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Abstract

Accounting for the annual climatic variability is a well-known issue for simulation-based studies of
environmental models. It often requires intensive sampling (e.g., averaging the simulation outputs over
many climatic series), which hinders many sequential processes, in particular optimization algorithms.
We propose here an approach based on a subset selection of a large basis of climatic series, using an
ad-hoc similarity function and clustering. A non-parametric reconstruction technique is introduced to
estimate accurately the distribution of the output of interest using only the subset sampling. The
proposed strategy is non-intrusive and generic (i.e. transposable to most models with climatic data
inputs), and can be combined to most “off-the-shelf” optimization solvers. We apply our approach to
sunflower phenotype optimization using the crop model SUNFLO. The underlying optimization problem
is formulated as multi-objective to account for risk-aversion. Our approach achieves good performances
even for limited computational budgets, outperforming significantly more “naive” strategies.

1 Introduction

Using numerical models of complex dynamic systems has become a central process in sciences. In agronomy,
it is now an essential tool for water resource management, adaptation of anthropic or natural systems to
a changing climatic context or the conception of new production systems. In particular, in the past two
decades crop models have received a growing attention (Boote et al., 1996; Brisson et al., 2003; Brun et al.,
2006; Bergez et al., 2013; Brown et al., 2014; McNider et al., 2014), as they can be used to help improve the
plant performances, either through cultural practices (Grechi et al., 2012; Wu et al., 2012) or model-assisted
plant breeding (Semenov and Stratonovitch, 2013; Semenov et al., 2014; Quilot-Turion et al., 2012).

Many times, the objective pursued by model users amounts to solving an optimization problem, that
is, find the set of input parameters of the model that maximize (or minimize) the output of interet (cost,
production level, environmental impact, etc.). Examples of such problems abound with environmental mod-
els, including water distribution systems design (Tsoukalas and Makropoulos, 2014), agricultural watershed
management (Cools et al., 2011) or the adaptation of cultural practices to climate change (Holzkämper et al.,
2015). In phenotype optimization, (or ideotype design, Martre et al., 2015), plant performance (e.g., yield)
is maximized with respect to its morphological and/or physiological traits.

Within the wide range of potential approaches to solve such optimization problems, black-box optimization
methods have proved to be popular in this context (Maier et al., 2014; Martre et al., 2015; Quilot-Turion
et al., 2012), as they only require limited expertise in optimization while being quite user-friendly, as they
are in essence non-intrusive (i.e., they only require evaluations of the model at hand).
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However, a well-known difficulty, shared by many models users, is to deal with climatic information. Many
agricultural or ecological models require yearly series of day-to-day measures of precipitation, temperature,
etc., as input variables. This is particularly crucial for agricultural or ecological models, for which the climate
has a preponderant impact on the system. To avoid drawing conclusions biased by the choice of a particular
set (i.e., year) of climatic data, one may either use scenarii approaches (duplicate the analysis for a small
number of distinct climates), or average the model outputs over a (large) number of climatic datasets. Due
to the complex plant-climate interaction, identifying scenarii may prove to be a very challenging task, and
the alternative relies on intensive computation, which rapidly becomes computationally prohibitive if the
analysis is embedded in a loop, even for moderately complex models.

A natural solution is to treat the climate as a random variable, which allows the use of the robust (or
noisy) optimization framework. However, if readily available codes abound for continuous, box-constrained
parameters and deterministic outputs, solutions become scarce for systems depending on stochastic phenom-
ena. Besides, the problem formulation becomes more complex, as typically risk-aversion preferences need to
be accounted for.

The methodological objective of this paper is two-fold. First, we wish to propose a clear optimization
framework for optimization under climatic uncertainties, and in particular to account for risk-aversion con-
cepts in a transparent manner. Second, as both optimization and uncertainty analysis are computationally
intensive tasks, we need to provide an algorithmic solution to solve the problem in reasonable time. In
addition, we wish to remain non-intrusive and generic (i.e. transposable to most models with climatic data
inputs). Finally, in order to facilitate the use of parallel computing, we aim at limiting the complexity of
the algirthm to its minimum.

In this work, we focus on the problem of sunflower ideotype design using the SUNFLO crop model.
SUNFLO is a process-based model which was developped to simulate the grain yield and oil concentration
as a function of time, environment (soil and climate), management practice and genetic diversity (Casadebaig
et al., 2011). It allows to assess the performance of sunflower cultivars in agronomic conditions. A cultivar
is represented by a combination of eight genetic coefficients (see Table 1), which are the variables to be
optimized. The SUNFLO model computes the annual yield y (in tons per hectare) for a given climatic year.

The rest of this paper is organized as follow: Section 2 briefly reviews previous works on phenotype
optimization, describes the SUNFLO model and the multi-objective optimization formulation to solve the
problem at hand. Section 3 is dedicated to the optimization algorithm, which relies on a subset selection of
the available climate data combined with a metaheuristic algorithm. Finally, Section 5 provides numerical
results and compare our approach to classical solutions.

2 Problem definition

2.1 Brief review of phenotype optimization

Martre et al. (2015) provide a review of recent developments in this research domain named model-assisted
crop improvement or ideotype design. A phenotype is defined as the expression in a particular environmnent
of a specific genotype through its morphology, development, cellular, biochemical or physiological proper-
ties. An ideotype is defined as a combination of morphological and/or physiological traits optimizing crop
performances to a particular biophysical environment and crop management. Letort et al. (2008) devel-
opped an approach to design plant ideotypes maximizing yield, using numerical optimization methods on
coupled genetic and ecophysiological models. However, as most of the developped crop model do not include
genetic-level inputs (Hammer et al., 2010), optimization mainly targets the phenotype level.

