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Generally, the excavation process of a gallery generates fractures in its immediate vicinity. The corresponding

zone which is called the excavated damaged zone (EDZ), has a larger permeability than the intact surrounding

medium. Therefore, some of its properties are of crucial importance for applications such as the storage of

nuclear wastes. Field observations suggest that the fracture density is an exponentially decreasing function of

the distance to the wall and that the fracture orientation is anisotropic and well approximated by a Fisher law

whose pole is orthogonal to the wall. Numerical samples are generated according to these prescriptions and

their percolation status and hydraulic transmissivity are systematically determined for a wide range of decay

lengths and anisotropy parameters. All the numerical data are presented and discussed. A heuristic analytical

expression for the percolation threshold is proposed which unifies and accurately represents all the numerical

data. A simple parallel flow model yields an explicit analytical expression for the transmissivity as a function of

the density, heterogeneity, and anisotropy parameters; the model also successfully accounts for all the numerical

data.

DOI: 10.1103/PhysRevE.86.026312 PACS number(s): 47.56.+r, 47.11.−j, 91.60.Ba

I. INTRODUCTION

The properties of the excavated damaged zone (EDZ) are

attracting more and more attention because of their potential

importance in repositories of nuclear wastes. The EDZ which

is induced by the excavation process may create along the

galleries of the repositories a high permeability zone which

could directly connect the storage area with the ground

surface. Therefore, the studies of its properties are of crucial

importance.

The major properties of homogeneous, isotropic, possibly

polydisperse fracture networks embedded in an impermeable

[1–4] or permeable [5,6] solid matrix are now relatively well

understood from a theoretical point of view. Homogeneous

anisotropic networks have also been considered [7,8]. A

recent work [9] summarizes and extends the results of these

earlier contributions. The stereological properties of uniform

or heterogeneous fracture networks have been thoroughly

investigated in [10], for spatially uniform or variable fracture

density. However, percolation and permeability of networks

with spatially varying density have only been briefly addressed

in [8].

Systematic investigations and measurements are available

at Mont Terri, in Refs. [11,12], for instance. The fracture

frequency was measured as a function of the distance from the

tunnel walls and it could be approximated by an exponential

law with a characteristic length of about 0.5 m. Moreover,

in the conceptual model of [11], the fracture orientation is

strongly anisotropic and most fractures are subparallel to the

tunnel walls. Similar observations were made by [12] at the
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intersection between the Gallery 04 and the EZ-G niche at

Mont Terri. These observations can be used to reconstruct

realistic fracture networks representative of the EDZ and to

determine their properties by direct numerical simulations.

Therefore, the major objective of this paper is to study

the percolation properties and the permeability of anisotropic

and/or heterogeneous fracture networks. Their density is

supposed to be a decreasing exponential function of the

distance to the wall while their orientations are supposed to

be distributed according to a Fisher law whose pole is also

perpendicular to the wall. The percolation threshold and the

transmissivity of the EDZ are calculated in the directions

parallel to the wall.

This paper is organized as follows. Section II provides the

major ingredients for the generation of anisotropic fractures

of nonuniform densities, for the analysis of their percolation

properties, and for the calculation of the equivalent permeabil-

ity and transmissivity. It provides in addition some definitions

and relations which were for most of them derived in [10], and

it recalls the main results from [9,10] which are used for the

analysis and modelization.

The results of the numerical computations with hetero-

geneous fracture networks are presented in Sec. III. The

percolation properties are analyzed first. A heuristic power-law

model is proposed which accurately describes the results for

the percolation threshold over the whole investigated range

of heterogenity and anisotropy. Then, the data for the EDZ

transmissivity are presented.

A simple parallel flow model is introduced in Sec. IV. It

yields an explicit analytical expression for the transmissivity as

a function of the heterogeneity and anisotropy parameters, and

it successfully accounts for all the numerical data. Graphical

tools are provided from which first estimates can be quickly

and easily obtained.

Some concluding remarks are given in Sec. V.
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II. GENERAL

A. Heterogeneous and anisotropic fracture networks

Consider a fractured semi-infinite medium z � 0, repre-

sentative of the EDZ near the wall at z = 0 [see Fig. 1(a)].

According to the observations of [11,12], the fracture density

ρ(x,y,z) (i.e., the number of fracture centers per unit volume)

is assumed to decrease exponentially as a function of the

distance to the wall,

ρ(x,y,z) = ρ0e
−z/ℓ, (1)

where ρ0 is the density at z = 0 and ℓ is a length which

characterizes the exponential decay. Furthermore, the fractures

are assumed to be identical plane convex polygons with area

A, perimeter P , and circumscribed by a circle of radius R.

When positioning a fracture in space, in addition to the

center position, the direction of the normal vector n has to be

set, as well as the fracture orientation angle ω in its own plane

[cf Fig. 1(b)]. The latter is always distributed uniformly in the

interval [0,2π ] and for isotropic networks, the normal vector

n is distributed uniformly over the unit sphere.

However, observations show that many natural fracture

systems have preferential fracture orientations; for instance,

Ref. [11] observed that most fractures in the EDZ are

subparallel to the tunnel walls. In order to describe statistically

their orientations, the vectors n normal to the fractures are

supposed here to follow the Fisher distribution [13]. It is natural

to set the polar direction parallel to the z axis [i.e., normal to

the gallery wall (Fig. 1(b)]. Then, the azimuth φ of n around

the pole is uniformally distributed between 0 and 2π and the

distribution of the angle θ of n with the z axis is given by

F (θ ) =
κ sin θ

2 sinh κ
eκ cos θ , (0 � θ � π ), (2)

where κ is the concentration parameter and F (θ )dθ is

the number of fractures with a polar angle in the interval

[θ,θ + dθ ].

When κ = 0, the angular distribution becomes uniform on

the unit sphere whereas for large κ the normal vectors are

clustered around the pole.

B. Generation of fracture networks with position-dependent

densities

Fractures are generated in a cubic unit cell L3 [see Fig. 1(a)].

Since the network is assumed to be translationally invariant

along the x and y directions, periodicity conditions are applied

along these two directions (see [2], for instance). Hence, the
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FIG. 1. Schematization of the EDZ and notations. (a) Example of an anisotropic heterogeneous network of circular fractures. The pole of

the Fisher distribution (2) and the exponential variations of density (1) are aligned with the z axis. (b) Notations for the fracture parameters and

the system of coordinates. (c) Schematical view of a circular fracture with normal n intersecting the layer dz and producing a trace of length c;

the contribution dS to S(z) is the shadowed area.
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fracture centers are positioned with random values of x and

y uniformly distributed between 0 and L; the fracture parts

which straddle one of the cell boundaries perpendicular to the

x or y axis, if any, are included by periodicity on the opposite

side of the cell.

The z direction is handled in a different way for two reasons.

First, the fracture centers must be distributed along the z

axis in accordance with the prescribed law (1); second, the

density difference at z = 0 and z = L is in contradiction with

periodicity.

The parts of fractures centered at z < 0 which intersect

the plane z = 0 are included in the cell (and similarly at the

opposite side z = L). If these fractures were ignored, this

would yield a lower fracture density for 0 � z � R. This is in

contradiction with the observations of [12] who found that the

exponential law for the volumetric fracture area applies up to

the wall.

