Silver Sintering for Power Electronics Integration

Cyril BUTTAY, Bruno ALLARD, Raphaël RIVA

Laboratoire Ampère, Lyon, France

17/4/15

Introduction

Integration of gate driver circuit

Double-side Cooling

Conclusion

Introduction

Integration of gate driver circuit

Double-side Cooling

Conclusion

Active Power Devices for High Temperature

Previous results show that SiC JFETs are attractive for > 200 $^{\circ}\!C$ operation:

- rated at 1200 V (or more), several Amps
- Voltage-controlled devices
- No reliability issue related to gate oxide degradation

Gate Drivers for SiC JFETs

- Normally-on devices
- negative blocking voltage
- threshold \approx 20 V.

- Custom-designed gate driver
- SOI technology for high temperature capability.

Bonding Material: Silver Sintering

Göbl, C. et al "Low temperature sinter technology Die attachment for automotive power electronic applications" proc of APE, 2006

Silver Paste

- Based on micro-scale silver particles (Heraeus LTS-117O2P2)
- ► Low temperature (240 °C) sintering
- Low pressure (2 MPa) process

No liquid phase involved:

- No movement of the die
- No bridging across terminals
- No height compensation thanks to wetting

Introduction

Integration of gate driver circuit

Double-side Cooling

Conclusion

What's Inside and What's Not?

8/25

What's Inside and What's Not?

- Isolation functions (signal and power)
- PWM signal generation
- ► Large value decoupling capacitor (1 µF)

Pictures of the power module

- CuMo leadframe / NiFe frame case
- ceramic substrate (AIN) \approx 20 \times 30 mm²
- high temperature passives (Vishay, Presidio)
- Al wedge Wirebonds, except Au ball for driver
- Bonding: silver sintering

The Test Setup

No encapsulation used

→ V_{DC} limited to 200 V

Power module attached to a hotplate → test from ambient to 315 °C

External components at room temp.

- → signal and power isolation
- ➔ large DC capacitor

Continuous operation on resistor

- V_{DC} = 200 V (no encapsulation)
- *R*_{load} = 50 Ω
- $F_{switch} = 10 \ kHz$

•
$$t_{dead-time} = 1.2 \ \mu s$$

- V_{DC} = 200 V (no encapsulation)
- *R*_{load} = 50 Ω
- $F_{switch} = 10 \ kHz$

•
$$t_{dead-time} = 1.2 \ \mu s$$

- V_{DC} = 200 V (no encapsulation)
- *R*_{load} = 50 Ω
- $F_{switch} = 10 \ kHz$

•
$$t_{dead-time} = 1.2 \ \mu s$$

- V_{DC} = 200 V (no encapsulation)
- *R*_{load} = 50 Ω
- $F_{switch} = 10 \ kHz$

•
$$t_{dead-time} = 1.2 \ \mu s$$

- V_{DC} = 200 V (no encapsulation)
- *R*_{load} = 50 Ω
- $F_{switch} = 10 \ kHz$

•
$$t_{dead-time} = 1.2 \ \mu s$$

11/25

- V_{DC} = 200 V (no encapsulation)
- *R*_{load} = 50 Ω
- $F_{switch} = 10 \ kHz$

•
$$t_{dead-time} = 1.2 \ \mu s$$

- V_{DC} = 200 V (no encapsulation)
- *R*_{load} = 50 Ω
- $F_{switch} = 10 \ kHz$

•
$$t_{dead-time} = 1.2 \ \mu s$$

- V_{DC} = 200 V (no encapsulation)
- *R*_{load} = 50 Ω
- $F_{switch} = 10 \ kHz$

•
$$t_{dead-time} = 1.2 \ \mu s$$

11/25

- V_{DC} = 200 V (no encapsulation)
- *R*_{load} = 50 Ω
- $F_{switch} = 10 \ kHz$

•
$$t_{dead-time} = 1.2 \ \mu s$$

- V_{DC} = 200 V (no encapsulation)
- *R*_{load} = 50 Ω
- $F_{switch} = 10 \ kHz$

•
$$t_{dead-time} = 1.2 \ \mu s$$

- V_{DC} = 200 V (no encapsulation)
- *R*_{load} = 50 Ω
- $F_{switch} = 10 \ kHz$

•
$$t_{dead-time} = 1.2 \ \mu s$$

11/25

- V_{DC} = 200 V (no encapsulation)
- *R*_{load} = 50 Ω
- $F_{switch} = 10 \ kHz$

•
$$t_{dead-time} = 1.2 \ \mu s$$

Introduction

Integration of gate driver circuit

Double-side Cooling

Conclusion

Double Side Cooling

- Standard packaging offers cooling through one side of the die only
- "3-D" or "Sandwich" package performs thermal management on both sides
- Requires suitable topside metal on the die
- Requires special features for topside contact

