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Estimating the Division Kernel of a Size-Structured

Population

Van Ha Hoang ∗

December 24, 2015

Abstract

We consider a size-structured population describing the cell divi-
sions. The cell population is described by an empirical measure and
we observe the divisions in the continuous time interval [0, T ]. We
address here the problem of estimating the division kernel h (or frag-
mentation kernel) in case of complete data. An adaptive estimator of
h is constructed based on a kernel function K with a fully data-driven
bandwidth selection method. We obtain an oracle inequality and an
exponential convergence rate, for which optimality is considered.

Keywords: random size-structured population, division kernel, nonpara-
metric estimation, Goldenshluger-Lepski’s method, adaptative estimator,
penalization, optimal rate.

1 Introduction

In this paper, we are interested in a stochastic individual-based model of
size-structured population in continuous time where individuals are cells
undergoing binary divisions. Individuals are characterized by their sizes,
i.e. variables that grow deterministically with time (such as volume, length,
level of certain proteins, DNA content, etc . . . ). Such models have been
studied in Athreya and Ney [1], Harris [9], Jagers [16] and make the object
of an abundant literature (e.g. Bansaye et al. [3], Cloez [5], Tran [21]).
Here, we have in mind that each cell contains some toxicities which play the
role of the size, in the spirit of the study of Stewart et al. [19].

Let us give a brief description of our model. A cell containing a toxicity
x ∈ R+ divides at a rate R > 0. The toxicity grows inside the cell with
rate α > 0. In general, the division rate and the growth rate can be non
constant but we consider here the constant case. When a cell divides, a
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Figure 1: (a) Population size. (b) Trajectories of two offsprings, separating
after the firt division at time t1.

random fraction Γ ∈ [0, 1] of the toxicity goes in the first daughter cell and

1− Γ in the second one. If Γ =
1

2
, the daughters are the same with toxicity

x

2
. We assume that Γ has a symmetric distribution on [0, 1] with a density h

with respect to Lebesgue measure such that P(Γ = 0) = P(Γ = 1) = 0. The
more h puts weight in the neighbourhood of 0 and 1, the more asymmetric
the divisions are. Figure 1 shows the trajectories of two daughter cells after
a division and we also observe that the population size increases with an
exponential rate.

Individual-based models provide a natural framework for statistical es-
timation. Estimation of the division rate is, for instance, the subject of
Doumic et al. [6, 7], Hoffmann and Olivier [10]. Here, the density h is the
kernel division that we want to estimate. The interest of estimating h is
because the kurtosis of h provides indication on the age of the lineage and
to detect aging phenomena such as the one put into light by Stewart et al.
[19]. If the division kernel is not piked at 1/2, the division is asymmetric and
we can consider that one daughter is older. Using the number of divisions
since the older daughter was formed, Stewart et al. [19] assigned to the cells
an age in divisions. Hence, if individual cells are followed over time and if
the density h of Γ and the growth rate α are known, we can study the aging
effect. More discussions about the influence of the kernel division to aging
effect will be presented in Section 3 with simulation results.
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Assuming that we observe the divisions of cells in continuous time on
the interval [0, T ], with T > 0, we propose an adaptive kernel estimator ĥ of
h for which we obtain an oracle inequality in Theorem 2. The construction
of ĥ is detailed in the sequel. From oracle inequality we can infer adap-
tive exponential rates of convergence with respect to T depending on β the
smoothness of the density. Most of the time, nonparametric rates are of

the form n
− 2β

2β+1 (see for instance Tsybakov [22]) and exponential rates are
not often encountered in the literature. The exponential rates are due to
binary splitting, the number of cells i.e the sample size increases exponen-
tially in exp(RT ) (see section 2.3). By comparison, in [10] Hoffmann and

Olivier obtain a similar rate of convergence exp
(
−λB ς

2ς+1T
)

of the kernel

estimator of their division rate B(x), where λB is the Malthus parameter
and ς > 0 is the smoothness of B(x). However, their estimator B̂T of B is
not adaptive since the choice of their optimal bandwidth still depends on
ς. Our estimator is adaptive with an ”optimal” bandwidth ˆ̀ chosen from a
data-driven method.

This paper is organized as follows. In Section 2, we introduce a stochas-
tic differential equation driven by a Poisson point measure to describe the
population of cells. Then, we construct the estimator of h and obtain upper
and lower bound for the MISE and thus the rate of convergence under L2-
risk. Our main results are stated in Theorems 3 and 4. Numerical results
and discussions about aging effect are presented in Section 3. The main
proofs are shown in Section 4.

2 Microscopic model and Kernel estimator of h

2.1 The model

We recall the Ulam-Harris-Neveu notation used to describe the genealogical
tree. The first cell is labeled by ∅ and when the cell i divides, the two
descendants are labeled by i0 and i1. The set of labels is

J =
{
∅
}
∪
∞⋃
m=1

{0, 1}m . (1)

We denote Vt be the set of cells alive at time t, and Vt ⊂ J .

Let MF (R+) be the space of finite measures on R+ embedded with the
topology of weak convergence and Xi

t be the quantity of toxicity in the cell
i at time t, we describe the population of cells at time t by a random point
measure in MF (R+):

Zt(dx) =

Nt∑
i=1

δXi
t
(dx), where Nt = 〈Zt, 1〉 =

∫
R+

Zt(dx) (2)
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is the number of individuals living at time t. For a measure µ ∈ MF (R+)
and a positive function f , we use the notation 〈µ, f〉 =

∫
R+
fdµ.

Along branches of the genealogical tree, the toxicity (Xt, t ≥ 0) satisfies

dXt = αdt, (3)

with X0 = x0. When the cells divide, the toxicity is shared between the
daughter cells. This is described by the following stochastic differential
equation (SDE).

Let Z0 ∈MF (R+) be an initial condition such that

E(〈Z0, 1〉) < +∞, (4)

and let Q(ds, di, dγ) be a Poisson point measure on R+ × E := R+ × J ×
[0, 1] with intensity q(ds, di, dγ) = Rdsn(di)H(dγ). n(di) is the counting
measure on J and ds is Lebesgue measure on R+. We denote {Ft}t≥0

the canonical filtration associated with the Poisson point measure and the
initial condition. The stochastic process (Zt)t≥0 can be described by a SDE
as follows.

Definition 1. For every test function ft(x) = f(x, t) ∈ C1,1
b (R+ × R+,R)

(bounded of class C1 in t and x with bounded derivatives), the population of
cells is described by:

〈Zt, ft〉 = 〈Z0, f0〉+

∫ t

0

∫
R+

(
∂sfs(x) + α∂xfs(x)

)
Zs(dx)ds

+

∫ t

0

∫
E
1{i≤Ns−}

[
fs

(
γXi

s−

)
+ fs

(
(1− γ)Xi

s−

)
− fs

(
Xi
s−

) ]
Q(ds, di, dγ).

(5)

The second term in the right hand side of (5) corresponds to the growth
of toxicities in the cells and the third term gives a description of cell divisions
where the sharing of toxicity into two daughter cells depends on the random
fraction Γ.

We now state some properties of Nt that are useful in the sequel.

Proposition 1. Let T > 0, and assume the initial condition N0, the number
of mother cells at time t = 0, is deterministic, for the sake of simplicity.
We have

i) Let Tj be the jth-jump time. Then:

lim
j→+∞

Tj = +∞ and lim
T→+∞

NT = +∞ (a.s). (6)
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ii) NT is distributed as a negative binomial distribution, denoted as NB(N0, e
−RT ).

Its probability mass function is

P (NT = n) =

(
n− 1

n−N0

)(
e−RT

)N0
(
1− e−RT

)n−N0 , (7)

for n ≥ N0. When N0 = 1, NT has a geometric distribution

P (NT = n) = e−RT
(

1− e−RT
)n−1

. (8)

Consequently, we have

E
[
NT

]
= N0e

RT . (9)

iii) When N0 = 1:

E
[

1

NT

]
=
RTe−RT

1− e−RT
. (10)

When N0 > 1, we have:

E
[

1

NT

]
=

(
e−RT

1− e−RT

)N0

(−1)N0−1

N0−1∑
k=1

(
N0 − 1

k

)
(−1)kekRT

k
+RT

 .

(11)

iv) Furthermore, when N0 > 1 we have

e−RT

N0
≤ E

[
1

NT

]
≤ e−RT

N0 − 1
. (12)

The proof of Proposition 1 is presented in Section 4.

2.2 Influence of age

In this section, we study the aging effect via the mean age which is defined
as follows.