In the phenotype optimization setting, ideotype design can be formulated as a problem of optimizing
model inputs related to cultivar practices (Grechi et al., 2012; Wu et al., 2012), or phenotypic parameters
(Semenov and Stratonovitch, 2013; Semenov et al., 2014; Quilot-Turion et al., 2012). Different purposes are
targeted such as the adaptation to climate change (Semenov and Stratonovitch, 2013; Semenov et al., 2014)
or the multicriterion assessment of cultivar (Quilot-Turion et al., 2012; Qi et al., 2010). In most of these
approaches (Letort et al., 2008; Qi et al., 2010; Quilot-Turion et al., 2012), the study has been performed on
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a constant environment, in particular, using a single climatic year. Quilot-Turion et al. (2012) stated that
further methodological developments are needed in the optimization side to reduce computational time in
order to be able to consider multi-environments and large climatic series. In this work, the authors used the
’Virtual Fruit’ model (Quilot et al., 2005) to design peach phenotypes for sustainable productions systems.
Their aim is to optimize jointly three model outputs (fruit mass, sweetness and crack density) in four different
scenarii using one climatic data serie in 2009. They first performed a sensitivity analysis in order to select
six phenotypic model inputs amongst 60 and use the multi-objective optimization method NSGA-II (Deb
et al., 2002) in order to solve the problem.

Semenov and Stratonovitch (2013) proposed to evaluate a phenotype by estimating an expected yield
using 100 climatic series, by combining the use of the stochastic weather generator LARS-WG (Semenov and
Stratonovitch, 2010) and the wheat crop model Sirius (Jamieson et al., 1998) in order to design high-yielding
ideotypes for a changing climate in the case of two contrasting situations: Sevilla in Spain and Rothamsted
in the United Kingdom. Inputs were nine cultivar-dependant parameters related to the photosynthesis,
phenology, canopy, drought tolerance and root water uptake. The optimization problem was solved by using
an evolutionary algorithm with self-adaptation (EA-SA, Beyer, 1995).

2.2 The SUNFLO model

In this work, we consider the SUNFLO crop model in order to assess the performance of sunflower cultivars in
agronomic conditions. This model is based on a conceptual framework initially proposed by (Monteith, 1977)
and now shared by a large familly of crop models (Keating et al., 2003; Brisson et al., 2003; Stockle et al.,
2003). In this framework, the daily crop dry biomass growth rate is calculated as an ordinary differential
equation function of incident photosynthetically active radiation, light interception efficiency and radiation
use efficiency. Broad scale processes of this framework, the dynamics of leaf area, photosynthesis and biomass
allocation to grains were split into finer processes (e.g leaf expansion and senescence, response functions to
environmental stresses) to reveal genotypic specificity and to allow the emergence of genotype × environment
interactions. Globally, the SUNFLO crop model has about 50 equations and 64 parameters (43 plant-related
traits and 21 environment-related).

In this model, a cultivar is represented by a combination of eight genetic coefficients (see Table 1).
These coefficients describe various aspects of crop structure or functioning: phenology, plant architecture,
response curve of physiological processes to drought and biomass allocation. The consequence of genetic
modifications can be emulated by changing the values of such parameters. We consider here the design of
sunflower cultivars for a given set of cultural practices and a specific environment. The overall objective is
to find a phenotype that maximizes the yield for the year to come, without knowing in advance the climate
data. We assume that the coefficients can take continuous values between a lower and an upper bound,
which are determined from a dataset of existing cultivars (see Table 1). We denote x ∈ X ∈ Rd a particular
phenotype, where d is the number of input variables (d = 8).

The SUNFLO model computes the annual yield y (in tons per hectare) for a given climatic year. Hence,
it requires as an additional input a climatic serie, which consists of daily measures over a year of five
variables: minimal temperature (Tmin, °Cd), maximal temperature (Tmax, °Cd), global incident radiation
(R, MJ/m2), evapotranspiration (E, mm, Penman-Monteith) and precipitations (P , mm) We note: c =
{Tmin, Tmax, R,E, P}. Figure 2 provides an example of such data.

We use historic climatic data from five french locations Avignon, Blagnac, Dijon, Poitiers and Reims (see
Figure 1) from 1975 to 2012. The initial data is recorded over 365 days, but we consider only the cultural
year (April to October, 180 days), as the yield computed by the model only depends on this period. We
denote by Ω this set of climatic series, and we have Card(Ω) = N = 190 and c ∈ R5×180.

To summarize, the yield can be seen as a function of the phenotype and the climatic serie:

y : X× Ω → R+

x, c 7−→ y(x, c).
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Table 1: Phenotypic coefficients and the bounds used for optimization.

Symbol Description Min Max

TDF1
Temperature sum from emergence to

765 907
the beginning of flowering (◦C)

TDM3
Temperature sum from emergence to

1540 1830
seed physiological maturity (◦C)

TLN Number of leaves at flowering 22.2 36.7

K
Light extinction coefficient

0.780 0.950
during vegetative growth

LLH
Rank of the largest leave

13.5 20.6
of leaf profile at flowering

LLS
Area of the largest leave of

334 670
leaf profile at flowering (cm2)

LE
Threshold for leaf expansion

-15.6 -2.31
response to water stress

TR
Threshold for stomatal conductance

-14.2 -5.81
response to water stress
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Figure 1: Location of the five French stations for the historic climatic data
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Figure 2: Dataset of the year 2009, Lusignan.

