Frank Vega Np

Frank Vega
email: vega.frank@gmail.com

NP versus PSPACE

Keywords: P, NP, PSPACE, PSPACE-complete, GEOGRAPHY 2000 MSC: 68-XX, 68Qxx, 68Q15

Introduction

The P versus NP problem is a major unsolved problem in computer science. This problem was introduced in 1971 by Stephen Cook [START_REF] Cook | The complexity of Theorem Proving Procedures[END_REF]. It is considered by many to be the most important open problem in the field [START_REF] Fortnow | The Status of the P versus NP Problem[END_REF]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution.

The argument made by Alan Turing in the twentieth century states that for any algorithm we can create an equivalent Turing machine [START_REF] Turing | On Computable Numbers, with an Application to the Entscheidungsproblem[END_REF]. There are some definitions related with this model such as the deterministic or nondeterministic Turing machine. A deterministic Turing machine has only one next action for each step defined in its program or transition function [START_REF] Papadimitriou | Computational complexity[END_REF]. A nondeterministic Turing machine can contain more than one action defined for each step of the program, where this program is not a function, but a relation [START_REF] Papadimitriou | Computational complexity[END_REF].

Another huge advance in the last century was the definition of a complexity class. A language L over an alphabet is any set of strings made up of symbols from that alphabet [START_REF] Cormen | Introduction to Algorithms[END_REF]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [START_REF] Cormen | Introduction to Algorithms[END_REF].

In computational complexity theory, the class P consists in all those decision problems (defined as languages) that can be decided on a deterministic Turing machine in an amount of time that is polynomial in the size of the input; the class NP consists in all those decision problems whose positive solutions can be verified in polynomial-time given the right information, or equivalently, that can be decided on a nondeterministic Turing machine in polynomial-time [START_REF] Goldreich | Np-Completeness[END_REF]. On the other hand, PS PACE is the class of all languages recognizable by polynomial space bounded deterministic Turing machines that halt on all inputs [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st Edition[END_REF].

The biggest open question in theoretical computer science is the following one: Is P equal to NP? There is another important complexity class called PSPACE-complete [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st Edition[END_REF]. A language L is PSPACE-complete if L is in PS PACE, and every PS PACE problem can be reduced in polynomialtime to L [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st Edition[END_REF]. We shall define a new problem called ODDPATH-HORNUNSAT. We shall show this problem is NP and PSPACE-complete. Since, PS PACE is closed under reductions and NP ⊆ PS PACE, then we have that NP = PS PACE [START_REF] Papadimitriou | Computational complexity[END_REF].

Theoretical framework

The SAT problem

We say that a language L 1 is polynomial-time reducible to a language L 2 , written L 1 ≤ p L 2 , if there exists a polynomial-time computable function f : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * ,

x ∈ L 1 if and only if f (x) ∈ L 2 .
There is an important complexity class called NP-complete [START_REF] Goldreich | Np-Completeness[END_REF]. A language L ⊆ {0, 1} * is NP-complete if • L ∈ NP, and

• L ≤ p L for every L ∈ NP.
Furthermore, if L is a language such that L ≤ p L for some L ∈ NP-complete, then L is NP-hard [START_REF] Cormen | Introduction to Algorithms[END_REF]. Moreover, if L ∈ NP, then L ∈ NP-complete [START_REF] Cormen | Introduction to Algorithms[END_REF].

One of the first discovered NP-complete problems was S AT [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st Edition[END_REF]. An instance of S AT is a Boolean formula φ which is composed of • Boolean variables: x 1 , x 2 , ;

• Boolean connectives: Any Boolean function with one or two inputs and one output, such as ∧(AND), ∨(OR), (NOT), →(implication), ↔(if and only if); and

• parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables of φ, and a satisfying truth assignment is a truth assignment that causes it to evaluate to true. A formula with a satisfying truth assignment is a satisfiable formula. The S AT asks whether a given Boolean formula is satisfiable.