Consequently, fractures are generated with their centers

in the expanded domain −R � z � L + R; all the fracture

parts located within the cell (i.e., between z = 0 and z = L)

are taken into account. Hence, the domain 0 � z � L can be

regarded as a slab extracted from a larger medium where ρ is

given by (1). Figure 2 provides examples of generated isotropic

and anisotropic fracture networks.

Throughout the rest of this paper, the lengths L and ℓ are

made dimensionless by the circumscribed radius R,

L′ =
L

R
, ℓ′ =

ℓ

R
. (3)

The dimensional fracture density ρ is usually replaced by the

dimensionless density ρ ′,

ρ ′ = ρVex. (4)

In homogeneous networks, Vex is the excluded volume [14]

which is defined as the surrounding volume into which

the center of another object may not enter if overlap is to
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FIG. 2. Fracture networks generated with L′ = 20, l′ = 5, ρ ′
0 =

20, and κ = 0 (a) and 50 (b). The fractures centered in a 4 × 4 × 20

volume are shown. The gray level is a decreasing function of z′.

be avoided. It depends on the fracture shape and on the

orientation distribution. By definition, ρ ′ is the mean number

of intersection per fractures. A correction has to be introduced

to preserve this property if the density depends on position, as

detailed in Sec. II C.

C. Geometrical properties

Since the fracture density varies with the depth z measured

from the wall at z = 0, it is useful to introduce some

characteristic geometrical quantities for the network in or

around a plane 	z at depth z. These are the total trace length

C(z) per unit surface of 	z, and the area S(z) of fracture per

unit volume in a vanishingly thin slab around 	z. These two

quantities are illustrated in Fig. 1(c). In particular, C(0) is the

density of traces visible on the gallery wall, and it is the most

easily accessible characteristic of the network. In addition, a

generalization of the usual expression for Vex when ρ depends

on position is required.

For isotropic and homogeneous networks, C, S, and Vex

were evaluated in [15,16]

Ci = ρA
π

4
, Si = ρA, Vex,i = 1

2
AP, (5)

where A and P are the area and the perimeter of the fractures,

respectively. Correction factors can be introduced in the

general case which are defined as the ratios between a given

average quantity and its value for isotropic and homogeneous

networks,

ψc =
C(z)

Ci(z)
, ψs =

S(z)

Si(z)
, � =

Vex

Vex,i

, (6)

where Ci(z) and Si(z) are given by (5) with the value of ρ at

position z.

These correction factors were determined in [10] for het-

erogeneous and/or anisotropic networks of circular fractures,

ψc =
2κ

E sinh κ

[
I1

(
E + κ

2

)
Io

(
E − κ

2

)

+ Io

(
E + κ

2

)
I1

(
E − κ

2

)]
, (7a)

ψS = 2l′2
κ

sinh κ
[cosh E − cosh κ], (7b)

where I0 and I1 are the modified Bessel functions and

E =
(

κ2 +
1

ℓ′2

)1/2

. (7c)

In the limit where the medium becomes homogeneous, these

expressions tend toward

ψS = 1, ψc =
2

sinh κ
I1(κ), (ℓ′ → ∞). (8)

Finally, � for anisotropic homogeneous networks is given by

�(κ,∞) =
2

sinh2 κ

[
Io(2κ) −

1

κ
I1(2κ)

]
. (9a)
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� could not be analytically evaluated for heterogeneous

networks, but an acceptable fit is provided by

�(κ,ℓ′)

�(κ,∞)
=

[
ψc(κ,ℓ′)

ψc(κ,∞)

]2

(κ ≫ 1). (9b)

Note that the analytical results (7) and (9) apply for any

fracture shape in homogeneous networks. However, ψS , ψc,

and � depend on the fracture shape in heterogeneous networks.

For the square fractures considered in the present work, their

values have been determined by direct measurement on the

numerical samples. These data together with others for a

variety of fracture shapes lead to the very pleasant conclusion

that the formulas for disks are applicable to other shapes with

a good accuracy if l′ is replaced by l′A,

l′A =
l

RA

, (10)

where RA =
√

A/π is the equivalent disk radius [10].

Since the definition (4) of the dimensionless density is

kept, ρ ′ still represents the mean number of intersections per

fracture. Moreover, a dimensionless volumetric area S ′ and a

dimensionless trace length per unit area C ′ are defined by

S ′ = S P �/2 = ρ ′ ψS, C ′ = C P �/2 =
π

4
ρ ′ ψC .

(11)

D. Percolation

Percolation in the direction orthogonal to the wall is

impossible since the fracturation density decreases with z and

the network always becomes disconnected beyond a certain

depth. Therefore, only the percolation properties of the EDZ

in the directions parallel to the wall are addressed in this paper.

As usual, percolation is influenced by size effects, and

samples of increasing size L3 have to be considered in order

to extrapolate the results for infinite systems, according to the

procedure described in the following. However, a finite size L

has an additional effect, namely it truncates the EDZ in the z

direction. Ideally, the investigation should be conducted with a

cell size Lz in the z direction large enough so that the truncated

part has a negligible chance to contribute to percolation while

Lx and Ly are varied in order to study the percolation size

effects; in other words,

l′ ≪ L′. (12)

In practice, L′ =5, 10, and 20 are used. Hence, Eq. (12)

is a priori satisfied for small and moderate l′, up to about

2. However, for intermediate values l′ = 5 ∼ 10, it must be

a posteriori checked that truncation does not influence the

results. This truncation effect will be more precisely discussed

when the results are presented in Sec. III C, but it is not

considered anymore in this section.

Note that very large values 102 and 103 of l′ are also

considered. Therefore, the cells with L′ � 20 cover only the

superficial part of the EDZ, and the density is nearly uniform

throughout the cell. Under such circumstances, the results

obtained by [1,4] for three-dimensional (3D) homogeneous

fracture networks are expected to be recovered.

Except for this specific point, the methodological approach

of [1,4] is used. For given values of ρ ′
0,L

′, and ℓ′, the

probability 	(L′,ℓ′,ρ ′
0) of having a percolating cluster which

spans the cell in the x direction is calculated with Nr = 100

realizations; then, the critical value ρ ′
0c(ℓ′,L′) for which 	 =

0.5 is estimated. This is done by fitting the data for 	(L′,ℓ′,ρ ′
0)

with a two-parameter error function of the form,

	(L′,ℓ′,ρ ′
0) =

1

�L

√
2π

∫ ρ ′
0

−∞
exp

{
−

[ξ − ρ ′
0c(ℓ′,L′)]2

2(�L)2

}
dξ,

(13)

where �L is the width of the transition region of 	(L′,ℓ′,ρ ′
0).

In the limit of large L′, ρ ′
0c(ℓ′,L′) is expected to follow the

standard scaling law [17],

ρ ′
0c(ℓ′,L′) − ρ ′

0c(ℓ′,∞) ∝ L′−1/ν, (14)

where ρ ′
0c(ℓ′,∞) is the critical density for an infinite domain

and ν is the critical exponent. The EDZ is a thick but essentially

two-dimensional (2D) object, and it is not entirely obvious

whether ν should be equal to the classical values ν2 = 4/3

in two dimensions, or ν3 ≈ 0.88 in three dimensions [17].

Since ν describes the divergence of the size of the connected

clusters which extend in the x and y directions and ultimately

exceed the EDZ thickness, it is reasonable to expect that the

two-dimensional behavior prevails.

