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The degradation of quasi-brittle materials encompasses micro-cracks prop-
agation, interaction and coalescence in order to form a macro-crack. These
phenomena are located within the Fracture Process Zone (FPZ). This paper
aims at providing a further insight in the description of the FPZ evolution
with the help of statistical analysis of damage. The statistical analysis relies
on the implementation of Ripley’s functions, which have been developed in or-
der to exhibit patterns in image analyses. It is shown how a correlation length
may be extracted from the Ripley’s function analysis. Comparisons between
experimental and numerical evolutions of extracted correlation lengths are
performed.
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Nomenclature

B matrix, which links the global and the local coordinate systems

D material stiffness matrix

De elastic stiffness matrix

K secant stiffness matrix

A lattice element cross-section area

a0 three-point bending beam pre-notch length

b three-point bending beam out-of-plane thickness

D three-point bending beam depth

d cell-size of the square grid for dissipated energy analyses

D(i, j) euclidean distance between two points i and j

dmin minimum distance for acoustic transducers

e distance between point C and the lattice element segment

E, γ model parameters, which control Young’s modulus and Poisson’s ratio
of the equivalent continuum

eij edge effect correction factor between two points i and j

f Kuhn-Tucker functional

ft tensile strength

Gf meso-level fracture energy

H distance functional used in Ripley’s analyses

h lattice element length

I lattice element second moment

i, j points

K Ripley’s function

Kran Ripley’s function of a perfect randomly distributed set of points

L Ripley’s residual function

l lattice element cross-section width

Ldisk(r, R) analytical approximation of the residual function of a distribution
located in a unique disk of radius R

N total number of points

point C lattice material point

r, R0, R radius

R∗ optimum radius, which best fits the residual analytical function Ldisk

rmax position of the maximum of the residual function L(r), which is defined
as the extracted correlation length
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S surface of the analysis box

u, v, φ degrees of freedom of a node: two translations (u, v) and one rotation
(φ)

uc displacement jumps in the local coordinate system

ue degrees of freedom in the global coordinate system

vCMOD CMOD imposed velocity

wf initial slope of the softening curve

wcn crack opening

α orientation of the element in the global coordinate system

∆Dd dissipated energy in a single lattice element

∆ω increment of damage parameter

κ normal strain history dependent variable

ω damage variable

σ effective stress vector

φd concrete aggregate diameter

φdmin minimum value of the explicitly described aggregate diameters

Πint inner perimeter

ρ density of points

σ stress vector associated to each degrees of freedom

σn normal stress associated to u

σs shear stress associated to v

σφ stress associated to φ

ε strain vector associated to each degrees of freedom

ε0, c and q model parameters

εn normal strain associated to u

εs shear strain associated to v

εφ strain associated to φ

εeq equivalent strain

P point distribution

CMOD Crack Mouth Opening Displacement

FPZ Fracture Process Zone

ITZ Interfacial Transition Zone
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1. Introduction

Fracture of quasi-brittle materials such as concrete or rocks is character-
ized by a macro crack surrounded by a damage zone. At the tip of the macro
crack and ahead lies the so-called Fracture Process Zone (FPZ) which is a
region of the material undergoing distributed damage. The size of the FPZ
in these heterogeneous materials is large enough to influence the mechanical
behaviour of the structure significantly. It does not depend on the structural
size, but it is rather controlled by the local heterogeneities in the material as
well as by the geometry of the specimen and the stress conditions. Therefore,
size effect, understood here as the dependence of the dimensionless nominal
strength of a structure on its size, is observed (e.g. when geometrically similar
structures are compared, see for example [1]).

Experimentally, this damage zone may be characterized with the help of
several direct and indirect techniques. The localization of acoustic events
that can be detected during crack propagation is one well established tech-
nique from which the FPZ can be visualized and characterized (e.g. [2], [3],
[4], [5]). The acoustic events generated during micro-cracking are recorded
and post-processed in order to localize them with the help of time-of-flight
algorithms. Hence, this technique provides information on the entire crack
propagation process composed of distributed micro cracking and further co-
alescence into a macro crack. Haidar and co-workers [6] used a model mortar
material to observe the correlation among the width of the FPZ measured by
acoustic emissions analysis, the parameters entering in the description of size
effect, and the so-called internal length used in classical non-local constitutive
relations.

As far as modeling is concerned, macroscale approaches (e.g. continuum-
based models) and mesoscale models (e.g. discrete or lattice-based models)
are available. The first one involves a characteristic length, which controls
the size of the FPZ and is more suited for classical structural analyses. In
recent continuum-based macroscale models (see e.g. [7, 8, 9] among others),
however, it has been pointed out that this internal length is not constant
during the fracture process and also that it is influenced by boundaries, which
could be expected since experimental works on fracture in concrete underline
the influence of boundaries on the fracture energy [10]. The second approach
relies on a mesoscale description of the material and on an explicit description
of the heterogeneities in the material. Therefore, this approach is better
suited in order to achieve an in-depth comprehension of the degradation
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processes involved during fracture. As opposed to the continuum macroscale
approach, mesoscale models do not introduce a characteristic length to drive
the failure process. The failure process is driven by the larger heterogeneities,
which are explicitly represented in the meso-model. At the scale of a lattice
element or a discrete element, softening is introduced as a local property.
Note that continuum-based models may also be used at the mesoscale [11]
by explicitly describing the heterogeneities and then may be also suited to
achieve an in-depth comprehension of the degradation processes involved
during fracture.

