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S U M M A R Y
Induced polarization is a geophysical method looking to image and interpret low-frequency
polarization mechanisms occurring in porous media. Below 10 kHz, the quadrature conductiv-
ity of metal-free sandy and clayey materials exhibits a distribution of relaxation times, which
can be related to the pore size distribution of these porous materials. When the polarization
spectra are fitted with a Cole–Cole model, we first observe that the main relaxation time is
controlled by the main pore size of the material and that the Cole–Cole exponent c is never
much above 0.5, a value corresponding to a Warburg function. The complex conductivity
is then obtained through a convolution product between the pore size distribution and such
Warburg function. We also provide a way to recover the pore size distribution by performing
a deconvolution of measured spectra using the Warburg function. A new dataset of mercury
porosimetry and induced polarization data of six siliciclastic materials supports the hypothesis
that the Cole–Cole relaxation time is strongly controlled by the pore size, and especially the
characteristic pore size corresponding to the peak of the pore size distribution from mercury
porosimetry. The distribution of the pore throat sizes of these materials seems fairly well
recovered using the Warburg decomposition of the spectral induced polarization spectra but
additional data will be needed to confirm this finding.

Key words: Electrical properties; Hydrogeophysics; Permeability and porosity.

1 I N T RO D U C T I O N

Induced polarization characterizes the ability of a porous ma-
terial to store reversibly electrical charges at low frequencies
(<10 kHz). The geophysical method named from the measurement
of these low-frequency polarization mechanism seems very promis-
ing in environmental geosciences and hydrogeology to characterize
the permeability distribution of the subsurface (e.g. Kemna 2000;
Binley et al. 2005; Hördt et al. 2007; Revil & Florsch 2010; Attwa
& Günther 2013), to differentiate sedimentary formations (Attwa
& Günther 2012; Gazoty et al. 2012), to monitor biodegradation
processes (Davis et al. 2006; Revil et al. 2012c) and to delineate
contaminant plumes and to monitor their remediation (e.g. Vanhala
1997; Deceuster et al. 2005; Schmutz et al. 2010; Vaudelet et al.
2011a,b; Chen et al. 2012; Deceuster & Kaufmann 2012; Schwartz
& Furman 2012). Reviews of recent progress in the field of induced
polarization applied to hydrogeophysical problems can be found in
Kemna et al. (2012) and Revil et al. (2012a).

Low-frequency polarization is usually associated with the fact
that the movement of ions in a porous material is governed not
only by Coulombic forces but also by concentration gradients (both
potentials can be combined to form electrochemical potentials, for
example, Marshall & Madden 1959). Minerals are generally coated

by an electrical double layer formed by a Stern layer of sorbed coun-
terions and a diffuse layer of ions attached to the mineral surface
through Coulombic interaction with the net electrical charge on
the surface of the minerals (Avena & de Pauli 1998). The ex-
istence of this electrical double layer and specially the Stern
layer seems to have a strong influence on electrical polarization.
This has been proven recently by changing the type of specific
cations sorbed in the Stern layer and looking at the effect of these
changes upon the magnitude of the polarization (see Vaudelet et al.
2011a,b).

Induced polarization measurements can be performed either in
the frequency domain (spectral induced polarization, SIP) or in the
time domain. In addition to a normalized chargeability (difference
between the low and high-frequency electrical conductivities), a
distribution of relaxation times can be inverted from induced polar-
ization spectral data by performing a deconvolution of the response
using a transfer function for the system (see Tong et al. 2006a,b;
Tarasov & Titov 2007, for time-domain induced polarization and
Kemna 2000; Ghorbani et al. 2007; Chen et al. 2008; Nordsiek &
Weller 2008 for frequency-domain induced polarization). Using a
mechanistic model, the distribution of relaxation times can be as-
sociated in turn to a distribution of polarization length scales, for
instance a distribution of grain sizes or pore sizes (see Tong et al.
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Influence of pore size on induced polarization 1017

2004, 2006a,b; Revil & Florsch 2010; Revil et al. 2012b; Bücker &
Hördt 2013).

In this paper, we first use a simple Cole–Cole model to describe
the low-frequency complex conductivity of porous media. In this
case, we will also provide evidences that the Cole–Cole exponent
c is comprised between zero (for very broad pore size or parti-
cle size distributions) and 0.5 (in the case of very narrow pore
size or particle size distributions). This observation points out that
the correct transfer function that should be used to perform the de-
convolution of the spectra is not the Debye function (a Cole–Cole
model with a c-exponent of 1) but a Warburg function (a special case
of the Cole–Cole function with a c-exponent equal to 0.5). Then,
we will develop a method to perform the deconvolution of induced
polarization spectra using the Warburg function and to analyse the
distribution of relaxation times in terms of pore size distribution.
This approach may offer a non-intrusive, non-destructive and en-
vironmentally friendly way to get porosimetry data from SIP data
rather than using mercury porosimetry.

2 A C O L E – C O L E M O D E L F O R T H E
C O M P L E X C O N D U C T I V I T Y

The goals of this section are (1) to demonstrate that the main relax-
ation time in a Cole–Cole model of complex conductivity is related
to the main pore size of a porous material and (2) to show that for
very narrow pore size distributions (close to a delta function), the
Cole–Cole exponent is close to 0.5.

2.1 Definitions

In frequency-domain induced polarization, we record the magni-
tude of the electrical conductivity from the current and the mea-
sured voltage (corrected by a geometrical factor depending on the
position of the electrodes and boundary conditions) and a phase
between the current and the voltage in response to a periodic har-
monic current. We note ω = 2 π f the angular frequency in rad
s−1, f is the frequency in Hz and i = (−1)1/2 the pure imaginary
number, AB the current electrodes and MN the voltage electrodes.
The results can be expressed as a complex conductivity σ ∗ or
a complex resistivity ρ∗ = 1/σ ∗. The relationships between the
modulus of this conductivity |σ | and the phase ϕ and the real
and imaginary components of the conductivity, σ ′ and σ ′′, are

given by σ ∗ = |σ | exp(iϕ) = σ ′ + iσ ′′, with |σ | =
√

σ ′2 + σ ′′2 and
tan ϕ = σ ′′/σ ′. In Section 2.2, we provide a simple general model
to describe the complex conductivity of clayey or clean sands and
sandstones.

2.2 Model description

Fig. 1 depicts three polarization mechanisms associated with the
polarization of a mineral grain coated by an electrical double layer
coating the surface of the grains (e.g. Wang & Revil 2010). They in-
clude (1) the deformation of the diffuse layer, which occurs at very
high frequency (>10 kHz, see the so-called Debye–Falkenhagen
effect, Falkenhagen 1934), (2) the polarization of the Stern layer
(Schwarz 1962; Leroy et al. 2008) and (3) the diffusion or mem-
brane polarization, which is related to the difference in the trans-
ference number for the cations and anions during their migration
in the porous material (Marshall & Madden 1959; Bücker & Hördt
2013). It seems that the main polarization mechanism is associated
with the Stern layer since we still observe a strong polarization at

(a)

(b)

Figure 1. Polarization of a single grain. (a) Electrical double layer (Stern
plus diffuse layers) at equilibrium. (b) Polarization mechanisms of the grain
under an electrical field E. Three mechanisms occur: (i) the Falkenhagen
contribution is due to the deformation of the diffuse layer and is characterized
by a very fast relaxation time. (ii) The Stern layer polarization is due to
the migration of the counterions in the Stern layer. (iii) The membrane
polarization is due to the increase of salinity in the direction of the electrical
field and the decrease of salinity on the other side of the grain (actually this
increase/decrease of the salinity depends on the value of the transference
numbers for the cations and anions).

the isoelectric point of the mineral surface (zeta potential equals
zero) for which there is no electrical diffuse layer (e.g. Revil et al.
2013a,b).

