean relation and s1, . . . , sκ ∈ {+,−}, then we let
R(s1,...,sκ) = {(xs1

1 , . . . , x
sκ
κ) | (x1, . . . , xκ) ∈ R}, with x+

i = xi and x−i = xi.
The tuple (s1, . . . , sκ) is called a sign pattern for R. As a shorthand we write
R = R(−,...,−). For example, R(+,−,−)

1/3 is {(0, 1, 0), (0, 0, 1), (1, 1, 1)} and R1/3

is {(1, 1, 0), (1, 0, 1), (0, 1, 1)}. Interestingly, it is possible to describe pPol({R})
and pPol({R,R}) in terms of pPol({R}). For an n-ary Boolean partial function
f , let the dual fd be defined by fd(u) = f(u) for all u ∈ domain(f).

Proposition 2 Let R be Boolean relation. Then pPol({R}) = {fd | f ∈
pPol({R})} and pPol({R,R}) = {f | f, fd ∈ pPol({R})} hold.

The proof is not complicated and therefore omitted. The cases when one
or more, but not all, arguments are negated are not as straightforward, and
we need a few additional definitions. First, call a partial function f self-dual
if for all u ∈ domain(f) we have ū ∈ domain(f) and f(ū) = f(u). Second, call
a language Γ closed under sign patterns if for all R ∈ Γ and s1, . . . , sar(R) ∈
{+,−}, the relation R(s1,...,sar(R)) is also in Γ. Finally, call Γ closed under fixing
arguments if for all R ∈ Γ, 1 ≤ i ≤ ar(R), c ∈ {0, 1}, the relation Rxi←c =
{(x1, . . . , xi−1, c, xi+1, . . . , xar(R)) | (x1, . . . , xi−1, xi, xi+1, . . . , xar(R)) ∈ R} is in
Γ. Recall that a function is c-reproducing, c ∈ {0, 1}, if it returns c when all
arguments are c.

Theorem 3 Let R be a Boolean relation, Γ be the closure of {R} under sign pat-
terns, and Γ′ be the closure of Γ under fixing arguments. If Pol(Γ) = [Π{0,1}] then
pPol(Γ′) = {f ′ | f ′ is a subfunction of some f ∈ pPol({R}), f is 0-reproducing, 1-reproducing, and self-dual}.

The proof is omitted due to space constraints. Proposition 2 and Theorem 3
provide sufficient conditions for when it is possible to describe pPol(Γ) through
pPol({R}) if Γ is a sign pattern expansion of R. Naturally this also holds for
B(Γ), which means that bounded bases for these languages can be expressed in
a particularly simple form.

5.2 1-in-κ-SAT
In this section we determine the bounded base of R1/κ = {(x1, . . . , xκ) |
x1, . . . , xκ ∈ {0, 1},Σκ

i=1xi = 1}. First note that #tuples(R1/κ) = κ, and

5 DETERMINING BOUNDED BASES OF BOOLEAN CONSTRAINT LANGUAGES10

that CSP({R1/κ}) can be seen as an alternative formulation of the monotone
1-in-κ-SAT problem, hence it is NP-complete for every κ ≥ 3.

We give a general characterization of the functions in the bounded base
B({R1/κ}). For integers λ, κ′ and a set of κ′-ary Boolean tuples U satisfying
|U | = λ, we say that U is an exact cover of {1, . . . , κ′} if for all i = 1, . . . , κ′,
there is a unique u ∈ U with u[i] = 1. For instance, for λ = 2 and κ′ = 3, the set
U = {(0, 1, 1), (1, 0, 0)} is an exact cover of {1, . . . , 3}, and for λ = 4 and κ′ = 3,
the set U = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)} is an exact cover of {1, . . . , 3}.
Observe that U is an exact cover of {1, . . . , κ′} if and only if U \ {~0} and U ∪{~0}
are exact covers, and that the size λ = |U | of an exact cover U of {1, . . . , κ′}
satisfies either λ ≤ κ′ + 1 or λ ≤ κ′, depending on whether U contains ~0. In the
forthcoming proposition we make use of the following two lemmas, which we
state without proof.

Lemma 3 Let κ ≥ κ′ ≥ 1. If U ⊆ {0, 1}κ′ is an exact cover of {1, . . . , κ′} with
|U | = κ, then U = ColsSet(t1, . . . , tκ′) for some t1, . . . , tκ′ ∈ R1/κ.