Percolation theory also predicts that the width �L of the

transition region scales with L′ as

�L ∝ L′−1/ν . (15)

Hence, the exponent ν can be determined from the data for

�L for increasing sizes L′. On the other hand, by combining

Eqs. (14) and (15),

ρ ′
0c(ℓ′,L′) − ρ ′

0c(ℓ′,∞) ∝ �L. (16)

Therefore, ρ ′
0c(ℓ′,∞) can be determined from a linear fit of the

data for ρ ′
0c(ℓ′,L′) and �L obtained in finite samples.

In practice, the percolation probability 	(L′,ℓ′,ρ ′
0) was

evaluated from sets of Nr = 100 realizations, in cells of sizes

L′ = 5, 10, and 20, for about 10 values of the network density

evenly distributed in a range where 	 varies from 0.05 to 0.95.

The 95% confidence interval is estimated to be about ±0.04

in terms of ρ ′
0c(L).

Finally, it should be noted that it would be appropriate for

such an analysis to consider parallelepipedic cells with a fixed

depth Lz equal to a few times l and varying sizes Lx = Ly .

However, the increase of Lz by keeping it equal to Lx and Ly

is cost free since this does not yield a significant increase of

the number of fractures in the network.

The percolation threshold of homogeneous fracture net-

works has been studied in earlier works and the results are

summarized in [4]. ρ ′
c is nearly invariant except for very

slender fracture shapes. It is in the range 2.3±0.1 for any

regular polygon. For instance, ρ ′
c was found equal to 2.24

for triangles, 2.31 for squares and hexagons, and it seems to

converge toward 2.4 in the circular limit. These results and

others including very elongated shapes are well represented

by the model,

ρ ′
c = 2.41

[
1 − 4

(
η −

2

π

)2
]

, with η =
4

P ′ . (17)
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Furthermore, it has been noted in [8] that the anisotropic

character of a Fisher orientation distribution has a very weak

influence on the percolation threshold if any.

E. Flow properties

Again, only the flow properties of the EDZ along the x and y

directions are of interest when a pressure gradient ∇p parallel

to the wall is applied. The transmissivity T which relates the

total flow rate per unit width Q along the wall through the

whole EDZ to the pressure gradient, is defined by

Q = −
1

μ
T · ∇p, (18a)

where μ is the fluid viscosity. T is homogeneous to [L3].

Since the fracture network is statistically isotropic in the (x,y)

directions, T is a two-dimensional spherical tensor,

T = T I ||, (18b)

where T is the scalar transmissivity and I || the two-

dimensional unit tensor [exex + eyey].

On a local scale corresponding to the typical aperture b of

a fracture, the flow of a Newtonian fluid through it is governed

by the Stokes equation. If b is assumed to be much smaller

than the typical lateral extent 2R of the fracture, the flow at a

scale intermediate between b and 2R is governed by the Darcy

equation,

q = −
1

μ
σ ∇p, (19)

where q is the locally averaged flow rate per unit fracture width

[L2T −1], ∇p the pressure gradient, and σ [L3] the fracture

conductivity coefficient. The mass conservation equation reads

∇S · q = 0, (20)

where ∇S is the two-dimensional gradient operator in the

fracture plane.

The medium is supposed to be spatially periodic along the

x and y axes. In other words, identical unit cells of volume τ0

are juxtaposed in the plane z = 0 and a macroscopic pressure

gradient ∇p is applied upon the corresponding unbounded

medium. Periodic boundary conditions for the local flow rate

q and the local pressure gradient ∇p are applied along the

x and y axes. A no-flux condition is applied over the planes

z = 0 and z = L bounding the unit cell in the third direction.

The seepage velocity v can be evaluated as

v =
1

τ0

∫

Sf

qds, (21)

where Sf is the surface of all the fractures in the network. v is

related to the pressure gradient by the Darcy law [15],

v = −
1

μ
K · ∇p. (22)

The macroscopic permeability tensor K is determined from

Eqs. (21) and (22) once the problem Eqs. (19) and (20) have

been solved. Of course, calculations are only made for ∇p

parallel to the x and y axes. K is a two-dimensional tensor

homogeneous to the square of a length. Since the x and y axes

are statistically equivalent, K is a spherical 2D tensor when

averaged over many realizations,

K = K I ||. (23)

The transmissivity of the xy-periodic domain of thickness L

is

T = L K. (24)

If the cell size L is large enough to encompass the whole EDZ,

or at least its part which can significantly contribute to the

flow, T is the transmissivity of the EDZ.

In this paper, σ is taken to be constant over each fracture.

Because of the classical Poiseuille law, the typical conductivity

σ0 of a fracture is expected to be of the order of

σ0 =
b3

12
. (25)

This value, together with R and a reference pressure p0, is

used to recast the equations in a dimensionless form. The

dimensionless parameters (with primes) are defined by

p = p0 p′, x = R x′, ∇ =
1

R
∇

′, v =
σ0p0

μR2
v′,

q =
σ0p0

μR
q′, σ = σ0 σ ′, K =

σ0

R
K′, T = σ0 T′.

(26)

The following developments use this dimensionless formula-

tion and the results are presented in terms of the dimensionless

scalar permeability K ′ or transmissivity T ′.
The numerical method applied to solve the flow problem is

described by [2]. First, the fracture network is discretized; an

unstructured triangulation of the fractures is obtained by using

an advancing front technique. Since the triangular mesh takes

into account the fracture intersections which are randomly

located, it generally contains triangles of various sizes and

shapes. The maximal size of the triangles in the mesh is δM

which is set equal to R/4. A typical number of triangles for

a square fracture is 120. As an example, a uniform network

of density ρ ′ = 9.1 in a cell of size L′ = 20 contains 1.27 104

fractures; the corresponding mesh contains 7.25 105 nodes and

1.5 106 triangles.

The pressure p is determined at each node of the triangular

mesh, by solving a set of linear algebraic equations resulting

from a finite volume formulation. Each of these equations

results from the mass balance obtained by summing up the

fluxes incoming from all the triangles incident to the node, in

all the fractures which contain it. These fluxes are evaluated

by (19) where the pressure gradient is regarded as uniform

over each triangle.

For each set of parameters, the flow simulations are

performed on Nr = 50 randomly and independently generated

fracture networks. Unless otherwise stated, the macroscopic

permeabilities given in the following are always averaged over

these Nr realizations and over the two directions x and y.

Nonpercolating networks with zero macroscopic permeability

are also taken into account in the averages. Note that the

correction for the discretization effects described in [9] is

systematically applied.

Let us recall for later use some earlier results about the

permeability of homogeneous fracture networks. Consider first

026312-5
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networks of infinite fractures. Their permeability tensor KS is

given by [18]

KS = Sσ 〈I − nn〉, (27a)

where the brackets indicate an average over the fracture

orientations. If the components of the vector n are denoted

by ni (i = 1,2,3), nn is the tensor of components ninj

(i,j = 1,2,3). In isotropic networks 〈I − nn〉 = 2/3I. This

yields in dimensionless form,

K′
Si = kS ρ ′ I, with kS =

4

3 P ′ . (27b)

If the fracture orientations obey the Fisher law (2), Eq. (27a)

becomes

K′
S =

K ′
Si

�

⎛
⎜⎝

ψ⊥ 0 0

0 ψ⊥ 0

0 0 ψ‖

⎞
⎟⎠ , (27c)

where � is given by (9). ψ⊥ and ψ‖ were obtained in [10] as

ψ⊥ =
3

2

(
1 +

1 − κ coth κ

κ2

)
, ψ‖ =

3

κ2
(κ coth κ − 1).