Definition 2. The mean age of the cell population up to time t ∈ R+ is
defined by:

X̄t =
1

Nt

Nt∑
i=1

Xi
t =
〈Zt, f〉
Nt

, (13)

where f(x) = x.
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Following the work of Bansaye et al. [2], we note that the long time be-
havior of the mean age is related to the law of an auxiliary process Y started
at Y0 = X0

N0
with infinitesimal generator characterized by ∀f ∈ C1,1

b (R+,R),

Af(x) = αf ′(x) + 2R

∫ 1

0

(
f(γx)− f(x)

)
h(γ)dγ. (14)

The empirical distribution of 1
Nt

∑Nt
i=1 δXi

t
gives the law of the path of

a particle chosen at random at time t. Heuristically, the distribution of Y
restricted to [0, t] approximates this distribution. Hence, this explains the
coefficient 2 which is a size-biased phenomenon, i.e. when one chooses a
cell in the population at time t, a cell belonging to a branch with more
descendants is more likely to be chosen.

We will show that the auxiliary process Y satisfies ergodic properties
(Section 4.1) which entails the following theorem.

Theorem 1. For t ∈ R+,

lim
t→+∞

X̄t = lim
t→+∞

E(Yt) =
α

R
. (15)

Theorem 1 is a consequence of the ergodic properties of Y , of Theorem
4.2 in Bansaye et al. [2] and of the Lemma 1. It shows that the average of the
mean age tends to the constant α/R when the time t is large. Simulations
in section 3 illustrate the results.

Lemma 1. Let Y be the auxiliary process with infinitesimal generator (14),
for t ∈ R+,

Yt =

(
Y0 −

α

R

)
e−Rt +

α

R
+

∫ t

0
e−R(t−s)dMs. (16)

where Mt is a square-integrable martingale.

Proof. By symmetry of h with respect to 1/2, we have:

Yt = Y0 +

∫ t

0

(
α+ 2R

∫ 1

0
(γYs − Ys)h(γ)dγ

)
ds+Mt

= Y0 +

∫ t

0

(
α− 2RYs

∫ 1

0
γh(γ)dγ

)
ds+Mt

= Y0 +

∫ t

0
(α−RYs) ds+Mt.

where Mt is a square-integrable martingale.

Let Ỹt = Yte
Rt, Ỹ0 = Y0. By Itô formula, we get

Ỹt = Ỹ0 +
α

R

(
eRt − 1

)
+

∫ t

0
eRsdMs,
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Replacing Ỹt by Yte
Rt, we obtain

Yt =

(
Y0 −

α

R

)
e−Rt +

α

R
+

∫ t

0
e−R(t−s)dMs.

Corollary 1. From (16), we note that

E [Yt] =

(
Y0 −

α

R

)
e−Rt +

α

R
, (17)

and
lim
t→∞

E [Yt] =
α

R
. (18)

Remark 1. When the population is large, we are interested in studying
the asymptotic behavior of the random point measure. As in Doumic et
al. [7], we can show that our stochastic model is approximated by a growth-
fragmentation partial differential equation. This problem is a work in progress.

2.3 Estimation of the kernel division

Data and construction of the estimator

Suppose that we observe the evolution of the cell population in a given time
interval [0, T ]. At the ith division time ti, let us denote ji the individual who
splits into two daughters Xji1

ti
and Xji2

ti
and define

Γ1
i =

Xji1
ti

Xji
ti−

and Γ2
i =

Xji2
ti

Xji
ti−

,

the random fractions that go into the daughter cells, with the convention
0
0 = 0.

Γ1
i and Γ2

i are exchangeable with Γ1
i + Γ2

i = 1, Γ1
i and Γ2

i are thus not
independent but the couples (Γ1

i ,Γ
2
i )i∈N∗ are independent and identically

distributed with distribution (Γ1,Γ2) where Γ1 ∼ H(dγ) and Γ2 = 1− Γ1.

Since h is a density function, it is natural to use a kernel method. We
define an estimator ĥ` of h based on the data (Γ1

i ,Γ
2
i )i∈N∗ as follows.

Definition 3. Let NT be the random number of divisions in the time interval
[0, T ]. For all γ ∈ (0, 1), define

ĥ`(γ) =
1

NT

NT∑
i=1

K`(γ − Γ1
i ), (19)

where K` = 1
`K(·/`) is a bounded kernel function, ` > 0 is the bandwidth to

be chosen.

In (19), ĥ` depends also on T . However, we omit T for the sake of
notation. The estimator ĥ` will satisfy the following properties.
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Proposition 2.

i) The expectation and variance of ĥ`(γ), conditional variance of ĥ`(γ)
given NT are:

E
[
ĥ`(γ)

]
= K` ? h(γ) and E

[
ĥ`(γ)|NT

]
= K` ? h(γ), (20)

Var
[
ĥ`(γ)

]
= E

[ 1

NT

]
Var

[
K`(γ − Γ1

1)
]
, (21)

Var
[
ĥ`(γ)

∣∣NT ] =
1

NT
Var

[
K`(γ − Γ1

1)
]
. (22)

ii) For all γ ∈ (0, 1),

lim
T→+∞

ĥ`(γ) = K` ? h(γ) (a.s). (23)

Proof. To prove (20), let us remark that the number of random divisions
NT is independent of (Γ1

i )i∈N∗ , because the division rate R is constant and
the construction of our stochastic process. Therefore, we have

E
[
ĥ`|NT

]
= E

[ 1

NT

NT∑
i=1

K`(γ − Γ1
i )
∣∣NT

]
=
NTE[K`(γ − Γ1

1)]

NT

= E
[
K`(γ − Γ1

1)
]

= K` ? h(γ),

and E
[
ĥ`
]

= E
[
E
[
ĥ`|NT

]]
= K` ? h(γ). By similar calculations as (20), we

obtain (21) and (22).

To prove ii), by the Strong Law of Large Numbers, we have

1

n

n∑
i=1

K`(γ − Γ1
i )

a.s−→ E
[
K`(γ − Γ1

1)
]

as n→ +∞.

Since limT→+∞NT = +∞ (a.s), this yields

1

NT

NT∑
i=1

K`

(
γ − Γ1

i

) a.s−→ E
[
K`(γ − Γ1

1)
]

= K` ? h(γ).

Adaptive estimation of h by GL method

Let ĥ` be the kernel estimator of h as in Definition 3. Our problem is
bandwidth selection. The objective is to find a bandwidth that minimizes
the L2-risk. Since NT is random, we first study the MISE conditionally to
NT .
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Proposition 3. The L2-risk of ĥ` given NT satisfies:

E
[
‖ĥ` − h‖2

∣∣NT

]
≤ ‖h−K` ? h‖2 +

‖K‖2√
NT `

. (24)

Proof. We have

E
[
‖ĥ` − h‖2|NT

]
≤ ‖h−K` ? h‖2 + E

[
‖ĥ` − E[ĥ`]‖2|NT

]
.

For the variance term, using that E
[
ĥ`(γ)

]
= E

[
ĥ`(γ)|NT

]
E
[
‖ĥ` − E[ĥ`]‖22|NT

]
= E

[ ∫ 1

0

∣∣ĥ`(γ)− E
[
ĥ`(γ)

]∣∣2dγ∣∣NT

]
=

∫ 1

0
Var

[
ĥ`(γ)

∣∣NT

]
dγ

=
1

NT

∫ 1

0
Var

[
K`(γ − Γ1

1)
]
dγ

≤ 1

NT

∫ 1

0
E
[
K2
` (γ − Γ1

1)
]
dγ =

‖K‖22
NT `

. (25)

Hence, applying Cauchy-Schwarz’s inequality, we obtain (24).

In the right hand side of (24), the first term decreases when ` → 0 and
the second one increases when `→ 0. The best choice of ` should minimize
the bias-variance decomposition. Thus, from a finite family of bandwidths
H, we propose a bandwidth ¯̀ where

¯̀ := argmin
`∈H

{
‖h−K` ? h‖2 +

‖K‖2√
NT `

}
. (26)

The bandwidth ¯̀ is called oracle bandwidth since it depends on h and
then it cannot be used in practice. Goldenshluger and Lepski [8] developed
a fully data-driven bandwidth selection method (GL method). In a similar
fashion, Doumic et al. [7] and Reynaud-Bouret et al. [18] have used this
method. To apply this method, we set for any `, `′ ∈ H:

ĥ`,`′ :=
1

NT

NT∑
i=1

(
K` ? K`′

)
(γ − Γ1

i ) =
(
K` ? ĥ`′

)
(γ).

