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Abstract

Even when entirely unloaded, biological structures are not stress-free, as

shown by Y.C. Fung’s seminal opening angle experiment on arteries and the

left ventricle. As a result of this prestrain, subject-specific geometries extracted

from medical imaging do not represent an unloaded reference configuration nec-

essary for mechanical analysis, even if the structure is externally unloaded. Here

we propose a new computational method to create physiological residual stress

fields in subject-specific left ventricular geometries using the continuum theory

of fictitious configurations combined with a fixed-point iteration. We also repro-

duced the opening angle experiment on four swine models, to characterize the

range of normal opening angle values. The proposed method generates residual

stress fields which can reliably reproduce the range of opening angles between

8.7±1.8 and 16.6 ± 13.7 as measured experimentally. We demonstrate that in-

cluding the effects of prestrain reduces the left ventricular stiffness by up to

40%, thus facilitating the ventricular filling, which has a significant impact on
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cardiac function. This method can improve the fidelity of subject-specific mod-

els to improve our understanding of cardiac diseases and to optimize treatment

options.
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1. Introduction1

Biological tissues inherently contain some prestrain, or equivalently residual2

stress (Vaishnav and Vossoughi, 1987; Fung, 1993; Humphrey, 2002). This has3

been evidenced in the opening angle experiments, performed originally on the4

artery in (Chuong and Fung, 1986), and then on the left ventricle in (Omens and5

Fung, 1990). The exact origin of the prestrain is still an open question: it may6

be induced by inhomogeneous tissue growth, or the constant exchange of matter7

within the tissues and associated remodeling, cell death, and renewal, etc. (Fung,8

1993; Humphrey, 2002). Moreover, prestrain potentially exists across multiple9

spatial scales, including the sub-cellular (Kumar, Maxwell, et al., 2006; Deguchi,10

Ohashi and Sato, 2006), cellular, and structural levels (Fung, 1993; Humphrey,11

2002; Guo, Lanir and Kassab, 2007).12

It is important to distinguish between these different types of prestrain.13

Indeed, sub-cellular prestrain surely affects the response of individual cells, but14

is confined to the cells and cannot be characterized on the macroscopic level15

(Kumar, Maxwell, et al., 2006; Deguchi, Ohashi and Sato, 2006; Webster, Ng16

and Fletcher, 2014). Conversely, structural, or global, residual stress (imagine17

a stress-free straight beam glued into a circular shape for which a single cut18

would release all the residual stress at once) are most probably not seen in vivo.19

In support of this, while original experiments showed that the first cut released20

most of the residual stress (Liu and Fung, 1989; Han and Fung, 1996), later21

experiments revealed that subsequent cuts always release additional residual22

stress (Greenwald, Moore, et al., 1997). Hence, we investigate the prestrain23

generated on the cellular scale, a scale where living tissues are composed of24

many different components in frictional contact and constant relative motion.25

Cellular prestrain is analogous to the one present in engineering materials (e.g.,26
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between grains in metals) or between components in composites, which is usually1

induced by the process or differences in coefficients of thermal expansion. It is2

present everywhere in living systems and it can have a tremendous impact on3

their macroscopic behavior.4

To address cardiovascular diseases, one approach is the use of personalized5

models for quantitative diagnostic, prognostic, and treatment optimization (Lee,6

Genet, et al., 2014b). The current bottlenecks in personalized cardiac modeling7

include the assessment of myofiber architecture (Toussaint, Stoeck, et al., 2013;8

Harmer, Pushparajah, et al., 2013), non-invasive pressure measurement, tissue9

properties orthotropy and regionality (Lee, Wenk, et al., 2011; Xi, Lamata,10

et al., 2011; Marchesseau, Delingette, et al., 2013). Another important limita-11

tion is our understanding of prestrain and residual stress. Indeed, as a result12

of prestrain, subject-specific geometries of biological structures extracted from13

medical imaging do not represent the reference configuration required for me-14

chanical analysis, even if the images correspond to an externally unloaded state.15

To identify the truly unstressed reference configuration, we have to solve an in-16

verse problem that is highly non-linear.17

In this paper, we propose a computational method to introduce physiolog-18

ical residual stress fields in subject-specific left ventricular geometries. The19

proposed method is embedded within the continuum theory of fictitious config-20

urations and uses a fixed-point iteration on the geometry itself. (Wang, Luo,21

et al., 2013) recently proposed an alternative approach, also using fixed-point22

iterations on the geometry to recover a relaxed configuration. However, they23

use (Shams, Destrade and Ogden, 2011)’s method to introduce residual stress24

in the invariant-based Holpzapfel model (Holzapfel and Ogden, 2009) through25

additional pseudo-invariants. This implies that (i) the method is limited to26

invariant-based formulations, (ii) that residual stress is introduced as an ad27

hoc parameter to fit experimental data (Costa, May-Newman, et al., 1997), and28

(iii) that the resulting residual stress field is not strictly speaking divergence29

free, i.e., auto-balanced. Here, the residual stress is generated mechanistically30

by the underlying biological process, heterogeneous growth, and is naturally31
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auto-balanced.1