A very popular complex conductivity model is the Cole–Cole
function (e.g. Tarasov & Titov 2013):

σ ∗(ω) = σ∞ − Mn

1 + (iωτ0)c
, (1)

where the normalized chargeability is traditionally defined by (e.g.
Kemna 2000),

Mn = σ∞ − σ0 ≥ 0, (2)

while the chargeability is defined by M = 1 − σ0/σ∞ (Kemna
2000), c denotes to the Cole–Cole exponent (0 ≤ c ≤ 1), τ0 de-
notes the characteristic relaxation time (or time constant) and σ0

and σ∞ denote the low-frequency and high-frequency asymptotic
limits of the electrical conductivity, respectively. This model was
derived from the paper of Cole & Cole (1941) in which the Cole–
Cole expression was derived to describe the complex permittivity
of polar fluids. Florsch et al. (2012) noted that the Cole–Cole model
in complex conductivity is not equivalent to the Cole–Cole model
used by Pelton et al. (1978) to describe the complex resistivity of
porous rocks but some relationships can be drawn between the two
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1018 A. Revil, N. Florsch and C. Camerlynck

models (see Florsch et al. 2012; Tarasov & Titov 2013, for further
details). In the following, we will call ‘Warburg model’, a special
case of the Cole–Cole model described above by eq. (1) with c fixed
to 0.5. We will call ‘Debye model’, a special case of the Cole–Cole
model described above with c fixed to 1.

In the frequency dependent conductivity model obtained through
a volume-averaging approach by Revil (2013a,b), the low- and high-
frequency conductivities entering eqs (1) and (2) are given by:

σ0 = 1

F
σw +

(
1

Fφ

)
ρSβ(+)(1 − f )CEC, (3)

σ∞ = 1

F
σw +

(
1

Fφ

)
ρS

[
β(+)(1 − f ) + β S

(+) f
]

CEC, (4)

where F denotes the electrical formation factor (dimensionless),
φ denotes the connected porosity (dimensionless), σw (in S m−1)
corresponds to the pore water conductivity, f (dimensionless) de-
notes the fraction of counterions in the Stern layer (typically ∼0.90
for clays, see Revil 2013a,b), ρS denotes the mass density of the
solid phase (typically 2650 kg m−3 for clay minerals and silica),
β(+) corresponds to the mobility of the counterions in the diffuse
layer [e.g. β(+)(Na+, 25 ◦C) = 5.2 × 10−8 m2s−1V−1], βS

(+) de-
notes the mobility of the counterions in the Stern layer βS

(+)(Na+,
25 ◦C) = 1.5 × 10−10 m2s−1V−1 for clay minerals and βS

(+)(25 ◦C,
Na+) = 5.2 × 10−8 m2s−1V−1 for silica grains, Revil 2013a,b)
and CEC denotes the cation exchange capacity of the material (ex-
pressed in C kg−1). The cation exchange capacity denotes the total
amount of cations that can get sorbed on the surface of a mineral at
a given pH (generally ∼7) and the product (1 − f )CEC denotes the
amount of cations (per mass of grains) located in the diffuse layer
whereas f CEC denotes the amount of cations (per mass of grains)
located in the Stern layer.

2.3 Relation between the �-Parameter and the Cole–Cole
relaxation time

Johnson et al. (1986) introduced a dynamic pore throat size 
 that
can be determined from the distribution of the electrical potential in
a pore network in absence of surface conductivity (e.g. Bernabé &
Revil 1995). Revil et al. (2012b) found that the Cole–Cole relaxation
time τ0 entering eq. (1) seems to be controlled by this pore size 


(rather than the grain size) according to,

τ0 = 
2

2DS
(+)

, (5)

where DS
(+) denotes the diffusion coefficient of the counterions in the

Stern layer (the layer of sorbed counterions on the mineral surface,
see Revil 2012, 2013a,b and Fig. 1).

Katz & Thompson (1987) developed a relationship between the
permeability at saturation k and the percolation length scale rc

using percolation principles k = r 2
c /(226F). A comparison with

k = 
2/8F (Johnson et al. 1986; Avellaneda & Torquato 1991)
yields rc ≈ 5.3 
. Using 
2 = 8Fk and 
 = rc/5.3 in eq. (5)
yields:

τ0 ≈ r 2
c

56DS
(+)

. (6)

The diffusion coefficient entering into the expression of the
Cole–Cole time constant (eqs 5 and 6) can be related to the mo-
bility of the counterions in the Stern layer entering eqs (3) and
(4), βS

(+), by the Nernst–Einstein relationship DS
(+) = kbTβS

(+)/|q(+)|,

Figure 2. Phase spectrum for glass beads having the same size but different
roughness. The low-frequency polarization is dominated by the response
of the grains (suspensions) or the pores (dense porous material). The inter-
mediate frequency range is clearly dominated by the effect associated with
the roughness of the grains. The high frequency polarization is associated
with dielectric effects (Maxwell–Wagner polarization including the high-
frequency dielectric limit, see discussion in Revil 2013a). Data from Leroy
et al. (2008), Cf denotes the salinity of the pore water solution (NaCl) and
ω the pulsation frequency.

where |q(+)| is the charge of these counterions (e.g. |q(+)| = e
for Na+ where e denotes the elementary charge). The value
βS

(+) (Na+, 25 ◦C) = 1.5 × 10−10 m2s−1V−1 yields DS
(+)(Na+,

25 ◦C) = 3.8 × 10−12 m2s−1 for clay minerals (see Revil 2013a,b).
For the clean sands and sandstones, the mobility of the sodium
in water [β(+)(Na+, 25 ◦C) = 5.2 × 10−8 m2s−1V−1] leads to a
diffusion coefficient of DS

(+)(Na+, 25 ◦C) = 1.32 × 10−9 m2s−1.

2.4 Cole–Cole model versus experimental data

We compare now the previous model with experimental data.
We first plot the phase lag for a pack of glass beads in the frequency
range 3 mHz to 45 kHz (Fig. 2). These glass beads have identical
particle sizes. The low-frequency polarization has previously asso-
ciated either with grain sizes (Revil & Florsch 2010) or with pore
sizes (Revil et al. 2012b; Bücker & Hördt 2013, this work). Note
that the phase scales as ω1/2 at low frequencies. We will show later
that this behaviour is that predicted by a Warburg function. Fitting
these data with a Cole–Cole model, we obtain a Cole–Cole expo-
nent of 0.48 ± 0.3 (Fig. 2). The intermediate frequency range seems
controlled partly by the polarization of heterogeneities associated
with the roughness of grain surfaces (see Leroy et al. 2008). The
phase at high frequencies scales as ω and this behaviour is a char-
acteristic of the high frequency dielectric response −iωε∞ where
ε∞ denotes the high-frequency dielectric permittivity.