Finally, the adaptive bandwidth and the estimator of h are selected as
follows:

Definition 4. Given ε > 0 and setting χ := (1 + ε)(1 + ‖K‖1), we define

ˆ̀ := argmin
`∈H

{
A(`) +

χ‖K‖2√
NT `

}
, (27)
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where, for any ` ∈ H,

A(`) := sup
`′∈H

{
‖ĥ`,`′ − ĥ`′‖2 −

χ‖K‖2√
NT `′

}
+
, (28)

Then, the estimator ĥ is given by putting

ĥ := ĥˆ̀. (29)

Since A(`) depends only on ĥ`,`′ and ĥ`′ , the estimator ĥ can be computed
in practice.

We shall now state the oracle inequality.

Theorem 2. Let T > 0 and assume that observations are taken on [0, T ].
Let N0 be the number of mother cells at the beginning of divisions and NT

is the random number of divisions in [0, T ]. Consider H a countable subset
of {D−1 : D = 1, . . . , Dmax} in which we choose the bandwidths and Dmax =
bδNT c for some δ > 0. Assume h ∈ L∞([0, 1]) and let ĥ be a kernel estimator
defined with the kernel Kˆ̀ where ˆ̀ is chosen by the GL method. Define

%(T )−1 =


e−RT+ln(RT )

1− e−RT
, if N0 = 1,

e−RT , if N0 > 1.
(30)

For large T , the main term in %(T ) is e−RT in any case. It is exactly the
order of %(T ) for N0 > 1. Then, given ε > 0

E
[
‖ĥ− h‖22

]
≤ C1 inf

`∈H

{
‖K` ? h− h‖22 +

‖K‖22
`

%(T )−1

}
+ C2%(T )−1, (31)

where C1 is a constant depending on ‖K‖1 and ε and C2 is a constant
depending on δ, ε, ‖K‖1, ‖K‖2, ‖h‖∞.

The term ‖K` ? h − h‖22 is an approximation term,
‖K‖22
` %(T )−1 is a

variance term and the last term %(T )−1 is asymptotically negligible. Hence
the right hand side of the oracle inequality corresponds to a bias variance
trade-off.

We now establish upper and lower bounds for the MISE. The lower
bound is obtained by perturbation methods (Theorem 4) and is valid for
any estimator ĥT of h, thus indicating the optimal convergence rate. The
upper bound is obtained (Theorem 3) thanks to the key oracle inequality of
Theorem 2.

For the rate of convergence, it is necessary to assume that the density h
and the kernel function K satisfy some regularity conditions introduced in
the following definitions.
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Definition 5. Let β > 0 and L > 0. The Hölder class of smoothness β and
radius L is defined by

H(β, L) =
{
f : f has k = bβc derivative and ∀x, y ∈ R∣∣f (k)(y)− f (k)(x)

∣∣ ≤ L|x− y|β−k}.
Definition 6. Let β∗ > 0. A function K : R→ R is a kernel of order β∗ if

•
∫
K(x)dx = 1,

•
∫
|x|β∗ |K(x)|dx <∞,

• For k = bβ∗c, ∀1 ≤ j ≤ k,
∫
xjK(x)dx = 0.

Then, the following theorem gives us the rate of convergence of the adap-
tive estimator ĥ.

Theorem 3. Let β∗ > 0 and K be a kernel of order β∗. Let β ∈ (0, β∗).
Let ˆ̀ be the adaptive bandwidth defined in (27). Then, for any T > 0, the
kernel estimator ĥ satisfies

sup
h∈H(β,L)

E‖ĥ− h‖22 ≤ C3%(T )
− 2β

2β+1 , (32)

where %(T )−1 is defined in (30) and C3 is a constant depending on δ, ε,
‖K‖1, ‖K‖2, ‖h‖∞, β and L.

Remark 2. Theorem 3 illustrates adaptive properties of our procedure: it

achieves the rate %(T )
− 2β

2β+1 over the Hölder class H(β, L) as soon as β is
smaller than β∗. So, it automatically adapts to the unknown smoothness of
the signal to estimate.

Theorem 4. For any T > 0, β > 0 and L > 0. Assume that h ∈ H(β, L),
then there exists a constant C4 > 0 such that for any estimator ĥT of h

sup
h∈H(β,L)

E‖ĥT − h‖22 ≥ C4 exp

(
− 2β

2β + 1
RT

)
. (33)

Remark 3. Contrarily to the classical cases of nonparametric estimation
(e.g. Tsybakov [22], . . . ), the number of observations NT is a random vari-
able that converges to +∞ when T → +∞ which is one of the main difficulty

here. From Theorem 3, when N0 > 1 the upper bound is in exp
(
− 2β

2β+1RT
)

which is the same rate as the lower bound. When N0 = 1, the upper bound

is in exp
(

2β
2β+1

(
−RT + ln(RT )

))
that differs with a logarithmic from the

rate in the lower bound. The rate of convergence is thus slightly slower than
in the case N0 > 1.
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3 Numerical simulations

3.1 Numerical computation of ĥ

We use R software to implement simulations with two original distributions
of kernel division h and compare with their estimators. On the interval
[0, 1], the first distribution to test is Beta(2, 2). Beta(a, b) distribution on
[0, 1] are characterized by their densities

hBeta(a,b)(x) =
xa−1(1− x)b−1

B(a, b)
.

where B(a, b) is the renormalization constant.

Since h is symmetric, we only consider the distributions with a = b.
Generally, asymmetric divisions correspond to a < 1 and symmetric divi-
sions with kernels concentrated around 1

2 correspond to a > 1. The smaller
the parameter a, the more asymmetric the divisions. For the second density,
we choose a Beta mixture distribution as

1

2
Beta(2, 6) +

1

2
Beta(6, 2).

This choice give us a bimodal density corresponding to very asymmetric
divisions.
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Figure 2: (a): MISE’s for as a function of ε. (b): ˆ̀− `oracle as a function
of ε. The dotted lines indicate the optimal value of ε which is used in all
simulations.

We estimate ĥ by using (19) and we take the classical Gaussian kernel
K(x) = (2π)−1/2 exp(−x2/2). For the choice of bandwidth, we apply the
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GL method with the family H =
{

1, 2−1, . . . , bδNT c−1
}

for some δ > 0
small enough when NT is large to reduce the time of numerical simulation.
We have ‖K‖1 = 1, ‖K‖2 = 2−1/2π−1/4 and K` ? K`′ = K√`2+`′2 , hence

it is not difficult to calculate in practice ĥ`,`′ as well as ĥ`′ . Finally, the
value of ε in χ = (1 + ε)(1 + ‖K‖1) is chosen to find an optimal value of the
MISE. To do this, we implement a preliminary simulation to calibrate ε in
which we choose ε > −1 to assure that 1 + ε > 0. We compute the MISE
and ˆ̀− `oracle as functions of ε where `oracle = argmin `∈H E

[
‖ĥ` − h‖22

]
and h is the density of Beta(2, 2). In Figure 2a, simulation results show
that the risk has minimum value at ε = −0.68. This value is not justified
from a theoretical point of view. The theoretical choice ε > 0 (see Theorem
2) does not give bad results but this choice is too conservative for non-
asymptotic practical purposes as often met in the literature (see Bertin et
al. [4] for more details about the GL methodology). Moreover, following
the discussion in Lacour and Massart [13] we investigate (see Figure 2b)
the difference ˆ̀− `oracle and observe some explosion close to ε = −0.68.
Consequently, we choose ε = −0.68 for all following simulations.

Figure 3 illustrates a reconstructions for the density of Beta(2, 2) and
beta mixture 1

2 Beta(2, 6) + 1
2 Beta(6, 2) when T = 13. We choose here the

division rate and the growth rate R = 0.5 and α = 0.35 respectively. We
also compare the estimated densities by the GL bandwidth with those by
the cross-validation (CV) bandwidth, the rule-of-thumb (RoT) bandwidth
and oracle bandwidth which is found by assuming that we know the true
density.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0 True density

GL
Oracle
CV
RoT

(a) Reconstruction of Beta(2, 2)
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(b) Reconstruction of beta mixture

Figure 3: Reconstruction of kernel divisions with T = 13.
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To estimate the MISE, we implement Monte-Carlo simulations with re-
spect to T = 13, 17 and 20. The number of repetitions for each simulation is
M = 100. Then, we compute the mean of relative error ē = (1/M)

∑M
i=1 ei

and the standard deviation σe =
√

(1/M)
∑M

i=1(ei − ē)2 where

ei =
‖ĥ− h‖2
‖h‖2

, i = 1, . . . ,M. (34)

The MISE’s are computed for estimated densities using the GL band-
width, the oracle bandwidth, the CV bandwidth and the RoT bandwidth.
For a further comparison, in the reconstruction of Beta(2, 2), we compute
the relative error in a parametric setting by comparing the true density h
with the density of Beta(â, â) where â is the Maximum Likelihood (ML)
estimation of a. The simulation results are displayed in Table 1 and Table
2. For the density of Beta mixture, we only compute the error with T = 13
and T = 17. The boxplot in Figure 4 illutrates the MISE’s in Table 1 when
T = 17.