Lemma 4 Let κ′ ≥ 1. Then U ⊆ {0, 1}κ′ is an exact cover of {1, . . . , κ′} with
(~0) ∈ U if and only if U = ColsSet(t1, . . . , tκ′) for some t1, . . . , tκ′ ∈ R1/κ with
κ > κ′.

Proposition 3 Let κ ≥ 3. Then the bounded base of R1/κ is the set of all
functions f with κ′ = ar(f) ≤ κ and defined on at most κ tuples, that satisfy
one of the following:

1. for all exact covers U of {1, . . . , κ′} contained in domain(f) and with ~0 ∈ U
or |U | = κ, f restricted to U is a projection, or

2. ~0 ∈ domain(f), |domain(f)| = κ, domain(f) is an exact cover of {1, . . . , κ′},
f(~0) = 1, and f(x1, . . . , xκ′) = 0 for all (x1, . . . , xκ′) ∈ domain(f) \ {~0}.

Proof Let f be a function in B(R1/κ). By definition of a bounded base,
from ar(R1/κ) = #tuples(R1/κ) = κ we get ar(f), |domain(f)| ≤ κ. We now
distinguish two cases for the tuple ~0. First assume ~0 /∈ domain(f) or f(~0) = 0,
and let U ⊆ domain(f) be an exact cover of {1, . . . , κ′} with (~0) ∈ U or |U | = κ.
Let T be the sequence of tuples from R1/κ satisfying ColsSet(T) = U . For
|U | = κ and ~0 /∈ U , such T exists by Lemma 3, and it is easily seen that it
has to contain each tuple of R1/κ exactly once. For the case when ~0 ∈ U such
T exists by Lemma 4 and |domain(f)| ≤ κ. Now because f preserves R1/κ by
assumption, f applied columnwise to T must yield a tuple containing exactly one
1. Hence for |U | = κ and ~0 /∈ U it is clear that f restricted to U is a projection,
and for ~0 ∈ U , using f(~0) = 0 we get that f(x1, . . . , xκ′) must be 1 for some
(x1, . . . , xκ′) ∈ U \{~0}, hence again that f restricted to U is a projection. Finally,
f is in Case (1). Now assume f(~0) = 1 and that f is not in Case (1). We first
show that |domain(f)| = κ and domain(f) is an exact cover of {1, . . . , κ′}. We
first claim that domain(f) does not contain an exact cover of {1, . . . , κ′} of size
less than κ− 1. Indeed, otherwise it follows from Lemma 4 that there exists a

5 DETERMINING BOUNDED BASES OF BOOLEAN CONSTRAINT LANGUAGES11

sequence T = (ti1 , . . . , tiκ′) of tuples from R1/κ satisfying ColsSet(T) = U ∪{~0}
and such that ~0 occurs at least twice a column. Hence f applied columnwise to T
yields a tuple containing at least two 1’s and it follows that f does not preserve
R1/κ, a contradiction. With this in hand, since f is not in Case (1), domain(f)
must contain an exact cover of {1, . . . , κ′}, hence one of size κ− 1 or κ, say U .
But for |U | = κ − 1, U cannot contain ~0, since otherwise U \ {~0} would be a
cover of size less than κ− 1, which we have just shown to be impossible. Now
since we have ~0 ∈ domain(f) we get that U ∪ {~0} is an exact cover of size κ, as
desired. Hence |domain(f)| = κ and domain(f) is an exact cover of {1, . . . , κ′}.
Letting T be a sequence of tuples from R1/κ with ColsSet(T) = domain(f), we
have that f applied columnwise to T must yield a tuple containing exactly one 1.
From f(~0) = 1 we conclude that f is constantly 0 on domain(f) \ {~0}. Finally,
f is in Case (2).