(28)

Note that ψ⊥ corresponds to the directions normal to Fisher’s

pole (i.e., parallel to the gallery wall).

Snow’s formula (27) is an upper asymptotic value of

the permeability of very dense finite fracture systems. The

permeability of homogeneous isotropic networks of finite

fractures was modeled by [9] as

K̂ ′(ρ ′) =
α(ρ ′ − ρ ′

c)2

1 + β(ρ ′ − ρ ′
c)

. (29)

This heuristic formula represents the very extensive set of

numerical data of [9] within ±6% for a variety of fracture

shapes in the range 3 � ρ ′ � 128 with the parameters α =
0.0370 and β = 0.155. However, an even better accuracy

of ±2% is achieved in the specific case of square fractures

considered in the present work with α = 0.0359 and β =
0.148. Note that the ratio α/β corresponds to kS in Eq. (27b).

Finally, it was shown in [9] that the permeability of

anisotropic networks can be expressed in a form similar to

Eq. (27c) for infinite fractures, with K ′
Si replaced by the model

K̂ ′ (29) for finite fracture networks,

K′ =
K̂ ′

�

⎛
⎜⎝

ψ⊥ 0 0

0 ψ⊥ 0

0 0 ψ‖

⎞
⎟⎠ . (30)

Note that many of the results recalled in Secs. II D and II E have

been used by [19] in his modelization of the stress-induced

permeability in rock salt, where the onset of percolation was

expressed in terms of a critical deviatoric stress.

III. RESULTS FOR HETEROGENEOUS NETWORKS

A. Simulations

Simulations are performed to study the four dimensionless

parameters which govern the physical situation, namely L′, ℓ′,
ρ ′

o, and κ . Note that L′ is an artificial parameter introduced

by the finite character of any numerical cell. Three sizes L′ =
5,10, and 20 were used; ℓ′ ranges from 0.2 to 1000, and the

density ρ ′
0 up to 400 in some cases. Simulations for isotropic

and anisotropic networks are performed with κ = 0,10,50, and

200. The fractures are square, unless otherwise stated.

The maximal number of fractures generated is 2.1 104.

Most calculations are done on a 2.66-GHz Xeon processor. A

typical case with 1.3 104 fractures lasts approximately 1 h of

CPU time for the network generation, the intersection analysis,

the percolation test, and the fracture triangulation. The flow

problem with 7 105 unknowns over 1.5 106 mesh triangles lasts

approximately 7 h.

B. Fracture surface area

Illustrative results relative to the volumetric fracture surface

area are presented here in order to validate the numerical

network generation procedure and the theoretical predictions

of [10] recalled in Sec II C and to illustrate the influence of the

adopted conventions.

Figure 3 shows the volumetric area profiles S ′(z) measured

in fracture networks with L′ = 20, ρ ′
0 = 20, and l′ = 1/2 or

2. S ′ was measured by cumulating in intervals of width R/4

the areas of the surface elements in the network triangulation

whose barycenters lie in the corresponding interval. These

data are compared with the theoretical prediction ψSρ
′(z), and

with ρ ′(z) which disregards the effect of heterogeneity on the

volumetric area [see Eq. (11)].

For l′ = 2, the two quantities are nearly equivalent since

the correction is only about 1.4% and the numerical data agree

with the prediction. However, ψS ≈ 1.25 for l′ = 1/2, which

is a significant correction. The numerical data are in good

agreement with this prediction.

The volumetric area profile obtained numerically for l′ = 2

when the fractures with their centers at z < 0 are ignored, is

also displayed in Fig. 3. It shows a strong depletion near the

wall at z = 0. Note that l′ = 2 corresponds to the EDZ studied

in [12] and that no such depletion was detected.

0 1 2 3 4 5
1

2

5

10

20

S
′

z

FIG. 3. Volumetric fracture surface area S ′ as a function of depth,

measured in a cell with L′ = 20, when ρ ′
0 = 20 and l′ = 1/2 (single

realization, solid square) or l′ = 2 (average over five realizations),

with (solid circle) and without (open circle) taking into account

the fractures centered at z < 0. The solid lines are the theoretical

prediction ψSρ
′ [see Eq. (11)] and the broken lines are ρ ′.
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C. Percolation properties

1. Isotropic networks

For any prescribed decay length l′, the fracture density

profile is entirely defined by the degree of fracturation at z = 0,

which can be quantified by any of the parameters S ′
0, C ′

0, or

ρ ′
0. In view of Eq. (11), there is a correspondence between

these three measures through the known functions ψS and ψc

of l′. Hence, any of them can be used to quantify the EDZ

fracturation intensity and critical values for percolation can be

determined in any of these terms.

The trace density C ′
0 is the most practical quantifier of the

degree of fracturation since it can be directly observed on

the wall. However, it will turn out that S ′
0 is more appropri-

ate when the fracture orientation distribution is anisotropic

(see Sec. III C2). Therefore, the results are presented for the

three parameters, namely the dimension volumetric area S ′,
trace density C ′, and density ρ ′.

Examples of percolation probability curves 	(L′,ℓ′,C ′
0) for

some of the investigated values of ℓ′ and for the three cell

sizes L′ = 5,10, and 20 are given in Fig. 4. These curves

have the same shapes as in standard percolation problems in

spatially homogeneous fracture networks. They are shifted

leftwards when l′ decreases which means that a larger trace

density on the wall is required for percolation when the

exponential density decay in the EDZ is steeper. The width of

the transition region decreases when L′ increases in agreement

with (15).

This transition width �L was quantified by fitting 	 by an

error function according to (13) and it is plotted in log scales

against the cell size L′ in Fig. 5(a). There are clearly two sets of

5 10 15 20 25
0

0.5

1

Π

C
0
′

(a)

5 10 15 20 25
0

0.5

1

Π

C
0
′

(b)

5 10 15 20 25
0

0.5

1

Π

C
0
′

(c)

FIG. 4. Percolation probability 	(L′,l′,C ′
0) as a function of C ′

0 for

L/R = 5 (a), 10 (b), and 20 (c). Data are for ℓ/R = 0.2, 0.25, 0.3,

0.4, 0.5, 0.67, 1, 2, 5, 10, 100, and 1000, from right to left. The curves

are the fits by the error function (13).
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15
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c
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(b)

FIG. 5. Percolation properties of isotropic heterogeneous net-

works. (a) The transition width �L as a function of L′−1. (b) The

percolation threshold C ′
0c as a function of �L. Data are for ℓ/R = 0.2

(solid square), 0.25 (open left triangle), 0.3 (open circle), 0.4 (open

up triangle), 0.5 (solid down triangle), 0.67 (open right triangle), 1

(solid diamond), 2 (solid left triangle), 5 (solid circle), 10 (solid up

triangle), 100 (asterisk), and 1000 (solid right triangle). The solid

lines are the linear fits.

curves which are all fairly linear, but the large values l′ = 102

and 103 yield a steeper slope than the small or intermediate l′.
A least-square fit of the form of Eq. (15) gives ν ≈ 0.92 and

0.90 for l′ = 102 and 103, respectively, while it ranges from

1.22 to 1.55 for 0.2 � l′ � 10. These determinations of ν are

not very accurate due in particular to the limited range of L′,
but they are sufficient to identify unambiguously two- and

three-dimensional behaviors, associated with ν2 = 4/3 and

ν3 ≈ 0.88 [17].