In Figs 3(a) and (b), we plot the complex conductivity spectrum
of a fine sand characterized by a narrow grain size distribution with
a mean of 100 µm. Despite the fact that the grain size distribution of
this sand is narrow, it is not as narrow as for the glass beads used for
the measurements displayed in Fig. 2. Fig. 3(b) shows that a portion
of the spectrum is not well fitted by a Cole–Cole model because of
the potential effect of the roughness of the grain-pore water interface
between the main polarization frequency and the high-frequency
dielectric effect (see Fig. 2). Fig. 3(c) shows a similar attempt to
fit the data but without considering the data comprised between
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Influence of pore size on induced polarization 1019

Figure 3. In-phase and quadrature conductivities of a clean sand with a very narrow grain size distribution with a mean diameter of 100 µm (data from
Vaudelet et al. 2011a). (a, b) For the quadrature conductivity, the data comprised between the low-frequency peak of the spectrum and the high-frequency
dielectric effect is not fitted because of the potential effect of the roughness of the grain-pore water interface in this domain as shown in Fig. 2. ε0 denotes the
dielectric constant of vacuum. (c) Fit of the quadrature conductivities data from Vaudelet et al. (2011a) not taking into account the data potentially influenced
by the roughness of the grains. Grain diameter 100 µm, formation factor 3.1 and permeability 2.85 × 10−12 m2. The pore size of the sand is roughly 8.4 µm.
(d) Microphotograph of the sand.

the peak frequency and the high frequency dielectric behaviour.
The data are pretty well fitted with a Cole–Cole model with a
c-exponent of c = 0.39, therefore much lower than the value c = 1
that would be associated with a Debye model and a bit smaller than
the one found for the glass beads (c = 0.48). We also observe the
high-frequency behaviour in ω in Fig. 3 characterizing dielectric
behaviour.

From the previous figures, it is possible that the broadness of the
polarization is associated with the broadness of the grain or pore
size distributions. We test now this idea using a broader database
of experimental data. Fig. 4 shows the cementation exponent m
entering Archie’s law F = φ−m between the formation factor F and
the connected porosity φ (Archie 1942) and the Cole–Cole exponent
c distribution for a variety of sands and sandstones characterized by

different pore size distributions. Very sharp particle size distribution
(PSD) corresponds to PSD distributed over less than one decade
while very broad PSD corresponds to the PSDs spreading over
three decades. For very well-sorted sands, c is equal to 0.40 ± 0.12
(11 samples with the very sharp grain size distributions, see Fig. 4).
This shows that the exponent c in the Cole–Cole model does not
take the full range of values between 0 and 1 but is restricted to
the range 0 and 0.5. The upper bound, c = 0.5 is consistent with
a Warburg model and not with a Debye model for which c = 1.
When the distribution of pore sizes is very broad, the exponent
c has a tendency to be close to zero (flat distribution) while m
increases to values around 2. In conclusion, for very narrow grain
size distribution (all the grains have essentially the same size),
we would expect c to be close to 1 according to the Debye model
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1020 A. Revil, N. Florsch and C. Camerlynck

Figure 4. Cross-plot of the cementation exponent (m > 1) entering Archie’s
law F = φ−m in which F is the intrinsic formation factor corrected for
surface conductivity (Archie 1942) and the Cole–Cole exponent c (according
to the Warburg model discussed in the main text, 0 ≤ c ≤ 0.5). There are two
extreme end-regions denoted as A and B. Domain A is typical of well-sorted
clean sands while domain B is typical of clay-rich materials. The plain line
denotes the trend between m and c. Data from Revil et al. (2013b, saprolites
and clayey andstones) and Vinegar & Waxman (1984, samples 3477, 3336A,
3478, 101 and 102).

but we actually find that c is always smaller than ∼0.50 as shown in
Figs 3 and 4.

We discuss now the relationship between the Cole–Cole relax-
ation time and the main pore size for both clay-free and clayey
granular porous materials using a broad database of published ex-
perimental data. We plot the Cole–Cole relaxation time versus the
main pore size data for clean sands and sandstones (Fig. 5) and
for shaly sands and sandstones (Fig. 6). We note that the trends
are linear in a log–log scale with a power-law coefficient of two as
predicted by eqs (5) and (6). The second observation is that the two
trends are distinct indicating that the diffusion coefficient for the
counterions in the Stern layer is not the same on the surface of pure
silica and clays, in agreement with the observations made by Revil
(2013a,b).

We fit the data shown in Fig. 5 with the Cole–Cole model (plain
line) calculated using a mobility of 5.2 × 10−8 m2s−1V−1 (hence
a diffusion coefficient DS

(+)(Na+, 25 ◦C) = 1.32 × 10−9 m2s−1 in
eq. 6) for the counterions in the Stern layer equal to the mobility
(diffusion coefficient) in water. There is a fair agreement between the
model and the data. In Fig. 6, we perform the same comparison for
clayey sands and sandstones. Again the model fits the data very well
with the model computed with a diffusion coefficient of DS

(+)(Na+,
25 ◦C) = 3.8 × 10−12 m2s−1 determined from the ionic mobility
inferred by Revil (2012, 2013a) for clay minerals (see Appendix A
for the description of the in-phase and quadrature components of the
complex conductivity). Our model indicates that the mobility of the
counterions of clays is roughly 300 times smaller on the surface of
clay minerals than the value obtained for silica sands (see discussion
above at the end of Section 2.3).

Figure 5. Cole–Cole relaxation time τ 0 versus the pore size 
 for clean
sands. For the data from Koch et al. (2011), the pore size is determined
from the median grain size and the formation factor using the relationship
developed by Revil & Florsch (2010). Pore size is determined from mercury
intrusion porosimetry (Binley et al. 2005), from rc = 5.6 (8 k /φ2)1/2 for the
data of Tong et al. (2006a) and from permeability for the data of Vaudelet
et al. (2011a,b). For the clean sands and sandstones, the diffusion coefficient
is DS

(+)(Na+, 25 ◦C) = 1.32 × 10−9 m2s−1.

Figure 6. Cole–Cole relaxation time τ 0 versus the pore size for clayey
and shaly porous media. For the clayey material, the diffusion coefficient
is estimated to be equal to DS

(+) (Na+, 25 ◦C) = 3.8 × 10−12 m2s−1 and
is determined from the mobility of the counterions in the Stern layer (see
Revil 2013 and discussion in the main text). Data from Scott & Barker
(2003), Revil et al. (2013a), Comparon (2005), Lesmes & Frye (2001) and
this work. The 
-parameter is determined from the permeability and the
formation factor using 
2 = 8Fk.