We now show the reverse inclusion. Let T be a sequence of κ′ tuples from
R1/κ such that f is defined on ColsSet(T). We show that applying f columnwise
to T yields a tuple in R1/κ, which is enough to show the claim. Since T is a
sequence of tuples from R1/κ we have that ColsSet(T) is an exact cover of
{1, . . . , κ′}, which either contains ~0 or is of size κ (or both). Hence if f is in
Case (1), then its restriction to U has to be a projection. Now, if f is in Case (2),
~0 cannot be repeated in Cols(T) since otherwise domain(f) \ {~0} would be a
proper superset of ColsSet(T) \ {0} (by |domain(f)| = κ) and hence, could
not be an exact cover of {1, . . . , κ′}. On the other hand, by definition of R1/κ,
no other column can be repeated in Cols(T), hence from |domain(f)| = κ we
conclude ColsSet(T) = domain(f). From the assumption it follows that f
applied columnwise to T yields a tuple containing exactly one 1, as desired. �
We emphasize that a similar characterization could be given for the whole
set pPol({R1/k}), but using bounded bases makes the characterization much
simpler. For instance, Case (1) in the proposition encompasses the case when
f is a subfunction of a projection, but also the case when domain(f) does not
contain an exact cover of {1, . . . , κ′}. In this latter case f can take arbitrary
values, since there are no t1, . . . , tκ′ ∈ R1/κ such that f(t1, . . . , tκ′) is defined. It
also encompasses (through κ, κ-closure) the general case of functions f (with
|domain(f)| > κ) whose domain contains several exact covers over which f is a
projection, and other tuples which do not participate in any exact cover, and
over which the value of f is unconstrained.

5.3 κ-SAT
Let ΓκSAT be the constraint language that for every t ∈ {0, 1}κ contains the κ-ary
relation {0, 1}κ \ {t}. In other words each relation corresponds to a clause of
the form (`1 ∨ . . . ∨ `κ) where `i = xi or `i = xi. The following proposition
establishes that the bounded base of ΓκSAT is particularly simple, since it only
consists of subfunctions of projections.

Proposition 4 Let κ ≥ 3. Then the bounded base of κ-SAT is given by
B(ΓκSAT) = {f | |domain(f)| ≤ κ, ar(f) ≤ 2κ−1 and ∃i, f is a subfunction of πar(f)

i }.

5 DETERMINING BOUNDED BASES OF BOOLEAN CONSTRAINT LANGUAGES12

Proof Since a partial projection function trivially preserves all relations it is
clear that every partial projection f with |domain(f)| ≤ κ and ar(f) ≤ 2κ − 1 is
included in B(ΓκSAT). For the other direction let f ∈ B(ΓκSAT). By definition of a
bounded base we have |domain(f)| ≤ ar(ΓκSAT) = κ and ar(f) ≤ #tuples(ΓκSAT) =
2κ − 1. Now assume towards contradiction that f is not a subfunction of a
projection. Write κ′ ≤ κ for |domain(f)| and let u1, . . . , uκ′ be the tuples in
domain(f). Finally, for i = 1, . . . , κ′ let `i be xi if f(ui) is 0, and xi if f(ui) is
1, and let Rf be the κ′-ary relation Rf defined by the clause (`1 ∨ · · · ∨ `κ′) Now
since fi is not a subfunction of a projection and u1, . . . , uκ′ enumerate domain(f),
the tuple (f(u1), . . . , f(uκ′)) is different from the tuple (u1[i], . . . , uκ′ [i]) for all
i = 1, . . . , ar(f). Moreover, by construction of Rf , (f(u1), . . . , f(uκ′)) is not in
Rf . Since Rf is defined by a clause it contains all tuples but one, and it follows
that it contains the tuple (u1[i], . . . , uκ′ [i]) for all i = 1, . . . , ar(f), but not the
tuple (f(u1), . . . , f(uκ′)). Hence Rf is not preserved by f . On the other hand we
have Rf (x1, . . . , xκ′) = R(x1, . . . , xκ′ , xκ′ , . . . , xκ′) for an appropriately chosen
R ∈ ΓκSAT, hence f ∈ B(ΓκSAT) ⊆ pPol(ΓκSAT) should be a polymorphism of Rf , a
contradiction. �
Again, using bounded bases makes the characterization much simpler, since
pPol(ΓκSAT) includes functions with |domain(f)| = λ > κ which are not partial
projections, as made clear in the following proposition. For a ground set V , a
hypergraph H ⊆ 2V is a set system over V , and a set S ⊆ V is a hitting set of H
if for every E ∈ H we have E ∩ S 6= ∅.