Grassl and co-workers [12] demonstrated that lattice-based mesoscale
modeling was very efficient at describing not only size effect on the peak
load, but also the entire load deflection response of bending beams. Four
geometrically similar sizes and three different notch lengths were considered.
The experimental data obtained by Grégoire et al. [1] could be quite accu-
rately described, once the model parameters at the mesoscale level had been
calibrated for one notch length. In addition, the authors used this model
for studying the incremental distribution of the dissipated energy densities,
and they were able to track the evolution of the fracture process zone in the
structure, depending on the size of the beams and on the boundary condi-
tions.

In addition, Grégoire and co-workers [5] demonstrated that this lattice-
based mesoscale approach is also capable to capture the local failure process
realistically. Three point bending experiments coupled with acoustic emission
analyses provided global responses of the same bending beams and local data
in the form of the distribution of the acoustic events and its evolution in the
course of fracture. The experimental data obtained by Grégoire et al. [5],
in term of energy dissipation maps and histograms of the distances between
damage events, could be quite accurately described with the same set of
model parameters. Particularly, the agreement between the distributions
of the relative distances between damage events show that the mesoscale
model depicts the fracture process zone and its evolution during failure in a
very consistent way compared to acoustic emission data. Unfortunately, and
contrary to the case of direct tension, these histograms cannot be interpreted
easily because the effect of the strain gradient in bending beams cannot
be easily separated from the interaction between damage events that may
develop in the course of fracture.

The purpose of this paper is to provide a further insight in the description
of failure with the help of statistical analyses of damage. The statistical
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analysis relies on the implementation of Ripley’s functions [13], which have
been developed in order to exhibit patterns in image analyses.

This paper is organized as follows: section 2 shows how Ripley’s function
may be used in the context of damage mechanics to extract a correlation
length between damage events. Section 3 recalls briefly the lattice model
used in this paper. Section 4 presents the comparison between the evolution
of extracted correlation length during mesoscale numerical simulations and
experimental three point bending tests where damage events are localized by
acoustic emission techniques. Finally, numerical investigations of correlation
length evolutions upon failure are presented in section 5 for both direct ten-
sion and three point bending specimens. Results show that the computed
correlation length is not constant during failure and significant differences
may be observed depending on the type of loading applied to the same spec-
imen.

2. Ripley’s functions applied to damage mechanics

2.1. Ripley’s K function description

Ripley’s K function proposed in Ref. [13] is a tool for analyzing com-
pletely mapped spatial point process data, i.e. data on the locations of
events [14]. Particularly, it is used to characterize the randomness in the spa-
tial spreading of point distributions. It is of high interest in spatial ecology
and has been used to characterize the development and spreading of different
patterns, such as cell migration [13], tree [15] and plant [16] dissemination or
disease spreading [17]. Recently, Tordesillas et al. [18] extended this pattern
characterization method to non-biological system to analyze diffuse granular
failure. In this paper, we will use the Ripley’s K function to characterize the
interactions and the correlations induced by damage localization in quasib-
rittle fracture. The Ripley’s K function may be adapted to study one, two
or three-dimensional spatial data, but most of the developments have been
performed in 2D, which will also be the case hereafter. For a spatial point
distribution, the Ripley’s K function may be defined as the ratio between
the density of events and the mean number of events within a distance r of
any chosen event in the distribution:

K(r) = 1
Nρ

∑
i∈P

∑
j∈P

eijH(i, j, r)

and H(i, j, r) =

{
1 if D(i, j) ≤ r
0 if D(i, j) > r

.
(1)
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In Eq. 1, N is the total number of points, ρ is the point density, P is the
point distribution and D(i, j) is the euclidean distance between two points
i and j. eij is an edge effect correction factor, which is introduced to take
into account that, for points located near the boundary of the study area,
the real number of neighbors can be underestimated because some of them
may be located outside of the study area or outside the specimen [19]. In
2D, the general expression of this edge effect correction factor is given by:

eij =
πD(i, j)

Πint(i, j)
≥ 1. (2)

In Eq. 2, D(i, j) is the euclidean distance between two points i and j and
Πint(i, j) is the inner perimeter corresponding to the part of the perimeter of
the circle, centered at i with a radius of D(i, j), which is included inside the
study area. This edge effect correction factor depends on the shape of the
study area. Typical edge effect correction factor expressions for a rectangular
study area may be found in [19].

2.2. Randomness characterization

The Ripley’s Kran function of a perfect randomly distributed set of points
is simply given by:

Kran(r) = πr2 . (3)

In order to characterize the randomness of a distribution, the Ripley’s K
function is usually compared to this reference function Kran by defining the
residual function L as:

L(r) =

√
K(r)

π
−
√
Kran(r)

π
=

√
K(r)

π
− r . (4)

Within this definition, and for a randomly distributed set of points, the resid-
ual function stays equal to zero. Thus, plotting the residual L for an arbitrary
point distribution may characterize the distance of this distribution to a per-
fect random one and then characterize the randomness of the distribution.
Applying this concept to a set of damage points may lead to characterize
how these damage points localize upon failure and therefore characterize the
correlations between these damage points, which are related to the internal
length in a nonlocal continuum setting.