2. Methods2

2.1. Opening angle experiment3

2.1.1. Animal preparation4

We performed all animal experiments in accordance with national and lo-5

cal ethical guidelines, including the Principles of Laboratory Animal Care, the6

Guide for the Care and Use of Laboratory Animals (National Research Council7

(US) Committee for the Update of the Guide for the Care and Use of Laboratory8

Animals, 2011) and the National Association for Biomedical Research (Cardon,9

Bailey and Bennett, 2012), and an approved Indiana University Purdue Univer-10

sity Indianapolis IACUC protocol regarding the use of animals in research. Four11

Yorkshire pigs (55.1 ± 3.0 Kg body weight) of either sex were used in this study.12

The pigs were fasted overnight and surgical anesthesia was induced with TKX13

(Telazol 10 mg/kg, Ketamine 5 mg/kg, Xylazine 5 mg/kg) and maintained with14

1-2% Isoflurane-balance O2 during acute, non-aseptic surgery. An introducer15

sheath was placed percutaneously in the right jugular vein for administration16

of drugs. The chest was opened through a mid-line sternotomy and the heart17

was arrested with an IV bolus injection of saturated KCl solution (20 mL) un-18

der deep anesthesia and proper anticoagulation with Heparin (100 IU/kg body19

weight).20

2.1.2. Heart preparation21

The heart was excised and placed in cardioplegic solution. We cannulated22

and perfused the left anterior descending, the left circumflex, and the right23

coronary arteries with a solution (Lin and Yin, 1998) of the following composi-24

tion in mmol: NaCl, 127; KH2PO4, 1.3; MgSO4, 0.6; NaHCO3, 25; KCl, 2.3;25

CaCl2, 2.5; dextrose, 11.2; BDM (2,3 butanedione monoxime, Sigma, St. Louis,26

MO), 30. After perfusion, the aorta and pulmonary arteries, the right and left27

atria, and the right ventricular free wall were carefully cut, keeping an intact28

left ventricle in the shape of a cone.29
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2.1.3. Experimental procedure1

After the first basal slice was discarded, three 1-cm-thick slices were cut2

from the left ventricle (basal, equatorial, and apical) and placed in petri dishes3

containing perfusion solution (see Figure 3). Two cameras were set up to pho-4

tograph the cross-sectional surfaces of the slice from the top and the bottom5

surfaces simultaneously. A baseline picture was taken before a radial cut was6

made in the middle of the left ventricular free wall. Immediately after the cut7

was made, continuous pictures were taken every five minutes for a period of 308

minutes. The opening angle was measured with a program for image processing9

and analysis, ImageJ 1.44p (National Institutes of Health).10

2.2. Mechanics of prestrained biological systems11

2.2.1. Continuum model12

We characterize prestrain using the concept of fictitious configurations and13

introduce a stress-free reference configuration, a residually stressed but me-14

chanically unloaded configuration, and residually stressed mechanically loaded15

configuration (Rausch and Kuhl, 2013).16

Figure 1 illustrates the three configurations, which can also be used to model17

prestrain induced by other physical mechanisms such as friction (Hild, 1998;18

Fagiano, Genet, et al., 2014). Under the small deformation hypothesis, this19

decomposition induces an additive decomposition of the strain itself: The total20

elastic strain is the sum of prestrain and mechanically-induced strain. Under21

finite deformations, this decomposition induces a multiplicative decomposition22

of the deformation gradient: The total elastic tensor F e is the product of a23

prestrain tensor F p and the mechanically-induced deformation gradient F :24

F e = F · F p with F = F e · F p−1 = ∇ϕ (1)

Inherent to this approach, only the mechanically-induced deformation gradient25

F = ∇ϕ is a gradient of a vector field, while F e and F p are generally incom-26

patible. We can then adopt the classical finite deformation theory for nearly27

incompressible bodies (Holzapfel, 2000), however, now based on the total elastic28
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Mechanically­induced
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Figure 1: Kinematics of prestrained biological systems. Prestrain maps the stress-free ref-

erence configuration onto the residually stressed but mechanically unloaded configuration

through the prestrain tensor F p. Mechanical loading maps the residually stressed but me-

chanically unloaded configuration into the mechanically loaded configuration through the

deformation gradient F . The total elastic deformation F e is a result of prestrain F p and

mechanical deformation F . Only the mechanical deformation F = ∇ϕ is the gradient of a

vector field, while the prestrain tensor F p and the elastic tensor F e are incompatible. Only

the elastic tensor F e generates stress.
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tensor F e instead of the purely mechanically-induced deformation gradient F .1