3 E L E C T R I C A L P O RO S I M E T RY O F
S A N D S T O N E S : T H E O RY

3.1 Rationale for a Warburg transfer function

Warburg (1899) developed the first solution to the diffusion equation
with oscillating concentration as boundary condition. His approach
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Influence of pore size on induced polarization 1021

has been subsequently used in the literature to model a variety of
polarization mechanisms. The complex conductivity of a Warburg
model can be written as

σ ∗ = σ∞ − Mn

1 + (iωτ0)1/2
. (7)

Eq. (7) shows that the Warburg model is a special case of the
Cole–Cole model with an exponent of c = 0.5. At low-frequencies,
the phase or the quadrature conductivities scales as (ω)−1/2 as shown
in Fig. 2 for glass beads with a uniform grain size. When decom-
posed with a Debye model, the (normalized) distribution of relax-
ation times for the Cole–Cole model is (Cole & Cole 1941)

g(τ ) = 1

2πτ

sin [π (1 − c)]

cosh
[
c ln

(
τ

τ0

)]
− cos [π (1 − c)]

. (8)

In the special case of the Warburg model, we have therefore:

g(τ, c = 0.5) =
(

1

2πτ

)
1

cosh
[

1
2 ln

(
τ

τ0

)] , (9)

g(τ, c = 0.5) =
(

1

π

) (
τ

τ0

)1/2

τ + τ0
. (10)

The idea we follow in the remaining part of the paper is that
the Warburg function, rather than the Debye function, is the correct
transfer function to determine the pore size or the pore size distri-
bution. In the case that all the pores have the same size, a single
pore size should be reflected by a single relaxation time, that is
the Warburg function should be analysed in terms of a distribution
of relaxation times h(τ ) given by h(τ ) = δ(τ − τ0) (i.e. a Dirac
function).

The relationship between the distribution of relaxation times ob-
tained with Debye and Warburg decompositions of a given complex
conductivity spectrum is discussed further in Appendix B. Using
the convolution theorem based on the superposition principle, the
complex conductivity is given by,

σ ∗ = σ∞ − Mn

∫ ∞

0

h(τ )

1 + (iωτ )1/2
dτ, (11)

The distribution of the intrinsic relaxation times, h(τ ), corresponds
to a normalized probability density and therefore obeys to∫ ∞

0
h(τ ) dτ = 1. (12)

We believe that there are two reasons to choose the Warburg
function as transfer function rather than the Debye function:

(i) There is a group of theoretical transfer functions based on
mechanistic models (Wong 1979; de Lima & Sharma 1992; Dukhin
& Shilov 2002) describing the polarization of charged colloidal par-
ticles and granular materials (all with the same polarization length
scale) with a transfer function close to a Warburg transfer function.
The Warburg model is usually used to model a leaky capacitance.
In our case, this would mean that the grains coated by the Stern
layer behave as leaking capacitances. If we consider for instance a
sand saturated by a NaCl solution, the controlling reaction for the
interfacial impedance corresponds to the sorption/desorption of the
sodium on the silica surface (Fig. 1b):

>SiO−Na+ ⇔ > SiO− + Na+, (13)

where ‘>’ refers to the crystalline framework and >SiO− denotes
the negative site at the surface of the silica SiO2. It follows that

the polarization shown in Fig. 1 can be seen as a leaky capacitance
characterized by a Warburg impedance model.

(ii) If we adopt a Debye decomposition of spectra to obtain relax-
ation times, the associated distribution of polarization length scale
seems always much broader than the true distribution of polarization
length scales (e.g. Leroy et al. 2008; Vaudelet et al. 2011a). This
observation is consistent with the other observation made above
that the spectral induced polarisation data of glass beads and silica
sands fitted with a Cole–Cole model show a Cole–Cole exponent
always smaller or equal to 0.50. In both cases, the Debye model is
not the model describing the behaviour of a porous material with
all the grains being the same and the observations point out that the
Warburg model is the correct model to be used in deconvolving the
complex conductivity data.

3.2 Relation between the relaxation time distribution
(RTD) and the pore size distribution

We consider the case of a sandstone characterized by a (normal-
ized) pore size probability distribution f (r ) where r is a given
pore radius. We assume that this pore size distribution f (r ) is as-
sociated with a (normalized) distribution of relaxation times h(τ ).
Assuming,

τ = r 2

2DS
(+)

, (14)

(DS
(+) denotes the diffusion coefficient of the counterions), the two

probability density functions f (r ) and h(τ ) are related to each other
by their probability distributions following the same type of analysis
made by Revil & Florsch (2010). This yields,

τh(τ ) = f (r )

2Fh
, (15)

with,

Fh =
∫ +∞

0
f (r ) d ln r. (16)

The parameter Fh can be seen as a normalization constant. Eqs
(14) and (15) can be used to obtain an explicit function of the
relaxation time using the distribution of pore sizes,

h(τ ) =
(

DS
(+)

Fh

)
f (r )

r 2
. (17)

Eq. (17) can be used to compute the distribution of relaxation
times from the distribution of pore sizes. Alternatively, pore size
distribution can be constrained from the distribution of relaxation
times inverted from complex conductivity spectra. In a second step,
this distribution can be inverted to retrieve f (r ). Such an inversion
would allow getting the pore size distribution from SIP data in the
same way it is presently performed with nuclear magnetic resonance
(NMR, see for instance Timur 1969; Weller et al. 2010). In the next
section, we explain how we can perform a deconvolution of SIP
spectra and use the result to determine the pore size distribution.

3.3 Warburg decomposition of SIP spectra

We consider below that a porous rock is a linear system in terms of
the relationship between the pore size distribution and the resulting
induced polarization spectra. We have seen in the previous sections
that if the pore size distribution is described by a delta function,
the associated RTD will be described by a delta function, and the
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1022 A. Revil, N. Florsch and C. Camerlynck

associated impulse function of the system is a Warburg function.
Therefore the pore size distribution can be recovered by perform-
ing a deconvolution of the induced polarization spectra using this
impulse or Green’s function. We propose below a methodology to
perform this task, which is based on a generalization of the approach
proposed recently by Florsch et al. (2012) who used the Debye func-
tion to perform the deconvolution of complex conductivity spectra.

We start by using a complete expression of the effective complex
conductivity derived above in eq. (11) and adding the dielectric
polarization (electric displacement) to the complex conductivity:

σ ∗
eff = σ∞ − Mn

∫ ∞

0

h(τ )

1 + (iωτ )1/2
dτ + iωε∞, (18)

In the following, the set {Mn, h(τ )} is replaced by a non-
normalized function h̄(τ ) (to be inverted after discretization, see
Florsch et al. 2012, Appendix A):

σ ∗
eff − iωε∞ = σ∞ −

∫ ∞

0

h̄(τ )

1 + (iωτ )1/2
dτ. (19)

Using the following transformation of variables (Florsch et al.
2012):{

z = − ln(ω) ⇔ ω = e−z

s = ln(τ ) ⇔ τ = es
, (20)

Eq. (19) is written in a convolutive form:

σ ∗ = σ∞ −
∫ ∞

−∞
Gs(s)H̄ z(z − s)ds. (21)

with,⎧⎪⎨
⎪⎩

Gs(s) = τh(τ )

H̄ (z, s) = 1

1 + iec(z−s)

. (22)

The discretization of eq. (21) on NG points leads to equations
that corresponds to a Riemann sum with step s. By separating the
real and imaginary parts, we obtain:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ ∗�
k = σ∞ − s

NG∑
j=1

��
k j Gj

σ ∗
k = −s

NG∑
j=1

�
k j Gj + Ce−zk

(23)

At this stage the system of equations is linear, but it should
include also the fundamental property that the RTD is a probability
function and must be necessarily positive. This property is insured
by an additional change of variable:

∀ j, G j = eG′
j . (24)

leading to the final model in G ′
j :⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ ∗�
k = σ∞ − s

NG∑
j=1

��
k j · eG′

j

σ ∗
k = −s

NG∑
j=1

�
k j · eG′

j + Ce−zk

. (25)

To solve that set of non-linear equations, we use the ‘non-linear
generalized least-square method’ developed by Tarantola & Valette
(1982). To optimize the damping factor devoted to smooth the so-
lution of this ill-posed problem (see Tikhonov 1977), we use the
L-curve method (see Florsch et al. 2012 for the application of the

L-curve to a very similar problem but based on the Debye model).
We can also use a variant of the method proposed by Florsch et al.
(2012) solving the problem in the Fourier space. A third possibil-
ity is to transform the result of the Debye decomposition into a
Warburg decomposition distribution of relaxation times. This third
idea is explored in Appendix B. In Appendix B, we derive a formula
(eq. B17) that can be used to transform the distribution of relax-
ation time obtained from a Debye deconvolution to a distribution
of relaxation time obtained from a Warburg deconvolution and vice
versa. This formula can be very useful to researchers using existing
codes based on the Debye deconvolution of the complex conduc-
tivity spectra and who want to transform their results in terms of a
distribution of relaxation times using a Warburg deconvolution.