In order to illustrate the capability of the method to capture the ran-
domness of a given point distribution, Fig. 1 and Fig. 2 present two different
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artificial point distributions and the corresponding residual functions. For
each analysis, we generate1 5 distributions of points, and we plot the enve-
lope of the 5 resulting residual functions. Each distribution is included in an
area of 100 mm by 100 mm.

[Figure 1 about here.]

The first distribution (denoted ”A”) consists in 100 points randomly dis-
tributed in the area. The second distribution (denoted ”B”) consists in 9
disks (diameter 20 mm, spacing 25 mm) containing 5, 10, 50, 100, 200 or 500
points.

For the distributions ”A” (Fig. 1), there is a correct concordance with
the analytical expression concerning a perfect random distribution.

[Figure 2 about here.]

For the distributions ”B” (Fig. 2), the residual function presents several
peaks. A positive value of the residual function means that the density of
points within a distance r is greater than the density in the area. The first
peak, located at r = 12 mm, is linked to the diameter of the disks. The
second part of the curve, (between r = 22 mm et r = 35 mm), is linked to
the spacing between the disks. Note that no edge effect correction is used
in the analysis of distributions ”B” since there are no points located outside
the analysis area.

We also observe that the residual functions of the different distributions
”B” are similar, while there are 100 times more points in the highest density
distribution compared to the lowest density distribution. Ripley’s functions
are estimated considering a density ratio, and thus they do not depend on
the total number of points.

2.3. Correlation length extraction

The residual function estimated for a distribution of points which is lo-
calized spatially presents different maxima (figure 2). The position of these
maxima are directly linked to the geometry assumptions used for generating
the distribution (see section 2.2).

1The random fields are generated based on the random number generation procedure
given in [20].
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Figure 3 presents a distribution of 20 points located in a unique disk
of radius R0 = 10 mm and the corresponding residual function L. The
position of the maximum of the residual function rmax ≈ 15.9 mm does not
correspond directly to the disk radius since it depends also on the height
and the length of the analyze area. However, the analytical expression of the
residual function Ldisk of a distribution of events located in a disk of radius
R may be approximated by equation 5. For a given residual function L of a
distribution located in a unique disk, equation 6 provides the expression of
the optimum radius R∗, which best fits the residual analytical function Ldisk.
This has been done for the distribution presented in Figure 3. One obtains
R∗ ≈ 9.57 mm, which corresponds to an estimate of the disk radius with an
error of less than 4.5% for this very coarse distribution.

Ldisk(r, R) =


√

S
πR2 (r − r2

4R
)− r for r ≤ 2R√

S
π
− r for r > 2R

(5)

R∗ =
1−

√
1− 2rmax

√
π
S

2
√

π
S

(6)

where S is the surface of the analysis box (S = 0.1 × 0.1 m2 in Figure 3)
and rmax is the position of the maximum of the residual function.

[Figure 3 about here.]

For a given distribution of damage events with no particular shape, we
define the maximum rmax of the residual function L(r) as the correlation
length of the distribution. Thereby, this correlation length may be extracted
directly from the evolution of the residual function.

Note that according to this definition, the extracted correlation length
depends on the size of the analysis area. This dependance is attenuated for
large analysis area (R∗ → rmax

2
when S → +∞ in Eq. 6). Thereafter, all

Ripley’s functions are estimated for a sufficiently large analysis area of a
given constant size 400× 400 mm and no edge effect correction is required.

3. Lattice model description

A 2D plane-stress lattice model is used to characterize the correlations in-
volved during failure in quasi-brittle materials. Practically, the lattice model
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is used to monitor an evolving population of damage events (a damage event
corresponds to a lattice element undergoing damage during a load step),
which is analyzed at each load step with the correlation length extraction
method presented in part 2.3 and based on Ripley function applied to dam-
age mechanics. This lattice model is based on the numerical framework
proposed by Grassl and Jirasek [21]. It has been shown in previous study
that this mesoscale approach is capable not only to provide consistent global
responses (e.g. Force v.s. CMOD responses) [12, 5] but also to capture
the local failure process realistically [5]. The numerical procedure is briefly
presented in this section. The reader may refer to references [21, 12, 5] for
further details.

The lattice is made of beam elements and idealizes the meso-structure of
concrete as a set of three different components: aggregates, matrix and the
interface between them. The following assumptions are used:

(i) Aggregates are described as circular inclusions. Aggregates with a di-
ameter φd greater than a fixed diameter value φdmin are described explic-
itly. Their size distribution follows the grading of the concrete mixture
and their spatial location is given by a random distribution defined by
the cumulative distribution function proposed in Ref. [21]. Aggregates
overlapping is avoided.

(ii) Fine aggregates are not described. They are included in the matrix
which is an equivalent homogeneous material (made of cement paste
and fine aggregates). Disorder due to the heterogeneity of the matrix
which contains small aggregates is still kept, however, in the form of a
correlated random distribution of mechanical properties. The correla-
tion length is independent from the fineness of the lattice and therefore
provides lattice element size independent results [22].

(iii) The large aggregate are elastic. The matrix material follows an isotropic
- scalar - damage model.