This implies that we can express the strain energy potential, which is generally2

a function of F and F p, as a function of F e only:3

ψ
(
F , F p

)
= ψe

(
F e
)

(2)

The most widely used method to impose incompressibility or quasi-incompressibility4

consists of further decomposing the elastic tensor into volumetric and isochoric5

parts:6

F e = F v · F e (3)

with the volumetric contribution F v = (Je)
1/3

1 with Je = det
(
F e
)

and the7

isochoric contribution F e = (Je)
−1/3

F e so that Je = det
(
F e
)

= 1. As a result8

of this decomposition, the independent variables are now the elastic Jacobian9

Je and the isochoric elastic Cauchy-Green tensor Ee:10

Je = det
(
F e
)

and Ee = 1
2

(
F e

t · F e − 1
)

(4)

We can then split the elastic strain energy potential into volumetric and devia-11

toric parts:12

ψe
(
Je, Ee

)
= U (Je) + ψe

(
Ee
)

(5)

For the volumetric part of the strain energy function (Auricchio, Beirão da13

Veiga, et al., 2013), we could suggest the following expression:14

U (Je) =
1

D0

(
1

2

(
(Je)2 − 1

)
− ln (Je)

)
(6)

For the deviatoric part, we use a transversely isotropic Fung law (Fung, 1993)15

adapted for myocardial tissue (Guccione, McCulloch and Waldman, 1991):16

ψe
(
Ee
)

=
1

2
C0

(
exp

(
Ee : B0 : Ee

)
− 1

)
(7)

where B0 is a fourth-order constitutive tensor, which takes takes a diagonal17

format in Voigt notation (Mehrabadi and Cowin, 1990; François, 1995):18

B̂0 = Diag (Bff , Bss, Bnn, 2Bfs, 2Bfn, 2Bsn) (8)
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Its individual parameters Bff , Bss, Bnn, Bfs, Bfn, and Bsn weigh the influence1

of the normal fiber, sheet, and normal strains and of the corresponding shear2

components. Throughout this paper, we use the normal human myocardial3

properties characterized in (Genet, Lee, et al., 2014) and summarized in Table4

1. Note that it is well-known that the Fung law is not poly-convex (Holzapfel,5

Gasser and Ogden, 2000; Holzapfel and Ogden, 2009), making the proposed6

model not strictly speaking thermodynamically consistent. However, it is still7

widely used for the myocardium; for this paper we solve our model implicitly8

and have not encountered any material instability. Furthermore, the framework9

presented here for growth-induced residual stress is independent from the choice10

of the strain energy potential, and a convex potential could be used instead.11

These equations can, in principle, allow us to calculate the in vivo stress12

state of the heart. Unfortunately, however, neither the initial nor the grown13

configuration are known. Only the residually stressed mechanically unloaded14

configuration and the mechanically loaded configuration can be imaged in vivo.15

In what follows, we propose a fixed-point iteration to computationally retrieve16

the initial configuration from the in vivo-acquired configuration. The core as-17

sumption of this algorithm is that residual stresses are a result of biological18

growth.19

D0 (kPa-1) C0 (kPa)

10-3 0.115

Bff () Bss () Bnn () Bfs () Bfn () Bsn ()

14.4 5.76 5.76 5.04 5.04 2.88

Table 1: Normal human myocardial properties (Genet, Lee, et al., 2014) used in this paper

for the ventricular simulations.

2.2.2. Computational model20

The constitutive laws have been implemented as a user subroutine into21

Abaqus/Standard. The subroutine is written in C++, and use the LMT++22
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library for linear algebra (Leclerc, 2010; Genet, 2010). The implementation is1

straightforward as outlined in detail in (Rausch and Kuhl, 2013).2

2.3. Mechanics of growth-induced, prestrained biological systems3

2.3.1. Continuum model4

The origin of prestrain is still an open questions today. Here, we investigate5

the hypothesis that the prestrain is induced by heterogeneous growth. In order6

to model the growth of biological tissues, we once again adopt the concept of7

fictitious configurations and decompose the total deformation multiplicatively8

into elastic, prestrain, and growth parts (Rodriguez, Hoger and McCulloch,9

1994; Ambrosi, Ateshian, et al., 2011; Kuhl, 2014). This decomposition is a10

very general tool, and can also be applied for instance to model tissue activation11