One convenient language is 3CNF satisfiability, or 3S AT [START_REF] Cormen | Introduction to Algorithms[END_REF]. We define 3CNF satisfiability using the following terms. A literal in a Boolean formula is an occurrence of a variable or its negation. A Boolean formula is in conjunctive normal form, or CNF, if it is expressed as an AND of clauses, each of which is the OR of one or more literals. A Boolean formula is in 3-conjunctive normal form, or 3CNF, if each clause has exactly three distinct literals.

For example, the Boolean formula

(x 1 ∨ x 1 ∨ x 2) ∧ (x 3 ∨ x 2 ∨ x 4) ∧ (x 1 ∨ x 3 ∨ x 4)
is in 3CNF. The first of its three clauses is (x 1 ∨ x 1 ∨ x 2), which contains the three literals x 1 ,

x 1 , and x 2 . In 3S AT , we are asked whether a given Boolean formula φ in 3CNF is satisfiable.

The HORNSAT problem

We say that a language L 1 is logarithmic-space reducible to a language L 2 , written

L 1 ≤ log L 2 , if there exists a logarithmic-space computable function f : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * , x ∈ L 1 if and only if f (x) ∈ L 2 .
The logarithmic space reduction is frequently used for P and below [START_REF] Papadimitriou | Computational complexity[END_REF]. There is an important complexity class called P-complete [START_REF] Papadimitriou | Computational complexity[END_REF]. A language L ⊆ {0, 1} * is P-complete if

• L ∈ P, and

• L ≤ log L for every L ∈ P.
One of the P-complete problems is HORNS AT [START_REF] Papadimitriou | Computational complexity[END_REF]. We say that a clause is a Horn clause if it has at most one positive literal [START_REF] Papadimitriou | Computational complexity[END_REF]. That is, all its literals, except possibly for one, are negations of variables. An instance of HORNS AT is a Boolean formula φ in CNF which is composed only of Horn clauses [START_REF] Papadimitriou | Computational complexity[END_REF].

For example, the Boolean formula

(x 2 ∨ x 3) ∧ (x 1 ∨ x 2 ∨ x 3 ∨ x 4) ∧ (x 1)
is a conjunction of Horn clauses. The HORNS AT asks whether an instance of this problem is satisfiable [START_REF] Papadimitriou | Computational complexity[END_REF].

Directed graph notions

A directed graph (or digraph) G is a pair (V, E), where V is a finite set and E is a binary relation on V [START_REF] Cormen | Introduction to Algorithms[END_REF]. The set V is called the vertex set of G, and its elements are called vertices (singular: Vertex) [START_REF] Cormen | Introduction to Algorithms[END_REF]. The set E is called the edge set of G, and its elements are called edges [START_REF] Cormen | Introduction to Algorithms[END_REF].

If (u, v) is an edge in a directed graph G = (V, E), we say that (u, v) is outgoing from or leaves vertex u and is income to or enters vertex v. If (u, v) is an edge in a graph G = (V, E), we say that vertex v is adjacent to vertex u [START_REF] Cormen | Introduction to Algorithms[END_REF]. In a directed graph, the adjacency relation is not necessarily symmetric [START_REF] Cormen | Introduction to Algorithms[END_REF]. If v is adjacent to u in a directed graph, we sometimes write u → v.

A path of length k from a vertex u to a vertex u in a graph [START_REF] Cormen | Introduction to Algorithms[END_REF]. The length of the path is the number of edges in the path [START_REF] Cormen | Introduction to Algorithms[END_REF]. The path contains the vertices v 0 , v 1 , ..., v k and the edges (v 0 , v 1), (v 1 , v 2), ..., (v k-1 , v k) [START_REF] Cormen | Introduction to Algorithms[END_REF]. If there is a path p from u to u , we say that u is reachable from u via p [START_REF] Cormen | Introduction to Algorithms[END_REF]. A path is simple if all vertices in the path are distinct [START_REF] Cormen | Introduction to Algorithms[END_REF].

