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Accurate determination of three macroscopic parameters governing reactive transport in porous media, namely,

the apparent solute velocity, the dispersion, and the apparent reaction rate, is of key importance for predicting

solute migration through reservoir aquifers. Two methods are proposed to calculate these parameters as functions

of the Péclet and the Péclet-Dahmköhler numbers. In the first method called the pore-scale model (PSM), the

porous medium is discretized by the level set method; the Stokes and convection-diffusion equations with reaction

at the wall are solved by a finite-difference scheme. In the second method, called the pore-network model (PNM),

the void space of the porous medium is represented by an idealized geometry of pore bodies joined by pore

throats; the flow field is computed by solving Kirchhoff’s laws and transport calculations are performed in the

asymptotic regime where the solute concentration undergoes an exponential evolution with time. Two synthetic

geometries of porous media are addressed by using both numerical codes. The first geometry is constructed in

order to validate the hypotheses implemented in PNM. PSM is also used for a better understanding of the various

reaction patterns observed in the asymptotic regime. Despite the PNM approximations, a very good agreement

between the models is obtained, which shows that PNM is an accurate description of reactive transport. PNM,

which can address much larger pore volumes than PSM, is used to evaluate the influence of the concentration

distribution on macroscopic properties of a large irregular network reconstructed from microtomography images.

The role of the dimensionless numbers and of the location and size of the largest pore bodies is highlighted.

DOI: 10.1103/PhysRevE.87.023010 PACS number(s): 47.56.+r, 47.11.−j, 47.15.G−

I. INTRODUCTION

When a reactive fluid is injected into a porous medium,
chemical reactions can modify the petrophysical properties of
the porous media, such as the porosity ε and the permeability
K . This physical phenomenon consists of two coupled major
processes, namely, solute transport and reaction at the fluid-
solid interface, which depend on the initial conditions, on
the geometry, and also on the nature of the components. An
important application of such studies is carbon dioxide storage
in saline aquifers where dissolution of CO2 in brine may cause
its acidification and thus mineral dissolution [1,2].

The main objective of this paper is to determine the
distribution of the solute by two different numerical methods
and to compare the results.

In the pore-scale model (PSM) developed by Bekri et al.
[3], the porous medium is represented by void and solid
voxels (voxel method). Local equations governing the solute
concentration are solved by the finite-difference method. Then,
the evolution of rock-fluid interfaces is calculated and the
porosity and permeability modifications are determined. In
order to accurately simulate the complex surface motions, the
voxel method is replaced by the level set method (LSM) [4].
The advantage of the LSM is that it can deal with curves
and surfaces on a fixed Cartesian grid without having to
parametrize these objects. Also, the LSM can follow shapes
that change topology, for instance, when it splits into two or,
reversely, develops holes [5].

*clement.varloteaux@ifpen.fr
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The PSM combined with the LSM is an accurate method,
but it is time consuming and only limited pore volumes
can be addressed. An alternative method is the pore-network
model (PNM) which allows one to study reactive transport
phenomena in much larger pore volumes with the same com-
putational resources. This approach is based on a simplified
microstructure of the porous medium, which is schematized
by pore bodies connected by pore throats [6–11].

The PNM is versatile and can account for various phenom-
ena occurring on the pore scale. It was originally developed
by Fatt [12] to calculate multiphase flow properties of porous
media. Over the last decades, it has been extensively used to
simulate basic phenomena such as capillarity and multiphase
flow through porous media [8,13–16]. This approach was
extended to study pore evolution and changes in petrophysical
properties due to particle capture [17], asphalt precipitation
[18], deposition and dissolution in diatomite [19], and fil-
tration combustion [20]. Recently, adsorption and reaction
processes were tentatively integrated into the PNM. Raoof
et al. [21] quantified the effective kinetics of adsorption
processes whereas Li et al. [22] and Kim [23] concentrated
their research on effective reaction rates in porous media using
the PNM and its possible implementation on the reservoir
scale. Algive et al. [24,25] proposed the PNM approach to
study mineral dissolution and precipitation caused by CO2

sequestration.
In this paper, the PSM is used to validate the PNM for reac-

tive transport phenomena since unexpected phenomena were
observed in the PNM at the beginning of this work. Sections II
and III describe the PSM and the PNM, respectively. In Sec. IV,
the two models are compared on synthetic cases. Then, PNM
hypotheses are validated and the accuracy of the model is
assessed by PSM calculations; various reaction regimes which
occur in a case study are illustrated and explained. Section V
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is devoted to the application of the PNM to a large irregular
network derived from microtomography measurements.

II. PORE-SCALE MODEL

The pore-scale model is based on the resolution of the
Stokes equation and of the convection-diffusion equation
supplemented by conditions on the deposition or dissolution
flux at the walls. These equations are discretized by a finite-
difference scheme which is detailed by Bekri et al. [3].

The LSM is used to smooth out the fluid-rock interfaces.
The most important improvement provided by the LSM is that
the boundary conditions are written at the level set surface and
not at the discretized surface by voxels. Furthermore, the flux
at the interface is precisely computed by using the unit vector
which is normal to the smooth surface.

A. Governing equations

Consider reactive transport in a porous medium � which
consists of a fluid phase �F and a solid phase �S separated by
an interface Ŵ.

When the flow is steady and when inertial effects are
negligible, the fluid motion is governed by the Stokes equation.
Hence,

μ∇2v + ∇p = 0 in �F , (1a)

∇ · v = 0 in �F , (1b)

where μ is the viscosity of the fluid, which is assumed to be
constant, p is the pressure, and v is the fluid velocity.

The no-slip condition should be satisfied at the fluid-solid
interface Ŵ:

v = 0 on Ŵ. (1c)

The solute flux J can be written as

J = cv − D∇c, (2a)

where D is the solute molecular diffusion and c is the solute
concentration. D is assumed to be constant.

When there is no bulk chemical reaction, c obeys the local
convection-diffusion equation

∂c

∂t
+ ∇ · (cv − D∇c) = 0 in �F . (2b)

The boundary condition for c at the wall Ŵ is assumed to
be a first-order surface reaction:

n · J = κ(c − c̃) on Ŵ, (2c)

where κ is the local reaction rate constant and c̃ is the
equilibrium concentration of the solute.

This reaction causes a displacement W normal to the wall,
which is proportional to the solute flux at the wall [3],

∂W

∂t
= −KcρF κ(c − c̃) on Ŵ, (3)

where ρF is the fluid density and Kc is the stoichiometric
coefficient of the reaction. Of course, the velocity of this
displacement is assumed to be very small with respect to the
fluid velocity.