Proposition 5 Let f be an n-ary partial function that is not a partial projection,
and let domain(f) = {u1, . . . , uk}. Let V = {v1, . . . , vk}, and define H =
{E1, . . . , En} ⊆ 2V by: vi ∈ Ej if and only if ui[j] 6= f(ui). Then f ∈ pPol(ΓκSAT)
if and only if every hitting set of H has size at least κ+ 1.

Proof Observe ∅ /∈ H, since f is not a partial projection. On the one hand,
assume that H has a hitting set S of size κ or less. Consider the subfunction
f ′ of f with domain(f ′) = {ui | vi ∈ S}. By construction, f ′ is not a partial
projection; thus f ′ has a contraction g defined on at most κ tuples and arity
at most 2κ − 1. By Proposition 4, g is not a partial polymorphism of κ-SAT,
hence neither is f . On the other hand, assume that all hitting sets of H have
size at least κ+ 1. Let B be the bounded base for κ-SAT; by Theorem 2, we
must show f ∈ Clκ,n(B). Let f ′ be a restriction of f on at most κ tuples, and
let S = {vi | ui ∈ domain(f ′)}. Then S is not a hitting set of H, hence for some
Ej ∈ H we have S ∩Ej = ∅, hence f ′ is a subfunction of πnj . Now we have a few
simple cases. If n ≤ 2κ − 1, then f ′ ∈ B; if n > 2κ − 1 but f ′ has a contraction
of arity at most 2κ − 1, then f ′ is a stretching of a function in B; otherwise
f ′ ∈ U2κ−1

n by definition of Umn . In each case, we see that we can construct a
κ-covering of f from B(ΓκSAT), hence f ∈ Clκ,n(B) and we are done. �

6 CONCLUDING REMARKS 13

6 Concluding Remarks
We have proposed the new notion of a bounded base which, together with a
closure operator, allows one to characterize the partial polymorphisms of a
finite constraint language from a finite set of functions. This notion gives
simple characterizations of the partial polymorphisms of natural and well-studied
languages. Continuing this investigation and determining bounded bases for
more constraint languages is a natural starting point, in order to explain the
complexity differences between NP-hard CSP problems with the help of partial
polymorphisms.

Acknowledgements
Bruno Zanuttini is supported by ANR Project ANR-10-BLAN-0210.

References
[1] V. B. Alekseev and A. A. Voronenko. On some closed classes in partial

two-valued logic. Discrete Mathematics and Applications, 4(5):401–419,
1994.

[2] V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov. Galois
theory for Post algebras. I. Cybernetics, 5:243–252, 1969.

[3] V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov. Galois
theory for Post algebras. II. Cybernetics, 5:531–539, 1969.

[4] P. Jeavons. On the algebraic structure of combinatorial problems. Theoretical
Computer Science, 200:185–204, 1998.

[5] P. Jonsson, V. Lagerkvist, G. Nordh, and B. Zanuttini. Complexity of SAT
problems, clone theory and the exponential time hypothesis. In Proceedings
of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-
2013), pages 1264–1277, 2013.

[6] V. Lagerkist and M. Wahlström. Polynomially closed co-clones. In Pro-
ceedings of the 44th International Symposium on Multiple-Valued Logic
(ISMVL-2014), pages 85 – 90, 2014.

[7] V. Lagerkvist. Weak bases of Boolean co-clones. Information Processing
Letters, 114(9):462–468, 2014.

[8] E. Post. The two-valued iterative systems of mathematical logic. Annals of
Mathematical Studies, 5:1–122, 1941.

[9] B.A. Romov. The algebras of partial functions and their invariants. Cyber-
netics, 17(2):157–167, 1981.

REFERENCES 14

[10] T. Schaefer. The complexity of satisfiability problems. In Proceedings of
the 10th Annual ACM Symposium on Theory Of Computing (STOC-78),
pages 216–226. ACM Press, 1978.

[11] I. Schnoor. The weak base method for constraint satisfaction. PhD thesis,
Gottfried Wilhelm Leibniz Universität, Hannover, Germany, 2008.

	Introduction
	Preliminaries
	Total and Partial Clones
	The Constraint Satisfaction Problem

	Bounded Bases
	Closure of Bounded Bases
	Determining Bounded Bases of Boolean Constraint Languages
	Sign Patterns
	1-in–SAT
	-SAT

	Concluding Remarks