With a slight abuse of notations, we also define:

y(X, c) := [y(x1, c), . . . , y(xI , c)]
T
,

y(x,C) := [y(x, c1), . . . , y(x, cJ)]
T
,

y(X,C) := (y(xi, cj))1≤i≤I,1≤j≤J ,

that is, the yield function for a set of inputs, either for a set of phenotypes X = {x1, . . . ,xI} (I ∈ N∗), a set
of climatic series C = {c1, . . . , cJ} (1 ≤ J ≤ N), or both.

2.3 A multi-objective optimization formulation for robust optimization

The objective is to find a phenotype that maximizes the yield for the year to come, without knowing in
advance the climate data. Let C be the climatic serie of the upcoming year (the upper case denoting a
random variable); we consider in the following that C is uniformly distributed over the discrete set Ω. Since
C is random, the yield y(x, C) is also a random variable (which we denote in the following Y (x)), which
makes its direct maximization with respect to x meaningless.

A natural formulation is to maximize the yield expectation:

max
x∈X

E [y(x, C)] = max
x∈X

E [Y (x)] ,

with here: E [Y (x)] = 1
N

∑N
i=1 y(x, ci).

However, in general, a farmer also wishes to integrate some prevention against risk in its decision. Such
a problem is often referred to as robust optimization in the engineering literature (see for instance Beyer and
Sendhoff, 2007, for a review).

A popular solution is to replace the expectation by a performance indicator that provides a trade-off
between average performance and risk aversion: typically, the expectation penalized by the variance or a
so-called utility function. The drawback of such approaches is that the trade-off must be tuned beforehand
by choosing penalization parameters specific to the method. Choosing the appropriate trade-off may not be
straightforward, and modifying it requires to restart the entire optimization procedure.

We propose here an alternative, which is to consider this problem as multi-objective, by introducing a
second criterion to maximize that accounts for the risk (as in Tsoukalas and Makropoulos, 2014, for instance).
One may choose for instance to maximize a quantile:

max
x∈X

Qα [Y (x)] ,
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with the usual definition of the quantile: P [Y ≤ Qα(Y )] = α, and α ∈ (0, 0.5]. Here, it amounts to
maximizing the yield for the (N ×α)-th worst year. However, we consider here a close but numerically more
stable criterion, called the conditional value-at-risk (CVaR, Rockafellar and Uryasev, 2000), defined as:

CVaRα [Y (x)] = E [Y (x)|Y (x) ≤ Qα [Y (x)]] .

CVaRα is the average yield over the (N × α)-th worst years.
The multi-objective optimization problem is then: max E [Y (x)]

max CVaRα [Y (x)]
s.t. x ∈ X.

Such a formulation is relatively classical in robust optimization, although the second objective is often
taken as the variance of the response: var[Y (x)] (as for instance in Chen et al., 1999; Jin and Sendhoff,
2003). However, considering an expectation-variance trade-off does not make sense here, as a farmer will not
want to minimize the variability of its income (i.e., minimizing the variance) but rather minimize the risk of
low income.

3 Optimization with a representative subset

The two objective functions, E[Y (x)] and CVaRα[Y (x)], require running the SUNFLO simulator N times
everytime a new phenotype x is evaluated. Embedded in an optimization loop, which typically requires
thousands to millions calls to the objective functions, this evaluation step becomes prohibitive.

We propose to address this problem by replacing the large climatic data set Ω by a small representative
set ΩK . To do so, we first choose the set ΩK prior to optimization using a clustering algorithm described
in Section 3.1. Then, the optimization algorithm is run using ΩK . Hence, E[Y (x)] and CVaRα[Y (x)] are
replaced by their estimates based on ΩK , which are described in Section 3.2.

3.1 Choosing a representative subset of climatic data

3.1.1 Principle

To select our subset, we propose to define a distance (or, conversely, a similarity) between two climatic series,
then choose series far from each other using clustering algorithms.

One can choose to consider only the dataset and define a distance that characterizes differences between
the time series. However, the drawback of this method is that it is completely model-independent: two
climatic series can be considered as far from each other but have a similar effect on the model, hence return
a similar yield. Inversely, two climatic series can be generally close but return different yields because of
small critical differences (say, a rainy week at an appropriate moment of the plant growth).

An alternative is to consider a model-based distance: two climatic series would be far from each other
only if they return different yields for a given phenotype. This naturally implies that all the climatic series
are run on a (small) phenotype learning set. Therefore, the distance will be very dependent on the choice of
the set and may result in poor robustness.

Therefore, we propose here to combine both ideas, and define a hybrid distance that depends on intrinsic
differences and on the effect on the model.

3.1.2 Dissimilarity between time series

As a climatic serie is defined by five time series of different nature, we need first to define a metric to
compare each series separately. Due to the nature of the data, Euclidian distance can be ruled out, as it
makes little sense here. Indeed, all the series have important day-to-day variations (corresponding to good or
bad weather), and similar events can be observed from one series to another shifted by one or several days.
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Figure 3: Computing of the dtw distance between two time series of maximal daily temperature (Tmax):
Avignon in 1985 (upper curve, left scale) and Lusignan in 2012 (bottom curve, right scale). Dotted line
represents the optimal matching of daily temperature computed by dtw, for a window size of 7 days.

This is particularly apparent for the precipitation series, which contain many zeros and several “peaks”:
Euclidian distance would consider two series as far from each other, as long as the peaks do not coincide
exactly.