B. Dimensionless formulation

In order to derive the parameters which control the problem,
the previous equations can be made dimensionless by intro-
ducing a characteristic length scale lc for the porous medium
and a characteristic velocity chosen as the interstitial velocity
〈v〉. Similarly, the average concentration 〈c〉 is defined as the
concentration scale. Thus, a new system of dimensionless
variables indicated by primes can be defined:

∇ ′ = lc∇, v′ =
v

〈v〉
, p′ =

plc

μ〈v〉
, c′ =

c − c̃

〈c〉 − c̃
,

(4)

t ′ =
t

T
with T =

l2
c

KcρD(〈c〉 − c̃)
.

The dimensionless equations are

∇ ′2v′ − ∇
′p′ = 0 in �F , (5a)

∇
′ · v′ = 0 in �F , (5b)

v′ = 0 on Ŵ, (5c)

Pe∇′c′ · v′ − ∇ ′2c′ = −
L2

DT

∂c′

∂t
in �F , (5d)

n · ∇
′c′ = −PeDa c′ on Ŵ, (5e)

∂W ′

∂t ′
= PeDa c′ on Ŵ, (5f)

where the dimensionless Péclet and Dahmköhler numbers are
defined as

Pe =
〈v〉lc

D
, Da =

κ

〈v〉
. (6)

Pe compares convection and diffusion while Da compares
the speed of the chemical reaction and the fluid velocity. The
product of these two numbers, PeDa, is often used; it compares
reaction to diffusion characteristic times.

In addition, the system is assumed to be not very far from
chemical equilibrium and that the rate of deformation of the
solid surface is very slow; hence, the velocity field in the
fluid can be determined at any time by solving (5a)–(5c). For a
given geometry and velocity field, the dimensionless equations
governing c′ possess a solution of the form e−γ tc′(x′). We shall
assume that the time required to reach the asymptotic regime
is small compared to the wall evolution characteristic time.
Consequently, the geometrical changes mainly occur during
the asymptotic regime and the asymptotic concentration field
is used to determine the wall evolution rate.

C. Level set method

The solid-liquid interface is tracked by means of the LSM.
In this method, the real surface is defined by a distance
function based on the usual fixed Cartesian grid. The interface
is represented by a triangulated surface at the zero level of
this distance function. The numerical codes using this method
solve transport and flow fields more accurately and topology
changes are effectively handled [5].

The LSM represents the interface Ŵ(x) as the zero-level
contour of a function φ(x,t) [26]:

Ŵ = {x|φ(x,t) = 0}. (7)

023010-2
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Moreover, the level set function φ(x,t) satisfies the properties
that φ > 0 for phase 1 and φ < 0 for phase 2. In practice,
φ(x,t) is a signed distance function.

The chain derivation rule applied to φ(x,t) yields

∂φ

∂t
+ ∇φ ·

dx′

dt
= 0. (8)

Let n be the normal to Ŵ pointing outward of the solid
phase:

n =
∇φ

‖∇φ‖
. (9)

The velocity of the interface is defined along n as

Vi =
dx′

dt
· n. (10)

This propagation velocity Vi is related to (5f) by

Vi =
∂W ′

∂t ′
= PeDa c′ on Ŵ. (11)

Finally, the evolution of the level set function φ is
governed by

∂φ

∂t
+ Vi‖∇φ‖ = 0 (12)

for a given initial geometry φ(x,t = 0).

D. Algorithm description

During the simulation, the coupled Stokes (5a) and
convection-diffusion (5d) equations are solved by the same
algorithm as used by Bekri et al. [3] which comprises five
steps. (i) The velocity field vn and the concentration field cn are
calculated for the current interface φn. (ii) The concentration
at the interface is extrapolated from the field cn to calculate the
interface propagation velocity F (11). (iii) The new interface
φn+1 is determined at time tn+1 by using the interface velocity
and (12). (iv) The new interface is updated and the medium is
visualized. (v) This process is repeated until the end condition
is verified.

This algorithm is schematized in Fig. 1.

III. PORE-NETWORK MODEL

The PNM describes the flow and the transport on the pore
scale. It can address larger pore volumes than can the PSM with
the same computational resources. This section describes the
porous medium representation and the resolution of flow and
concentration in the asymptotic regime defined in Sec. II B;
therefore, only long-term phenomena are studied.

A. Geometry

The PNM is based on a simplified representation of the void
space, which is approximated by a network of bonds (pore
throats) and nodes (pore bodies) with an idealized geometry;
the pore bodies are spherical while the pore throats are
cylindrical channels with a circular, square, or triangular cross
section. The distinction between pore bodies and pore throats
and their simplified geometry makes complex problems easier
to solve by using analytical or semianalytical solutions [27].

FIG. 1. General scheme of the reactive transport resolution by the

PSM combined with the LSM.

The pore network can be a regular or an irregular three-
dimensional lattice structure (Fig. 2). In Fig. 2(a), the pore
space is defined on a cubic lattice where each pore body
is assumed to be connected to six pore throats; therefore,
the coordination number is equal to 6. The ratio between
the pore-body and the pore-throat diameters (aspect ratio) is
constant. The pore-throat diameters are randomly generated
according to a given probability density function. Of course,
the coordination number and the aspect ratio can be variable.

In order to construct a representative pore network of a
porous medium, the probability density function has to be
chosen in order to reproduce some petrophysical parameters

FIG. 2. Pore-network models (a) reconstructed with a reg-

ular lattice in order to reproduce petrophysical properties of

real porous media [28] and (b) extracted from microtomography

measurements [29].

023010-3
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such as porosity and permeability. In addition, Bekri and
Vizika [28] recommend that the formation factor and the
capillary pressure curve be equal to those of the considered
porous medium since they are very sensitive to its structure.
The choice of a compatible pore-throat size distribution is a
key parameter for the construction of a representative pore
network using this cubic structure.

An alternative to the regular lattice pore network has been
recently developed in order to get closer to the real medium
geometry [7,29–31]. This method made important progress
because of synchrotron computed microtomography, which
generates three-dimensional (3D) data sets on the micrometer
scale.

The first step of this method is to measure the exact 3D pore
space of the porous medium. Then, a 3D image in gray levels
is reconstructed using x-ray microtomography. A threshold
is chosen to distinguish between pores and rock. Then, the
skeleton of the pore space is computed by a hybrid algorithm
which combines thinning and a distance map such as the one
derived by Thovert et al. [32]. Additionally, the pore space is
partitioned into pore bodies and pore throats according to the
conceptual description of the pore-network model [Fig. 2(b)].
Finally, geometrical parameters are extracted from the 3D
pore-space images [see [29], for more details].