GL Oracle CV RoT ML method

T = 13 ē 0.1001 0.0840 0.1009 0.0900 0.0610
σe 0.0585 0.0481 0.0599 0.0577 0.0724
¯̂
` 0.0920 0.0845 0.0824 0.0727

T = 17 ē 0.0458 0.0397 0.0459 0.0405 0.0166
σe 0.0260 0.0230 0.0297 0.0237 0.0171
¯̂
` 0.0485 0.0497 0.0478 0.0470

T = 20 ē 0.0261 0.0241 0.0262 0.0245 0.0088
σe 0.0140 0.0114 0.0132 0.00121 0.0091
¯̂
` 0.0377 0.0359 0.0345 0.0354

Table 1: Mean of relative error and its standard deviation for the recon-

struction of Beta(2, 2).
¯̂
` is the average of bandwidths for M = 100 samples.

From Tables 1 and 2, we can note that the accuracy of the estimation
of Beta(2, 2) and Beta mixture by the GL bandwidth increases for larger T .
In Figure 5, we illustrate on a log-log scale the mean relative error and the
rate of convergence versus time T . This shows that the error is close to the
exponential rate predicted by the theory. Moreover, we can observe that the
error of Beta mixture is larger than those of Beta(2, 2) with the same T due
to the complexity of its density. In both cases, the error estimated by using
oracle bandwidth is always smaller than the others. The GL error is slightly
smaller than the CV error. The RoT can show very good behavior but lacks

14



of stability. Overall, we conclude that the GL method has a good behavior
when compared to the cross validation method and rule-of-thumb. As usual,
we also see that the ML error is quite smaller than those of nonparametric
approach but the magnitude of the mean ē remains similar.
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Figure 4: Errors of estimated densities of Beta(2, 2) when T = 17.

GL Oracle CV RoT

T = 13 ē 0.1361 0.1245 0.1379 0.1686
σe 0.0672 0.0562 0.0815 0.0537
¯̂
` 0.0618 0.0527 0.0522 0.0948

T = 17 ē 0.0539 0.0534 0.0550 0.0919
σe 0.0180 0.0168 0.0168 0.00223
¯̂
` 0.0309 0.0272 0.0264 0.0590

Table 2: Mean of relative error and its standard deviation for the recon-
struction of beta mixture 1

2 Beta(2, 6) + 1
2 Beta(6, 2).

GL Oracle CV RoT

Beta(2, 2) T = 13 0.0785 0.0634 0.0762 0.0644
T = 17 0.0356 0.0309 0.0356 0.0309

Beta mixture T = 13 0.1117 0.0953 0.1030 0.1584
T = 17 0.0450 0.0414 0.0417 0.0893

Table 3: Mean of relative error for the reconstruction of h̃.
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Since h is symmetric on [0, 1] with respect to 1
2 , the estimator ĥ can be

improved and we can introduce

h̃(x) =
1

2

(
ĥ(x) + ĥ(1− x)

)
,

which is symmetric by construction and satisfies also (32). We compute the
mean of relative error for the estimator h̃ with the estimation of Beta(2, 2)
and Beta mixture. The results are displayed in Table 3. Compared with
the error in Table 1 and 2, one can see as expected that the errors for the
reconstruction of h̃ is smaller. However, these errors are the same order,
indicating that the estitmator ĥ had already good symmetric properties.
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Figure 5: The log-mean relative error for the reconstruction of Beta(2, 2)
compared to the log-rate (solid line) computed with β = 1.

3.2 Influence of the distribution on the mean age

For t ≥ 0, recall the mean age defined in (13). To study the influence of
the distribution on the mean age, we simulate n = 50 trees with respect to

t = 6, 6 +4t, . . . , 24 with 4t = 0.36. For each sample (x̄
(1)
t , . . . , x̄

(n)
t ), we

compute the average mean, the 1st (Q25) quartile and 3rd (Q75) quartile.
Figure 6a and 6b show the simulation results corresponding to the density
of Beta(2, 2) with α = 0.45 and R = 0.4. One can see that the average of
mean age and the mean age converge to α

R = 1.125 for larger t. This agrees
with the theoretical result proved in Section 2.2.

Moreover, Q25 and Q75 vary when the parameter a changes. In Figure
6c, we draw a fitted curve of the average of (Q75−Q25) when a varies from 0
to 2. As we mentioned in the introduction, if divisions are more asymmetric
corresponding to small values of a, the toxicities concentrate on few cells,
i.e. we have more older cells after the divisions. This explains the decreasing
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Figure 6: (a) Average mean, 1st and 3rd quartiles for the sample of means for
50 trees. (b) Average mean, 1st and 3rd quartiles for one tree. (c) Average
of Q75−Q25 with a ∈ [0, 2] at t = 12. (d) Mean age with a ∈ [0, 2] at t = 12.

trend in the average of (Q75−Q25). Finally, Figure 6d displays the average
of mean ages with respect to a. One can note that it does not change when
we replace the kernel distribution, e.g Beta(0.6, 0.6) instead of Beta(2, 2).

4 Proofs

4.1 Proof of Proposition 1

i) Let us prove that limT→+∞NT = limj→+∞NTj = +∞. Since our
model has only births and no death, (Nt)t∈[0,T ] is a non-decreasing pro-
cess: NTj = N0 + j. We deduce from the estimate sup

t∈[0,T ]
E[Nt] < +∞ for all

T > 0 that Tj −→
j→+∞

+∞ a.s. Hence, limT→+∞NT = +∞ a.s.

ii) The proof of ii) can be found easily in literature. Here we refer to
[17], section 5.3 for this proof.

iii) Let p = e−RT . When N0 = 1, NT ∼ Geom(p). Then we have

E
[

1

NT

]
=
∞∑
n=1

1

n
P
(
NT = n

)
=
∞∑
n=1

1

n
p(1− p)n−1

=
p

1− p

+∞∑
n=1

(1− p)n

n
= − p

1− p
ln(p).

17



Replace p with e−RT , we obtain (10).

When N0 > 1, NT ∼ NB(N0, p). Hence, we have

E
[

1

NT

]
=

∞∑
n=N0

1

n

(
n− 1

n−N0

)
pN0(1− p)n−N0

=

(
p

1− p

)N0 ∞∑
n=N0

1

n

(
n− 1

n−N0

)
(1− p)n

:=

(
p

1− p

)N0

f(1− p), (35)

where f(x) =
∑+∞

n=N0

1
n

(
n−1
n−N0

)
xn. We can differentiate f(x) by taking

derivative under the sum. Then:

d

dp
f(1− p) =−

+∞∑
n=N0

(
n− 1

n−N0

)
(1− p)n−1

=− (1− p)N0−1

pN0

+∞∑
n=N0

(
n− 1

n−N0

)
pN0(1− p)n−N0 = −1

p

(1

p
− 1
)N0−1

,

since the sum is 1 (we recognize the negative binomial).
Hence,

d

dp
f(1− p) =− 1

p

N0−1∑
k=1

(
N0 − 1

k

)
1

pk
(−1)N0−1−k + (−1)N0−1


=(−1)N0

N0−1∑
k=1

(
N0 − 1

k

)
(−1)k

pk+1
+

1

p

 . (36)

Integrating equation (36) and notice that f(0) = 0, we get

f(1− p) =(−1)N0

N0−1∑
k=1

(
N0 − 1

k

)
(−1)k

k

(
− 1

pk

)
+ ln(p)


=(−1)N0−1

N0−1∑
k=1

(
N0 − 1

k

)
(−1)k

k

1

pk
+ ln

(
1

p

) . (37)

Combine (35),(37) and replace p with e−RT , we get (11).

iv) We first prove the lower bound of (12). From (5), taking ft(x) = 1, we
have

NT = N0 +

∫ T

0

∫
E
1{i≤Ns−}Q(ds, di, dγ). (38)
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Applying Itô formula for jump processes (see [11], Theorem 5.1 on p.67) to
(38), we obtain

1

NT
=

1

N0
+

∫ T

0

∫
E

(
1

Ns− + 1
− 1

Ns−

)
1{i≤Ns−}Q(ds, di, dγ)

=
1

N0
−
∫ T

0

∫
E

1

Ns− (Ns− + 1)
1{i≤Ns−}Q(ds, di, dγ).