(Rossi, Ruiz-Baier, et al., 2012; Pezzuto, Ambrosi and Quarteroni, 2014)12

Figure 2 shows the different configurations and transformations. Similar13

to the mechanics of prestrained biological systems in Section 2.2, the elastic14

tensor F e can be multiplicatively decomposed into the prestrain F p and the15

mechanically-induced deformation F ′. Yet, we can also decompose the elastic16

tensor F e into the inverse growth F g and the deformation gradient F :17

F e = F ′ · F p = F · F g−1 with F = F ′ · F p · F g = ∇ϕ (9)

Note that in the special case where F = F ′, we have F p = F g−1. How-18

ever, in practice we only work with F g, which obeys the evolution equation de-19

fined in the next paragraph, and F e, which contains both the prestrain Fp and20

load-induced deformation F ′, and is used to compute stress through the elastic21

strain energy potential. Figure 2 also illustrates the heterogeneous growth-22

induced prestrain map F p between the incompatible grown configuration and23

the residually-stressed compatible configuration.24

Here, in order to focus on growth-induced residual stress and not on the25

growth itself, we will use a simple isotropic and strain-driven growth law. In-26

deed, even though it is now established that maladaptive hypertrophic processes27

are largely anisotropic (Taber, 1995; Frey and Olson, 2003), physiological growth28

10
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Figure 2: Kinematics of growth-induced, prestrained biological systems. Growth turns the

initial, stress-free and compatible configuration into the grown, stress-free but incompatible

configuration. Prestrain maps the grown, stress-free configuration onto the residually stressed

but mechanically unloaded configuration through the prestrain tensor F p. Mechanical loading

maps the residually stressed but mechanically unloaded configuration into the mechanically

loaded configuration through the deformation gradient F ′. The total elastic deformation F e is

a result of prestrain F p and mechanical deformation F ′. The full deformation F is a result of

growth F g , prestrain F p, and mechanical deformation F ′. Only the full deformation F = ∇ϕ

and mechanically-induced deformation F ′ = ∇ϕ′ are gradients of a vector field, while the

growth tensor F g , the prestrain tensor F p, and the elastic tensor F e are incompatible. Note

that Figure 2 becomes identical to Figure 1 if F g = 1.
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must involve both longitudinal and transverse growth, and isotropic growth is1

the simplest growth model that can generate residual stresses. Moreover, even2

though the hormonal mechanisms underlying tissue growth are complex and3

beyond the scope of this study, it is now accepted that hormonal signals are4

strongly regulated by mechanical signals, and that mechanotransduction, espe-5

cially stretch-sensitivity, is one of the fundamental processes underlying tissue6

growth (Maillet, van Berlo and Molkentin, 2013). Note that elastic strain and7

stress are coupled through the constitutive relationship and not mutually in-8

dependent, so a stress-driven law could be used as well. To characterize the9

kinematics of growth we can thus parameterize the growth tensor F g in terms10

of a single scalar-valued growth multiplier ϑg:11

F g = ϑg 1 (10)

To characterize the kinetics of growth, we assume that growth evolves in time12

according to the following evolution law:13

ϑ̇g = 1
τ tr

(
Ee
)

(11)

where τ is a time constant for growth. Since it is the only time constant of the14

problem, we simply set it to 1, and consider all other time-dependent quantities15

in terms of it. This implies that the driving force for growth is the trace of the16

elastic deformation Ee.17

2.3.2. Computational model18

Similar to the elasticity part in Section 2.2, we implemented the growth

model as a user subroutine into the finite element package Abaqus/Standard.

Since growth is driven by the elastic strains Ee, which are in turn affected by

growth as F e = F · F g−1, we iteratively determine the growth multiplier ϑg at

the integration point level at every global iteration step. Rather than using a

consistent Newton-Raphson procedure, which requires a consistent algorithmic

linearization (Göktepe, Abilez and Kuhl, 2010; Göktepe, Abilez, et al., 2010), we

adopt a local fixed-point iteration, supplemented by Aitken’s relaxation (Genet,
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Marcin and Ladevèze, 2013). For the time integration, we use an implicit mid-

point rule. This results in the following algorithm to determine the local growth

multiplier ϑg:

given: ϑgt ; F
t+1

; ∆t

initialize growth rate and iteration counter: ϑ̇gt+1/2 = 0 ; niter = 0

loop∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

update iteration counter: niter = niter + 1

update growth: ϑgt+1 = ϑgt + ϑ̇gt+1/2 ∆t

calculate elastic deformation: Ee
t+1

= 1
2 ( 1

(ϑg
t+1)