B. Flow field

The fluid flow is governed by the Stokes equations (1). The
fluid velocity in the capillary tubes which compose the pore
network is given by the Poiseuille parabolic profile

v(ρ) = 2vz

(

1 −
ρ2

r2

)

z with vz = −
r2

8μ

∂P

∂z
, (13)

where r and ρ are the radius of the tube and the radial
coordinate, respectively, and z is the unit vector parallel to
the tube axis. The pressure drop between two neighbor pore
bodies, 
P , is related to the flow rate Q passing through the
capillary tube by

Q = vzS =
πr4

8μ


P

Lz

, (14)

where Lz is the length of the capillary tube.
The pore-body flow field is conceptually more difficult

to define analytically. For the sake of simplicity, pressure is
assumed to be constant within a pore body; in other words,
the velocity in pore bodies is assumed to be zero and therefore
negligible compared to the velocity in the pore throats.

Then, a mass balance is performed over each pore body and
a linear system for the pressures can be derived,

G · P = b, (15)

where G is the conductivity matrix, which only depends on the
geometric properties of the network, P is the unknown pressure
vector, and b is a vector related to the external boundary
conditions.

By using a linear solver such as a conjugate gradient
technique [33], the entire pressure field can be evaluated for
an imposed pressure drop over the network. Thus, Eqs. (13)
provide velocity in every pore throat.

When the pressure and velocity fields are known, the
permeability K of the porous medium can be computed as

K =
Qtot

Stot

μLtot


P
, (16)

where Qtot is the total flow rate passing through the cross
section Stot of the porous medium; Ltot and 
P are the total
length and the pressure drop over the network.

C. Concentration field

A comparable approach to flow is used to compute the con-
centration field within a pore network. An analytical solution
of the local problem is provided for the simplified geometry
used in the PNM. The flux at the pore body–pore throat
interface and the concentration are related by an analytical
solution. Mass balance yields a nonlinear system solved by
an optimization algorithm which provides the concentration
distribution within the pore network. This section presents the
analytical solutions for the pore bodies and the pore throats.
Then, the concentration field within the whole pore network is
determined.

1. Pore throats

The resolution of the reactive transport in a pore throat is
divided into two steps. First, the transverse profile is calculated
by assuming that the flow and transport transverse profiles are
established. Second, a macroscopic equation governing the
average concentration in the cross section is deduced.

The reactive transport within simple geometries such as
parallel plates, infinite tubes, or closed spheres has already
been studied [24,34,35]. For example, Bekri et al. [3] provide
the analytical solution between two infinite parallel plates.

As explained at the end of Sec. II B, the system is assumed to
be close to chemical equilibrium and the rate of deformation of
the surface is assumed to be very slow; the transitional regime
is short compared to the asymptotic regime and the asymptotic
regime is assumed to be reached. For a first-order reaction,
this assumption is equivalent to supposing that the normalized
concentration c′ (4) undergoes an exponential decay with time
characterized by the decrease rate λ:

c′(ρ,t) ≈ X(ρ) exp(−λt), (17)

where X is the transverse profile of c′.
For an infinite cylinder, X can be written as a function of

the Bessel functions J0 and J1:

X(ρ ′) =
ω2

2PeDa

J0(ωρ ′)

J0(ω)
X̄t (18a)

with X̄t =
1

S

∫

S

Xd2s, (18b)

where ρ ′ is the dimensionless radial coordinate (ρ ′ = ρ/r). ω

is the first positive solution of the equation

ωJ1(ω)/J0(ω) = PeDa. (19)

Calculation details are provided in Appendix A 1.
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Using (18a), Shapiro and Brenner [35] showed that the
average normalized concentration c̄′(z) is governed by

∂c̄′

∂t
+

∂

∂z

(

v∗c̄′ − D∗ ∂c̄′

∂z

)

+ γ ∗c̄′ = 0 (20a)

with c̄′ =
1

S

∫

S

c′d2s, (20b)

where γ ∗, v∗, and D∗ are the apparent volume reaction rate, the
apparent velocity, and the dispersion of the solute, respectively.
These coefficients, which characterize the solute behavior
in the pore throats, can be derived from the spatial global
moments mi of the concentration [36]:

γ ∗ = −
1

m0

d

dt
(m0), (21a)

v∗ =
d

dt

(

m1

m0

)

, (21b)

D∗ =
1

2

d

dt

[

m2

m0

−

(

m1

m0

)2]

, (21c)

with mi(t) =

∫

c(r,t)rid3r, (21d)

where r is the spatial position within the pore throat.
Furthermore, for capillary tubes, Algive et al. [25] provided

analytical expressions of γ ∗, v∗, and D∗ as functions of Pe
and PeDa. These functions are deduced from a numerical
application of the formulation of Sankarasubramanian and
Gill [34] and from the propagation of a particle cloud
using a random-walk technique. Thanks to these formulas,
macroscopic coefficients can be assigned to each pore throat
and pore body of the pore network.

Moreover, since only long-term phenomena are studied,
the asymptotic regime can be generalized to the whole pore
network. Thus, a unique exponential decrease rate is defined
which is common to every element of the pore network. Let ϒ

be this decrease rate. Then c̄′ in a pore throat can be written as

c̄′(z,t) = X̄t (z) exp(−ϒt). (22)

Introduction of (22) into (20a) yields a second-order ordinary
differential equation

∂2X̄t

∂z′2
− Pet ∂X̄t

∂z′
− PeDatX̄t = 0

(23)

with Pet =
v∗l

D∗
and PeDat =

(γ ∗ − ϒ)l2

D∗
,

where l is the length of the pore throat and z′ = z/l is the
dimensionless longitudinal coordinate along the tube. The
distribution of the solute within pore throats can be deduced
easily from this second-order ordinary differential equation
as a function of X̄t at the edges of the pore throat, denoted
X̄t (z′ = 0) and X̄t (z′ = 1) (cf. Fig. 3).

2. Pore bodies

The reasoning applied to the resolution of the concentration
distribution within pore throats cannot be generalized to pore
bodies where the velocity is not calculated. Hence, X(ρ ′) in
pore bodies is limited to only two forms based on dominant
diffusion or perfect mixing.

FIG. 3. Schematization of a pore throat connecting the two pore

bodies i and Iij .

Perfect mixing implies a uniform c′ in the pore body. For
dominant diffusion, c′ in a sphere of radius R is controlled by
diffusion and reaction; therefore,

X(ρ ′) =
ω2

3PeDa

sin(ωρ ′)

ρ sin(ω)
X̄ (24a)

with X̄ =
1

V

∫

V

Xd3x, (24b)

where ρ ′ = ρ/R is the dimensionless radial coordinate. ω is
the first positive solution of

1 −
ω

tan ω
= PeDa. (25)

The flux at ρ ′ = 1 is given by

�w =

(

1 −
ω

tan ω

)

ω2

3PeDa
X̄. (26)

Details of the calculations are provided in Appendix A 2.