A classical tool for time series analysis, sensible in our case, is an algorithm called dynamic time warping
(DTW, Berndt and Clifford, 1994; Aach and Church, 2001; Kadous, 1999). In short, DTW allows two time
series that are similar but locally out of phase to align in a non-linear manner, by matching events within a
given window. Note that the DTW algorithm has a O(n2) time complexity, which makes the dissimilarity
computation non-trivial. However, this step should be performed only once. Given two weather series ci
and cj , five distances can be computed, according to the weather variables: d(ci, cj)

Tmin, d(ci, cj)
Tmax,

d(ci, cj)
R, d(ci, cj)

E and d(ci, cj)
P .

3.1.3 Model-based dissimilarity

This dissimilarity measures a difference in the output of the model (the yield). To do so, we choose first a
small set of l phenotypes: B = {x1, . . . ,xl}. Typically, B can be chosen by Latin Hypercube Sampling (LHS,
McKay et al., 1979) to “fill” the search space Rd. For this basis, the yield is computed for all the climatic
series: y(B,Ω) ∈ Rl×N . Then, the model-based distance is simply the Euclidian distance:

d(ci, cj)
M =

√√√√1

l

l∑
k=1

(y(xk, ci)− y(xk, cj))
2

3.1.4 Combining dissimilarities

We want here to combine the six dissimilarities (one for each time series and the model-based one) into a
single one, with equal weight to each variable. We propose to do so by normalizing the dissimilarities before
summing them with uniform weights. As the variables are of different nature, the dissimilarities distributions
are likely to be very different (uniform, heavy tailed, etc.), hence artificially weight the variables even if they
are rescaled similarly.

Here, we follow a normalization procedure proposed in Olteanu and Villa-Vialaneix (2015) called “cosine
preprocessing”, which works as follow: Let D be a N×N matrix of dissimilarities (with values dij = d(xi,xj),

7



dij = djj and dii = 0). We first compute a corresponding similarity matrix S, with values:

sij = −1

2

[
dij −

1

N

N∑
k=1

(dik + dkj) +

N∑
k=1

N∑
k′=1

dkk′

]
.

Then, we normalize S with:

s̄ij =
sij√

sii + sjj
,

and the normalized dissimilarity matrix D̄ has elements defined as:

d̄ij = s̄ii + s̄jj − 2s̄ij = 2− 2s̄ij .

Now, we use a convex combination of the six normalized dissimilarities:

δij = αTmin
d̄Tmin
ij + αTmax

d̄Tmax
ij + αP d̄

P
ij + αE d̄

E
ij + αS d̄

S
ij + αMd̄

M
ij , (1)

with αTmin
+ . . .+ αM = 1. In the following, we use αM = 1/2 and the other weights equal to 1/10.

3.1.5 Choosing a representative subset using classification

Once the matrix of dissimilarities ∆ is computed, most unsupervised clustering algorithms can be used to
split the set of climatic series Ω into subsets. However, a difficulty here is that the centroids of the clusters
cannot be computed. Hence, we use a variation of the k-means algorithm that only requires dissimilarities
to the centroids. We follow the approach described in Olteanu and Villa-Vialaneix (2015); the corresponding
pseudo-code is given in Algorithm 2.

The algorithm divides the set Ω into K classes C(1), . . . , CK , not necessarily of equal sizes. A class
Ck contains Nk elements {ck1 , . . . , ckK}. Any element c ∈ Ω is uniquely attributed to one class and we

have:
∑K
k=1N

k = N . For each class k, a representative element ωk is chosen, which we use to define the
representative set: ΩK = {ω1, . . . , ωK}.

3.2 Non-parametric reconstruction of distributions

The objective here is to obtain accurate estimations of the objective functions E[Y (x)] and CVaRα[Y (x)]
based on the yield computed for a new phenotype and the representative set: y(x,ΩK). Since this set is
small, computing directly the objective functions would lead to large errors, in particular for CVaRα[Y (x)],
that requires an accurate representation of the tail distribution (see Figure 5). A natural alternative is to fit
a parametric distribution the small data set, and infer the objectives on the distribution. However, the form
of the empirical distribution (Figure 5) does not readily call for a given parametric model, and misspecifying
the distribution shape may result with large bias.

Hence, we propose to reconstruct the distribution using a non-parametric method, by re-using the data
computed for the classification step, that is, the yield computed for the phenotype learning basis and all the
climatic series (y(B,Ω)).

The general idea is to consider a mixture model for the yield (each component corresponding to a class
Ck):

fY (x)(y) =

K∑
k=1

Nk

N
fY k(x)(y), y ∈ R,

f standing for the probability density function (PDF), and Y k(x) being yield within the class k.
We decompose further Y k(x) as the sum of the value at the representative element and a residual:

Y k(x) = y(x, ωk) + εk(x).

The intra-class distribution is then characterized by the residuals εk(x), which determine the form, spread
(or amplitude), and bias (i.e., difference between the average value and the value of the representative
element). All these elements vary from one class to another, which advocates the use of non-parametric
approaches.
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Method 1 (naive) From y(B,Ω), we first compute the residuals εkj (xi) = y(xi, c
k
j )− y(xi, ω

k) (1 ≤ i ≤ l;
1 ≤ j ≤ Nk; 1 ≤ k ≤ K). Then, we average the residuals over the phenotypes of B:

ε̂k =
[
ε̂k1 , . . . , ε̂

k
Nk

]
, with ε̂kj =

1

l

l∑
i=1

εkj (xi).