Hence,

E
[

1

NT

]
=

1

N0
− E

[∫ T

0

1

Ns (Ns + 1)
RNsds

]
=

1

N0
−R

∫ T

0
E
[

1

Ns + 1

]
ds.

(39)
Since Ns ≥ N0, we have 1

Ns+1 ≤
1
Ns
. Therefore, (39) implies that

E
[

1

NT

]
≥ 1

N0
−R

∫ T

0
E
[

1

Ns

]
ds. (40)

By comparison E
[

1
NT

]
with the solutions of the ODE d

dT u(T ) = −Ru(T )

with u(0) = 1/N0, we finally obtain

E
[

1

NT

]
≥ 1

N0
e−RT .

For the upper bound, notice that E
[

1
NT

]
≤ E

[
1

NT−1

]
for N0 > 1. Then

we have

E
[ 1

NT − 1

]
=

+∞∑
n=N0

1

n− 1

(
n− 1

n−N0

)
pN0(1− p)n−N0

=

+∞∑
n=N0

(n− 2)!

(n−N0)!(N0 − 1)!
pN0(1− p)n−N0

=
p

N0 − 1

+∞∑
n=N0

(n− 2)!

(n−N0)!(N0 − 2)!
pN0−1(1− p)n−N0

=
p

N0 − 1

+∞∑
m=N0−1

(m− 1)!

(m− (N0 − 1))!((N0 − 1)− 1)!
pN0−1(1− p)m−(N0−1)

=
p

N0 − 1
=

e−RT

N0 − 1
,

by changing the index in the sum (m = n − 1) and by recognizing the
negative binomial with parameter (N0 − 1, p). Hence, we conclude that for
N0 > 1

e−RT

N0
≤ E

[
1

NT

]
≤ e−RT

N0 − 1
.

This ends the proof of Proposition 1.
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4.2 Proof of Theorem 1

We will show that the process Y satisfies ergodicity and integrability as-
sumptions in Bansaye et al. [2] (see (H1) - (H4), Section 4). More precisely:

1. E [Yt] < +∞ for all t ≥ 0.

2. There exists $ < R and c > 0 such that E
[
Y 2
t

]
< ce$t for all t ≥ 0.

From (17) we note that E[Yt] < +∞ for all t ≥ 0. To prove the second
point, from (14) we have

E[Y 2
t ] = E

Y 2
0 +

∫ t

0

(
2αYs + 2R

∫ 1

0

(
γ2Y 2

s − Y 2
s

)
h(γ)dγ

)
ds


= Y 2

0 + 2α

∫ t

0
E[Ys]ds− 2θR

∫ t

0
E[Y 2

s ]ds, (41)

with θ =
∫ 1

0 (1− γ2)h(γ)dγ and 0 < θ < 1.

Substituting E[Yt] = (Y0−α/R)e−Rt+α/R into (41), we see that E(Y 2
t )

solves the following equation:

dE[Y 2
t ]

dt
= −2θRE[Y 2

t ] +

(
2αY0 −

2α2

R

)
e−Rt +

2α2

R
. (42)

The solution of the equation (42) is:

E[Y 2
t ] = e−2θRt

Y 2
0 +

∫ t

0
e2θRs

((
2αY0 −

2α2

R

)
e−Rs +

2α2

R

)
ds

 . (43)

Hence, if θ = 1
2 , we have

E[Y 2
t ] = Y 2

0 e
−Rt +

(
2αY0 −

2α2

R

)
te−Rt +

2α2

θR2

(
1− e−Rt

)
≤ Y 2

0 e
−Rt +

(
2αY0 −

2α2

R

)
e−(R−θ)t +

2α2

R2

≤

(
Y 2

0 + 2αY0 +
2α2

R
+

2α2

R2

)
e(0∨(θ−R))t = c1e

$t,

with $ = 0 ∨ (θ −R).
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If θ 6= 1
2 ,

E[Y 2
t ] = e−2θRt

[
Y 2

0 +
(
2αY0 −

2α2

R

) ∫ t

0
e(2θ−1)Rsds+

2α2

R

∫ t

0
e2θRsds

]

= Y 2
0 e
−2θRt +

(
2αY0 −

2α2

R

) 1

(2θ − 1)R

(
e−Rt − e−2θRt

)
+

α2

θR2

(
1− e−2θRt

)
≤

(
Y 2

0 +
(
2αY0 +

2α2

R

) 1

|2θ − 1|R
+

α2

θR2

)
= c2,

Thus, if we set c = max(c1, c2) then E
[
Y 2
t

]
< ce$t for all t ≥ 0.

For f(x) = x, we check that the infinitesimal generator of the auxiliary
process Y satifies

Af(x) ≤ Cf(x) +D,

for some C, D < +∞. Hence, by Theorem 5.3 of Meyn and Tweedie [15],
there exists π ∈ MF (R+) such that limt→+∞E[Yt] = 〈π, f〉 = α

R . Finally,
applying Theorem 4.2 of [2], we obtain the result

lim
t→+∞

〈Zt, f〉
Nt

= 〈π, f〉 =
α

R
.

4.3 Proof of Theorem 2

This proof is inspired by the proof of Doumic et al. [7]. However, our
problem here is that the number of observations NT is random. To overcome
this difficulty, we work conditionally to NT to get concentration inequalities.

Hereafter, we refer
∫
f to

∫
R f and since the support of h in (0, 1), we

can express
∫
h(γ)dγ instead of

∫ 1
0 h(γ)dγ. Recall that

A(`) := sup
`′∈H

{
‖ĥ`,`′ − ĥ`′‖2 −

χ‖K‖2√
NT `′

}
+
.

Then, for any ` ∈ H, we have

‖ĥ− h‖2 ≤ A1 +A2 +A3,

where

A1 := ‖ĥ− ĥˆ̀,`‖2 ≤ A(`) +
χ‖K‖2√
NT

ˆ̀
,

A2 := ‖ĥˆ̀,` − ĥ`‖2 ≤ A(ˆ̀) +
χ‖K‖2√
NT `

,

A3 := ‖ĥ` − h‖2.
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By definition of ˆ̀, we have

A1 +A2 ≤ 2A(`) + 2
χ‖K‖2√
NT `

, (44)

and

A(`) ≤ sup
`′∈H

{
‖
(
ĥ`,`′ − E[ĥ`,`′ ]

)
−
(
ĥ`′ − E[ĥ`′ ]

)
‖2

+‖E[ĥ`,`′ ]− E[ĥ`′ ]‖2 −
χ‖K‖2√
NT `′

}
+

≤ ξT (`) + sup
`′∈H

{
‖E[ĥ`,`′ ]− E[ĥ`′ ]‖2

}
, (45)

where

ξT (`) = sup
`′∈H

{
‖
(
ĥ`,`′ − E[ĥ`,`′ ]

)
−
(
ĥ`′ − E[ĥ`′ ]

)
‖2 −

χ‖K‖2√
NT `′

}
+

. (46)

For the term sup
`′∈H

{
‖E[ĥ`,`′ ]− E[ĥ`′ ]‖2

}
, we have

E[ĥ`,`′ ]− E[ĥ`′ ] =

∫ (
K` ? K`′

)
(γ − u)h(u)du−

∫
K`′(γ − v)h(v)dv

=

∫ ∫
K`(γ − u− t)K`′(t)h(u)dtdu−

∫
K`′(γ − v)h(v)dv

=

∫ ∫
K`(v − u)K`′(γ − v)h(u)dudv −

∫
K`′(γ − v)h(v)dv

=

∫
K`′(γ − v)

(∫
K`(v − u)h(u)du− h(v)

)
dv

=

∫
K`′(γ − v)

(
K` ? h(v)− h(v)

)
dv.

Hence, we derive

‖E[ĥ`,`′ ]− E[ĥ`′ ]‖2 = ‖K`′ ? (K` ? h− h)‖2 ≤ ‖K‖1‖K` ? h− h‖2, (47)

where the right hand side does not depend on `′ allowing us to take sup
`′∈H

in

the left hand side.
Thus, (44), (46) and (47) give

A1 +A2 ≤ 2ξT (`) + 2‖K‖1‖K` ? h− h‖2 + 2
χ‖K‖2√
NT `

.