2 F
t

t+1
· F

t+1
− 1)

evaluate residual:


if (niter > 1) then rold = r

r = ϑ̇gt+1/2 −
1
τ tr

(
Ee

t
+Ee

t+1

2

)
check convergence: if (r < tolerance) then exit loop

calculate relaxation:

if (niter = 0) or
(
r = rold

)
then α = 1

else α = −α rold/(r − rold)

update growth rate: ϑ̇gt+1/2 = ϑ̇gt+1/2 − α r

end loop

For a tolerance of tol = 10−6, the algorithm converges rapidly in only a few1

iterations.2

2.3.3. Example of growth-induced, prestrained left ventricle3

Throughout this paper, we will illustrate our proposed method on a patient-4

specific left ventricular model of a healthy human (Genet, Lee, et al., 2014).5

This model characterizes healthy human ventricular mechanics. Briefly, the ge-6

ometry was extracted from magnetic resonance images by manual segmentation,7

and triangulated using linear hexahedrons. A generic myofiber orientation field,8

with linearly varying helix angle from +60°at the endocardium to -60°at the9

epicardium (Streeter and Bassett, 1966; Streeter, Spotnitz, et al., 1969), was10

assigned to the mesh. We use a standard displacement finite element method,11

13



with fully implicit time stepping. In terms of boundary conditions, we con-1

strain normal displacement of the basal nodes, and apply pressure loading at2

the endocardial faces.3

To introduce residual stresses in a subject-specific geometry, we solve the4

following problem: We load the left ventricle to a given ventricular pressure P ,5

then keep the pressure constant for a time t to allow the ventricle to grow, and6

then gradually remove the pressure. Growth duration t is usually expressed7

as a function of the growth time constant τ , which is the only time constant8

of the problem. As a result of heterogeneous growth, the final configuration9

is unloaded, but not stress free, i.e., residually stressed. Our goal is now to10

iteratively determine the reference configuration for which the in vivo grown11

geometry for given a given P and time t matches our subject-specific imaging12

data. The following section describes how we identify the reference configuration13

using fixed-point iterations.14

2.4. Computation of stress-free reference configuration of biological systems15

2.4.1. Fixed-point iteration16

As discussed in Section 2.3 and illustrated in Figure 2, the mechanically un-17

loaded configuration from medical imaging is not a true reference configuration18

in the continuum mechanics sense since it is residually stressed. The stress free19

reference configuration is unknown and has to be determined iteratively. A com-20

mon approach to this problem is to solve the so-called inverse elastic problem21

(Govindjee and Mihalic, 1996, 1998). Yet, this approach requires non-standard22

formulations and solvers on the continuum and discrete levels. Here we suggest23

an alternative fixed-point-based approach, which requires only modular modifi-24

cations to the original forward problem. Fixed-point iterations have originally25

been proposed by (Sellier, 2011), and have recently been adopted for in the con-26

text of cardiac mechanics by (Wang, Gao, et al., 2013; Wang, Luo, et al., 2013;27

Krishnamurthy, Villongco, et al., 2013). However, previous approaches have28

only used the fixed-point iteration to identify the reference configuration asso-29

ciated with a loaded in vivo configuration. Here, we use it to find the reference30

14



configuration associated with an unloaded in vivo configuration. We assume1

that this unloaded structure contains heterogeneous growth-induced residual2

stresses.3

Let Xref denote the nodal positions of the residually stressed, mechanically4

unloaded configuration obtained, e.g., from in vivo imaging. The objective of5

the fixed-point iteration is to find the nodal positions X of the stress-free, in-6

compatible configuration that will deform into Xref through the loading-growth-7

unloading scenario described in Section 2.3. Similar to the fixed-point iteration8

solver used for the growth law in Section 2.3.2, we adopt Aitken’s relaxation9

(Aitken, 1950) to improve convergence. For time integration, we use here an10

implicit backward Euler scheme. The algorithm to iteratively determine the11

nodal positions X in the stress-free configuration looks as follows:12 

given: Xref ; X init

initialize configuration and iteration counter: X = X init ; niter = 0

loop∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

update iteration counter: niter = niter + 1

for given X, P and t,

solve growth problem : Xdef

evaluate residual:

if (niter > 1) then Rold = R

R = Xdef −Xref

check convergence: if (max (R) < tolerance) then exit loop

calculate relaxation:


if (niter = 0) or

(
R = Rold

)
then α = 1

else α = −α Rold·(R−Rold)
(R−Rold)·(R−Rold)

update configuration: X = X − αR

end loop

Here X init are the initial nodal position of the stress-free reference config-13