3. Pore network

Then, the mass balance over each pore body i of the network
yields

PeDa
p

i X̄i =

ni
∑

j=1

�ij with PeDap =
(γ ∗ − ϒ)R2

D∗
, (27)

where the subscripts i and j correspond to the ith and j th pore
bodies; �ij are the solute fluxes at the interface between the
nj connected neighbor pore throats (with nj also called the
coordination number) and the ith pore body. The left side of
(27) is the sink-source term of the reaction in the pore body.
�ij is derived from the analytical solution of (23):

� =

[

−
∂X̄t

∂z′

∣

∣

∣

∣

z′=0

+ PetX̄t (0)

]

= ϕX̄t (0) + ψX̄t (1), (28)

where ϕ and ψ are coefficients derived from the resolution
of (23).

The neighbor pore body connected through pore throat j

to the ith pore body is denoted by Iij (cf. Fig. 3). Using this
notation, the end conditions of a pore throat become

X̄t (z′ = 0) = ξiX̄i and X̄t (z′ = 1) = ξIij
X̄Iij

, (29)

where ξ is equal to 1 when perfect mixing is assumed or equal

to ω2

3PeDa
for dominant diffusion [ρ ′ = 1 in (24a)].

Thus, the mass balance (27) becomes

PeDa
p

i X̄i =

nci
∑

j=1

(

ϕijξiX̄i + ψijξIij
X̄Iij

)

. (30)
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N equations (where N is the number of pore bodies in
the network) with N + 1 unknowns can be written for the
mass balance of each pore body. Indeed, the unknowns are
X̄i=1,...,N for each pore body, to which should be added the
overall decrease rate of the normalized concentration ϒ (22).
Thus, a closure equation is needed and it is provided by the
normalization of the dimensionless concentration (4).

Moreover, because ϕij and ψij are related to ϒ through
PeDap, (30) involves some nonlinear terms which are products
of unknowns. Thus, the iterative Newton-Raphson method [33]
is used to solve the resulting nonlinear system.

In the first iteration, perfect mixing is assumed in all the
pore bodies. Then, during the iterative process, the solution of
dominant diffusion (24a) is assigned if all the fluxes �ij of a
given pore body, computed at the previous iteration, have the
same sign. At any iteration, when this minimal criterion is no
longer met, the pore body switches back to perfect mixing.
Of course, the closer to (26) solute fluxes �ij are, the more
accurate the dominant diffusion solution is.

D. Algorithm description

The evolution of the geometry due to reaction is computed
through an iterative process based on porosity modifications
as detailed in Fig. 4. For a given initial pore network, the
flow field is determined in step 1 for an arbitrary pressure
difference between inlet and outlet [8]. Then, the porosity and
the permeability of the pore network are calculated as well
as the mean interstitial velocity. In step 2, a linear correction
is applied to the pressure difference to adjust the velocity
field to the imposed Pe. As in Algive et al. [25], the pore-
scale transport coefficients γ ∗, v∗, and D∗ defined in (20a) are
determined for each pore body and each pore throat in step 3.

FIG. 4. General scheme of the reactive transport resolution by

using the PNM.

In step 4, (30) is solved over the whole network and it yields
X̄. Then, in step 5, the evolution of the geometry is taken into
account with (5f). Due to the variations of c′, the reaction is not
uniformly distributed within an element of the pore network.
To be consistent with the PNM formalism, the wall evolution
is averaged over each element of the pore network in order to
keep the original shape of the element. The wall evolution is
adjusted in order to obtain small and controlled evolution of
the porosity. Since the geometry of the new pore network is
compatible with the PNM, steps 1 to 5 are iterated (step 6) on
the updated pore network.

At the end of the simulation, porosity-permeability curves
and the macroscopic coefficients γ̄ ∗, v̄∗, and D̄∗ are calculated.

IV. MODEL COMPARISONS

In order to evaluate the accuracy of the reactive PNM,
it is compared with the PSM and observations of Daccord
et al. [37] at the end of the first iteration of the general
schemes schematized in Fig. 1 for the PSM and Fig. 4 for
the PNM. It should be noticed that the pore-throat surface
displacement deduced from solute flux at the wall (3) is taken
into account differently in the two models. In the PSM, the
surface displacement is calculated for each voxel, while in
the PNM the pore-throat diameter evolution is deduced from
the average solute flux over each surface element. Thus, the
evolution of the pore geometry by the PSM would not stay
consistent with PNM formalism for long times; it should be
noticed that this paper is not focused on this geometrical
evolution and only the flux at the wall of the network is
calculated.

Two samples are addressed by both numerical codes.
The first sample is used to validate the analytical solutions
implemented in the PNM. The second one, which contains
only six pores, has been designed in order to highlight and
understand the various possible reaction patterns observed
in the asymptotic regime. Moreover, thanks to this reduced
geometry, a new reaction regime has been found.

A. Validation of the PNM assumptions

Consider the cubic pore network of 4 × 4 × 4 spheres
interconnected by capillary tubes, which is displayed in Fig. 5;
it is called PN1. Each pore body is connected to six other ones.
The mean flow is parallel to one of the main directions of the
cubic network.

The pore-body diameters are stochastically generated with
a Weibull probability density function. Pore-throat diameters
are related to the smallest neighbor pore body by a ratio equal to
4 between pore-body and pore-throat diameters. The distance
between pore bodies is equal to 100 μm along all directions.

The study of the c′ field is focused on the main flow path and
on the secondary flow path which passes through the largest
pore body. These two flow paths are crucial for the description
and understanding of the field c′ (see Fig. 5). Both flow paths
are in the plane y = 100 μm. The main flow path is the one
whose axis is z = 200 μm and the center of the largest pore
body is at x = 300 μm and z = 300 μm.
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FIG. 5. Pore network PN1.

1. Flow field validation

In order to minimize discrepancy between the fields c′, the
computed flow fields by both models have to be compared.

The transverse velocity profile obtained in pore throats by
the PSM can be used to validate the Poiseuille profile used in
the PNM. It should be emphasized that the pore space is the
one shown in Fig. 5 and discretized by the LSM. The velocity
profile of the shortest pore throat obtained by using the PSM
is compared in Fig. 6(a) to the analytical solution (13) used in
PNM. As shown in Fig. 6(b), a good agreement is observed
for the mean velocity between two pore-body centers, despite
the hydraulic resistance of the pore bodies, which is not taken
into account in PNM.