Then,

E
[
(A1 +A2)2

]
≤ 12E[ξ2

T (`)] + 12‖K‖21‖K` ? h− h‖22 + 12
χ2‖K‖22

`
E
[

1

NT

]
.

(48)
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For the term A3,

E
[
A2

3

]
= ‖E[ĥ`]− h‖22 + E

[
‖ĥ` − E[ĥ`]‖22

]
≤ ‖K` ? h− h‖22 +

‖K‖22
`

E
[

1

NT

]
.

Finally, replacing χ by (1 + ε)(1 + ‖K‖1), we have for any ` ∈ H

E
[
‖ĥ− h‖22

]
≤ 2E

[
(A1 +A2)2

]
+ 2E

[
A2

3

]
≤ 24E

[
ξ2
T (`)

]
+ 2

(
1 + 12‖K‖21

)
‖K` ? h− h‖22

+ 2
(

1 + 12(1 + ε)2(1 + ‖K‖1)2
)‖K‖22

`
E
[

1

NT

]
≤ 24E

[
ξ2
T (`)

]
+ C1

(
‖K` ? h− h‖22 +

‖K‖22
`

E
[

1

NT

])
, (49)

with C1 a constant depending on ε and ‖K‖1.
It remains to examine with the term E

[
ξ2
T (`)

]
where ξT (`) is defined in

(46),

ξT (`) ≤ sup
`′∈H

{
‖ĥ`,`′ − E[ĥ`,`′ ]‖2 + ‖ĥ`′ − E[ĥ`′ ]‖2 −

χ‖K‖2√
NT `′

}
+

≤ sup
`′∈H

{
‖ĥ`′ − E[ĥ`′ ]‖2‖K‖1 + ‖ĥ`′ − E[ĥ`′ ]‖2 −

χ‖K‖2√
NT `′

}
+

≤ sup
`′∈H

{(
1 + ‖K‖1

)
‖ĥ`′ − E[ĥ`′ ]‖2 −

(1 + ε)(1 + ‖K‖1)‖K‖2√
NT `′

}
+

≤ (1 + ‖K‖1)ST ,

where

ST := sup
`∈H

{
‖ĥ` − E[ĥ`]‖2 −

(1 + ε)‖K‖2√
NT `

}
+

.

Hence,

E
[
ξ2
T (`)

]
≤ (1 + ‖K‖1)2E

[
E
[
S2
T |NT

]]
. (50)

If we show that

E
[
S2
T |NT = n

]
≤ C∗

1

n
, (51)

then

E
[
ξ2
T (`)

]
≤ C∗(1 + ‖K‖1)2E

[
1

NT

]
(52)

where C∗ is a constant.
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Let us establish (51). When NT = n, ∀n ∈ N∗,

E
[
S2
T |NT = n

]
= E

[
S2
n

]
where

Sn := sup
`∈H

{
‖Z`‖2 −

(1 + ε)‖K‖2√
n`

}
+

,

with

Z` = ĥ` − E[ĥ`] =
1

n

n∑
i=1

K`(γ − Γ1
i )− E[K`(γ − Γ1

i )].

Then,

E
[
S2
n

]
= E

[
sup
`∈H

{
‖Z`‖2 −

(1 + ε)‖K‖2√
n`

}2

+

]

≤
∫ +∞

0
P

[
sup
`∈H

{
‖Z`‖2 −

(1 + ε)‖K‖2√
n`

}2

+

≥ x

]
dx

≤
∑
`∈H

∫ +∞

0
P

[{
‖Z`‖2 −

(1 + ε)‖K‖2√
n`

}2

+

≥ x

]
dx.

We bound this with Talagrand’s inequality.
Let A be a countable dense subset of the unit ball of L2([0, 1]). We

express the norm ‖Z`‖2 as

‖Z`‖2 = sup
a∈A

∫
a(γ)Z`(γ)dγ

= sup
a∈A

n∑
i=1

∫
a(γ)

1

n

(
K`(γ − Γ1

i )− E[K`(γ − Γ1
i )]
)
dγ.

Let

Vi,Γ =

∫
a(γ)

1

n

(
K`(γ − Γ1

i )− E[K`(γ − Γ1
i )]
)
dγ.

Then Vi,Γ, i = 1, . . . , n is a sequence of i.i.d random variables with zero
mean. Thus, we can apply Talagrand’s inequality (see [14, p. 170]) to
‖Z`‖2 = sup

a∈A

∑n
i=1 Vi,Γ. For all η, x > 0, one has

P
(
‖Z`‖2 ≥ (1 + η)E[‖Z`‖2] +

√
2νx+ c(η)bx

)
≤ e−x,

where c(η) = 1/3 + η−1,

ν =
1

n
sup
a∈A

E

[(∫
a(γ)

(
K`(γ − Γ1

1)− E[K`(γ − Γ1
1)]
)
dγ

)2
]
,
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and,

b =
1

n
sup

y∈(0,1),a∈A

∫
a(γ)

(
K`(γ − y)− E[K`(γ − Γ1

1)]
)
dγ.

Next, we calculate the terms E[‖Z`‖2], ν and b. Applying Cauchy -
Schwarz’s inequality, we get

E
[
‖Z`‖2

]
≤
(
E
[
‖Z`‖22

])1/2

≤

E

∫
 1

n

n∑
i=1

K`(γ − Γ1
i )− E[K`(γ − Γ1

i )]

2

dγ




1/2

≤ 1

n

∫ E


 n∑
i=1

K`(γ − Γ1
i )− E[K`(γ − Γ1

i )]

2
 dγ


1/2

≤ 1

n

∫ n∑
i=1

E
[(
K`(γ − Γ1

i )− E[K`(γ − Γ1
i )]
)2
]
dγ

1/2

≤ 1

n

(
n

∫
E
[
K`(γ − Γ1

1)2
]
dγ

)1/2

≤ ‖K‖2√
n`

.

For the term ν, we have

ν ≤ 1

n
sup
a∈A

E

[(∫
a(γ)K`(γ − Γ1

1)dγ

)2
]

≤ 1

n
sup
a∈A

E
[∫
|K`(γ − Γ1

1)|dγ ×
∫
a2(γ)|K`(γ − Γ1

1)|dγ
]

≤ ‖K‖1
n

sup
a∈A

E
[∫

a2(γ)|K`(γ − Γ1
1)|dγ

]
≤ ‖K‖1

n
sup
a∈A

∫
a2(γ)E

[
|K`(γ − Γ1

1)|
]
dγ

≤ ‖K‖1
n

sup
a∈A

∫ ∫
a2(γ)|K`(γ − u)|h(u)dudγ

≤ ‖h‖∞‖K‖
2
1

n
.

For the term b, we have

b =
1

n
sup

y∈(0,1)
‖K`(· − y)− E[K`(· − Γ1

1)]‖2

≤ 1

n

(
sup

y∈(0,1)
‖K`(· − y)‖2 +

(
E
[ ∫

K2
` (γ − Γ1

1)dγ
])1/2

)
≤ 2‖K‖2

n
√
`
.
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So, for all η, x > 0, we have

P

(
‖Z`‖2 ≥ (1 + η)

‖K‖2√
n`

+ ‖h‖1/2∞ ‖K‖1

√
2x

n
+ 2c(η)

‖K‖2x
n
√
`

)
≤ e−x.

Let H` be some strictly positive weights, we apply the previous inequality
to x = H` + u for u > 0. We have

P

(
‖Z`‖2 ≥ (1 + η)

‖K‖2√
n`

+ ‖h‖1/2∞ ‖K‖1

√
H`

n
+ 2c(η)

‖K‖2H`

n
√
`

+ ‖h‖1/2∞ ‖K‖1
√
u

n
+ 2c(η)

‖K‖2u
n
√
`

)
≤ e−H`−u.

If we set

M` = (1 + η)
‖K‖2√
n`

+ ‖h‖1/2∞ ‖K‖1

√
H`

n
+ 2c(η)

‖K‖2H`

n
√
`

,

then,

P
(
‖Z`‖2 −M` ≥ ‖h‖1/2∞ ‖K‖1

√
u

n
+ 2c(η)

‖K‖2u
n
√
`

)
≤ e−H`−u.

Let

R = E

[
sup
`∈H

(
‖Z`‖2 −M`

)2
+

]
=

∫ +∞

0
P

[
sup
`∈H

(
‖Z`‖2 −M`

)2
+
≥ x

]
dx.

An upper bound of R is given by

R ≤
∑
`∈H

∫ +∞

0
P
[(
‖Z‖2 −M`

)2
+
≥ x

]
dx.