Once we have obtained the distribution of the relaxation times,
we still need to determine the pore size distribution. We start with
the relationship,

τ = r 2

aDS
(+)

, (26)

where r is a characteristic pore size, a is a constant. It follows:

r =
√

τaDS
(+), (27)

Actually, h(τ ) is not needed, only the logarithm of the distribution:
H (s) = τh(τ ) is required. The independent variable s is given in
log10 (we use the base 10 by choice). Therefore the transformation
from τ to r is just an affine transformation:

log10 r = 1

2

[
log10 τ + log10

(
aDS

(+)

)]
. (28)

Therefore, we can use directly the RTD in log10 τ to determine the
distribution of pore sizes in log10 r . This transformation corresponds
only to a translation along the x-axis and a factor 1/2 applied to the
scaling. A comparison between this procedure and experimental
data is provided in Section 4.

4 E L E C T R I C A L P O RO S I M E T RY:
C O M PA R I S O N W I T H E X P E R I M E N TA L
DATA

4.1 Core samples

Six siliciclastic samples were collected from the Great Divide Basin
(Wyoming, USA). Five samples are sandstones with angular to
subrounded grains and sample #439 denotes a mudstone (Table 1).
The samples have been chosen because they are characterized by
a broad variability in pore sizes. Their permeability ranges from 3
to 1600 mD and their porosity ranges from 0.21 to 0.31 (Table 1).
The formation factors were obtained through classical conductivity
measurements at different salinities (see for instance Revil 2012)
and were corrected for surface conductivity.

4.2 Complex conductivity measurements

The six samples were saturated under vacuum with the natural
ground water saturating the formations from which they were
extracted. The pore water conductivity of this ground water is
0.048 ± 0.013 S m−1 at 25 ◦C and its composition is reported in
Table 2. The complex conductivity measurements were taken using
the ZEL-SIP04-V02 impedance meter at 25 frequencies from 1 mHz
to 45 kHz (see Fig. 7 for the experimental setup). This impedance
meter was built by Egon Zimmermann in Germany (Zimmermann
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Influence of pore size on induced polarization 1023

Table 1. Description of the core samples in terms of porosity φ, permeability k, formation factor F, pore
size 
 = (8k F)1/2 and Cole–Cole relaxation time τ0 from the measured SIP spectra. The measured grain
density is in the range 2596–2620 kg m−3. All the samples are sandstones except Sample #439, which
is a mudstone. 1 mD–10−15 m2. The pore sizes rc(50) and rc(peak) denote the median of the pore size
distribution and the value of the pore radius corresponding to the peak of the distribution, respectively.

Sample φ k F 
 τ0 rc(50) rc(peak) τ0

(−) (mD) (−) (µm) (1) (s) (2) (µm) (3) (µm) (4) (s) (5)

S499 0.265 1103 5.6 ± 0.4 7.0 2.6 ± 0.2 14.3 22 2.3
S498 0.206 35.9 9.0 ± 0.8 1.6 0.20 ± 0.01 1.98 4.5 0.10
S490 0.233 635 12.1 ± 0.4 7.8 3.2 ± 0.3 12.2 25 2.9
S493 0.232 115 18.3 ± 0.4 4.1 0.41 ± 0.04 4.4 6 0.17
S439 0.208 2.62 13.3 ± 0.7 0.53 0.023 ± 0.001 0.52 0.9 0.004
S436 0.306 1623 4.0 ± 0.3 7.2 25.5 ± 3.6 13.2 55 14.2

Notes: (1) Determined using 
2 = 8Fk with k determined from the capillary entry pressure (see Fig. 15);
(2) using a Cole–Cole fit of the spectral induced polarization spectra; (3) median of the pore size dis-
tribution from Hg porosimetry; (4) peak of the pore size distribution and (5) predicted value using
τ0 = rc(peak)2/(56DS

(+)) with DS
(+)(Na+, 25 ◦C) = 3.8 × 10−12 m2s−1.

Table 2. Composition of the natu-
ral groundwater for the sandstones.
TDS, total dissolved solids.

Parameter Units Value

TDS mg l−1 318
Conductivity µS cm−1 479
pH – 8.1
Alkalinity mg l−1 109
Na+ mg l−1 30.6
K+ mg l−1 3.9
Ca2+ mg l−1 65.0
Mg2+ mg l−1 3.1
Cl− mg l−1 6.0
HCO3

− mg l−1 123
SO4

2− mg l−1 132

Figure 7. Experimental setup. (a) Position of the current (A and B) and
voltage (M and N) electrodes and sensitivity map (assuming the sam-
ple is homogeneous), which shows that there is a good sensitivity of the
measurement over the cross-section area of the column. The sensitivity
for the electrode array ABMN was computed in Vaudelet et al. (2011b).
(b) ZEL-SIP04-V02 impedance meter build by Egon Zimmerman.

et al. 2008a,b). The accuracy was ∼0.1–0.3 mrad at frequencies
<1 kHz. Ag–AgCl electrodes were used for both injection and po-
tential electrodes and the electrode array was circumferential around
the cylindrical core samples (Fig. 7). Benchmark tests of this equip-
ment can be found in Revil & Skold (2011).

The spectra are shown in Fig. 8. The magnitude of the conductiv-
ity increases with frequency and the phase shows well-characterized

bell shapes. At the relaxation peak, the phase is in the range –6
(mudstone, #439) to –38 mrad (Sample #499). The peak of the
phase lag occurs in the range 2 mHz (Sample #436) to 20 Hz
(mudstone, #439). The electrical conductivities are in the range
0.02–0.12 S m−1.

4.3 Pore size distribution

Mercury porosimetry measurements were performed on the six
samples (Figs 9a–14a). Thin sections of the core samples are also
shown in Figs 9(b)–14(b). The permeability reported in Table 1
was determined from the mercury intrusion experiments using a
modified Swanson (1981) approach derived by Revil et al. (2014)
based on the capillary entry pressure pe (in Pa),

pe = 2γ√
226

(
φ√
k

)
, (29)

where φ denotes the connected porosity, γ represents the surface
tension between water and air (71.99 ± 0.05) × 10−3 N m−1 and k
the permeability at saturation. We test the proportionality between
the capillary entry pressure and the ratio φ/

√
k in Fig. 15 (the

proportionally coefficient is fixed by the theory). Eq. (20) is used to
predict the permeability from the porosity and the capillary entry
pressure to Mercury for the different samples. When using use the
following formula 
2 = 8Fk to determine the pore scale 
 we
obtain 
 ≈ (0.38γ )/pe, which is used to determine 
 using the
capillary entry pressure.