The reactive transport solutions in this network are cal-
culated with local values of Pe and PeDa. For the sake
of simplicity, the mean diameter of the network elements,
lc = 〈d〉 = 18.98 μm, is chosen as the characteristic length.
The molecular diffusion coefficient D is supposed to be
constant and equal to 10−9 m2 s−1. When the same Pe is
imposed on both models, a comparable local velocity field
is obtained, as observed in Fig. 6(c).

2. Concentration field validation

The normalized concentration obtained by the PSM in the
pore space displayed in Fig. 5 and discretized by the LSM
is used to validate the hypotheses implemented in the PNM;
along a pore throat, X follows the analytical solution (18a)
and does not depend on the longitudinal position; i.e., there is
no effect of the boundaries of the pore throats. Figure 7 shows
the PSM X in one pore throat for PeDa = 1 and Pe = 1. Error
bars in Fig. 7 represent the spreading along the pore-throat
axis of the values of X for the same radius. The PSM confirms
that X can be considered as established along the pore throats
and follows the analytical solution (18a).

In Fig. 7, X is normalized by c̄′ in the pore-throat cross
section. However, c̄′ in PSM calculations depends on the
longitudinal position in the pore throat. It matches the solution
of the average equation (20a), which appears to be a good

(a)

(b)

(c)

FIG. 6. Velocity comparison between PSM results (�) and the

PNM solution (—). (a) Comparison between the transverse velocity

profiles v′ in a throat of PN1; (b) comparison between the longitudinal

velocity profiles v̄′ along the same pore throat. The mean velocity in

each pore throat of PN1 computed by PNM is compared to PSM

results in (c). The bisecting line corresponds to a perfect agreement

between the two models.

approximation for reactive transport in pore throats that can
be used in PNM formalism.
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FIG. 7. The transverse normalized concentration profile X in

the cross section of the pore throat PT1. Comparison between

PSM results (×) and the analytical solution provided by (18a) and

implemented into the PNM (—). The small error bars relative to PSM

results indicate the spreading of the transverse profile along the pore

throat.

Then, the local distributions of c′ obtained by using
the PSM for PeDa = 1 and Pe = 0.1,1, and 2 in the
whole network are compared to PNM results. The val-
ues of the dimensionless numbers are chosen in order
to induce various solute distributions and to correspond
to the regimes described by Daccord et al. [37]. These
reaction regimes will be discussed in the rest of this
section.

For Pe equal to 0.1, diffusion is found to be dominant in the
largest pore body (PB1). Therefore, the local solute distribu-
tion in this pore body is assumed to follow Eq. (24a). The PNM
solution is compared to PSM calculations in Fig. 8(a). Despite
some small convective effects in PB1 which cannot be taken
into account by the PNM, a very good agreement between the
models is observed. The pore bodies X̄ are satisfactorily com-
pared in Fig. 9(a). It is seen that the largest pore body contains
the largest amount of solute, which is in agreement with the
results of Daccord et al. [37]. Indeed, for low Pe and high
PeDa, dominant diffusion implies a dominant reaction in the
largest elements of the network and this induces vuggy porosity
formation.

For Pe equal to 1, the condition for dominant diffusion in the
largest pore body in the PNM is no longer satisfied and perfect
mixing is assigned to PB1 in PNM calculations. For clarity,
PNM and PSM results are compared only along the secondary
flow path in Fig. 8(b). The PSM results, which are displayed
in Fig. 9(b), show that convection influences the solute
distribution, an effect which cannot be taken into account
by the PNM. However, Fig. 9(b) shows that distributions of
X̄ in all pore bodies of the network are generally in good
agreement.

For Pe equal to 2, according to the PSM, the dominant
reaction in the asymptotic regime takes place along the main
flow path, which should induce, with a modification of the
geometry, the wormhole regime observed experimentally by
Daccord et al. [37]. Indeed, for high Pe and high PeDa, the
reaction occurs preferentially along the main flow path and
it induces wormholing dissolution patterns. Variations of X

(a)

(b)

(c)

FIG. 8. Variations of the normalized concentration X at PeDa = 1

along the secondary flow path for Pe = 0.1 (a) and 1 (b) and along

the main flow path for Pe = 2 (c). Data are for PSM calculations ( ×−−)

and the solution (24a) used in PNM pore bodies (—).

along the main flow path are compared in Fig. 8(c). A ratio of
roughly 3 is observed between PSM and PNM values, but the
same qualitative longitudinal profiles, with little variation, are
observed. This is also seen in Fig. 9(c), where the values of
X̄ in pore bodies computed by PNM and PSM are compared.
Underestimation of X̄ along the main flow path by the PNM has
consequences on the whole network. Thus, by normalization,
the largest pore body X̄ is overestimated. Anywhere else, the
PNM and the PSM are very close.

Therefore, when diffusion is dominant, both the local
variations of c′ and the macroscopic behavior of the solute
(X̄ within pore bodies) obtained by the PNM and the PSM
are in perfect agreement. Moreover, despite the discrepancies
observed between models when convection increases, the
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(a)

(b)

(c)

FIG. 9. Comparison of the average normalized concentration X̄

between the two models (PNM and PSM) within pore bodies of

the network PN1 (Fig. 5) for PeDa = 1. Data are for Pe = 0.1 (a),

1 (b), and 2 (c). The bisecting line corresponds to a perfect agreement

between the two models.

global distributions of the solute in the network are in good
agreement.

3. Validation of core scale coefficients

The macroscopic behavior of the PSM and the PNM are
compared by using the two macroscopic parameters γ̄ ∗ and
v̄′. In the asymptotic regime, the apparent reaction rate γ̄ ∗ is
computed by using the PSM as the exponential decrease rate
of c′ and by using the PNM as the average of γ ∗ in each pore

(a)

(b)

FIG. 10. The apparent reaction rate γ̄ ∗ (a) and the average solute

velocity v̄′ (b) in the synthetic network PN1 as functions of the Péclet

number Pe. PeDa = 1. Data are for the PSM (�) and the PNM ( ×−−).

body and pore throat (21a) weighted by c′. Therefore,

γ̄ ∗
PSM =

2

δt

〈c′
it〉 − 〈c′

it+1〉

〈c′
it〉 + 〈c′

it+1〉
, (31a)

γ̄ ∗
PNM =

〈c̄′V γ ∗〉

〈c̄′V 〉
, (31b)

where 〈·〉 is the volume integral over the void space of the
porous medium. In the PSM, δt is the time step and cit

is the local field of c′ at iteration it . c̄′ is determined by
using the PNM [cf. (20b)]; V is the volume of each element
of the network. These global reaction rates are satisfactorily
compared in Fig. 10(a). The observed discontinuity of γ̄ ∗

PNM at
Pe ≈ 0.8 is due to the shift from dominant diffusion to perfect
mixing in the pore bodies.