Let us take u such that

x = f(u)2 =

(
‖h‖1/2∞ ‖K‖1

√
u

n
+ 2c(η)

‖K‖2u
n
√
`

)2

.

So,

dx = 2f(u)

(
‖h‖1/2∞ ‖K‖1

1

2
√
nu

+ 2c(η)
‖K‖2
n
√
`

)
du.
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Hence,

R ≤
∑
`∈H

∫ +∞

0
e−H`−u2f(u)

(
‖h‖1/2∞ ‖K‖1

1

2
√
nu

+ 2c(η)
‖K‖2
n
√
`

)
du

≤
∑
`∈H

∫ +∞

0
e−H`−u2f(u)

(
‖h‖1/2∞ ‖K‖1

√
u

n
+ 2c(η)

‖K‖2u
n
√
`

)
u−1du

≤ 2
∑
`∈H

e−H`
∫ +∞

0
f2(u)e−uu−1du

≤ Cη
∑
`∈H

e−H`

(
‖h‖∞‖K‖21

∫ +∞

0
e−udu+

‖K‖22
`2

∫ +∞

0
ue−udu

)
× 1

n

≤ Cη
∑
`∈H

e−H`

(
‖h‖∞‖K‖21 +

‖K‖22
`2

)
× 1

n
. (53)

We need to choose H` and η such that

E
[
S2
n

]
= E

[
sup
`∈H

{
‖Z`‖2 −

(1 + ε)‖K‖2√
n`

}2

+

]
≤ R (54)

Let θ > 0, we choose

H` =
θ2‖K‖22

2‖h‖∞‖K‖21
√
`
,

the we have

M` = (1 + η)
‖K‖2√
n`

+
θ‖K‖2√

2n
√
`

+
c(η)θ2‖K‖32
‖h‖∞‖K‖21

1

n`
.

Obviously, the series in (53) is finite and for any ` ∈ H, since ` ≤ 1, we have

M` ≤ (1 + η + θ)
‖K‖2√
n`

+
c(η)θ2‖K‖32
‖h‖∞‖K‖21

1

n`

≤

(
1 + η + θ +

c(η)θ2‖K‖22
‖h‖∞‖K‖21

1√
n`

)
‖K‖2√
n`

.

Since H ⊂
{
D−1, D = 1, . . . , Dmax

}
, if we choose Dmax = δn for some δ > 0,

then `min = D−1
max and we obtain

M` ≤

(
1 + η + θ +

c(η)θ2‖K‖22
√
δ

‖h‖∞‖K‖21

)
‖K‖2√
n`

.

It remains to choose η = ε/2 and θ small enough such that

θ +
c(η)θ2‖K‖22

√
δ

‖h‖∞‖K‖21
=
ε

2
,
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then

M` ≤ (1 + ε)
‖K‖2√
n`

,

and we get

E
[
S2
n

]
≤ C∗ ×

1

n
,

where C∗ is a constant depending on δ,ε,‖h‖∞,‖K‖1 and ‖K‖2. Hence, we
get (52).

Combining (49), (52) and using (10), (12), recall the definition of %(T )−1

in (30), we obtain for any ` ∈ H

E
[
‖ĥ− h‖22

]
≤ C1

(
‖K` ? h− h‖22 +

‖K‖22
`

%(T )−1

)
+ C2%(T )−1.

This ends the proof of Theorem 2.

4.4 Proof of Theorem 3

We begin with the bias term ‖K` ? h − h‖2 in the right hand side of the
oracle inequality (31). For any ` ∈ H and γ ∈ (0, 1), let k = bβc and
b(γ) = K` ? h(γ)− h(γ), then we have

h(γ + u`) = h(γ) + h′(γ)u`+ · · ·+ (u`)k

(k − 1)!

∫ 1

0
(1− θ)k−1h(k)(γ + θu`)dθ.

Since K is a kernel of order β∗ and β ∈ (0, β∗), we get

b(γ) =

∫
K(u)

(u`)k

(k − 1)!

[∫ 1

0
(1− θ)k−1

(
h(k)(γ + θu`)− h(k)(γ)

)
dθ

]
du.

Setting Ek,`(u) = |K(u)| |u`|
k

(k−1)! for the sake of notation. Since h ∈ H(β, L)
and applying twice the generalized Minskowki’s inequality, we obtain

‖h− E[ĥ]‖22 =

∫
b2(γ)dγ

≤
∫ ∫ Ek,`(u)

[∫ 1

0
(1− θ)k−1

∣∣h(k)(γ + θu`)− h(k)(γ)
∣∣dθ] du

2

dγ

≤

(∫
Ek,`(u)

∫ (∫ 1

0
(1− θ)k−1

∣∣h(k)(γ + θu`)− h(k)(γ)
∣∣dθ)2

dγ

1/2

du

)2

≤

(∫
Ek,`(u)

[∫ 1

0
(1− θ)k−1

(∫ ∣∣h(k)(γ + θu`)− h(k)(γ)
∣∣2dγ)1/2

dθ

]
du

)2
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≤

∫ Ek,`(u)

[∫ 1

0
(1− θ)k−1L(θu`)β−kdθ

]
du

2

≤

∫ |K(u)| |u`|
k

(k − 1)!

[∫ 1

0
(1− θ)k−1L(u`)β−kdθ

]
du

2

≤ CK,L,β`2β,

where CK,L,β =
(
L
k!

∫
|u|β|K(u)|du

)2
.

Finally, we have

E
[
‖ĥ− h‖22

]
≤ C1 inf

`∈H

{
CK,L,β`

2β +
‖K‖22
`

%(T )−1

}
+ C2%(T )−1. (55)

Taking the derivative of the expression inside the inf
`∈H

of (55) with respect

to `, we obtain the minimizer

`∗ =

(
‖K‖22

2βCK,L,β

) 1
2β+1

%(T )
− 1

2β+1 .

Since the optimal bandwidth ˆ̀ is proportional to `∗ up to a multiplicative
constant. Therefore, by substituting ` by ˆ̀ in the right hand side of (55),
we obtain

E
[
‖ĥ− h‖22

]
≤ C3%(T )

− 2β
2β+1 ,

with C3 a constant depending on δ, ε, ‖K‖1, ‖K‖2, ‖h‖∞, β and L. This
ends the proof of Theorem 3.

4.5 Proof of Theorem 4

For T > 0, let us denote by ĥT the estimator of h. To prove the Theorem 4,
we apply the general reduction scheme proposed by Tsybakov [22] (Section
2.2, p.79). We will show the existence of a family HM,T =

{
hj,T : j =

0, 1, . . . ,M
}

such that:

1) hj,T ∈ H(β, L), j = 0, . . . ,M .

2) ‖hj,T − hk,T ‖2 ≥ 2c e
− β

2β+1
RT
, 0 ≤ j < k ≤M .

3)
1

M

∑M
j=1K(Pj , P0) ≤ α log(M) for 0 < α < 1/8. Pj and P0 are the

distribution of observations when the division kernels are hj,T and
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h0, respectively. K(P,Q) denotes the Kullback-Leibler divergence be-
tween two measures P and Q:

K(P,Q) =


∫

log dP
dQdP, if P � Q

+∞, otherwise.

Under the preceding conditions 1, 2, 3, Tsybakov [22] (Theorem 2.5, p.99)
show that

inf
ĥT

max
h∈HM,T

P
(
‖ĥT − h‖22 ≥ c2e

− 2β
2β+1

RT
)
≥ C ′. (56)

where the infimum is taken over all estimators ĥT and positive constant C ′

is independent of T . This will be sufficient to obtain Theorem 4 by [22,
Theorem 2.7]. The proof ends with proposing a family HM,T and checking
the assumptions 1, 2, 3.

Construction of the family HM,T :

The idea is construct a family of pertubations around h0 which is a
symmetric density w.r.t 1

2 and belongs to H(L2 , β). For the simplification,
we choose h0(γ) = 1[0,1](γ).

Let c0 > 0 be a real number, and let γ ∈ [0, 1], f(γ) = LD−βg (Dγ)
where g is a regular function having support [0, 1] and

∫
g(γ)dγ = 0, g ∈

H(1
2 , β), we define

D = dc0e
RT

2β+1 e and fk(γ) = f

(
γ − (k − 1)

D

)
,

By definition, the functions fk’s have disjoint support and one can check
that the functions fk ∈ H(L2 , β).