The fit of 	 by (15) also provides C ′
0c(l′,L′), which is plotted

versus �L in Fig. 5(b). In view of Eq. (16), the threshold

C ′
0c(l′,∞) is obtained by linearly extrapolating the data for

�L = 0. Finally, C ′
0c(l′,∞), denoted for simplicity C ′

0c(l′), and

the corresponding S ′
0c(l′) and ρ ′

0c(l′) are plotted in Figs. 6(a)–

6(c) versus the decay length. They all decrease monotically as

l′ increases, and converge toward 1.83 for C ′
0c(l′) and 2.34 for

S ′
0c(l′) and ρ ′

0c(l′) when l′ → ∞. This is in good agreement

with the threshold values ρ ′
c = 2.28 found by [1], 2.31 obtained

by [4], and 2.36 predicted by (17) in homogeneous networks

of square fractures.

Let us now detail some aspects of the results. Because

of computational constraints, the cell depth L′ could not

be always kept much larger than l′. Thus, with the values

L′ = 5, 10, and 20 used in the analysis, three situations

occur:

l′ ≪ L′, for l′ � 2; (31a)

l′ ∼ L′, for l′ = 5 or 10; (31b)

l′ ≫ L′, for l′ = 102 or 103. (31c)

The first case is the simplest since no part of the EDZ with

a significant chance to contribute to percolation is truncated.

For instance, for the worst case l′ = 2 and L′ = 5, the density

ρ ′ at z = L′ is 0.48 when C ′
0 is equal to C ′

0c. In other words,

the truncated part of the EDZ is very sparse with less than half

an intersection per fracture and it can be rightly ignored as far

as percolation is concerned.

This is less obvious for Eq. (31b) which can only be checked

a posteriori. Consider for instance l′ = 5. When L′ = 5,

percolation is almost certain (	 ≈ 1) when C ′
0 is equal to

4. Then, the volumetric area at z′ = 5 is C ′(5) = 1.47. Hence,
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FIG. 6. (Color online) The percolation thresholds C ′
0c (a), S ′

0c (b),

and ρ ′
0c (c), obtained by the extrapolation of the data to �L = 0

in Fig. 5(b), as functions of l′. Data are for isotropic (open square,

κ = 0), and anisotropic networks (solid circle, κ = 10, 50, and 200).

Numbers denote the values of κ .

the probability of percolation of the truncated part of the EDZ

alone is the value of 	 obtained with C ′
0 = 1.47 which is

vanishingly small (no occurrence in 100 realizations) for all the

values of L′. Therefore, it can be assumed that the truncation

influences neither the threshold value C ′
0c(l′,L′), nor the width

�L of the transition region. The same reasoning applies when

l′ = 10, for L′ � 10.

More generally, it can be considered that the truncation does

not influence the results if the following a posteriori criterion

is satisfied:

e−L′/l′ [C ′
0c + �L] < C ′

0c − �L. (32)

For Eqs. (31a) and (31b), the typical size of the connected

fracture clusters grows as C ′
0 increases, but the growth in the z

direction is soon limited by the decay of the fracturation den-

sity. The cluster grows only along the x and y directions until

it diverges and percolation occurs. Therefore, the governing

exponent is ν2 as shown by Fig. 5.

The situation is very different for Eq. (31c) with l′ ≫ L′

because the cluster growth remains tridimensional in the

investigated range. Accordingly, the value ν3 of its scaling

exponent is observed in Fig. 5. A transition to ν2 is expected

if L′ could be set larger than l′.
The unit cell of dimensionless size L′3 is far from

representative of the whole EDZ and the truncated part

may significantly contribute to the percolation probability.

Therefore, C ′
0c can be overestimated. However, when l′ → ∞,

the EDZ tends towards a homogeneous fractured semi-infinite

space and its percolation threshold in any direction should

converge to the value for three-dimensional homogeneous

networks (i.e., ρ ′
c ≈2.31 [4] or C ′

0c ≈ 1.81). This is a lower

bound for C ′
0c and the value 1.85 obtained for l′ = 103 shows

that the overestimation is very limited.

All the observations in this section are quite similar to [20]

who examined percolation in thick films, regarded as lattice

systems unbounded along two directions and of finite thickness

h in the third one. A correspondence can be made between the

thickness h in lattice units and the decay length l′ in fracture

size units. Reference [20] observed that the critical exponent

ν3 prevails when considering percolation across the film (i.e.,

when the typical cluster size reaches h), and a transition to

the two-dimensional behavior with ν2 when percolation along

the film is considered. The critical site occupancy probability

for percolation along the film was found to be a decreasing

function of h; it converges toward the standard value for 3D

lattices when h ≫ 1. Although the present work addresses a

continuous percolation problem, our results are qualitatively

identical.

2. Anisotropic networks

Anisotropic networks with κ = 10, 50, and 200 were

investigated along the same lines as isotropic networks in

Sec. III C1. The results for C ′
0c, S ′

0c, and ρ ′
0c are plotted in

Figs. 6(a)–6(c) as functions of the decay length. The following

features are observed.

(i) The critical density remains in all cases a decreasing

function of l′.
(ii) It is also a decreasing function of κ .

(iii) When l′ → ∞, S ′
0c and ρ ′

0c converge for all κ toward

the value for isotropic homogeneous networks, which is an

overall minimum.

(iv) Conversely, C ′
0c remains a decreasing function of κ even

in homogeneous networks.

As recalled in Sec. II D, it has been noted in Ref. [8] that

the anisotropic character of a Fisher orientation distribution

does not influence the percolation threshold ρ ′
c in homo-

geneous networks. The same property for S ′
c in (iii) is a

consequence of ψs = 1 in homogeneous networks regardless

of κ [see Eq. (8)]. This is not the case for ψc, which

explains (iv).

This has the unfortunate consequence that whereas the trace

density on the wall is an easily accessible quantity, it is a

poor indicator for the prediction of percolation because of the

sampling bias. The probability for a fracture to intersect a

plane normal to the Fisher pole strongly decreases with κ . The

situation would of course be different if a trace map in a plane

normal to the wall were available.

The normalization of l′ by ψc is a heuristic but very

successful way to account for the influence of κ on S ′
0c and ρ ′

0c.

In addition, the use of l′A instead of l′ also unifies the results

for different fracture shapes. This is illustrated in Fig. 7 where

all the data from Figs. 6(b) and 6(c) are gathered along a single

curve. Data for isotropic networks of circular fractures are also

shown in Fig. 7, and they are seen to fall on the same curve.
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FIG. 7. The percolation thresholds S ′
0c (a) and ρ ′

0c (b) as functions

of l′/ψc. Same data as in Figs. 6(b) and 6(c) for isotropic (open square,

κ = 0) and anisotropic networks (solid circle, κ = 10, 50, and 200).

The lines correspond to the fit (33).

The following model can be proposed for ρ ′
0c:

ρ ′
0c = ρ ′

c + 6.80

(
l′A
ψc

)−1.002

, l′A/ψc � 1, (33a)

ρ ′
0c = ρ ′

c + 6.87

(
l′A
ψc

)−0.667

, l′A/ψc � 1. (33b)

These expressions result from least-square fits in log space of

the data for ρ ′
0c − ρ ′

c in isotropic networks of disks and squares,

with values 2.4 (disks) and 2.3 (squares) for the threshold ρ ′
c

in uniform networks and the expression (7a) in terms of l′A for

ψc. The root mean square relative deviation between the data

and the model is 5.8% for Eq. (33a) and 2.8% for Eq. (33b).