The intra-class yield variety is re-created by adding the average residual vector to the yield computed for
the representative value:

Ŷ k(x) = y(x, ωk) + ε̂ki ,

with i uniformly taken from J1, NkK. Thus, each component of the mixture has a fixed distribution (i.e.
independent of x), shifted according to its representative value, and the mixture shape and spread varies
according to the distribution of the representative values (see Figure 4 for an illustration).

However, in practice, the values of the residuals can vary substantially from one phenotype to another,
and averaging them over B tends to destroy the shape information. To address this issue, we proposed the
following modification:

Method 2 (rescaled) We introduce first the weighted variance of the yield over the representative set:

σ2
K(x) =

1

N

K∑
k=1

Nk

y(x, ωk)− 1

N

K∑
j=1

N jy(x, ωj)

2

.

Note that for a new phenotype x, the only data available is indeed y(x, ωj), so few alternatives are possible.
We then define averages of normalized residuals:

ε̄k =
[
ε̄k1 , . . . , ε̄

k
Nk)

]
, with ε̄kj =

1

l

l∑
i=1

εkj (xi)

σK(xi)
.

and the yield vector is constructed with:

Ŷ k(x) = y(x, ωk) + σK(x)× ε̄ki ,

with i uniformly taken from J1, NkK.
Figures 4 and 5 illustrate the reconstruction technique for a given (randomly chosen) phenotype. On

Figure 4, we see how the estimated distribution is built using the residuals corresponding to each class. We
can see that the range and shape of the residuals vary considerably from one class to another. Also, their
distribution around the representative element differs: as the residuals do not have a zero mean, the value
of the representative element is not necessarily central for each class. Comparing the reconstructed (Figure
4, top) and actual (bottom) distributions, we see that the mixture is globally the same on both graphs.

Figure 5 shows the cumulative distribution function (CDF) of the actual yield and of three estimations:
using the two methods described above and a simple parametric method, which consists in assuming a
Gaussian distribution of the yield. The empirical CDF corresponding to the subset values only is also
depicted, with unequal steps to account for the different number of elements in each class.

We first notice that the subset data only is obviously insufficient to evaluate accurately the mean or
the CVaR. Then, we see that the actual distribution does not seem to belong to a known distribution, and
using a normal distribution introduces a large bias. Inversely, using a non-parametric reconstruction allows
us to match the shape of the actual distribution. The difference between the two methods is small for this
example, yet the second approach is slightly better almost everywhere.

In our study, we found that this second method provided a satisfying trade-off between robustness,
simplicity and accuracy. Yet, many refinements would be possible at this point, for instance by introducing
intra-class rescaling (different normalization for each class), bias correction, or using the distance from the
phenotype x to the basis B.
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3.3 Optimization and reconstruction update

Finally, the multi-objective optimization problem solved is:
max E

[
Ŷ (x)

]
max CVaRα

[
Ŷ (x)

]
s.t. x ∈ X,

with Ŷ (x) a mixture of Ŷ 1(x), . . . , Ŷ K(x).

One may note that E
[
Ŷ (x)

]
and CVaRα

[
Ŷ (x)

]
serve as estimates of E [Y (x)] and CVaRα [Y (x)], re-

spectively. These estimates are based on the phenotype basis B, which is sampled uniformly over X to
offer a general representation of the phenotype space. This feature is important at the beginning of the
optimization to ensure that the optimizer does not get trapped into poorly represented regions. However, as
the optimizer converges towards the solution, the search space becomes more narrow, and a substantial gain
in performance can be achieved by modifying the estimates so that they are more accurate in the optimal
region.

In theory, it is possible to re-run the entire clustering procedure after a couple of optimization iterations,
by adding new phenotypes to the learning set. However, such strategy is likely to increase greatly the
computational burden. We propose instead to modify only the reconstruction step, for which only very few
additional calculations are required.

Indeed, the reconstructed yield ditributions use the phenotype learning basis B and their associated
values y(B,Ω). By replacing the initial B with B′ formed by phenotypes chosen inside the optimal region,
we obtain yield values y(B′,Ω) that are more likely to represent the actual distribution within this region.
Such “specialization” may be to the detriment of the global accuracy of the estimates, but this is not critical
as the optimizer concentrates on a narrow region.

Including a new phenotype x′ into the basis B requires running the SUNFLO simulator N times to obtain
y(x′,Ω). Therefore, an efficient trade-off must be found between pursuing the optimization and improving
the estimates. Also, it may be beneficial to discard phenotypes in B that are far from the optimal region.
In summary, we need to: a) decide when to add phenotypes to the basis and b) when to discard them and
c) choose which to add / discard.

A simple strategy is to perform only two steps: first, run the optimization with the initial basis B. Then,
select l new phenotypes from the obtained Pareto set and replace the entire basis B after running the N × l
simulations. Finally, restart the optimization with the new estimates. We have found (Section 5) that this
two-step strategy was sufficient on our problem, while relatively easy to implement.

3.4 Optimization procedure overview

To summarize this section, Algorithm 1 describes the complete optimization procedure, including the initial
clustering and the two-step strategy. Each step relies on the call to a metaheuristic algorithm such as NSGA-
II (Deb et al., 2002) or MOPSO-CD (Raquel and Naval, 2005). Hence, two-step MOPSO-CD stands for the
tow-step algorithm using the MOPSO-CD metaheuristic.
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Algorithm 1 Two-step optimization algorithm

Initialization
Choose phenotype database B, and compute yield matrix y(B,Ω)
Compute matrix of dissimilarity ∆
Run clustering algorithm to obtain the classes C(1), . . . , CK and the representative set ΩK
Get residuals from y(B,Ω)

Optimization: run 1
Choose population size q and number of iterations T
for t= 1, . . . , T do

Select new phenotypes {x1
new, . . . ,x

q
new} according the metaheuristic.