uration, and Xdef are the deformed nodal position after the loading-growth-14

unloading procedure. This implies that X init could, but does not have to, be15

15



equal to Xref. Similar to the algorithm in Section 2.3.2, the fixed-point iteration1

converges rapidly in a few iterations for a tolerance of 10−1 mm.2

2.4.2. Computational model3

We implemented the fixed-point iteration as a python script, which solves4

the growth problem inside the inner loop using Abaqus/Standard and then5

post-processes the nodal positions.6

3. Results and Discussion7

3.1. Opening angle experiment8

Figure 3 illustrates our opening angle experiment. It shows an isolated heart9

slice before (left) and after (right) cutting the slice radially in the middle of the10

left ventricular free wall.11

  

Free wall

Septum

Figure 3: Opening angle experiment. Isolated heart slice before (left) and after (right) radial

cutting in the middle of the left ventricular free wall.

Basal slice Equatorial slice Apical slice

Heart 1 9.3 8.7 9.8

Heart 2 9.8 19.9 16.5

Heart 3 9.7 9.0 4.2

Heart 4 6.1 14.5 35.7

Mean±SD 8.7±1.8 13.0±5.3 16.6±13.7

Table 2: Opening angle experimental data. All values are reported in degrees.

16



Table 2 summarizes the opening angles of the basal, equatorial, and apical1

slices of all four hearts. Average opening angles increase from base to apex (from2

8.7° to 16.6°) with an increasing standard deviation (from ±1.8° to ±13.7°). The3

variability in opening angle may be attributed to a combination of geometric4

and structural differences between the two control slices, and the location of5

the radial cut. Nevertheless, opening angles are significantly lower than values6

found for rat hearts (45°) (Omens and Fung, 1990), hence potentially revealing7

a size-effect in residual stress development.8

3.2. Generating growth-induced prestrain9

Figure 4 illustrates our protocol to generate prestrain through heterogeneous10

growth in a patient specific left ventricular geometry (Genet, Lee, et al., 2014).11

For the sake of illustration, we used a nominal ventricular pressure P of 1 mmHg,12

and a nominal growth duration t of one growth time constant τ . During the13

strain-driven growth step, the myofiber stress field becomes more and more14

homogeneous. While homogeneous isotropic growth does not generate residual15

stress, homogeneous anisotropic growth (Rausch, Dam, et al., 2011; Kerckhoffs,16

2012) and heterogeneous isotropic growth (Göktepe, Abilez and Kuhl, 2010;17

Göktepe, Abilez, et al., 2010) do. Thus, the final configuration is residually18

stressed: the sub-endocardial region is in compression, the sub-epicardial region19

in in tension.20

This is in contrast to some models in the literature (Kroon, Delhaas, et al.,21

2007, 2009), which hypothesize that the growth-induced residual stresses are22

relieved over time, such that the grown configuration is always assumed to be23

stress free. Our opening angle experiment indicates though that the inner layer24

of the ventricle, similar to arteries, is in compression and the outer layer is in25

tension. This result is compatible with strain-driven growth-induced prestrain,26

the underlying hypothesis in this paper.27

We have used the trace of the elastic Green-Lagrange strain tensor as the28

thermodynamical force to drive growth. Other authors have used the fiber29

stretch (Lee, Genet, et al., 2014a); however, the fiber stretch is largest in the30

17



  

Pressure

Time

P

t

(a)

(b) (c)

(d)

(a) (b) (c) (d)

Figure 4: Protocol to generate heterogeneous growth-induced residual stress in a patient

specific left ventricular geometry. The ventricle is loaded to a ventricular pressure of P ,

(a)-(b), then allowed to grow for a duration t, (b)-(c), and then unloaded, (c)-(d). The strain-

driven growth drives the growing configuration into a state with a more homogeneous myofiber

stress and reduces regional stress variations (c). The final configuration is unloaded, but not

stress free, with the sub-endocardial region in compression, and the sub-epicardial region in

tension (d).
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mid-wall and not in the sub-endocardial region (Choi, D’hooge, et al., 2010;1