Furthermore, the results for anisotropic networks are also well

described by Eq. (33). The overall rms relative deviation is

5.0% for the whole data set in the range 0.1 � l′ � 1000 and

0 � κ � 200.

Note that the range l′A/ψc � 1 for Eq. (33b) corresponds to

l′ � 1.06 or 1.08 in isotropic networks of squares and disks,

respectively. This range broadens in anisotropic networks, for

instance, into l′ � 0.52, 0.24, and 0.12, for squares with κ =
10, 50, and 200, respectively. Therefore, the second regime

[Eq. (33b)] prevails in most practical situations.

A corresponding model for the percolation threshold in

terms of S ′
0c is obtained by multiplication of Eq. (33) by ψS .

This is illustrated in Fig. 7(a), where the line results from

the multiplication of Eqs. (33) and (7b) for κ = 0. No such

unifying transformation could be devised for C ′
0c.

There is an apparent contradiction in the fact that both

S ′
0c and ρ ′

0c are functions of l′/ψc only, since their ratio ψs

is a function of both l′ and κ . However, it can be checked

numerically that ψs is also nearly a function of l′/ψc only; the

values obtained for κ = 0 and κ = 200 with identical l′/ψc

TABLE I. Calculations of the transmissivity for isotropic net-

works. For each decay length l′, the table gives the investigated sample

sizes L′, the EDZ percolation threshold ρ ′
0c, the largest investigated

density ρ ′
0,max, and the coefficients (αT , βT ) of the fit ((34).)

l′ L′ ρ ′
0c ρ ′

0,max αT βT

0.2 5 112.6 398.5 1.47 10−3 1.23

0.5 5, 10 15.7 83.0 2.13 10−2 1.26

1.0 5, 10, 20 8.72 45.3 5.23 10−2 1.29

2.0 5, 10, 20 6.09 24.4 9.19 10−2 1.34

5.0 5, 10, 20 4.38 26.2 1.49 10−1 1.47

10.0 5, 10, 20 3.70 11.5 2.25 10−1 1.55

1000.0 5, 10, 20 2.36 9.07 5.63 10−1 1.82

differ by less than 5% when l′/ψc � 0.1 and by less than

1% when l′/ψc � 0.25. Hence, the modelization of ρ ′
0c as the

function (33) of l′/ψc or its counterpart for S ′
0c can be used

indifferently and with an equivalent precision in the practical

range of l′.

D. Transmissivities

1. Isotropic networks

The transmissivity T ′ is investigated with the same values

of the cell size L′ and decay length l′ as for the percolation

tests, and over a wide range of densities ρ ′
0 (see Table I). For

each set of the parameters (l′,L′,ρ ′
0), T ′ is calculated along the

x and y directions, in 50 random realizations of the networks.

The data presented hereafter are the averages over these 2 × 50

results.

The raw results are shown in Fig. 8 as functions of ρ ′
0 for

the largest L′ available for each value of l′. In addition, data

for smaller L′ are also shown for l′ = 5 and 1000.
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FIG. 8. (Color online) The transmissivity T ′ of the EDZ as a

function of ρ ′
0. The data are averages over the x and y directions, in 50

random realizations for isotropic networks with various decay lengths

l′: l′ = 0.2,L′ = 5 (solid square), l′ = 0.5,L′ = 10 (solid down

triangle), l′ = 1,L′ = 20 (solid diamond), l′ = 2,L′ = 20 (solid left

triangle), l′ = 5,L′ = 20 (solid circle), l′ = 10,L′ = 20 (solid up

triangle), l′ = 1000,L′ = 20 (solid right triangle). Results for L′ = 5

(dashed line) and L′ = 10 (dashed-dotted line) are also shown for

l′ = 5 and 1000. Solid and open symbols correspond to ρ ′
0 larger and

smaller than ρ ′
0c, respectively.
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In all cases with l′ � 10, the cell size encompasses a large

enough part of the EDZ to consider that the results are its total

transmissivity. This is illustrated in Fig. 8 by the comparison

of results for l′ = 5 with L′ = 5, 10, and 20. The finite cell

truncates less than 2% of the total fracture area in the network

when L′ = 20. In addition, the density in the truncated part is

much smaller than in the vicinity of the wall, and therefore its

connectivity is poor. Hence, the truncation is even smaller in

terms of the contribution to the flow than in terms of fracture

area. When L′ = 10, about 8% of the fracture area in the

EDZ is truncated, but the results are identical to those for

L′ = 20 when ρ ′
0 � 5, which shows that truncation effects

on transmissivity are negligible and suggests that the same

applies to the case of (l′ = 10, L′ = 20) which is truncated

in the same proportion. However, a smaller cell with L′ = 5

truncates 37% of the EDZ network and the impact on the

transmissivity is visible in Fig. 8. Note also that differences

are observed for small values of ρ ′
0. They result from the usual

finite size effect near the percolation threshold but they do not

involve truncation effects since the network beyond z′ = 5 is

not connected.

Conversely, the network density is nearly uniform when

l′ = 1000 and the transmissivity obtained in the investigated

domain is expected to be proportional to L′. This is confirmed

by the three curves displayed for L′ = 5, 10, and 20, aside

again from a slight size effect near the percolation threshold.

This situation is actually not representative of an EDZ, and it

is included only as a reference for comparison.

The same data are plotted in Fig. 9 as functions of ρ ′
0 − ρ ′

0c.

A good representation of the EDZ transmissivity by power

laws is possible in all cases, with

T ′ = αT (ρ ′
0 − ρ ′

0c)βT . (34)

The coefficients (αT , βT ) given in Table I result from fits

of the data in the range of densities where the fraction

	 of percolating realizations exceeds 98% (i.e., when size

effects due to the proximity of the percolation threshold are

negligible).

The exponent βT is an increasing function of the density

decay length l′. Note that βT is expected to diverge when
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FIG. 9. (Color online) The transmissivity T ′ of the EDZ as a

function of ρ ′
0 − ρ ′

0c, with ρ ′
0c given by Eq. (33). Same conventions

as in Fig. 8. The solid lines are the least-square power-law fits of the

data when the fraction 	 of percolating samples exceeds 98%.
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FIG. 10. The transmissivity T ′ of the EDZ as a function of ρ ′
0 −

ρ ′
0c, with ρ ′

0c given by Eq. (33), for networks with κ = 0 (solid circle),

10 (solid down triangle), 50 (solid square), and 200 (solid up triangle).

Data are for l′ = 1,L′ = 5 (a); l′ = 2, L′ = 5 (open symbols), and 10

(solid symbols) (b); and l′ = 5, L′ = 5 (c).

l′ tends to infinity. In this limit, a sudden transition takes

place between an impermeable medium when ρ ′
0 < ρ ′

c and

a permeable medium over an infinite depth (i.e., with infinite

T ′) when ρ ′
0 > ρ ′

c. It should be remembered that the data given

in Table I for l′ = 1000 are for a finite layer L′ which unlike in

all other cases covers only a small part of the EDZ. Hence, T ′ is

approximately equal to L′K ′(ρ ′
0) and accordingly, an exponent

1.82 is obtained which is nearly equal to the exponent 1.80 for

K ′ in uniform networks [9].