(iv) Each aggregate is surrounded by an interface of thickness equal to one
lattice element length which is endowed with a special constitutive re-
lation. This interface is meant to represent the Interfacial Transition
Zone (ITZ) in concrete. Its constitutive model is similar to that of the
matrix, with different constants since the ITZ is usually weaker than
the matrix.

Once the largest aggregates have been placed randomly within the sample,
the matrix is meshed by randomly locating nodes in the domain, such that
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a minimum distance is enforced. The lattice elements result then from a
Delaunay triangulation (solid lines in figure 4a) whereby the middle cross-
sections of the lattice elements are the edges of the polygons of the dual
Voronoi tesselation (dashed lines in figure 4a). By contrast, the nodes located
on both sides of an interface are not randomly distributed, but placed at
special location in a such way that the edges of the Voronoi polygons define
the interface between the aggregates and mortar (figure 4b).

[Figure 4 about here.]

Each node has three degrees of freedom: two translations (u, v) and one
rotation (φ) as depicted in figure 4d. In the global coordinate system, the
degrees of freedom of nodes 1 and 2, noted ue = (u1, v1, φ1, u2, v2, φ2)

T , are
linked to the displacement jumps in the local coordinate system of point C,
uc = (uc, vc, φc)

T by the following relation:

uc = Bue (7)

where

B =

− cosα − sinα −e cosα sinα e
sinα − cosα −h/2 cosα sinα −h/2

0 0
√
I/A 0 0 −

√
I/A

 (8)

where A is the element cross-section area and I its second moment (see [12]
for details).

Point C is located at the center of the middle cross-section of the element
as represented in figures 4c and 4d. The matrix B depends on the orientation
α of the element in the global coordinate system, the distance e between
point C and the segment relating nodes 1 and 2, the distance h between two
nodes, the element cross-sectional area A and its second moment I. The
strains ε = (εn, εs, εφ)T associated to the displacement uc at point C are:

ε =
uc
h

= (εn, εs, εφ)T (9)

where h is the distance between the two nodes of one lattice element. The
stresses σ = (σn, σs, σφ)T are related to the strains ε following the mechanical
constitutive relation at the lattice level, here an isotropic damage model to
be described further. The subscripts n and s refer to the normal and shear
components of the strain and stress vector. The (secant) stiffness matrix K
of the lattice element is defined as follows:

K =
A

h
BTDB (10)
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where D is the material stiffness matrix computed at point C.
The same isotropic damage model (Eq. 11) is used to describe the me-

chanical response of lattice element within the interfacial transition zone and
the mechanical response of the matrix:

σ = (σn, σs, σφ)T = (1− ω)Deε = (1− ω)σ (11)

where ω is the damage variable, De is the elastic stiffness and σ = (σ̄n, σ̄s, σ̄φ)T

is the effective stress. The elastic stiffness

De =

E 0 0
0 γE 0
0 0 E

 (12)

depends on model parameters E and γ, which control Young’s modulus and
Poisson’s ratio of the equivalent continuum [23]. Equations (8) and (12)
were chosen so that for h = ` and e = 0 the stiffness matrix K reduces to
the Bernoulli beam stiffness matrix ([24]).

The equivalent strain is then calculated from equation (13) where ε0, c
and q are model parameters.

εeq =
1

2
ε0(1− c) +

√(
1

2
ε0(c− 1) + εn

)2

+
cγ2ε2s
q

(13)

The expression for the damage parameter ω is derived by considering pure
tension where the softening curve under monotonically increasing tensile
strain is chosen to be of the exponential-type:

σn = ft exp

(
−wcn
wf

)
(14)

where wcn = ωhεn is the crack opening, wf is the initial slope of the softening
curve, which is related to the meso-level fracture energy as Gf = ftwf . This
stress-strain law can also be written, for pure traction, as a function of the
damage variable as in equation (15).

σn = (1− ω)Eεn (15)

In pure tension, the nominal stress is limited by the tensile strength (ft =
Eε0) and thus, by using these two expressions of σn, (14) and (15), one
obtains the expression which governs the evolution of the damage variable
ω:

(1− ω)κ = ε0 exp

(
−ωhκ
wf

)
(16)
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where εn has been replaced by κ which is a history dependent variable
determined by Eq. (17a) with the Kuhn-Tucker loading-unloading conditions
(17b):

f(ε, κ) = εeq(ε)− κ (17a)

f ≤ 0, κ̇ ≥ 0, κ̇f = 0 (17b)

The elastic constants and the model parameters in the damage models are
calibrated from an inverse analysis technique. The material constants defin-
ing the mechanical behaviour of the three material components are usually
calibrated assuming certain ratios of their respective mechanical properties.
The interfacial transition zone (ITZ) has a smaller tensile strength and a
smaller fracture energy compared to the matrix. Typically it has half the
strength and half the fracture energy of mortar in the calculations. Experi-
mental results for these ratios are reported in the literature (e.g. [25, 26]).

4. Model validation by experimental comparisons of correlation
length evolutions

Three-point bending tests were performed on geometrically similar notched
and unnotched specimens made of the same concrete material. The exper-
imental results presented hereafter are obtained from a campaign already
presented by Grégoire et al. [5]. This campaign is similar to the one previ-
ously presented by Grégoire et al. [1] and includes the localisation of acoustic
events during fracture additionally. The experimental procedure is briefly
presented in this section. The reader may refer to references [1, 5] for further
details.