Double Side Cooling

- Standard packaging offers cooling through one side of the die only
- "3-D" or "Sandwich" package performs thermal management on both sides
- Requires suitable topside metal on the die
- Requires special features for topside contact

The proposed 3-D Structure

- Two ceramic substrates, in "sandwich" configuration
- Two SiC JFET dies (SiCED)
- assembled using silver sintering
- ► 25.4 mm×12.7 mm (1 in×0.5 in)

Ceramic Substrates

Scale drawing for 2.4 $\times 2.4~\text{mm}^2$ die

- Si₃N₄ identified previously for high temperature
- For development: use of alumina
- Etching accuracy exceeds standard design rules
- Double-step copper etching for die contact
- → Custom etching technique

plain DBC board

3b - Exposure and Developpment

- ► Final patterns within 50 µm of desired size
- ► Two designs, for 2.4×2.4 mm² and 4×4 mm² dies
- ► Total copper thickness 300 μ m, \approx 150 μ m per step

Preparation of the Dies

- Standard aluminium topside finish not compatible with silver sintering
- Ti/Ag PVD on contact areas
- Need for a masking solution
- → jig with locating pockets.

Preparation of the Dies

- Standard aluminium topside finish not compatible with silver sintering
- Ti/Ag PVD on contact areas
- Need for a masking solution
- ➔ jig with locating pockets.

Before PVD

Preparation of the Dies

- Standard aluminium topside finish not compatible with silver sintering
- Ti/Ag PVD on contact areas
- Need for a masking solution
- ➔ jig with locating pockets.

Before PVD

After Ti/Ag PVD

17/25

Screen printing

- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile
- ► Sintering under (low) pressure (2 MPa, 240 °C)

Screen printing

- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile
- ► Sintering under (low) pressure (2 MPa, 240 °C)

Screen printing

2- Mounting in alignment jig

3- Die-alignment jig, dies and spacer placing

- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile
- ► Sintering under (low) pressure (2 MPa, 240 °C)

- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile
- ► Sintering under (low) pressure (2 MPa, 240 °C)

- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile
- ► Sintering under (low) pressure (2 MPa, 240 °C)

6 - Screen printing on "drain" substrate

- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile
- ► Sintering under (low) pressure (2 MPa, 240 °C)

- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile
- ► Sintering under (low) pressure (2 MPa, 240 °C)

- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile
- ► Sintering under (low) pressure (2 MPa, 240 °C)

- Ceramic laser-cut jigs for precise alignment of dies and substrate
- Two sintering steps using the same temperature profile
- ► Sintering under (low) pressure (2 MPa, 240 °C)

Sintering process

assembly without drying

- ► 30 min Drying step at 85 °C, 30 min sintering at 240 °C.
- ▶ 5 minutes pre-drying before assembly, to increase paste viscosity
 - use of a glass die to observe paste spreading

Sintering process

assembly without drying

5 min pre-drying

- ► 30 min Drying step at 85 °C, 30 min sintering at 240 °C.
- 5 minutes pre-drying before assembly, to increase paste viscosity
 - use of a glass die to observe paste spreading

Prototype

Size: $25 \times 25 \text{ mm}^2$

20/25

Prototype – 2

- Good form factor achieved using the two-step copper etching process
- Satisfying alignment
- Poor quality of AI-Cu attach

Switching waveforms

- Tests performed on the smallest dies (2.4×2.4 mm², $R_{DS_{on}} = 500 \ m\Omega$)
- 300 Ω Resistive load, 0.5 A current (no cooling system used)
- oscillations dues to external layout (and capacitances of the JFETs)

Introduction

Integration of gate driver circuit

Double-side Cooling

Conclusion

Silver sintering useful for a lot more than just die attach

- ► attach of auxiliary devices (gate driver...)
- dual-side bonding
- Short-term, high temperature operation demonstrated
- Long-term operation to be assessed:
 - risks of silver migration?
 - thermo-mechanical strength?
 - what is the most suitable metal finish?

► Silver sintering useful for a lot more than just die attach

- ► attach of auxiliary devices (gate driver...)
- dual-side bonding
- ► Short-term, high temperature operation demonstrated
- Long-term operation to be assessed:
 - risks of silver migration?
 - thermo-mechanical strength?
 - what is the most suitable metal finish?

Silver sintering useful for a lot more than just die attach

- attach of auxiliary devices (gate driver...)
- dual-side bonding
- Short-term, high temperature operation demonstrated
- Long-term operation to be assessed:
 - risks of silver migration?
 - thermo-mechanical strength?
 - what is the most suitable metal finish?

Thank you for your attention,

This work was funded by Euripides-Catrenes under the grant name "THOR".

cyril.buttay@insa-lyon.fr