G = (V, E) is a sequence of vertices < v 0 , v 1 , v 2 , ..., v k > such that u = v 0 , u = v k , and (v i-1 , v i) ∈ E for i = 1, 2, ..., k

The GEOGRAPHY problem

A language L ⊆ {0, 1} * is PSPACE-complete if

• L ∈ PS PACE, and

• L ≤ p L for every L ∈ PS PACE.
Perhaps one the most fundamental problem for PS PACE is the game of GEOGRAPHY [START_REF] Papadimitriou | Computational complexity[END_REF]. GEOGRAPHY is an elementary-school game played by two players, called here "P1" and "P2" [START_REF] Papadimitriou | Computational complexity[END_REF]. We can formulate this games as follows: We have a directed graph G = (V, E) whose nodes are all the cities of the world, and such that there is an edge from city i to city j if and only if the last letter in the name of i coincides with the first letter in the name of j [START_REF] Papadimitriou | Computational complexity[END_REF]. Player P1 starts picking a node 1, then player P2 picks another node to which there is an edge from 1, say node 2. Player P1 then must reply picking a node to which there is an edge from 2 without taking the used nodes 1 and 2. In this way, with the player alternating, it is defined a simple path from G. The first player that cannot continue the path because all edges out of the current tip lead to nodes already used, loses [START_REF] Papadimitriou | Computational complexity[END_REF].

We can generalize this to any given directed graph G; this generalization may imply not only a planet with arbitrarily many cities, but, even less realistically, one with an arbitrarily large alphabet [START_REF] Papadimitriou | Computational complexity[END_REF]. Hence, the GEOGRAPHY would be the following computational problem: Given a directed graph G and a starting node 1, is it a win for P1? It is a proved result that the GEOGRAPHY belongs to PSPACE-complete [START_REF] Papadimitriou | Computational complexity[END_REF].

Results

Definition 3.1. A sat-graph, written SAT-G = (V, E, κ), is a directed graph G = (V, E) with a mapping function κ, such that κ maps each vertex u ∈ V to a Boolean formula. Definition 3.2. Given a sat-graph SAT-G = (V, E, κ) and a starting node u, the problem called as ODDPATH-HORNUNSAT consists in deciding whether exists a simple path of vertices

< v 0 , v 1 , v 2 , ..., v k > such that u = v 0 , κ(v 0) ∧ κ(v 1) ∧ κ(v 2) ∧ ... ∧ κ(v k) ∈ HORNUNS AT ,
and the length of the path is odd.

Note: See the definition of simple and length of a graph path in section 2. HORNUNS AT would be the complement language of HORNS AT , that is, the instances of HORNS AT which are unsatisfiable (see section 2). Proof. Given a sat-graph SAT-G = (V, E, κ) and a starting node u, we can check in polynomialtime whether a path p =< v 0 , v 1 , v 2 , ..., v k > is a certificate of this instance just verifying that u = v 0 , checking that all vertices in the path are distinct, checking that the length of the path is odd, and verifying in polynomial-time whether κ(v 0) ∧ κ(v 1) ∧ κ(v 2) ∧ ... ∧ κ(v k) ∈ HORNUNS AT since HORNUNS AT ∈ P due to P is closed under complement [START_REF] Papadimitriou | Computational complexity[END_REF]. Consequently, there is a polynomial-time verifier for ODDPATH-HORNUNSAT, and thus, ODDPATH-HORNUNSAT ∈ NP [START_REF] Papadimitriou | Computational complexity[END_REF]. Proof. ODDPATH-HORNUNSAT ∈ PS PACE, because NP ⊆ PS PACE [START_REF] Papadimitriou | Computational complexity[END_REF]. Given a directed graph G and a starting node u, we will create a sat-graph SAT-G, such that (G, u) ∈ GEOGRAPHY if and only if (SAT-G, u) ∈ ODDPATH-HORNUNSAT. For this purpose, we will do the following actions:

(1) First, we take the directed graph G = (V, E) and for each vertex v ∈ V, we create a new state v and add an edge v → v . We will call the vertex v as the clone vertex of v. In this way, we create a new graph G = (V , E). (2) Next, for each vertex v ∈ V in the graph G = (V , E), we create a new Boolean variable x v which will be linked to vertex v. We say that x v is represented by the vertex v.