Calculate yield for the representative set for each new phenotype y(xinew,ΩK)

Reconstruct Ŷ (xinew) and evaluate E
[
Ŷ (xinew)

]
and CVaRα

[
Ŷ (xinew)

]
Post process {x1

new, . . . ,x
q
new} according the metaheuristic.

end for
Get Pareto-optimal solutions X∗

Optimization: run 2
Replace B by X∗, compute yield matrix y(B,Ω)
Get the new residuals from y(B,Ω)
for t= 1, . . . , T do

Select new phenotypes {x1
new, . . . ,x

q
new} according the metaheuristic.

Calculate yield for the representative set for each new phenotype y(xinew,ΩK)

Reconstruct Ŷ (xinew) and evaluate E
[
Ŷ (xinew)

]
and CVaRα

[
Ŷ (xinew)

]
Post process {x1

new, . . . ,x
q
new} according the metaheuristic.

end for
Get Pareto-optimal solutions X∗

4 Experimental setup

4.1 Climate subset selection

In this experiment, we used the R package dtw (Giorgino, 2009) to compute all the distances between climatic
series. Note that the window size (that is, the maximum shift allowed) is a critical parameter of the method;
we use here expert knowledge to choose it. For the precipitation, a window of ±3 days is used; for the other
variables, a window of ±7 days is chosen. The phenotype basis B is chosen as a 10-point LHS; hence, for
this step the method required 1, 900 calls to the SUNFLO model.

Once the dissimilarity matrix ∆ is computed, the clustering algorithm (see Appendix 6) is run. Since this
algorithm amounts to a gradient descent, it provides a local optimum only, so we need to restart it several
times (by changing the initial values β0) to ensure that a good optimum is found. We found in practice that
500 iterations and 10 restarts were sufficient to achieve a good robustness.

This algorithm does not choose automatically the number of classes K. We found empirically that K = 10
provided a satisfying trade-off between the representation capability of the subset and the computational
cost during the optimization loop.

4.2 Optimization

To solve the multi-objective optimization problem, we chose to use the MOPSO-CD metaheuristic (Multi-
Objective Particle Swarm Optimization with Crowding Distance Raquel and Naval, 2005). MOPSO-CD is a
stochastic population-based algorithm inspired by the social behavior of bird flocking. In short, the algorithm
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maintains over T generations a population P of individuals (candidate solutions). At each generation, each
candidate is moved through the search space according to an individual direction (local improvement), a
global direction (towards the best candidates of the population) and a crowding distance. This distance is
used in order to build a set of solution that fills uniformly the Pareto front.

In the following experiments we used the R package dtw (Naval, 2013). The two main parameters of
MOPSO-CD are the population size and number of generations (their product being equal to the number of
function evaluatuions).

In order to assess the validity of our approach, we have conducted and empirical comparison to simpler
approaches: random search and a “naive” optimizer, both using the full set of climatic series. In addition,
we have conducted an intensive experiment to obtain an accurate representation of the actual Pareto set.

The intensive experiment consists in running two multi-objective algorithms (NSGA-II and MOPSO-CD)
with a very large budget (number of calls to the simulator function) using the full set of climatic series. The
two obtained Pareto fronts are merged to a single one, which we consider as “exact” in the following. We
set the number of iterations to 300 and the population size to 200, hence computing the exact Pareto front
requires 2× 200× 300× 190 = 22, 800, 000 calls to SUNFLO.

Random search, or LHS search, is performed using a latin hypercube sampling approach to fill the search
space X. The naive optimization is performed using the original MOPSO-CD algorithm. Each sampled point
is evaluated using the entire set of climatic series (N = 190) to estimate the expected yield and CVaR.

We compare the different approaches based on an equal number of calls to SUNFLO (that is, we do not
consider the time costs related to each approach). We considered four budgets: large (380, 000), medium
(95, 000), small (23, 750) and very small (11, 400).

For the naive and two-step approaches, we need to define the number of iterations and the population
size. We set the number of iterations to approximately five times the popuplation size, except for the very
small budget where the population size would be to small. For the two-step algorithm, each evaluation of the
expectation and CVaR requires 10 SUNFLO runs, which allows a larger population and number of iterations
than the naive approach, but it is also necessary to compute two times y(B,Ω) (the simulations of yields
over all climatic series for the phenotype basis), which has a 10× 190 cost.

The different setups are given in Table 2. Note that the budgets are only approximately equal (due to
rounding issues). Nevertheless the budgets for the two-step approach are always equal or smaller than the
naive one.

Since these three optimization approaches are stochastic, each experiment is replicated 10 times, to assess
the robustness of the results.

The time cost of one call to the SUNFLO model is low (' 0.1 sec), which makes it possible to perform
such an extensive experiment. However, to limit the computational costs, these experiments are performed
with either a symmetric multiprocessing (SMP) solution based on 30 cores or a message passing interface
(MPI) implementation based on 40 cores, depending on memory requirements of experiments, which makes
time costs comparisons meaningless.