Lee, Genet, et al., 2014a), and the associated residual stress fields are not phys-2

iological. Others have use the Kirchhoff (Klepach, Lee, et al., 2012) or Mandel3

(Göktepe, Abilez and Kuhl, 2010; Göktepe, Abilez, et al., 2010) stresses, which4

are more “isotropic” quantities. Actually, in the case of isotropic growth and5

compressible elasticity, the Mandel stress is the energy conjugate of the growth6

state variable; however, in the case of quasi-incompressible elasticity considered7

here, the energy conjugate of the isotropic growth state variable is basically8

the isostatic pressure, which does not seem to be a reasonable driving force.9

In other words, the distribution of residual stresses constrains the functional10

form of the growth law. This is why, after systematically testing a collection11

of other driving forces for growth, we decided to select the trace of the elastic12

deformation.13

As for growth kinetic equation itself, for the lack of appropriate experiments,14

we use a simple linear evolution law. More complex evolution laws have been15

proposed, including thresholds and limiting values (Kuhl, 2014), and even mul-16

tiple domains (Lee, Genet, et al., 2014a) to predict both growth and reverse17

growth. The growth law we have selected here is the simplest law to predict18

heterogeneous growth.19

3.3. Growth-induced prestrain in patient-specific left ventricle20

Figure 5 illustrates the fixed-point iteration method to solve for the reference21

configuration associated with a given amount of prestrain, once again generated22

with a nominal ventricular pressure of 1 mmHg and a nominal growth duration23

of one growth time constant. For each iteration (i.e., each column), we show24

the reference stress-free configuration (top row) and the final (after loading,25

growth, and unloading) configuration (bottom row). During the fixed-point26

iterations, we compute the error between the reference configuration (obtained27

from medical imaging) and the deformed configuration (after loading-growth-28

unloading). The very last geometry (last column, bottom row) is identical to the29

very first (first column, top row; this geometry is the in vivo unloaded geometry30
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extracted from medical imaging), but it contains heterogeneous growth-induced1

residual stress.2

Figure 6 shows, for multiple growth durations ranging from 1 to 6 growth3

time constants, the reference configuration computed using the fixed-point iter-4

ation method (top row) as well as the prestrained configuration. The reference5

configuration is always stress-free, but the geometry varies. On the contrary,6

the prestrained configuration has always the same geometry (the one extracted7

from medical imaging data), but different levels of residual stress.8

By assuming that the early-diastolic ventricular geometry extracted from9

medical imaging is unloaded, we implicitly neglected the ventricular pressure at10

the beginning of diastole. However, this hypothesis is not necessary for using11

the fixed-point iterations. In principle, it is possible to prescribe any loading at12

the end of the forward step of the inverse problem, thus taking into account the13

mechanical load applied to the tissues.14

3.4. Virtual opening angle experiment15

After generating residual stresses in the subject-specific left ventricular ge-16

ometry, we slice the virtual heart longitudinally and then cut it open. The result17

is illustrated in Figure 7, for a nominal ventricular pressure of 1 mmHg, and18

a nominal growth duration of six growth time constants. During this virtual19

opening angle experiment, the apical and basal parts of the mesh are fixed, and20

only the slice is allowed to deform. To reproduce the experimental conditions,21

the nodes belonging to the upper and lower faces can only move in the sliding22

plane. To remove rigid body motions, the nodes of one face of the cut can only23

move in the cutting plane.24

Figure 8 shows the relationship between the maximum principal residual25

strain in the slice and the opening angle. Different levels of residual strain are26

generated using different growth durations, ranging from 1 to 6 growth time27

constants, while a 1 mmHg ventricular pressure is always used. The black line28

and the gray box mark the average and standard deviation from the physical29

opening angle experiment on the mid-level slice in Section 3.1. The graph30
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Figure 5: Fixed-point iteration method to compute the prestrained, mechanically unloaded

reference configuration (last column, top row) so that the prestrained, mechanically loaded

configuration (last column, bottom row) matches the in vivo geometry extracted from mag-

netic resonance images (first column, top row) but contains auto-balanced residual stresses.

Colors represent residual fiber stress, in kPa.

(a) (b) (c) (d) (e) (f)

Figure 6: Prestrained configurations for varying prestrain levels. Prestrain is generated by het-

erogeneous growth. The reference configurations are computed using a fixed-point iteration,

so that the prestrained configurations (bottom row) match the in vivo geometry extracted

from magnetic resonance images (top row). Colors represent residual fiber stress, in kPa.
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Figure 7: Virtual opening angle experiment. The prestrained configuration is sliced and then

cut. The slice naturally springs open, similar to the physical experiment illustrated in Figure

3. Cutting the slice relieves some, but not all residual stress. Colors represent residual fiber

stress, in kPa.