Let v̄′ be the average fluid velocity within the pore space
weighted by c̄′:

v̄′ =
〈c̄′v̄x〉

〈c̄′〉〈v̄x〉
, (32)

where 〈c̄′〉 and 〈v̄x〉 are the volume averages of c′ and of
the velocity in each element of the network determined by
both the PNM and the PSM, respectively. 〈v̄x〉 is also equal
to the interstitial velocity of the fluid. v̄′ is used to evaluate
the velocity of the solute on the core scale by using both the
PNM and the PSM. The variations of this quantity with Pe
are displayed for both models in Fig. 10(b). For the apparent
reaction rate, a discontinuity of v̄′

PNM is observed for Pe ≈ 0.8.
For Pe = 2, the observed discrepancy is mostly induced by
the low value of c′ obtained by the PNM along the main flow
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FIG. 11. The normalized concentration c′ obtained by the PSM in PN2 for PeDa = 1. Data are for Pe = 0.1 (a), 1 (b), and 50 (c). (d) Gray

scale used to display the local normalized concentration.

path where the dominant reaction takes place. Despite the
assumptions made in the PNM, a good quantitative agreement
between models is observed for the macroscopic parameters.

B. Validation of reaction regimes

The second proposed geometry, reduced to six pore bodies
in a single plane and called PN2, has been devised for a better
understanding of the various reaction patterns observed in the
asymptotic regime. A cross section of the chosen geometry is
shown in Fig. 11. Three facts are important to notice about
this geometry: first, the main flow path is composed of the
pore bodies PB1 and PB2; second, the largest pore body PB1
belongs to the main flow path; third, the largest pore body out
of the main flow path, PB3, belongs to the secondary flow path.

Three local fields c′ are illustrated in Fig. 11; the cross
sections of the fields using the PSM are drawn for Pe = 0.1,
1, and 50 to illustrate the three reaction regimes observed
at PeDa = 1. Indeed, Fig. 11(a) illustrates the first reaction
regime identified for PN1, i.e., reaction occurring within the
largest pore body for low Pe. Moreover, in Fig. 11(c), a
dominant reaction is observed in the main flow path for very
high Pe. However, for an intermediate Pe (Pe = 1), a particular
reaction regime is observed [Fig. 11(b)]. In this transitional
regime, reaction occurs preferentially within the largest pore
body out of the main flow path.

Of course, the governing regime has important conse-
quences on the value of the macroscopic parameters and
on the porosity-permeability evolution. The transition regime
[Fig. 11(b)] would induce a lower macroscopic velocity
because the fluid velocity in the main flow path is faster than
in the secondary flow path where the reaction is dominant.

The variations of X̄ in the three main pore bodies (PB1,
PB2, and PB3) as a function of Pe are displayed in Fig. 12 for
the PNM and the PSM.

A perfect agreement between models is observed for Pe =

0.1 in each pore body. The reaction occurs preferentially for
the two models in the largest pore body, PB1.

For Pe = 1 and Pe = 10, both PNM and PSM calculations
show that the reaction occurs preferentially in PB3 (Fig. 12).
However, small discrepancies of concentrations appear which
are due to the zero velocity assumed by the PNM in
pore bodies. Nevertheless, the observed discrepancy between
models remains small since the reaction mostly occurs in PB3
where diffusion is still dominant for Pe � 10.

For Pe = 50, PSM calculations show that reaction occurs
preferentially along the main flow path and that it induces
wormholing dissolution patterns [Fig. 11(c)]; indeed, X̄PB1 and
X̄PB2 are larger than X̄PB3, as observed in Fig. 12. Moreover,
according to the PNM, the wormholing reaction regime is not
fully established for Pe = 50 since the network still undergoes
a dominant reaction in PB3. However, the larger Pe becomes,
the more dominant the main flow path becomes until X̄PB1 and
X̄PB2 overtake X̄PB3 for Pe ≈ 200. The observed discrepancy
is due to the PNM, where the pore-body hydraulic resistance
is neglected. As a consequence, higher Pe is needed to observe
a dominant reaction along the main flow path in the PNM.

Therefore, it is important to notice that the same three
reaction regimes are obtained by both models.

C. Discussion

1. Model complementarity

The proposed study shows a good agreement between the
two models despite their different application scales. The
same qualitative behavior and the same regime changes are
observed by using both models for the studied networks.
Local resolution of flow and concentration allows a better
understanding of the limitations of PNM assumptions. For
low Pe, a very good quantitative agreement between models
is observed. Thus, in diffusive conditions, the simplifying
assumptions of the PNM are justified and compatible with
the exact PSM calculations.

For high Pe, the strong assumptions of the PNM relative
to pore bodies can lead to significant discrepancies in c′ when
compared to the PSM. One should notice that, generally in the
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(a)

(b)

(c)

FIG. 12. The average normalized concentration X̄ as a function of

Pe in (a) the largest pore body (PB1), (b) the second pore body along

the main flow path (PB2), and (c) the largest pore body out of the

main flow path (PB3). Data are for the PSM (�) and the PNM (—).

PNM, the porous medium is not modeled by a regular lattice
aligned with the pressure gradient (θ = 0◦). This kind of pore-
network construction is not able to take into account the tor-
tuosity of a real porous medium. A classical way to avoid this
problem is to consider a regular lattice rotated by θ = 45◦ with
respect to the applied pressure gradient, or to consider an irreg-
ular lattice. For these porous media, the comparison between
PSM and PNM results should be even better since the perfect
mixing assumption in pore bodies would be more justified.

2. Reaction regimes

According to Daccord et al. [37], three main regimes occur
during a surface reaction depending on Pe and PeDa numbers:
a uniform reaction for low PeDa, a flow path reaction for
high PeDa and high Pe (inducing wormholing), and a compact

reaction for high PeDa and low Pe (inducing vuggy porosity
formation). Thus, for high PeDa, this classification predicts
a change of reaction regime with Pe, from compact reaction
to wormholing. This change is confirmed by both PNM and
PSM wall flux calculations performed on PN1 (Sec. IV A).
The evolution of the reaction regime with Pe results from the
competition, in terms of c′, between the largest pore body and
the main flow path. However, in PN2, where the largest pore
body is on the main flow path, an intermediary reaction regime
appears between compact and wormholing reaction regimes.
To the best of our knowledge, this specific regime was not
observed in the literature.