4.4 Data analysis

We found that the induced polarization spectra cannot be fitted
by the Cole–Cole model. That said, the portion of the induced
polarization data in the vicinity of the relaxation peak can be
fitted very well by the Cole–Cole model described in Section 2.1
and Appendix A (using eqs A4 and A5). The corresponding fits are
shown by Figs 9(c)–14(c) (the non-linear optimization is done with
the least-square criterion using the Gauss–Newton method, see Chen
et al. 2008). The values of the Cole–Cole parameters [normalized
chargeability Mn, Cole–Cole exponent c and Cole–Cole relaxation
time τ 0 are shown on the Figs 9(c)–14(c), see also Table 1 for the
value of τ 0].

In Fig. 16, we plot the Cole–Cole relaxation time with the pore
scale 
 (determined from the formation factor and the permeability,

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/198/2/1016/2874197 by C

N
R

S - ISTO
 user on 09 N

ovem
ber 2021



1024 A. Revil, N. Florsch and C. Camerlynck

-
-
- -

Frequency (in Hertz)

Ph
as

e 
(in

 m
ra

d)

0.001    0.01        0.1        1.0         10         100       1000     10,000

-40

-35

-30

-25

-20

-15

-10

 -5

  0

C
on

du
ct

iv
ity

 (i
n 

S/
m

)

0.001    0.01        0.1        1.0         10         100       1000     10,000
Frequency (in Hertz)

(a)

(b)

#439-Mudstone
#493-Sandstone
#498-Sandstone
#436-Sandstone
#490-Sandstone
#499-Sandstone

#499

#499

#490

#490

#436

#436

#498

#498

#493

#493

#439-Mudstone

#439-Mudstone
0.12

0.10

0.08

0.06

0.04

0.02

0

Figure 8. Phase and magnitude of the complex conductivity for the six
samples investigated in this study. (a) Phase lag angle in mrad. (b) Magnitude
of the conductivity in S m−1. For the mudstone, the phase data at low and
high frequencies are not shown because they were characterized by a high
standard deviation. The lines are guides for the eyes.

see Johnson et al. 1986), the median of the pore size distribution
from mercury porosimetry and the value of the pore size corre-
sponding to the peak of the pore size probability distribution. We
see that the Cole–Cole relaxation time is best correlated (R2 = 0.94)
with the value of the peak of the pore size probability distribution.
The relaxation time predicted by eq. (19) in Table 1 predicts fairly
well the Cole–Cole relaxation time (R2 = 0.89 in a linear–linear
plot).

The results of the inversion of the spectra are reported in terms of
relaxation times and pore size distributions (Figs 17–19). In these
figures, we see both the results of the Debye and Warburg decompo-
sition directly in terms of pore size distribution using the transform
developed in Section 3.3. The Debye and Warburg decompositions
fit the data equally well (Figs 17–19).

The pore size distributions resulting from the Debye decomposi-
tion (c = 1 in the equations of Section 3.3) are generally too broad
with respect to the pore size distributions obtained from mercury

Figure 9. Pore size distribution and quadrature conductivity. (a) Pore size
distribution of Sample #499 (clayey sandstone). (b) Thin section. (c) The
quadrature conductivity data (filled circles) was only fitted with a Cole–Cole
model (plain line) for the frequencies around the peak frequency (R2 = 0.99).

Figure 10. Pore size distribution and quadrature conductivity. (a) Pore size
distribution of Sample 490 (clayey sandstone). (b) Thin section. (c) The
quadrature conductivity data (filled circles) was only fitted with a Cole–Cole
model (plain line) for the frequencies around the peak frequency (R2 = 0.97).
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Influence of pore size on induced polarization 1025

Figure 11. Pore size distribution and quadrature conductivity. (a) Pore
size distribution Sample #493 Clayey sandstone). (b) Thin section. (c) The
quadrature conductivity data (filled circles) was only fitted with a Cole–Cole
model (plain line) for the frequencies around the peak frequency (R2 = 0.98).

Figure 12. Pore size distribution and quadrature conductivity. (a) Pore size
distribution of Sample #498 (clayey sandstone). (b) Thin section. (c) The
quadrature conductivity data (filled circles) was only fitted with a Cole–Cole
model (plain line) for the frequencies around the peak frequency (R2 = 0.98).

Figure 13. Pore size distribution and quadrature conductivity. (a) Pore size
distribution of Sample #436 (clayey sandstone). (b) Thin section. (c) The
quadrature conductivity data (filled circles) was only fitted with a Cole–Cole
model (plain line) for the frequencies around the peak frequency (R2 = 0.93).

Figure 14. Pore size distribution and quadrature conductivity. (a) Pore size
distribution of Sample #439 (mudstone). (b) Thin section. (c) The quadrature
conductivity data (filled circles) was only fitted with a Cole–Cole model
(plain line) for the frequencies around the peak frequency (R2 = 0.99).
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1026 A. Revil, N. Florsch and C. Camerlynck

Figure 15. Test of the relationship between the capillary entry pressure as
a function of the porosity and permeability. The experimental data are from
Huet et al. (2005). They correspond to 89 sets of mercury-injection (Hg-air)
capillary pressure data. Core samples include both carbonate and sandstone
lithologies. The permeability is here expressed in mD.

porosimetry. The Warburg decomposition (c = 0.5 in the equa-
tions of Section 3.3) yields pore size distributions that are nar-
rower and compatible with the observed pore size distribution from
mercury porosimetry. The pore size distributions determined from
Hg-porosimetry are shown in terms of the peak (with the vertical
bar) and the width of the distribution at half the value of the peak
(horizontal bar). The Warburg decomposition is generally repro-
ducing the maximum and the width of the distribution from Hg
porosimetry. That said, the details of the pore size distribution for
small pore sizes are lost showing the limitations of the method. The

information on small pores seems lost due to the high-frequency
dielectric behaviour.

Note that hat the Debye function is sharper in frequency domain
and thus is expected to yield broader distributions in relaxation
times and pore size and such broad pore size distributions in the
pore sizes are not supported by the data. In Fig. 20, we compare the
variance of the distributions determined from induced polarization
porosimetry and mercury porosimetry. We see that SIP porosimetry
is doing a fair job in reproducing the broadness of the pore size
distributions, at least the main peak since the small pores cannot
been observed through SIP porosimetry.

5 C O N C LU S I O N S

The following conclusions have been reached.

(1) The distribution of relaxation times seems to be controlled by
the distribution of the pore sizes. This observation is still not fully
understood by the current mechanistic models. Pore scale numerical
modelling may be needed to evaluate the ability of the local pore
scale physics to reproduce these observations. The pore scale model
developed recently by Bücker & Hördt (2013) may be a step in this
direction.

(2) For a collection of five sandstones and one mudstone core
samples, we found that the Cole–Cole relaxation time is propor-
tional to the characteristic pore size 
 squared and to the pore size
squared determined from the capillary entry pressure. The Cole–
Cole relaxation time seems also correlated to the peak of the pore
size distribution determined from Hg porosimetry.