4.1. Experimental procedure: material, specimen and test rig descriptions

The concrete formulation used here is based on a ready-mix concrete
mixture obtained from Unibeton (http://www.unibeton.fr) and detailed in
table 1. Detailed gradings of the sand, the aggregates and the mix are given
in [1].

[Table 1 about here.]

After demolding, the specimens were stored under water at 20℃. The char-
acterization of their mechanical properties was made by compression and
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splitting (Brazilian) tests according to European standards (EN 12390-1-3-
6). Table 2 summarizes these mechanical properties. Since the concrete used
for the present study is the same as the one used in [1, 5], detailed infor-
mation about the mechanical response of the material is not repeated. The
testing rig used for the bending tests was a three-point bending setup on
a servo-hydraulic testing machine (HB250, Zwick/Roell) (see figure 5.a and
figure 5.b).

[Table 2 about here.]

[Figure 5 about here.]

Figure 5.c presents a sketch of the specimen geometry and the different
measurable quantities. Three HN200 half-notched specimens (D = 200 mm;
a0 = 0.5D), three FN200 fifth-notched (D = 200 mm; a0 = 0.2D), two
UN200 unnotched (D = 200 mm; a0 = 0 mm) and three UN100 unnotched
(D = 100 mm; a0 = 0 mm) have been tested. The thickness was kept
constant (50 mm). All tests were CMOD controlled at an imposed velocity
(vCMOD) in order to avoid post-peak unstable crack propagation. Table 3
summarizes the different specimen dimensions and the experimental condi-
tions. The CMOD measurement was achieved by recording the distance
between two aluminium plates glued on the bottom of the surface beam sep-
arated by the initial moulded notch. On the unnotched beams these metallic
plates are glued at a distance equal to a half depth from the middle of the
beam to ensure that the crack initiates between the two plates. In this case,
the measure is not a CMOD. The numerical simulations were performed
accordingly. Figure 6 gives a representation of the notched and unnotched
beams and the corresponding positions of the aluminium plates. The CMOD
was gradually increased until the complete failure of the structure.

[Table 3 about here.]

[Figure 6 about here.]

4.2. Acoustic Emission measurements

During the tests, acoustic events were recorded and localised. The AE
system used in this study comprised an eigth-channel MISTRAS system, a
general purpose interface bus (PCI-DISP4) and a PC for data storage anal-
ysis. Four acoustic transducers (resonant frequency of 150 kHz) were placed
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around the expected location of the crack, on one side of specimen. The
AE event localisation program relies on time of flight analysis and trian-
gulation. The criterion used is that waves generated must reach at least 3
sensors. Then, the source location is determined by a 2D triangulation algo-
rithm which relies of AEs arrival time and wave velocity. The details about
AE setting parameters are given in [27]. Transducers were installed so that
a minimum distance dmin = 1.25 cm to the location where the crack could
appear was respected in order to minimize errors which may occur when
events are located near one sensor. Figure 7 shows the arrangement of the
transducers for all the tested geometries.

[Figure 7 about here.]

The detected signals were then amplified with a 40dB gain differential
amplifier in a frequency band from 20 to 120 kHz. In order to limit the
background noise, the signal detection threshold was set at a value of 35
dB. The coupling between the transducer and the specimen is important in
order to achieve a good accuracy of the localization of events. A thin layer
of silicone grease was used to guarantee the correct transmission of acoustic
signals between the beam and the transducer. The validation of both this
coupling and the accuracy of the acoustic events localisation followed the
European standard NF EN 1330. It consists in verifying if the position of
an on-surface signal generated by the break of a short piece of pencil lead
is correctly determined by the triangulation software. Thus, events were
generated at several locations on the surface of each specimen and the results
from the localisation software were compared with the true location of each
event. A correct coupling is achieved when the accuracy of localization of
these events is of the order of 4 mm.

Figure 8 shows the results of the cumulative locations of the acoustic
events. The plotted points indicate the detected AE sources over the ob-
servation window centered at the notch. Events carry different energies and
we have plotted here all the events. The warmer/darker the marker of one
event, the higher the acoustic energy (color/black&white). One can filter the
events and retain only those with a sufficiently large acoustic energy. These
events should correspond to the macrocrack propagating in the specimen.
Such an analysis points out that the process begins with low energy events
distributed in a diffuse way, followed by a concentration of events with an
increased rate of dissipated energy (see also [2]). For notched specimens,
the inception and the path of the macro-crack is characterized by a strong
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concentration and by alignment of the most energetic events. For unnotched
specimens, acoustic events are spread on the bottom of the beam prior to the
propagation of a single macrocrack on which the most energetic events are
recorded. The location of crack initiation results from a competitive effect
between the strain gradient and the local distribution of weak defects.

[Figure 8 about here.]

4.3. Numerical simulations: geometry, model parameter and global mechan-
ical responses

Figures 9 and 9 present a schematic drawing of the notched and unnotched
beams considered in the present study. The geometry and applied loads cor-
respond to the experiments reported in Refs. [1, 5] and modeled numerically
in Refs. [12, 5]. Four different sizes of geometrically similar specimens were
considered, along with three notch lengths: a0 = 0 (UnNotched, so-called
UN), a0 = 0.2D (Fifth-Notched, so-called FN) and a0 = 0.5D (Half-Notched,
so-called HN). For a detailed presentation of the experiments, see [1, 5].