For a better understanding of conditions for this new
intermediary regime to appear, the main and secondary flow
paths of PN2, denoted FPM and FPS , respectively, in Fig. 13,
are independently studied by using the PNM. The flow path
with the slowest γ̄ ∗ is likely to dominate the solute transport.
In Fig. 13(c), the reaction rates γ̄ ∗ of FPM and FPS are
plotted as functions of Pe (cf. Fig. 12); two crossing points
are noticed (Pe ≈ 0.25 and Pe ≈ 300). Thus, for a given Pe,
the local velocities in FPM and FPS are the same as in the
corresponding flow paths in PN2. For low Pe (Pe < 0.25), c′

in PN2 is localized essentially in the main flow path since the
reaction rate of FPM is slower than that of FPS [Fig. 13(c)];
the same behavior is observed in Fig. 12. For moderate
Pe (0.25 < Pe < 300), c′ in PN2 is localized essentially in
FPS because its reaction rate is slower than the FPM one
[Fig. 13(c)]; the same behavior is also observed in Fig. 12.
For high Pe (Pe > 300), c′ in PN2 is localized along FPM

because its rate is again slower than the FPS one [Fig. 13(c)],
as observed in Fig. 12.

By considering only the calculations performed either on
FPM or on FPS , one can notice the increase of the apparent
reaction rate γ̄ ∗ with Pe, which corresponds to an acceleration
of the chemical reaction. For a better understanding of this
phenomenon, one should notice that, for high PeDa, the mean
reaction rate of each element of the network (pore body or pore
throat) is inversely related to the square of its radius. Indeed,
for high PeDa, ω, which is the solution of (A7) [or (A12)
depending on the shape of the element], tends to a constant.
Thus, γ̄ ∗, which is equal to λ in (A3), is related to the radius of
an element through (A6) (see Appendix A for more details).
Therefore, the larger an element, the slower the reaction rate
(because the reaction is limited by diffusion). Nevertheless,
for low Pe, solute exchanges between elements are limited;
each element reacts according to its own rate γ̄ ∗. Since the
element (or group of elements) with the slowest reaction
rate dominates the solute transport in the asymptotic regime,
the reaction occurs in the larger pore body for low Pe. Thus,
the calculated γ̄ ∗ is slower than for any higher value of Pe.

Moreover, the exchanges of solute along FPM and FPS

increase with Pe. Thus, c′ in the largest pore body of each flow
path is convected out and consumed by the nearby pore throats.
Since these elements are necessarily smaller and their reaction
rate is faster, a speed up of the apparent reaction rate of the
flow path is induced; for instance, this acceleration is observed
in Fig. 13(c) around Pe = 1 and Pe = 100 for FPM and FPS ,
respectively. Therefore, γ̄ ∗ is an increasing function of Pe.

Finally, when convection is dominant over diffusion within
FPM or FPS (for very high Pe), the distribution of c′ is uniform
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(a) (b) (c)

FIG. 13. The main flow path (a) and the secondary flow path (b) of PN2. (c) The apparent reaction rate γ̄ ∗ as a function of Pe for the main

(�) and secondary (—) flow paths.

along the flow path. The obtained reaction rate, denoted
γ̄ ∗

c , is the quickest reaction rate that can be reached by the
considered geometry. Since c′, in this case, is uniform, γ̄ ∗

c can
be evaluated by using (31b) as the volume average of γ ∗ along
the considered flow path (FP):

γ̄ ∗
c =

∑

FP

V γ ∗

/

∑

FP

V . (33)

Thus, the intermediary reaction regime, highlighted by the
study of PN2, appears when two conditions are satisfied. First,
the largest pore body of the network must belong to the main
flow path. Second, at least one element of the pore network
out of the main flow path must have a reaction rate slower than
the critical reaction rate γ̄ ∗

c of the main flow path.
Since γ ∗ is inversely related to the square of the diameter

D of the element for high PeDa, the above conditions can be
formulated by using element diameters. A critical diameter
Dc is defined as the diameter of a pore body where the solute
reacts at the same rate as on the main flow path of the network.
The second condition necessitates that at least one pore body
diameter is greater than Dc:

∀m /∈ FPM , Dm < max
FPM

D, (34a)

∃m /∈ FPM , Dm > Dc =

√

√

√

√

∑

FPM

V

/

∑

FPM

V

D2
. (34b)

Of course, these two conditions are verified in PN2. The
largest pore body is on the main flow path with a diameter
of Dmax = 65 μm; the critical diameter is Dc ≈ 55 μm and
DPB3 = 60 μm is the diameter of the largest pore body out of
the main flow path. Thus, this intermediate regime disappears
when the diameter of PB3 is smaller than 55 μm. Figure 14
shows the mean c′ calculated by using the PNM in the modified
PN2 (PB3 = 55 μm instead of 60 μm). Whatever the value of
Pe, c′ in PB1 is always higher than in the new PB3 and there is
no longer an intermediate reaction regime. On the one hand, a
compact reaction is observed at low Pe; diffusion is dominant
in PB1 and its mean c′ is high. On the other hand, for high Pe,

the network undergoes a wormholing regime; perfect mixing
is assumed in PB1 and PB3 and their c′ values are around 1.

V. APPLICATION OF THE PNM TO A PORE NETWORK

EXTRACTED FROM A REAL ROCK SAMPLE

In this section, the reactive flow modeling using the PNM is
applied to an irregular 3D pore network that is extracted from
microtomography images (Fig. 15). Due to the complexity
of real porous media, the mixing in pore bodies is improved
and the local tortuosity of pore throats reduces the relative
contribution of pore bodies to permeability. Therefore, in
such a geometry, the PNM assumptions are more realistic.
The imaged sample is used to calculate the macroscopic
coefficients of the reactive transport.

The studied network is extracted from a sample of
Fontainebleau sandstone of (3000 μm)3 with a porosity of
14.1%, an absolute permeability of 765 mD, and a formation
factor equal to 32. The selected sample is homogeneous with an
average value of pore-body and of pore-throat diameters equal
to 90 and 25 μm, respectively (Fig. 16). Only the pore structure
of the Fontainebleau sandstone is taken into account. For
simplicity, the chemical interaction at the fluid-rock interface
is modeled by a constant and homogeneous κ .

FIG. 14. The average normalized concentration X̄ calculated by

using the PNM in the modified PN2 as a function of Pe. In contrast to

the original PN2, the PB3 diameter is reduced in order not to satisfy

(34b). Data are for PB1 (�) and PB3 (—).
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FIG. 15. Geometry of a pore network extracted from a real rock

sample.

By using the PNM, the reactive transport is solved and
the apparent reaction rate and the effective solute velocity
are computed from (31b) and (B1). These macroscopic
coefficients are presented in Figs. 17(a) and 17(b). γ̄ ′ is the
apparent reaction rate on the core scale normalized by the
reaction rate in perfect mixing conditions, whereas v̄∗/〈v〉 is
the normalization of the effective solute velocity by the mean
interstitial velocity of the fluid (see Appendix B).