confirms that the proposed method is capable of reproducing physiologically1

realistic opening angle ranges.2

It is not necessary to shrink the ventricle to an infinitesimally small size3

to then induce enough residual stress through growth to generate a realistic4

opening angle. This means that part of the residual stress induced by growth5

during organogenesis is released, as hypothesized in (Kroon, Delhaas, et al.,6

2007, 2009). Our proposed method thus allows us to distinguish between the7

residual stress that is released, and the residual stress that remains within the8

tissues. Moreover, the fact that some of the residual stress is released justifies9

the original assumption that there exists a stress-free compatible configuration,10

which is described in Figure 2, and computed using the fixed-point algorithm11

described Section 2.4.12

3.5. Influence of the prestrain on the ventricular mechanical response13

An important consequence of prestrain is the influence of the residual stress14

on the mechanical response of the heart. Figure 9 shows the passive pressure-15

volume relationship for different levels of prestrain associated with different16

opening angles. Once again, the different levels of prestrain are generated us-17
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Figure 8: Opening angles for varying prestrain levels. The green curve summarizes the com-

putationally simulated opening angles for a pressure of P = 1 mmHg. The black line and

gray box mark the experimentally measured opening angle of 13±5.3°for the equatorial slice.

Computationally simulated opening angles lie within the range of experimentally measured

opening angles.
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ing different growth durations, here ranging from 1 to 6 growth time constants,1

and the ventricular pressure during growth is kept constant a 1 mmHg. Be-2

cause of the nature of residual stresses in growing circular cross sections, with3

compressive stresses at the sub-endocardial region and tensile stresses at the4

sub-epicardial region, prestrain tends to make the ventricle more compliant.5

For instance, for a maximal principal prestrain of 15.34%, a fiber residual stress6

varying from −0.12kPa to +0.055kPa, and an opening angle of 17.1°, i.e., close7

to the average experimental value, the ventricular pressure after a passive filling8

corresponding to an unloaded ventricular volume (i.e., a 50% ejection fraction)9

is reduced by 25.8% compared to the prestrain-free ventricle. As a consequence10

of this increased compliance, the ventricle requires less energy to fill. In other11

words, besides the well-known effect of homogenizing the ventricular wall stress12

(Omens and Fung, 1990), residual stresses could be a mechanism to directly13

improve ventricular diastolic function.14

4. Summary and Perspectives15

In this paper, we investigated the hypothesis that residual stress in the beat-16

ing heart is induced by growth of the organ. We used the finite growth frame-17

work, together with a fixed-point iteration on the geometry itself, to introduce18

residual stress in a subject-specific left ventricular geometry. We showed that19

the residual stress fields induced by heterogeneous growth are compatible with20

experimental results, both qualitatively and quantitatively. Indeed, our method21

can reproduce the classical opening angle experiment, by (Chuong and Fung,22

1986; Omens and Fung, 1990). It can successfully predict the physiological23

range of opening angles. We showed that the prestrain can have a significant24

impact on the passive mechanical response of the ventricle, making it much25

more compliant.26

The present study could be complemented at multiple levels. For instance,27

different growth kinematics such as longitudinal and transverse growth (Göktepe,28

Abilez and Kuhl, 2010; Göktepe, Abilez, et al., 2010), could be compared in29
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Figure 9: Passive pressure-volume response of the left ventricle for varying prestrain levels.

Increasing the prestrain level increases the ventricular compliance: for an opening angle of

17.1°, i.e., close to the average experimental value, the ventricular pressure after passive filling

corresponding to a 50% ejection fraction is reduced by 25.8% compared to the prestrain-free

case. This shows that residual stresses could be a mechanism to directly improve ventricular

diastolic function.
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terms of the opening angle they generate. Moreover, it would be interesting to1

explore regional variations along the longitudinal axis and compare prestrain2

in different slices. Furthermore, we plan to quantify the out-of-plane displace-3

ment, both experimentally and computationally, to provide additional informa-4

tion about the local residual stress field and the degree of anisotropy. Finally,5

we could use a fully convex elastic strain energy potential (Holzapfel and Ogden,6

2009), making our framework thermodynamically consistent.7

Some more general perspectives follow from this work. First, in addition8

to studying the influence of the prestrain on the passive ventricular response9

alone, we will characterize the sensitivity of the active response, and, eventu-10

ally, of the entire pressure-volume relationship, for different prestrain levels.11

Another important follow up study will be to incorporate the algorithm in-12

troduced here within a personalized left ventricular model (Genet, Lee, et al.,13

2014), and compute personalized passive and active cardiac mechanical prop-14

erties by taking into account physiological prestrain levels. Finally, we will15

study the interactions between physiological residual stress and residual stress16

induced by the injection of biomaterials in diseased myocardium as a potential17

treatments (Lee, Wall, et al., 2013, 2014), and their respective influence on ven-18

tricular mechanics. We believe that prestrain could be the key to explain various19

discrepancies in the literature between in vivo and ex vivo measurements and20

computational simulations. Including the effects of prestrain have the potential21

to make subject-specific modeling more reliable and more applicable to today’s22

cardiac health problems.23
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