The analyses were controlled by the crack mouth opening displacement
(CMOD), which is the relative horizontal displacement of the points A and
B shown in Figures 9 and 9. For the notched specimens, the points were
located at the end of the notch. For the unnotched specimen, the two points
were apart a distance equal to the beam depth D, since the location of the
fracture process zone initiating from the surface was indeterminate.

Same as in the experiments, the out-of-plane thickness was kept constant
for all sizes and all geometries at b = 50 mm. The notch thickness was
fixed equal to zero for consistence with the experimental procedure where
the notch was moulded using a thin metal plate of constant thickness. The
load and support reactions were applied by means of 5 mm-wide metallic
plates.

[Figure 9 about here.]

In order to limit the computation time, the nonlinear mesoscale model is
used in the middle part of each beam centered at mid-span where damage
is expected, as shown in Figures 9 and 9. The remaining part of the beam
is discretized with elastic lattice elements. In this region, the aggregates are
not described explicitly. The mechanical response of this part of the lattice
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corresponds to that of the equivalent homogeneous material. The aggre-
gate volume fraction corresponds to the experimental data2, with a cut off
for small sizes: φdmin = 5 mm. Fine aggregates are not explicitly described.
They are included in the matrix which is an equivalent homogeneous material
made of cement paste and fine aggregates. Disorder due to the heterogeneity
of the matrix is considered in the form of a correlated random distribution of
mechanical properties. The correlation length is equal to 1 mm. Details may
be found in [12]. The model parameters for the three components are sum-
marized in table 4. Such as in Ref. [12], these values were chosen so that the
global model results in term of load-CMOD curves for different beam sizes
and boundary conditions were in agreement with experimental results re-
ported in [5]. However, not all parameters were varied independently of each
other to obtain this agreement. Instead, several constraints were applied,
motivated by experimental and numerical results reported in the literature.
Firstly, the ratio of the stiffnesses for aggregate and matrix was kept constant
and equal to two. Furthermore, the tensile strength of matrix was assumed
to be twice of the strength of the interfacial transition. These ratios are in
the range of the experimental results reported in [25, 26]. Furthermore, the
model parameters for the elastic response outside the meso-scale region were
chosen so that the response represents the average elastic behaviour of the
meso-scale region.

[Table 4 about here.]

For each geometry, calculations were repeated with 10 different random fields
of aggregates and mechanical properties.

The experimental and numerical results in term of Force vs. CMOD data
are presented in Figure 10. As already discussed in [5], the experimental dat-
apoints are in good agreement with the results obtained via the mesoscopic
approach.

[Figure 10 about here.]

4.4. Comparison in term of correlation length evolutions

In this section, we aim at comparing the experimental data and the nu-
merical results in term of evolutions of the correlation length extracted based

2The concrete mixture formulation is detailed in Table 1. Experimental data and
detailed gradings of the sand, the aggregates and the mix are given in [1].
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on the analysis by Ripley’s functions and the procedure presented in sec-
tion 2.3. To perform the comparison between the experimental and the
numerical results, different statements have to be considered:

• Damage event definition.
The procedure of correlation length extraction presented in section 2.3
is based on the analysis by Ripley’s function of a given distribution
of damage events. Experimentally, a damage event is associated to a
material point producing acoustic emissions upon failure, which have
been detected and then localized by at least three acoustic sensors
during a load step. Numerically, a damage event is associated to a
lattice material point (Point C in figure 4.d) undergoing damage during
a load step.

• Loading curve discretization.
A minimum number of damage events has to be captured to perform
the post-processing. Numerically there is almost no limitation because
a lot of damage events are acquired within a loading step. Experi-
mentally, the acoustic emission is much more restrictive because only
few acoustic events may be acquired by the technique, especially in the
nonlinear pre-peak regime. Therefore, the loading curve discretization
is determined to ensure to capture enough events experimentally in or-
der to achieve a statistically representative post-processing. Since the
first goal of this section is to test the relevance of the meso-model by
comparing the numerical results with experimental ones, we adopt the
same interval length, which is driven by the experimental minimum.
Numerical investigations on correlation length evolutions upon failure
based on a finer loading curve discretization are presented alone in
part 5.

• Space discretization.
Numerically, the space discretization corresponds intrinsically to the
lattice discretization. Experimentally, there is an implicit space dis-
cretization due to the acoustic sensor resolution and the acoustic emis-
sion localization technique resolution. This resolution is of the order
of 4 mm [5]. This means that two acoustic emissions produced at two
different material points separated by a distance smaller than this res-
olution may not be distinguished. This means also that all the acoustic
emissions produced in the corresponding vicinity of a material point are
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seen by the acoustic sensors as a single acoustic emission with an acous-
tic energy corresponding to the addition of all the individual acoustic
energies. Therefore the numerical and experimental data cannot be
directly compared since the Ripley’s function post-processing is only
based on the spatial repartition of a given distribution of point. Ex-
perimentally, an acoustic event will count for a single data point in
the Ripley’s function analysis even if, locally, several material points
undergo damage and produce acoustic emissions. This is overcome by
tacking into account the intensity of the energy dissipated during each
damage event in the post-processing by Ripley’s functions. Assuming
that the acoustic energy recorded for each event is proportional to the
energy dissipated during the corresponding damage event, it is possi-
ble to compare experimental and numerical results in term of dissipated
energy:

– On one hand, the dissipated energy during damage is obtained
numerically from the mesoscale analysis. Maps of dissipated en-
ergy have been already computed in [21, 12, 5] and we follow the
same procedure. The domain to be analyzed is first discretized
with a square grid with a cell-size d = 5 mm. Within each cell,
the energy dissipation due to damage is computed for each lat-
tice element located in the cell. The dissipated energy in a single
lattice element is calculated as ∆Dd = ∆ωAh1

2
εDε. Here ∆ω is

the increment of damage parameter; h, A, ε and D were defined
in section 3. Then, we sum this energy dissipation for all lattice
elements contained in the cell. When a lattice element crosses
several cells, the energy is allocated in proportion to the element
length within each cell.

– On the other hand, the maps of the distribution of acoustic en-
ergy within the same loading increments are computed according
to the same discretization. Within an increment, the energy of all
the event contained in the same cell is summed up. Due to the
localization resolution by acoustic emission technique, less acous-
tic events than numerical events are detected. Therefore, the size
and the discretization of the load increments are determined to en-
sure to capture enough events experimentally in order to achieve
statistically representative post-processing.
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Finally, the experimental and numerical energies dissipated within each
cell are converted proportionally into a number of points, which are
randomly spreaded within the cell. Since the Ripley’s function post-
processing does not depend on the total number of points (see figure 2),
the post-processing does not depend on this proportionality factor.
Practically, the maximum value of the energy (numerical dissipated
energy or experimental acoustic energy) is converted into 200 points.
After conversion, experimental and numerical evolutions of extracted
correlation length may be compared. Note that after conversion, the
extracted correlation lengths are smaller than the one extracted with-
out any conversion and they are not directly linked to the fracture
process zone size or to the internal length in the sense of nonlocal
models because a large number of points are artificially placed close
to the macro-crack path corresponding to high energy events. This is
acceptable in this section where the first goal is to compare experimen-
tal and numerical data. Numerical investigations on correlation length
evolutions upon failure without any conversion are presented alone in
part 5.

Figure 11 presents the comparison between experimental and numerical
extracted correlation length with intensity conversion. The correlation length
is extracted based on the analysis by Ripley’s functions as presented in sec-
tion 2.3. Even if an important scattering is observed on the experimental
data, we observe a global good agreement between the experimental and the
numerical results. This means that the numerical model and the Ripley’s
post-processing procedure may be used alone to investigate the evolution of
the correlation length upon failure.

[Figure 11 about here.]

5. Numerical investigations of correlation length evolutions upon
failure

5.1. Influence of the loading type

5.1.1. Response in direct tension

In this subsection, the correlation length extraction method is applied to
a direct tension test. We consider a concrete specimen presenting the same
characteristics than the one studied in section 4.1.
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[Figure 12 about here.]

Figure 12 presents the tension test geometry and the Force vs. CMOD
curves. The specimen is pre-notched from the bottom face to half the depth
and the test is CMOD controlled. At each CMOD step, the distribution of
incremental damage events is plotted (see figure 13.a) and the correspond-
ing Ripley’s residual function is estimated. The correlation length is then
extracted based on the analysis by Ripley’s functions as presented in sec-
tion 2.3.

This correlation length is directly related to the size of the damage zone
and therefore to the internal length in a nonlocal continuum setting. The
evolution of the extracted correlation length is presented in figure 13.b. In
concrete, damage develops at the interface between aggregates and mortar.
At the beginning of the test, damage develops and spreads all over the spec-
imen and then the correlation length grows and it would reach eventually
the size of the box. However, at CMOD≈ 0.01 mm, damage starts to lo-
calize within a fracture process zone surrounding the pre-notch tip and the
correlation length reaches a plateau. Later on, and as the fracture process
zone develops to form a macro-crack, the correlation length decreases. When
the macro-crack is fully developed, surrounded by the fracture process zone,
the correlation length reaches a new plateau at a value corresponding to four
times the larger aggregate size (≈ 10 mm).

[Figure 13 about here.]

5.1.2. Response in bending

In this subsection, the correlation length extraction method is applied to
the three point bending beams presented in section 4.1. We compare here the
response of long notch and unnotched specimens with a depth of 100 mm.
Geometries are presented in figure 9. The same post processing method
is applied: the test are CMOD controlled and at each CMOD step, the
distribution of incremental damage events is plotted (see figure 14.a-b) and
the corresponding Ripley’s residual function is estimated. The correlation
length is extracted based on the analysis by Ripley’s functions as presented
in section 2.3. The evolution of the extracted correlation length is presented
in figure 14.c.