At low PeDa, the solute is uniformly distributed; i.e., the
solute is not influenced by the structure of the rock (γ̄ ′ and
v̄′ equal one). Under these conditions, the reaction is so slow
that the solute has time to spread by diffusion over the whole
porous medium and a uniform reaction is induced.

The influence of the structure of the rock on the macroscopic
coefficients is an increasing function of PeDa. It induces
the decrease of the apparent reaction rate and velocity. A
discontinuity of v̄∗ is observed in Fig. 17(b) for Pe around 2.
This collapse of v̄∗ is due to the appearance of the intermediate
reaction regime highlighted in Sec. IV B.

A remark can be made on this case about the used com-
putation resources. Because of the distribution of diameters
in this network (Fig. 16) and of the large volume, a cubic
discretization for the PSM would imply a lattice of roughly
109 cells. Such a volume cannot be addressed yet by the PSM.

Using the PNM, roughly 30 000 elements are needed to
define the network geometry. Nevertheless, around 3 compu-
tation days and over 2.4 gigabytes of RAM are necessary to
obtain the results displayed in Figs. 17(a) and 17(b).

FIG. 16. The probability density functions of pore-body and pore-

throat diameters in the network displayed in Fig. 15.

(a)

(b)

FIG. 17. The dimensionless effective reaction rate γ̄ ′ (a) and

the effective solute velocity v̄∗/〈v〉 (b) of an irregular network as

functions of the dimensionless numbers Pe and PeDa.

VI. CONCLUDING REMARKS

Two methods are used to solve reactive transport in a porous
medium, the PSM, which solves on the microscale, and the
PNM, which reformulates this problem on a larger scale.
When the simulations for both methods are made in identical
media under the same conditions, the two models provide
analogous solutions. The present investigation validates the
hypotheses and the formulations used in the PNM in order to
describe flow, surface reaction, and transport in each element
of the network. PSM calculations show that v and X can be
considered as established along the pore throats and follow the
analytical solutions for an infinite capillary. Despite the PNM
assumptions in pore bodies—zero velocity and perfect mixing
or dominant diffusion for c′—a very good agreement between
the models is observed.

From a computing point of view, for PN1, the PSM requires
3 gigabytes during 2 days while the PNM only needs 100
megabytes and a few seconds on the same computer. Because
of the use of the analytical solutions in the network elements,
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the PNM can be applied to large velocities and reaction rates.
However, this approach cannot represent exactly the geometry
and the local evolutions of the solute. The PNM only provides
an average description of solute distribution in pore bodies and
pore throats. Because of the simplifications used in the PNM,
a large volume can be addressed with affordable computation
resources.

A new reaction regime, not mentioned in the literature, is
brought into light which depends on the localization and the
diameter of the largest elements of the porous medium with
respect to the main flow path. This new reaction regime can
have consequences on the macroscopic behavior of the solute
which can change the distribution pattern of the concentration
in reservoir simulators [38].

APPENDIX A: ANALYTICAL RESOLUTION OF

THE TRANSVERSE PROFILE

This Appendix is devoted to the resolution of reactive
transport in infinite capillary tubes and in closed spheres. As
a reminder, the reactive transport of a solute is governed by

Pe∇′c′ · v′ − ∇ ′2c′ = −
L2

DT

∂c′

∂t
in �F , (A1)

n · ∇
′c′ = −PeDa c′ on Ŵ. (A2)

1. Infinite capillary tube

In the asymptotic regime, (A1) becomes a well-known
second-order ordinary differential equation because c′(ρ,t) is
decomposed as

c′(ρ,t) = X(ρ) exp(−λt). (A3)

For an infinite cylinder, the local problem is governed by

1

ρ ′

d

dρ ′

(

ρ ′ dX

dρ ′

)

+
λr2

D
X(ρ ′) = 0, (A4)

whose solutions are linear combinations of Bessel functions
of first and second kinds (commonly denoted J0 and Y0,
respectively), where r is the radius of the cylinder and ρ ′

is the dimensionless radial coordinate (ρ ′ = ρ/r). However,
Y0 is discontinuous at zero, which is not compatible with the
continuity of the concentration profile. Thus, the normalized
concentration profile is

X(ρ ′) = aJ0(ωρ ′), (A5)

where ω is a dimensionless factor related to the exponential
decrease rate λ; ω depends on the surface reaction rate.
Indeed, by substitution of (A5) into (A4), the following relation
between ω and λ is obtained:

λ =
Dω2

r2
. (A6)

Moreover, by substituting the local solution (A5) into the
boundary condition equation (A2), a relation can be deduced
between ω and the local PeDa of the cylinder:

ωJ1(ω)

J0(ω)
=

κr

D
= PeDa. (A7)

Since a general analytical solution of this equation does not
exist, ω must be numerically determined for a given PeDa.
In order to deal with a dimensionless profile X(ρ ′), its mean
value over a section of the cylinder is fixed to 1. This leads to
the final expression of X for a cylinder:

X(ρ ′) =
ω2

2PeDa

J0(ωρ ′)

J0(ω)
. (A8)

2. Closed sphere

Within a closed sphere, the local problem can be written as

1

ρ ′2

d

dρ ′

(

ρ ′2 dX

dρ ′

)

+
λR2

D
X(ρ ′) = 0, (A9)

where R is the radius of the sphere and ρ ′ is the dimensionless
radial coordinate (ρ ′ = ρ/R). The physical solution of this
equation is

X(ρ ′) = a
sin(ωρ ′)

ωρ ′
. (A10)

By substituting Eq. (A10) into (A9), an analogous relation to
(A6) is obtained:

λ =
Dω2

R2
. (A11)

Since the same reasoning can be used for the boundary
condition, the following relation is deduced:

1 −
ω

tan ω
=

κR

D
= PeDa. (A12)

Similarly to the cylinder geometry, the determination of
ω requires a numerical evaluation for a given PeDa. The
final expression of X within a closed sphere is obtained by
normalizing the mean concentration over the whole sphere:

X(ρ ′) =
ω2

3PeDa

sin(ωρ ′)

ρ ′ sin(ω)
. (A13)

APPENDIX B: MACROSCOPIC SOLUTE VELOCITY

According to Shapiro and Brenner [39], the macroscopic
velocity of the solute v̄∗ can be expressed as

v̄∗ =
〈X0Y0v + D(Y0∇X0 − X0∇Y0)〉

〈X0Y0〉
, (B1)

where X0 and Y0 are the solutions of the local reactive
transport problem and its adjoint problem, respectively. This
expression is adapted to the PNM as proposed by Varloteaux
et al. [38]. The macroscopic velocity of the solute is used to
represent the advective contribution of the reactive transport
at a macroscopic scale. Of course, this velocity is not equal to
v̄′ defined in Sec. IV A.
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