Then, the function hj,T will be chosen in

D =

hδ(γ) = h0(γ) + c1

D∑
k=1

δkfk(γ) : δ = (δ1, . . . , δD) ∈ {0, 1}D
 ,

where

c1 = min

(
1

LD−β‖g‖∞
, 1

)
. (57)

We now check that hδ is a density, since
∫
hδ(γ)dγ =

∫
h0(γ)dγ = 1, it

remains to verify that hδ(γ) ≥ 0 ∀ γ. We have

inf
[0,1]

hδ(γ) ≥ inf
[0,1]

h0 − ‖c1

D∑
k=1

δkfk‖∞

≥ 1− c1LD
−βmax

k
sup
γ
|δk|g

(
Dγ − (k − 1)

)
≥ 1− c1LD

−β‖g‖∞ ≥ 0,
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by the choice of c1. Thus the family of densities D is well-defined.

1) The condition hj,T ∈ H(β, L).

Let us denote q = bβc, then for all γ, γ′ ∈ [0, 1] we have

∣∣∣h(q)
δ (γ)− h(q)

δ (γ′)
∣∣∣ =

∣∣∣h(q)
0 (γ)− h(q)

0 (γ′) + c1

D∑
k=1

δk
(
f

(q)
k (γ)− f (q)

k (γ′)
)∣∣∣

≤ c1

D∑
k=1

|δk|
∣∣∣f (q)
k (γ)− f (q)

k (γ′)
∣∣∣

≤ c1max
k

∣∣∣f (q)
k (γ)− f (q)

k (γ′)
∣∣∣

≤ c1LD
−βmax

k
Dq
∣∣∣g(q)(Dγ − (k − 1))− g(q)(Dγ′ − (k − 1))

∣∣∣
≤ c1LD

bβc−βDβ−bβc|γ − γ′|β−bβc ≤ L|γ − γ′|β−bβc,

which is always satisfied with c1 = min
(

1
LD−β‖g‖∞ , 1

)
, thus hδ ∈ H(L, β).

2) The condition ‖hj,T − hk,T ‖2 ≥ 2c e
− β

2β+1
RT

.

For all δ, δ′ ∈ {0, 1}D, we have

‖hδ − hδ′‖2 =

[∫ 1

0

(
hδ(γ)− hδ′(γ)

)2
dγ

]1/2

=

∫ 1

0

c1

D∑
k=1

(δk − δ′k)fk(γ)

2

dγ


1/2

= c1

∫ 1

0

D∑
k=1

(δk − δ′k)2f2
k (γ)dγ

1/2

= c1

 D∑
k=1

(δk − δ′k)2

∫ k
D

k−1
D

f2
k (γ)dγ

1/2

= c1

 D∑
k=1

(δk − δ′k)2

∫ k
D

k−1
D

L2D−2βg2
(
Dγ − (k − 1)

)
dγ

1/2

= c1LD
−β−1/2‖g‖2

 D∑
k=1

(δk − δ′k)2

1/2

= c1LD
−β−1/2‖g‖2

√
dH(δ, δ′),

where dH(δ, δ′) =
∑D

k=1 1{δk 6= δ′k} is the Hamming distance between δ and
δ′.

According to the Lemma of Varshamov-Gilbert (cf. Tsybakov [22],

p.104), there exist a subset
{
δ(0), . . . , δ(M)

}
of {0, 1}D with cardinal (58)

such that δ(0) = (0, . . . , 0),
M ≥ 2D/8. (58)
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and

dH(δ(j), δ(k)) ≥ D

8
, ∀ 0 ≤ j < k ≤M, (59)

Then, by setting hj,T (x) = hδ(j)(x), j = 0, . . . ,M , we obtain

‖hj,T − hk,T ‖2 = c1LD
−β− 1

2 ‖g‖2
√
dH(δ(j), δ(k))

≥ c1LD
−β−1/2‖g‖2

√
D

8

≥ c1L

4
‖g‖2D−β,

whenever D ≥ 8.

Suppose that, NT ≥ NT ∗ where T ∗ = log
(

7
c0

)
2β+1
R . Then, D ≥ 8 and

Dβ ≤ (2c0)β exp
(

β
2β+1RT

)
. This implies:

‖hj,T − hk,T ‖2 ≥
c1L

4
‖g‖2(2c0)−βe

− β
2β+1

RT
,

But,

min

(
1

L‖g‖∞
, 1

)
≤ c1 ≤ 1

Hence, we obtain

‖hj,T − hk,T ‖2 ≥ 2c e
− β

2β+1
RT
,

where

c =
min(1, L‖g‖2)

8
(2c0)−β.

3) The condition 1
M

∑M
j=1K(Pj , P0) ≤ α log(M) for 0 < α < 1/8.

We need to show that for all δ ∈ {0, 1}D,

K(Pδ, P0) ≤ α log(M),

where

K(Pδ, P0) = E
[
log

dPδ
dP0
|FT (Z)

]
,

and where (Zt)t∈[0,T ] is defined in (5) with the random measure Q having
intensity q(ds, di, dγ) = Rhδ(γ)ds n(di)dγ.

Here, the difficulty comes from the fact that NT is variable because the
observations result from a stochastic process Zt. The law of these observa-
tions is not a probability distribution on a fixed Rn where n would be the
sample size, but rather a probability distribution on a path space. Pδ is
the probability distribution when the Poisson point measure Q has intensity
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Rhδ(γ)ds n(di)dγ. Thus a nutural tool is to use Girsanov’s theorem (see
[12], Theorem 3.24, p. 159) saying that Pδ is absolutely continuous with
respect to P0 on FT with

dPδ
dP0
|FT = Dδ

T ,

where (Dδ
t )t∈[0,T ] is the unique solution of the following SDE (see Proposition

4.17 of [20] for a similar SDE):

Dδ
T = 1 +

∫ T

0

∫
E
Dδ
s−1{i≤Ns−}

(
hδ(γ)

h0(γ)
− 1

)
Q(ds, di, dγ). (60)

Apply Itô formula for jump processes to (60), we get

logDδ
T =

∫ T

0

∫
E
1{i≤Ns−}

[
log
(
Dδ
s− −

(hδ(γ)

h0(γ)
− 1
)
Dδ
s−

)
− logDδ

s−

]
Q(ds, di, dγ)

=

∫ T

0

∫
E
1{i≤Ns−} log

hδ(γ)

h0(γ)
Q(ds, di, dγ) =

NT∑
i=1

log
hδ(Γ

1
i )

h0(Γ1
i )
,

by definition of (Γ1
1, . . . ,Γ

1
NT

).
Then,

K(Pδ, P0) = Eδ
[
logDδ

T

]
= Eδ

NT∑
i=1

log
hδ(Γ

1
i )

h0(Γ1
i )


= E [NT ]Eδ

[
log

hδ(Γ
1
1)

h0(Γ1
1)

]
= E [NT ]

∫ 1

0
hδ(γ) log

hδ(γ)

h0(γ)
dγ.

Here, E [NT ] does not depend on hδ and we have E[NT ] = N0 exp(RT ).
Thus,

K(Pδ, P0) ≤ N0e
RT

∫ 1

0
hδ(γ) log(hδ(γ))dγ

≤ N0e
RT

∫ 1

0

(
1 + c1

D∑
k=1

δkfk(γ)
)

log
(

1 + c1

D∑
k=1

δkfk(γ)
)
dγ

≤ N0e
RT

D∑
k=1

∫ k
D

k−1
D

(
1 + c1δkfk(γ)

)
log
(
1 + c1δkfk(γ)

)
dγ

≤ N0e
RT

D∑
k=1

δk

∫ 1/D

0

(
1 + c1f(γ)

)
log
(
1 + c1f(γ)

)
dγ

≤ N0e
RTD

∫ 1/D

0

(
1 + c1f(γ)

)
c1f(γ)dγ
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≤ N0e
RT

[
c1LD

−β
∫ 1/D

0
g(Dγ)Ddγ + c2

1L
2D−2β

∫ 1/D

0
g2(Dγ)Ddγ

]

≤ N0e
RT c2

1L
2D−2β

∫ 1

0
g2(γ)dγ

≤ N0c
2
1L

2‖g‖22eRT c
−2β
0 e

− 2β
2β+1

RT

≤ N0L
2‖g‖22c

−2β−1
0 D, since c1 ≤ 1.

From (58), we have M ≥ 2D/8 then

D ≤ 8 log(M)

log(2)
.

Hence, if we set

c0 =

(
8N0L

2‖g‖22
α log(2)

)1/(2β+1)

,

we obtain K(Pδ, P0) ≤ α log(M). This ends the proof of Theorem 4.
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