[Figure 14 about here.]
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For the notched specimen, the evolution of damage is similar to what has
been observed in direct tension. The pre-notch trigs the damage localization
and the correlation length grows to reach a plateau at a value corresponding
to four/five times the larger aggregate size (≈ 10 mm). However, during
the initiation of failure, damage does not spread over the whole specimen
because of the bending strain gradient. That is the reason why only a grow-
ing phase is observed before the plateau. For the unnotched specimen, the
damage evolution is totally different. Since there is no pre-notch, the dam-
age localization is not trigged and damage spreads on the bottom surface of
the specimen. Therefore, the correlation length is equal to the analysis box
size at the beginning at damage initiation. At some point, a macro-crack
will emerges from the bottom face and propagates surrounded by a fracture
process zone. The correlation length is decreasing from the analysis box
size to reach the same plateau observed for a notched specimen at a value
corresponding to four/five times the larger aggregate size (≈ 10 mm).

6. Concluding remarks

We have presented a detailed analysis based on Ripley’s functions of the
cracking process at the mesoscale of concrete specimen, both numerically
and experimentally. The computational model is a lattice-based approach
which already proved to be able to capture size effect test data for notched
and unnotched bending beams and the force v.s. CMOD response as well
(see [12]). Moreover, comparison with experiments coupled with acoustic
emission analyses proved also that the mesoscale model is representative of
the local process of quasi-brittle failure in term of dissipative energy maps
and histograms of relative distances between damage events (see [5]).

The following concluding statements can be made:

• The post processing with Ripley’s function provides indicators of the
randomness of a distribution of events.

• It has been shown that a correlation length, which may possibly be
linked to an internal length in the sense of non local models, may
be extracted from the Ripley’s function analyse applied to damage
mechanics. However, the exact correspondance between the extracted
correlation length and a nonlocal model internal length remains to be
derived.
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• The evolutions of this extracted correlation length upon failure have
been presented. Comparisons between numerical data based on mesoscale
lattice modeling and experimental data where damage events were lo-
calized by acoustic emission techniques were performed. Even if an im-
portant scattering is observed on the experimental data, we observed
a global good agreement between the experimental and the numerical
results. This means that the numerical model and the Ripley’s post-
processing procedure may be used alone to investigate the evolution of
the correlation length upon failure.

• Numerical investigations have been performed on both direct tension
and three point bending specimens. The results show that the ex-
tracted correlation length is not constant during failure and significant
differences may be observed depending on the type of loading applied
to the same specimen.

This conclusion opens the path for further analyses of the fracture process,
solely based on numerical analyses with the mesoscale model. From theses
studies, a better understanding of the correlations between damage events,
that should result into non local continuum modeling at the macroscale, is
expected.
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Figure 1: (a) Random distribution of type ”A”; (b) K function envelope for the 5 different
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obtained from the Voronoi tessellation of the domain. (b) Arrangement of lattice elements
around aggregates (inclusions); (c) and (d) Lattice element in the global coordinate system
(Reproduced from [12]).
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(a) Beam 1125 – D = 200 mm, a0 = 0.5(b) Beam 1121 – D = 200 mm, a0 = 0.2

(c) Beam 1122 – D = 200 mm, a0 = 0 (d) Beam 1131 – D = 100 mm, a0 = 0

Figure 8: Distribution of acoustic events in different geometries of beam – map of distri-
bution of energies. Reproduced from [5].
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(a) HN200: Half-notched beams, D = 200 mm
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(b) FN200: Fift-notched beams, D = 200 mm
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(c) UN200: Unnotched beams, D = 200 mm
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(d) UN100: Unnotched beams, D = 100 mm
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Figure 10: Force vs. CMOD raw curves.
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Figure 11: Comparison between experimental and numerical extracted correlation length
with intensity conversion (geometry labels refer to table 3).
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Figure 12: (a) Geometry and (b) Force vs. CMOD curves of the direct tension test
(D = 100 m).
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Figure 13: Distribution of damage events for a direct tension test (a) and corresponding
correlation length evolution (b).
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Figure 14: Responses in bending: (a) Damage distribution at peak for the long notch
specimen; (b) Damage distribution at peak for the unnotched specimen; (c) Evolution of
the extracted correlation lengths for both specimen.
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Product Designation Mass (kg)

Sand Cemex 0/4 740
Aggregates Durruty 4/10 1140

Cement Calcia CEM II/A 286
Admixture Axim Cimplast 115 1

Water Clarified water 179

Total 2346

Table 1: Concrete mixture formulation.
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Compressive strength Young modulus Poisson ratio Tensile strength
µ σ cv µ σ cv µ σ cv µ σ cv

(MPa) (MPa) (%) (GPa) (GPa) (%) (–) (–) (%) (MPa) (MPa) (%)
42.3 2.8 6.6 37.0 0.9 2.4 0.21 0.02 8.7 3.9 0.2 6.0

(µ – mean value; σ – standard deviation; cv = µ/σ – coefficient of variation)

Table 2: Concrete mean mechanical properties.
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Label
D a0 vCMOD

(mm) (mm) (µm/s)

HN200 200 100 0.3
FN200 200 40 0.3
UN200 200 0 0.3
UN100 100 0 0.2

Table 3: Specimen dimensions and experimental conditions.
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Table 4: Model parameters.

E [GPa] ν ft [MPa] q c Gf [N/m]

Matrix 44 0.33 3.8 2 10 86
Interface 58.7 0.33 1.9 2 10 43

Aggregate 88 0.33 - - -
Mean 63 0.33 - - -
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