2. Anisotropic networks

The transmissivities obtained in anisotropic networks with

concentration parameters κ = 10, 50, and 200 are plotted in

Fig. 10 as functions of ρ ′
0 − ρ ′

0c, where the threshold ρ ′
0c is

obtained by application of Eq. (33).

In Fig. 10(a), l′ = 1 and L′ = 5 which means that the

computation domain contains practically the whole EDZ.

Results for l′ = 2 are shown in Fig. 10(b) with L′ = 5 and

10. They differ at low density (ρ ′
0 − ρ ′

0c � 2) because of size

effects near the percolation threshold, but are identical at

larger densities which means that the truncation of the EDZ

by the finite domain is negligible. Finally, results for l′ = 5

with L′ = 5 are plotted in Fig. 10(c). These data are certainly

affected by truncation effects.

In all cases, the transmissivity increases with the degree

of anisotropy. The evolution of T ′ with the density remains

governed by power laws of the type of (34), with the exponent

βT a slightly increasing function of κ .

IV. MODEL FOR THE EDZ TRANSMISSIVITY

A. Parallel flow model

The principle of the model runs as follows. The flow

properties of the EDZ vary with the distance z from the wall.
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However, the macroscopic pressure gradient does not depend

on z, and the flow lines are in average parallel to the wall.

Hence, the overall transmissivity is tentatively estimated by

a parallel flow model, where a layer at depth z behaves as a

fractured medium with uniform properties corresponding to

the state at this position in the EDZ. Accordingly,

T̂ ′ =
∫ L′

c

0

K ′(z′)dz′. (35)

This implicitly assumes that the medium properties are slowly

varying (i.e., that l′ is large). Hence, this model can be regarded

as the leading order contribution in a power series expansion in

terms of 1/l′. The integral in Eq. (35) is truncated beyond the

distance L′
c from the wall where the density becomes smaller

than the percolation threshold ρ ′
0c. The local permeability

K ′(z′) is evaluated by application of Eqs. (29) and (30). This

yields

T̂ ′ =
ψ⊥

�

∫ L′
c

0

α(ρ ′ − ρ ′
c)2

1 + β(ρ ′ − ρ ′
c)

dz′ = l′
ψ⊥

�
J (36a)

with

J =
∫ ρ ′

0−ρ ′
c

ρ ′
0c−ρ ′

c

α u2

(1 + βu)(ρ ′
c + u)

du. (36b)

The second form results from the change of variable u = ρ ′ −
ρ ′

c. An expression for the correction factor � as a function of κ

and l′ has been provided in (9). Recall that l′ should be replaced

by l′A (10) if the fractures are not circular. The expression (28)

for ψ⊥ in uniform networks, which results from the calculation

of the average 〈I − nn〉 in Eq. (27) can be generalized for finite

l′. It was obtained in [10] as

ψ⊥ =
3

2
l′2

κ

sinh κ

[(
1 +

κ2

E2

)
cosh E − 2 cosh κ +

sinh E

ℓ′2E3

]
.

(37)

This expression for circular fractures was shown to apply to

other fracture shapes as well if l′ is replaced by l′A.

The predictions of the model are compared to the numerical

data for isotropic networks in Fig. 11(a). Note that in some of

the cases listed in Table I with small values of L′ the EDZ is

truncated. For l′ = 1000, the sample actually contains only a

slab of nearly uniform medium. These truncation effects are

easily accounted for in the model by setting the upper bound

of the integral in Eq. (35) to L′ instead of L′
c. This has been

done for l′ = 1000 and in the case of l′ = L′ = 5 which is also

shown for illustration in Fig. 11(a).

The agreement of the comparison is very satisfactory, con-

sidering the simplicity of the argument. Significant deviations

are observed only for steep density decays with l′ = 0.5 and

especially 0.2. This is not surprising since endowing the

network with local mean properties when its characteristics

vary on a scale much smaller than the fracture size is obviously

risky. The general requirement for any homogenization process

of a separation between the micro- and macroscopic scales is

not fulfilled. Fortunately, l′ is generally not smaller than one

in real situations.

There might be another reason for these deviations in this

range of l′. Equation (36) results from Eq. (35) with K ′(z′) set

equal to the permeability of a uniform network with the same
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FIG. 11. (Color online) The transmissivity T ′ of the EDZ as a

function of ρ ′
0. (a) Isotropic networks with various l′. The symbols

are the numerical data, with the same conventions as in Fig. 8. (b)–(d)

Anisotropic networks with various κ . The symbols are the numerical

data, with the same conventions as in Fig. 10. Data are for l′ =
1,L′ = 5 (b); l′ = 2,L′ = 10 (c); and l′ = 5,L′ = 5 (d). In all cases,

the black solid lines are the model (36). The red dashed lines in (a)

are the model (38) for l′ � 1. The open symbols and the dotted line

in (a) correspond to l′ = 5,L′ = 5.

ρ ′, which is a measure of the degree of fracturation in terms

of the network connectivity. A natural alternative is to use

the permeability of the uniform network with the same local

volumetric area of fracture S, which has a density ψSρ
′/�.

The two procedures are equivalent when l′ � 1, since ψS/�

is then nearly unity, but they are not for l′ < 1. An alternative

model can be proposed in these terms as

T̂ ′
S = l′

ψ⊥

ψS

∫ ψS
�

ρ ′
0−ρ ′

c

ψS
�

ρ ′
0c−ρ ′

c

α u2

(1 + βu)(ρ ′
c + u)

du. (38)

T̂ ′
S is also plotted in Fig. 11(a) and seen to be in much better

agreement with the numerical data for small l′.
The predictions of the model (36) for anisotropic net-

works are compared in Figs. 11(b)–11(d) to the numerical

data. Again, a very good agreement is observed. For l′ = 1

[Fig. 11(b)], deviations are observed only for low densities

and they are due to finite size effects. Although L′ = 5 is

sufficient to avoid truncation of the EDZ, it is too small to

eliminate the size effects near the percolation threshold. These

deviations are much smaller in Fig. 11(c) for l′ = 2, since

the cell size L′ = 10 is larger. In the last case with l′ = 5

[Fig. 11(d)], the deviations are more significant, especially for

the very anisotropic networks with κ = 200. However, these

results should be considered with caution, since the small cell

size L′ = 5 induces both percolation size effects and a severe

truncation of the EDZ.

Note that model (38) is unsuccessful for anisotropic

networks. Whereas Eqs. (36) and (38) are equivalent for

isotropic networks when l′ �1 because ψS/� ≈1, this ratio

becomes very large when κ increases and Eq. (38) strongly
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deviates from the numerical data. Hence, the interest of the

alternative model based on the volumetric fracture area in its

current form (38) is restricted to isotropic networks with l′ < 1.

For this reason, only model (36) is considered in the rest of the

discussion.

B. Discussion

Although the parallel flow model (36) is only valid for

large l′, its success in representing the numerical data makes it

a convenient framework for the description of general trends.