(3) The diffusion coefficients of the counterions moving along
the Stern layer of pure silica sands and clays are consistent with the
mobility of the Stern layer polarization (POLARIS) model devel-
oped by Revil (2012, 2013a,b). This shows the consistency in the
model between the components describing the relaxation time and
those needed to compute the amplitude of the quadrature conduc-
tivity at high and low frequencies. To the best of our knowledge,
there is no other model able to reproduce such a consistency.

(4) The variance as well as the peak of the pore throat size dis-
tribution can be recovered from the SIP data. Finer structures of

Figure 16. Relationship between the Cole–Cole relaxation time and two different pore sizes reported in Table 1. (a) Correlation between the Cole–Cole
relaxation time and the pore size 
 determined using 
2 = 8Fk (R2 = 0.90) and k determined from the capillary entry pressure. (b) Correlation between the
Cole–Cole relaxation time and the peak of the pore size distribution determined from the mercury intrusion experiments (R2 = 0.94). The best correlation
coefficient is obtained with the pore size determined from the mercury porosimetry using the pore size corresponding to the peak of the distribution.
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Influence of pore size on induced polarization 1027

Figure 17. Fit of the SIP data of sample 498. (a) Fit of the amplitude (Debye decomposition). (b) Fit of the phase (Debye decomposition). (c) Distribution of
pore throat sizes (Debye decomposition). (d) Fit of the amplitude (Warburg decomposition). (e) Fit of the phase with a Warburg decomposition. (f) Distribution
of pore throat sizes (Warburg decomposition). (g, h, i, j, k, l) Same for Sample 493. The pore size distributions determined from Hg-porosimetry are shown in
terms of the peak (with the vertical bar) and the width of the distribution at half the value of the peak (horizontal bar).
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1028 A. Revil, N. Florsch and C. Camerlynck

Figure 18. Fit of the SIP data of sample 490. (a) Fit of the amplitude (Debye decomposition). (b) Fit of the phase (Debye decomposition). (c) Distribution of
pore throat sizes (Debye decomposition). (d) Fit of the amplitude (Warburg decomposition). (e) Fit of the phase (Warburg decomposition). (f) Distribution of
pore throat sizes (Warburg decomposition). (g, h, i, j, k, l) Same for Sample 439 (mudstone).
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Influence of pore size on induced polarization 1029

Figure 19. Fit of the SIP data of sample 499. (a) Fit of the amplitude with a Debye decomposition. (b) Fit of the phase (Debye decomposition). (c) Distribution
of pore throat sizes with the Debye decomposition. (d) Fit of the amplitude with the Warburg decomposition. (e) Fit of the phase (Warburg decomposition).
(f) Distribution of pore throat sizes with the Warburg decomposition. (g, h, i, j, k, l) Same for Sample 436.
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1030 A. Revil, N. Florsch and C. Camerlynck

Figure 20. Comparison between the inverted pore size distribution using the SIP data (black filled circles) and the pore size distributions from the mercury
porosimetry (peak and variance materialized by the vertical and horizontal bars, respectively). In these figures, we have moved the position of the peaks to
match each other.

the pore size distribution, especially for small pore sizes, seem
more difficult to obtain from this procedure. The Debye decompo-
sition seems unable to provide the correct variance regarding the
pore size distribution for the six samples presented in this study.
At the opposite, the Warburg decomposition provides narrower dis-
tributions of relaxation times, which translates to distributions of
pore throat sizes that are compatible with those observed through
Hg-porosimetry.

The present findings open the door to induced polarization
porosimetry as currently done with NMR. NMR and SIP seem
to be a natural tools to invert pore size distributions not only in
the laboratory but also in the field through joint inversion based on
a petrophysical model. Indeed both techniques are sensitive to the
pore size and we have developed an approach to remove surface
conductivity from the total measured conductivity of a porous rock
by taking advantage of the relationship between surface conductiv-
ity and quadrature conductivity (Revil 2013b; Weller et al. 2013).
In other words, this means we can isolate the formation factor and
use the quadrature conductivity, corrected for the formation factor,
to determine the pore size distribution. Therefore it is possible to
formulate a joint inversion problem for the SIP and the NMR and
take advantage of their very different sensitivity maps to get an
image (tomogram) of the pore size distribution. If confirmed with
additional datasets, this may open new doors in hydrogeophysics to
image non-intrusively some characteristics of the pore size distri-
bution with a combination of SIP/NMR data. Finally, drainage or
imbition of a porous material should have a specific signature on the
distribution of relaxation times and this aspect will be investigated
in a future contribution.
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Werkema, D.D., 2010. Influence of oil saturation upon spectral induced
polarization of oil bearing sands, Geophys. J. Int., 183, 211–224.

Schwarz, G., 1962. A theory of the low-frequency dielectric dispersion of
colloidal particles in electrolyte solution, J. Phys. Chem., 66, 2636–2642.

Schwartz, N. & Furman, A., 2012. Spectral induced polarization signature
of soil contaminated by organic pollutant: Experiment and modeling,
J. geophys. Res., 117, B10203, doi:10.1029/2012JB009543.

Scott, J. & Barker, R., 2003. Determining pore-throat size in Permo-Triassic
sandstones from low-frequency electrical spectroscopy, Geophys. Res.
Lett., 30(9), 1450, doi:10.1029/2003GL016951.

Swanson, B.F., 1981. A simple correlation between permeabilities and mer-
cury capillary pressures, J. Petrol. Tech., 33(12), 2498–2504.

Tarantola, A. & Valette, B., 1982. Generalized nonlinear inverse problems
solved using the least square criterion, Rev. Geophys. Space Phys., 20(2),
219–232.

Tarasov, A. & Titov, K., 2007. Relaxation time distribution from time do-
main induced polarization measurements, Geophys. J. Int., 170, 31–43.

Tarasov, A. & Titov, K., 2013. On the use of the Cole–Cole equations in
spectral induced polarization, Geophys. J. Int., 195, 352–356.

Tikhonov, A.N., 1977. Solutions of Ill Posed Problems, Scripta Series in
Mathematics, V.H. Winston.

Timur, A., 1969. Pulsed Nuclear Magnetic Resonance studies of porosity,
movable fluid, and permeability of sandstones, J. Petrol. Tech., 21, 775–
786.

Tong, M., Li, L., Wang, W. & Jiang, Y., 2006a. Determining capillary-
pressure curve, pore size distribution and permeability from induced po-
larization of shaley sand, Geophysics, 71, N33–N40.

Tong, M., Li, L., Wang, W. & Jiang, Y., 2006b. A time-domain induced-
polarization method for estimating permeability in a shaly sand reservoir,
Geophys. Prospect., 54, 623–631.

Tong, M., Wang, W., Li, L., Jiang, Y. & Shi, D., 2004. Estimation of perme-
ability of shaly sand reservoir from induced polarization relaxation time
spectra, J. Petrol. Sci. Eng., 45, 31–40.

Vanhala, H., 1997. Mapping oil-contaminated sand and till with the spec-
tral induced polarization (SIP) method, Geophys. Prospect., 45, 303–
326.

Vaudelet, P., Revil, A., Schmutz, M., Franceschi, M. & Bégassat, P., 2011a.
Induced polarization signature of the presence of copper in saturated
sands, Water Resour. Res., 47, W02526, doi:10.1029/2010WR009310.

Vaudelet, P., Revil, A., Schmutz, M., Franceschi, M. & Bégassat, P., 2011b.
Changes in induced polarization associated with the sorption of sodium,
lead, and zinc on silica sands, J. Coll. Interface Sci., 360, 739–752.