The SUNFLO model has been implemented on the VLE software (Quesnel et al., 2009) in the RECORD
project which is dedicated to agorecosystems study (Bergez et al., 2013). VLE is a multi-modeling and
simulation platform coded in C++ that provides both a shared memory and a MPI based parallelisation
for the simulation of multiple input combinations. A native port rvle to the sofware R is available in order
to call simulations from this statistical tool. The other R packages used are fExtremes (computation of
CVaR statistic), lhs (optimized LHS generation), emoa (dedicated tools for multiobjective problems) and
mco (NSGA-II implementation). Finally, we are grateful to the genotoul bioinformatics platform Toulouse
Midi-Pyrenees for providing help and/or computing and/or storage resources.
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Table 2: Experiments performed for the two-step MOPSO-CD algorithm evaluation.
Optimization

Budget
Nb of Pop Real nb

experiment iterations size of simulations

Intensive
Very

300(×2) 200 ' 2× 107
large

very small - 60 11,400
Random small - 125 23,750
(or LHS) medium - 500 95,000

large - 2,000 380,000
very small 12 5 12,350

Naive small 25 5 24,700
MOPSO-CD medium 50 10 96,900

large 100 20 383,000
very small 42(×2) 9 11,540

Two-step small 71(×2) 14 23,960
MOPSO-CD medium 152(×2) 30 95,600

large 308(×2) 61 380,780

5 Results and discussion

5.1 Climate subset selection

We analyze first the classification obtained with our approach. As the classification is based on non-trivial
distances, it is difficult to characterize each class with integrated quantities (e.g. rainy / hot years, etc.).
We provide in the following three tools for this analysis.

We first plot a 2D projection of the climatic series based on the matrix of distances ∆ computed as in
Section 3.1.4. To do this, we use the R package cmdscale (Classical Multidimensional Scaling) (Figure 6-a).
Such a representation allows us to see whereas the classes are well-separated, if there are outliers, etc.

In Figure 6-b, the number of climatic series, grouped by their localization is given for each cluster.
Finally, a decision tree has been learnt (with the R package C50) using the cluster index of climatic series
as the variable to explain (Figure 6-c). We highlight here that this tree is solely for interpretation purpose
and is not linked to the proposed classification strategy. We used temporal mean aggregation of climatic
variables {Tmin, Tmax, R,E, P} and the mean yield simulated on the 10 phenotypes in B to build the decision
tree.

Based on these three representations, one can conclude that some clusters correspond more or less to
wheater types from the South of France (Avignon, Blagnac : 0, 5, 7, 9) rather warm (5, 7) or not (0, 9)
and leading to high yields (5, 9) or not (0, 7). The three clusters 0, 5 and 7 seem indeed the most easy to
characterize (Figure 6-a).

Cluster 1 represents climatic series leading to low yields from all locations. Clusters 3, 4, 6, 8 correpond
rather to wheater types from the north of France leading to high yields (3, 4, 6) or not (8). Clusters 2, 4,
6, 9 can be characterized by a cold weather and high yields but there are difficult to distinguish from each
other; there is indeed an important mixture of clusters in node 6 in Figure 6-c and one can make the same
observation when studying the projection in Figure 6-a.

While a simple characterisation of clusters can be done, there are still differences between them that
we do not achieve to characterize, which motivates the approach of using a distance between time series.
Especially, there is a known high impact of rain episodes and their localization in time, however, the temporal
mean aggregation of rain is not retained when building these decision trees.
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Figure 6: (a) Clusters and individuals (the 190 time series) are plotted in a 2D projection using Classical
Multidimensional Scaling. Each digit represents a weather time series which value corresponds to its cluster.
Climate series of representative set ΩK are plotted in bold italic. (b) Number of climatic series by cluster
splitted by localization in France. (c) A decision tree to explain clusters using, for each climatic series, the
temporal mean values of climatic variables and the mean yield simulated on the 10 phenotypes in B.
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Figure 7: Pareto fronts obtained with the different methods for the four budgets considered.

5.2 Phenotype optimization

5.2.1 Algorithm performance

Next, we compare the performances of the three approaches. As measuring performance is non-trivial
in multi-criteria optimization, we use three indicators: hypervolume, epsilon and R2 indicators (as recom-
mended in Zitzler et al., 2003; Hansen and Jaszkiewicz, 1998), all available in the R package emoa (Mersmann,
2012). They provide different measures of distance to the exact Pareto set and coverage of the objective
space. In short, the hypervolume indicator is a measure of the volume contained between the Pareto front
and a reference point (here, the worst value of each objective). The epsilon indicator is a maximin distance
between two Pareto fronts (here, we use the exact Pareto front as reference), while the R2 indicator can be
seen as an average distance. Figure 7 shows all the Pareto fronts (of the different runs and methods) for the
different budgets, and Figure 8 shows the corresponding performance indicators in the form of boxplots.

For the very small budget, we see that no method succeeds at finding the exact Pareto front. Besides,
most of the Pareto fronts consists of a single point. However, the two-step approach still largely outperforms
random search, while a naive use of MOPSO-CD performs worst, as it requires a certain number of iterations
to find a descent direction.

For the small and medium budgets, the two-step approach consistently finds a good approximation of the
Pareto front (with the exception of two outliers with the small budget). For the three indicators, it clearly
outperforms the other approaches.

For the large budget, we see that the regular MOPSO-CD performs slightly better, which is expected.
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17



Indeed, as soon as there is no necessity of parcimony, using approximate objectives instead of actual ones
tends to slower, rather than accelerate, convergence.

5.2.2 Results analysis

Finally, we characterize the results on the phenotype space. We compare here the exact Pareto set with one
run of the two-step method; we chose the run on the medium budget with the median performance. For
readability, we only consider a subset of the Pareto set of size five, equally spaced along the Pareto front.
The Pareto fronts and sets are represented in Figure 9.