Notice first that in the two limits where ρ ′
0 is very close to

or much larger than ρ ′
0c the integral J in Eq. (36b) becomes

a linear function of ρ ′
0 − ρ ′

0c. This is because the difference

ρ ′
0 − ρ ′

0c between the upper and lower bounds for the integral

is vanishingly small in the first case, and because the integrand

tends to the constant value α/β for ρ ′
0 ≫ ρ ′

0c in the second

case. The asymptotic regimes are

T̂ ′ ≈ l′
ψ⊥

�

K̂ ′(ρ ′
0c)

ρ ′
0c

(ρ ′
0 − ρ ′

0c), (ρ ′
0 − ρ ′

0c ≪ 1), (39a)

T̂ ′ ≈ l′
ψ⊥

�

α

β
(ρ ′

0 − ρ ′
0c), (ρ ′

0 ≫ ρ ′
0c). (39b)

A transition takes place between these two regimes for

intermediate ρ ′
0, as can be seen in Fig. 12. The slopes of

the curves (in log-log plots) at the inflexion points range

from 1.0 for very small l′ to 2.0 for l′ ∼ 102 and 2.5 for

l′ ∼ 103. These apparent power-law behaviors with increasing

exponents correspond with the observations in Fig. 9, whose

range covers the central part of Fig. 12. Note that in the

limit of infinite l′, the EDZ becomes a semi-infinite half

space with uniform properties and its transmissivity is zero

or infinite when the density is smaller or larger than ρ ′
0c = ρ ′

c,

respectively. This explains the steepening of the transitions in

the curves in Fig. 12 for large l′. The value 2.5 observed for

l′ = 103 is larger than the value βT = 1.82 in Table I because

T̂ ′ gives the transmissivity of the whole EDZ whereas the

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−1

10
1

10
3

10
5

ρ′
0
 − ρ′

0c

T
′

FIG. 12. (Color online) The models (36b) and (38) for the EDZ

transmissivity of isotropic networks, as a function of ρ ′
0 − ρ ′

0c, for

l′ = 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000 (bottom

to top). Black solid lines correspond to Eq. (36b); red dashed lines

correspond to Eq. (38). The symbols are the numerical data from

Fig. 9 when the fraction 	 of percolating samples exceeds 98%.

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

ρ′
0
 − ρ′

c

T
′

(a)

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

l′
A

l′ A
ψ

⊥
/Φ

(b)

10
−1

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

l′
A

ρ
′ 0

c
 −

 ρ
′ c

(c)

10
−1

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

ρ′
0
 − ρ′

c

 J

(d)

FIG. 13. (a) The transmissivity T̂ ′ [Eq. (36b)] for isotropic

networks as a function of ρ ′
0 − ρ ′

c, for l′A = 0.2, 0.5, 1, 2, 5, 10,

20, 50, 100, 200, 500, and 1000 (bottom to top). (b) The prefactor

l′ ψ⊥/� in (36b) as a function of l′A for κ = 0,2, 5, 10, 20, 50, 100,

200 (bottom to top). (c) The lower bound ρ ′
0c − ρ ′

c of the integral J in

Eq. (36b) as a function of l′A for κ = 0, 2, 5, 10, 20, 50, 100, 200 (top

to bottom). (d) The integral J in Eq. (36b) as a function of ρ ′
0 − ρ ′

c

for ρ ′
0c − ρ ′

c = 0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100 (left to right).

The broken line in (d) is the upper bound (40).

data for l′ = 103 in Fig. 9 are for a finite slab with L′ = 20.

Therefore, their variations result only from the increase of the

integrand in Eq. (35) and do not account for the increase of the

upper bound L′
c of the integral.

The large density limit [Eq. (39b)] is an interesting result.

It is an upper bound for T̂ ′, since it is obtained by replacing

the integrand in Eq. (36b) by its large density limit α/β, which

is a majorant. If one neglects ρ ′
0c with respect to ρ ′

0, Eq. (39b)

reduces to

T̂ ′ ≈ l′
kS ρ ′

0 ψ⊥

�
, (ρ ′

0 ≫ 1). (40)

Hence, an upper bound for the transmissivity of the EDZ,

which is also a reasonable first estimate at very large den-

sities, is obtained by multiplying Snow’s permeability value

[Eq. (27c)] based on the density ρ ′
0 near the wall by the decay

length l′.
If model (38) is used instead of Eq. (36b), Eq. (39b) is

unchanged but Eq. (39a) is multiplied by �/ψS . The model

predictions are shown in Fig. 12. As already seen in Fig. 11(a),

they are in better agreement with the numerical data than

Eq. (36b) when L′ < 1.

C. Graphical tools

Although all the analytical formulae have been given for

the evaluation of the transmissivity T̂ ′ by the model (36b),

it might be useful to provide as well graphical tools

from which a first estimate can be quickly and easily

obtained.
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This is easy for isotropic networks, since T̂ ′ is a function

only of l′A and ρ ′
0. The very small variations of ρ ′

c around 2.3

according to the fracture shape are neglected here. T̂ ′ as given

by Eq. (36b) is plotted in Fig. 13(a) as a function of ρ ′
0 − ρ ′

c,

for a series of values of l′A.

For anisotropic networks, T̂ ′ depends on l′A, κ , and ρ ′
0

and several steps are required. First, the prefactor l′ ψ⊥/�

is plotted in Fig. 13(b) as a function of l′A for a series of

values of κ . Then, the lower bound ρ ′
0c − ρ ′

c of the integral J
in Eq. (36b) is given in Fig. 13(c). Finally, the integral J is

plotted in Fig. 13(d) as a function of ρ ′
0 − ρ ′

c, for a series of

values of the lower bound ρ ′
0c − ρ ′

c [obtained from Fig. 13(c)].

Let us give an example. Suppose l′A = 1 and κ = 5.

Figure 13(b) yields directly the prefactor l′ ψ⊥/� ≈1.4 and

Fig. 13(b) gives ρ ′
0c − ρ ′

c ≈5.4. Then, if ρ ′
0 = 10, the value of

J is read in Fig. 13(d) on the curve ρ ′
0c − ρ ′

c = 5 (or slightly

below) at the position ρ ′
0 − ρ ′

c = 10 − 2.3 = 7.7, which yields

J ≈0.23. Thus, T̂ ′ ≈ 1.4 × 0.23 ≈ 0.32, or dimensionally

T ≈ 0.32σ . The exact result is T̂ ′ = 0.29.

V. CONCLUDING REMARKS

A systematic investigation of the percolation and flow prop-

erties of the fracture network in an EDZ along a gallery wall

has been conducted. The main parameters are the fracturation

density ρ ′
0 near the wall, its exponential decay length l′ within

the embedding rock, and possibly the concentration parameter

κ in the case of an anisotropic Fisher distribution orientation

of the fractures.

Heuristic formulas (33) and (36) have been proposed which

successfully account for the numerical results, both for the

percolation threshold and for the hydraulic transmissivity.

Additional work is underway for a better substantiation of

the parallel flow model (36). It includes a detailed examination

of the flow density in the EDZ as a function of the distance

from the wall.

Aside from the Fisher distribution, other anisotropic orien-

tation distributions can be observed, such as two conjugated

families of fractures at opposite angles with the normal to the

gallery wall. It would be an interesting extension to repeat

some of the steps taken here in this situation. This involves the

calculation of some geometrical functions (�, ψc, ψS , ψ⊥),

along the same lines as in Ref. [10], and the determination of

the percolation threshold for such an EDZ. It can be expected

that a power law of the kind of Eq. (33) is still applicable, as

well as the parallel flow model (36) for the transmissivity. This

would considerably extend the scope of this model, and reduce

the prediction of the EDZ transmissivity to the evaluation of a

few geometrical functions which account for the spatial density

variation rate and for the orientational characteristics of the

network.
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