Vinegar, H.J. & Waxman, M.H., 1984. Induced polarization of shaly sands,
Geophysics, 49, 1267–1287.

Wang, M. & Revil, A., 2010. Electrochemical charge of silica surface at high
ionic strength in narrow channels, J. Coll. Interface Sci., 343, 381–386.
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A P P E N D I X A : T H E C O L E – C O L E M O D E L

The Cole–Cole model is usually used to fit complex conductiv-
ity spectra. For the complex conductivity, the real (in phase) and
imaginary (quadrature) components of the complex conductivity
are given by (Cole & Cole 1941),

σ ′ = σ∞ − 1

2
Mn

{
1 − sinh [c ln (ωτ0)]

cosh [c ln (ωτ0)] + sin
[

π

2 (1 − c)
]
}

, (A1)

σ ′′ = −1

2

Mn cos
[

π

2 (1 − c)
]

cosh [c ln (ωτ0)] + sin
[

π

2 (1 − c)
] . (A2)

where Mn = σ∞ − σ0 ≥ 0. Including the high frequency effect
in the complex apparent conductivity (associated with the high-
frequency displacement current) yields (Revil 2013a),

σ ∗
eff = σ ′

eff − iσ ′′
eff = σ ∗ − i ωε∞. (A3)

The components of the apparent complex conductivity are,

σ ′
eff = σ∞ − 1

2
Mn

{
1 − sinh [c ln (ωτ0)]

cosh [c ln (ωτ0)] + sin
[

π

2 (1 − c)
]
}

,

(A4)

σ ′′
eff = 1

2

{
Mn cos

[
π

2 (1 − c)
]

cosh [c ln (ωτ0)] + sin
[

π

2 (1 − c)
]
}

+ ωε∞. (A5)

A P P E N D I X B : C O N N E C T I N G T H E
D E B Y E A N D WA R B U RG
D E C O M P O S I T I O N S

The complex conductivity is written as:

σ ∗(ω) = b + a

∫ ∞

0

h(τ )

1 + (iωτ )c
dτ, (B1)

where h(τ ) is the function to be retrieved and c = 0.5 for a
Warburg decomposition of the spectra. Making the classical change
of variables, we obtain,

Hs(s) = τh(τ ), (B2)

z = − ln(ωτ0) ⇔ ωτ0 = e−z, (B3)

s = ln

(
τ

τ0

)
⇔ τ = τ0es (B4)

In eq. (B1), the function h(τ ) is normalized. However, when per-
forming the inversion, it is easier to retrieve a function encapsulating
the constant a and to normalize at the end. In the following, we can
drop the constant a. A normalization of the retrieved h(τ ) is re-
quired as soon as we want to retrieve this constant and a normalized
distribution. In addition, we set, without loss of generality, τ0 = 1,
and we get in the general case:

σz(z) = b +
∫ ∞

−∞
Hs(s)�(z − s)ds, (B5)

with,

�(z − s) ≡ 1

1 + i ce−c(z−s)
. (B6)

The convolution integral can be easily obtained through Fourier
transform. Coming back to eq. (B1), which is for interest (here in
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the case c = 0.5), we get ωc = e−c z and τ c = ec s , in such a way we
can re-write:

σz(z) = b +
∫ ∞

−∞

Hs(s)

1 + i ce−c(z−s)
ds = σ ′

z(z) + iσ ′′
z (z). (B7)

Following here Florsch et al. (2012), we only consider the imag-
inary part in this Fourier approach. Calculating the imaginary part
of σz(z) is facilitated when using the notation i c = exp(iπc/2). We
get:

σ ′′
z (z) = −

∫ ∞

−∞
Hs(s)

sin
(

π

2 c
)

e−c(z−s)

1 + 2 cos
(

π

2 c
)

e−c(z−s) + e−2c(z−s)
ds. (B8)

It follows, by using the Fourier-convolution theorem and defining
in this step �z(z):

FT
[
σ ′′

z

] = −FT [Hs] · FT

[
sin

(
π

2 c
)

e−cz

1 + 2 cos
(

π

2 c
)

e−cz + e−2cz

]

= −FT[Hs] · FT[�z,c]. (B9)

The Fourier transform in eq. (B8) can be determined numerically.
We write eq. (B9) using the ‘∼’ notation to denote the corresponding
functions in the Fourier domain, η is the variable in the Fourier dual
space. We obtain σ̃η(η) = −H̃η(η) · �̃η,c(η), and therefore:

Hs(s) = FT−1[H̃η(η)] = −FT−1

[
σ̃η(η)

�̃η,c(η)

]
. (B10)

As explained in Florsch et al. (2012), this form is not expected
to work well, because �̃η,c(η) can be really close to zero and then
having this function in the dominator will cause some instabilities
in getting Hs(s). Actually, one could assume that where �̃η,c(η)
is small, σ̃η(η) should be also small, making the ratio in eq. (B9)
limited. It is not the case in practice, because the data are always
noisy, and then σ̃η(η) = −H̃η(η) · �̃η,c(η) must be written as:

σ̃ ′′
η (η) = −H̃η(η) · �̃η,c(η) + N (η), (B11)

where N (η) denotes the non-modelled noise in the dual domain.
Following Florsch et al. (2012), the Fourier inversion scheme can
be stabilized by involving the Wiener regularization and a L-curve
procedure to obtain the optimum damping. We write:

HWiener
s (s) = FT−1[H̃η(η)] = −FT−1

[
σ̃η(η)�̃∗

η,c(η)

|�̃η,c(η)|2 + λ2

]
, (B12)

where λ is a damping factor, and (∗) denotes for the complex con-
jugate of the function. The Warburg case corresponds to c = 0.5.
Because the complex conductivity spectrum can be written as a con-
volution product, the Fourier transform appears to be an efficient
tool to determine the kernel of the convolution integral. This also
permits to swap between Warburg and Debye decompositions. We
come back on eq. (B11), just adding the index c to H to specify
explicitly that we try to recover H for a chosen c. Then, the general
equation is

σ̃ ′′
η (η) = −H̃η,c(η) · �̃η,c(η). (B13)

The Debye and Warburg cases are given by:

σ̃ ′′
η (η) = −H̃η,1(η) · �̃η,1(η), (B14)

σ̃ ′′
η (η) = −H̃η,1

2
(η) · �̃η, 1

2
(η), (B15)

respectively. Therefore, the Debye and Warburg cases are related to
each other by:

H̃η,1(η) · �̃η,1(η) = H̃η, 1
2
(η) · �̃η, 1

2
(η). (B16)

Then if we have determined the RTD using a Debye decom-
position, we can derive the corresponding RTD using a Warburg
decomposition by computing:

Hz,1
2
(z) = FT−1

[
H̃η,1(η) · �̃η,1(η)

�̃η,1
2
(η)

]
. (B17)

Conversely, from a Warburg to a Debye decomposition, we have:

Hz,1(z) = FT−1

[
H̃η,1

2
(η) · �̃η,1

2
(η)

�̃η,1(η)

]
. (B18)

It is natural that these two transforms do not involve the data set,
since it is just a transform between relaxation time distributions. Of
course, this relationship can be generalized easily to the transform
from any Cole–Cole RTD to another one if they only differ by their
constant c.
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