We can see first that considering both the expectation and CVaR for optimization leads to a large
variety of optimal phenotypes. Looking back at the plant characteristics corresponding to those solutions,
the optimum value for five traits had little variability, meaning that those traits were important plant
characteristics for crop performance in the tested environments. Those five traits depicted plants adapted to
water deficit: a late maturity (TDM3), a low leaf number (TLN), largest leaves at the bottom of the plant
(LLH), a small plant area (LLS), and a conservative strategy for stomatal conductance regulation (TR). The
three other traits (TDF1, K, LE) displayed variability in optimal values, which was identified as the basis
of the performance/stability trade-off (expectation/CVaR). Here, the traits vary monotonically along the
Pareto front.

Four distinct plant types could be identified in the phenotype space. For example, the red plant type
had an early flowering (TDF1), a low light extinction efficiency (K) and a low plant leaf area (LLS); those
characterictics correspond to a conservative resource management strategy. In an opposite manner, the
light-blue type displays a late flowering, a high efficiency to intercept light and a larger plant leaf area,
characteristics usually associated with a productive but risky crop type when facing strong water deficit
(Connor and Hall, 1997). The strategy associated with plant types identified from the phenotype space
matched their position in the Pareto front, i.e the light-blue plant type was more performant but less stable
than the red one.

The Pareto set obtained with the two-step method reproduces part of these features: the fixed traits are
similar (except TLN, which is fixed to approximately 0.5 instead of 0, (but this parameter is known to have
little impact on the yield, see Casadebaig et al. (2011)) and the variation of TDF1 and LLS is well-captured.
However, on this run the method failed at finding the variation of the K and LE traits: this probably explains
why the largest mean values (left of the Pareto front) are missed.

Overall, the two-step method allowed to identify the few key traits were responsible for the cultivar global
adaptation capacity whereas secondary traits supported alternative resource use strategies underlying the
yield expectation/stability tradeoff.

6 Summary and perspectives

In this article, we proposed an algorithm for phenotype optimization under climatic uncertainties. Our
approach does not require any a priori knowledge on the system besides parameter bounds, hence is usable
with any simulator depending on similar climatic data. Using subset selection for the climates allowed us to
reduce substantially the computational time without adding implementation issues. If bias correction seems
inevitable during optimization, we showed that a two-step strategy was sufficient to achieve convergence:
this point is critical as it allows our approach to be combined with any black-box multi-objective solver.

Nevertheless, we see many opportunities for further improvements. First, the distance used here between
climate series does not account for the fact that agronomical systems are mostly sensitive to a few critical
periods (e.g., during flowering, grain filling). Weighting the DTW distance using expert knowledge or the
results of a sensitivity analysis may greatly improve the classification of the climates with respect to their
impact on the model.

Second, the reconstruction step may benefit from additionnal study, in particular the effect of the subset
size, which has been fixed to 10 in our study for practical reasons but could be chosen using preliminary
experiments for instance. Another interesting topic would be to target the reconstruction to improve the

18



●

●●●
●●●●●●●

●●●
●●●●●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

26.1 26.2 26.3 26.4 26.5 26.6

22
.0

22
.2

mean

cv
ar

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phenotype name

V
al

ue

TDF1 TDM3 TLN K LLH LLS LE TR

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phenotype name

V
al

ue

TDF1 TDM3 TLN K LLH LLS LE TR

Figure 9: Top: exact Pareto front. The bold circles correspond to a subset of five optimal phenotypes; the
triangles correspond to five phenotypes returned by the two-step method. Middle: optimal phenotype values
(one curve corresponds to one phenotype). Bottom: phenotype values obtained with the two-step method.
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quality of the objectives. Indeed, the proposed approach aims a reconstructing the entire output distribution,
while it is only important to obtain good estimates of the expectation and the CVaR.

Third, a popular strategy to reduce the computational costs is to combine optimization with the use of
surrogate modelling (see for instance Di Pierro et al., 2009; Tsoukalas and Makropoulos, 2014, for recent ex-
amples). Our approach straightforwardly extends to such approaches, and would result in very parcimonious
algorithms that may be beneficial for expensive simulations.

Finally, we have chosen here to use a two-step strategy to allow the use of “off-the-shelf” optimization
solvers. Interlinking optimization and learning may improve substantially the efficiency of the method,
although requiring the development of an ad hoc algorithm.

Appendix: clustering algorithm

This section details the clustering algorithm used and the rule to chose the representative element of each
class. The key of this particular approach is that, contrarily to a standard k-means algorithm, we cannot
compute explicitely a central element (i.e., a “virtual” climatic series).

Algorithm 2 Clustering algorithm

Initialize β in RN×K randomly such that βij ≥ 0, ∀i, j and
∑N
i=1 βij = 1, ∀j. Each line βk is the

dissimilarity of the centroid ω̃k to the climates.
for t= 1, . . . , T do

Pick i randomly in 1, . . . , N (one climate selected randomly)
Assignment step Find j (center closest to ci) such that

j = arg min
k=1,...,K

(
βTk∆i

)
− 1

2
βk∆β

T
k ,

with ∆i the i-th line of ∆.
Representation step (update center)

βj ← βj + r(t)× (1j − βj),

where 1j is a vector of zeros except its j-th value equal to one and r(t) = ε0
1+c0

t
K

.

end for

Once β has converged, each climate ci is attributed to the class j, using:

j = arg min
k=1,...,K

(βk∆i)−
1

2
βk∆β

T
k .

For each class k, a representative element ωk is chosen. We choose here the most central element in terms
of dissimilarity. Let ∆k be the submatrix of ∆ corresponding to the elements of Ck. We choose:

ωk = ckI with I = arg min
1≤i≤Nk

Nk∑
j=1

δkij
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