(3) After that, we create a mapping function κ, such that for each vertex v ∈ V in the graph

G = (V , E), we have κ(v) = x v if v has not outgoing edges or κ(v) = x v ∧ (x v 1 ∨ x v 2 x v 3 ∨ ...∨
x v m) when v has m > 0 outgoing edges, where x v is represented by the vertex v and x v 1 , x v 2 , x v 3 , ..., x v m are represented by the vertices v 1 , v 2 , ..., v m which are all the vertices that are adjacent to vertex v (see section 2 for definition of the adjacency relation). We will call this clause of all negated variables inside of κ(v) as the adjacency clause of v. (4) Finally, we obtain a sat-graph SAT-G = (V , E , κ).

All these steps can be done in polynomial-time just iterating through the vertices and edges of G. In the step (1), we need to iterate through the set of vertices V to add new |V| vertices and edges. The algorithm of insertion of a polynomial amount of new vertices and edges into a graph will take only a polynomial-time [START_REF] Cormen | Introduction to Algorithms[END_REF]. In the step (2), we need to iterate through the set of vertices V to create the Boolean variables of each vertex. This will only need a polynomial-time since |V | = 2 × |V|. Finally, in the step (3), we need to iterate through the set of vertices V and edges of E to create the mapping function κ. This would take a polynomial-time in relation to |V|. Now, suppose we take a simple path of vertices p =< v 0 , v 1 , v 2 , ..., v k > in SAT-G, such that u = v 0 and φ = κ(v 0)∧κ(v 1)∧κ(v 2)∧...∧κ(v k). We can see the inner formula x v 0 ∧ x v 1 ∧ x v 2 ∧...∧ x v k inside of φ is satisfiable, and therefore, whether φ is in HORNUNS AT or not depends principally of the adjacency clauses of vertices in p. Indeed, φ ∈ HORNUNS AT if and only if there is an adjacency clause of some vertex v i inside of φ which has all its negated Boolean variables represented by a vertex in p. Moreover, this will only happen in the adjacency clause of v k-1 , because in the other vertices of the path the respective adjacency clauses can be true, because the Boolean variables represented by the respective clone vertices can be false. Certainly, if φ ∈ HORNUNS AT , then v k (the last vertex in the path p) should necessarily be a clone vertex. The reason is this one: If the path p does not contain a clone vertex, then it would be impossible that the adjacency clause of some vertex v i (where p contains v i) will be false for all truth assignment of φ, because we could always make true the adjacency clauses of vertices in p just evaluating the Boolean variables represented by the respective clone vertices in false. At the same time, it will be impossible that the path p could have a clone vertex different of the last one, because the clone vertices does not have outgoing edges.

But, what does this mean? It would mean, we cannot reach any adjacent vertex from vertex v k-1 that is not already visited in the path, except for its clone vertex. But, this is exactly what happens when a player loses in the game of GEOGRAPHY. In addition, the path p =< v 0 , v 1 , v 2 , ..., v k-1 > represents a winner path from the starting node u in the game of GEOGRAPHY, where the winner is player P1 if the length of p is even, else the winner is player P2. Therefore, as the path p contains another vertex (v k : The clone vertex of v k-1), then the winner will be P1 if the length of p is odd. Hence, we can conclude with the following result: 5 (G, u) ∈ GEOGRAPHY if and only if (SAT-G, u) ∈ ODDPATH-HORNUNSAT.

Since GEOGRAPHY belongs to PSPACE-complete, and the time of the reduction above is polynomial, then we obtain ODDPATH-HORNUNSAT ∈ PSPACE-complete.

Theorem 3 . 3 .

 33 ODDPATH-HORNUNSAT ∈ NP.

Theorem 3 . 4 .

 34 ODDPATH-HORNUNSAT ∈ PSPACE-complete.

Theorem 3 . 5 .

 35 NP = PS PACE.Proof. We prove ODDPATH-HORNUNSAT is NP and PSPACE-complete in Theorems 3.3 and 3.4. Since, PS PACE is closed under reductions and NP ⊆ PS PACE, then we have that NP = PS PACE[START_REF] Papadimitriou | Computational complexity[END_REF].