
HAL Id: hal-01196389
https://hal.science/hal-01196389

Submitted on 11 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An ARM-based Microkernel on Reconfigurable
Zynq-7000 Platform

Tian Xia, Jean-Christophe Prévotet, Fabienne Nouvel

To cite this version:
Tian Xia, Jean-Christophe Prévotet, Fabienne Nouvel. An ARM-based Microkernel on Reconfigurable
Zynq-7000 Platform. Mediterranean Telecommunication Journal, Apr 2015, Fez, Morocco. pp.109-
115. �hal-01196389�

https://hal.science/hal-01196389
https://hal.archives-ouvertes.fr

 WITS-2015 Page 1

The International Conference on WIreless Technologies embedded and intelligent Systems

ENSA of Fez 29-30 April 2015

An ARM-based Microkernel on Reconfigurable

Zynq-7000 Platform

Tian Xia, Jean-Christophe Prévotet and Fabienne Nouvel

Université Europe de Bretagne, France

INSA, IETR, UMR 6164, F-35708 RENNES

{tian.xia; jean-christophe.prevotet; fabienne.nouvel}@insa-rennes.fr

Abstract—the combination of ARM processor and partially

reconfigurable FPGA device is an emerging technology in the

current embedded domain. In this paper we propose a custom

microkernel on a hybrid ARM-FPGA platform, which is capable

of managing reconfigurable hardware accelerators. We will

introduce the hardware platform on which the microkernel has

been developed and focus on the custom architecture supporting

the management of partial reconfiguration and software tasks.

An actual use case is studied and presented at the end of this

paper to demonstrate the feasibility of our approach.

Index Terms—FPGA, reconfigurable architectures, embedded

system, microkernel.

I. INTRODUCTION

In recent years, the commodity field programmable gate

array (FPGA) has become a widely-applied technology for

embedded applications. The FPGA fabric permits time-

multiplexed sharing of the hardware resources so that more

modules can be implemented in one chip. However, the

traditional FPGA computing lacks flexibility since the whole

fabric is required to be reconfigured even when modification is

required for part of FPGA, thus causing enormous time

overhead and power consumption. To deal with this drawback,

the Dynamic Partial Reconfiguration (DPR) was proposed as a

solution, which allows particular areas of an FPGA to be

altered while the rest executes without interrupt. With DPR

feature, an FPGA is capable of implementing more complex

architectures by breaking it down into smaller mutually

exclusive modules. In this case, hardware accelerators, which

can be dynamically dispatched and managed, are becoming as

flexible as software functions, being then considered as a

parallel computing resource to processors rather than fixed

accelerators. However, the application of DPR is currently

limited due to the design complexity [1].

On the other hand, there have been increasing concerns

about the reliability and security of embedded systems,

especially for mobile devices. One response to this concern has

consisted in elaborating an efficient management of such

systems. In this context, dealing with microkernels constitutes

a promising idea because it allows executing applications of

different natures (commodity APIs, real-time tasks, etc.) in

their own isolated container to ensure isolation and thus

security. Consequently, it has been a popular research trend in

the embedded systems domain [2]. In embedded circuits such

as FPGAs, dealing with a microkernel may also be of interest

since it is then possible to easily add a new DPR management

service to the existing services already provided by the kernel.

In this case, besides the kernel management, it is also necessary

to implement a hardware architecture dedicated to the

coordination of reconfigurable resources and to the cooperation

with high-level applications.

In this paper, we propose an approach of DPR management

by implementing a custom microkernel Mini-NOVA on a

hybrid ARM-FPGA Xilinx Zynq-7000 platform [3]. Mini-

NOVA is based on ARM architecture and integrated with the

management service of reconfigurable hardware resources,

which allows for dynamic SW/HW task management, secure

execution environment and efficient communication..

The remainder of the paper is organized as follows: Section

II presents backgrounds and works done in DPR domain. In

Section III, an overview of the embedded platform is given,

including the components of our architecture. Section IV

demonstrates the design and implementation of the Mini-

NOVA microkernel in details. In Section V, we present a case

study to evaluate the functionality and performance of our

architecture. Finally, the conclusion of our work will be given

in Section VI.

II. BACKGROUNDS

As embedded systems become increasingly complex and as

designers face more and more challenges, FPGA’s adaptivity

has become a crucial asset. The principle of DPR is to permit

specific areas of the FPGA to be reprogrammed with an

alternative behavior while the rest of the fabric remains the

same, so that the inherent flexibility of FPGA is improved.

Currently, there are several partially reconfigurable

commercial FPGA series, which include the Atmel AT40K and

the Xilinx Virtex FPGA family [4], and the newly-released

Xilinx Zynq-7000. In Xilinx FPGA products, the size of

reconfiguration data varies with the amount and types of

reconfigurable hardware resources. For complex computation-

massive modules, their data size could be quite large, meaning

that the reconfiguration overhead could be quite considerable

for these modules. Especially in a computing-intensive system,

 WITS-2015 Page 2

The International Conference on WIreless Technologies embedded and intelligent Systems

ENSA of Fez 29-30 April 2015

where several mutually exclusive components are sharing

reconfigurable resources, the time lost on reconfiguration will

severely degrade the overall performance [4]. Therefore, a

dedicated efficient management is essential in DPR systems.

Numerous studies have been led to propose efficient

hardware architecture management with OS support. One

typical embedded OS which based on Linux kernel was

OS4RS [5], which aims for a dynamic relocation of tasks

between a host processor and reconfigurable hardware. Other

researches include run-time reconfigurable architectures [6][7]

and hardware-implemented OS services [8][9], which have

focused on providing effective online scheduling and hardware

task communication. However, the matter that restricts

performances of classical FPGA devices is the fact that most of

them are employing embedded processors such as MicroBlaze

or PowerPC [8][9], whose computing ability is relatively

limited [10].

Unlike previous devices, the Zynq-7000 platform integrates

a powerful dual-core ARM Cortex-A9 processor with various

on-board resources and peripherals [3]. With this fully capable

processing system, the CPU processes software data, while the

programmable fabric is considered as a unique auxiliary

computing resource. In this case, the reconfiguration

management is expected to be one of many tasks in the system

and a specific kernel is required to rationally dispatch both

hardware and software resources.

Meanwhile, though microkernel technologies have been

widely studied in the embedded system domain, its application

in reconfigurable computing are relatively less studied. One

research in this domain is introduced in [11], where a

hardware-based microkernel is used to provide OS services.

Compare to OS support, the advantage of the microkernel

technique is that it offers system security, flexibility, task

isolation and real-time capability [12]. These features are quite

suitable for an embedded system, because in most applications’

scenarios such as vehicles and mobile phones, both safety and

commodity APIs are executing. While most existing

microkernels on ARM do not consider the reconfigurable

hardware, one possible solution is to port an appropriate

microkernel from existing kernels. In [13], a L4 kernel is

ported to manage both hardware and software tasks, but

without high-performance hardware modules. Thus, the

management of dynamic partial reconfiguration is still absent.

In a microkernel, the key feature to focus on, is the size of its

trust computing base (TCB), which determines the security

level, the dispatching speed and the porting complexity.

III. ARCHITECTURE OVERVIEW

The on-site reprogrammable FPGA fabric integrated with

powerful ARM processors brings up enormous possibilities for

embedded technique, while the approaches of fully exploiting

and designing efficient methods are far from sufficient. In this

paper, we propose a platform framework based on the hybrid

ARM-FPGA platform of the Zynq-7000. The target of our

approach is to establish a microkernel-based embedded system

with flexible hardware tasks. A simplified block diagram of the

proposed architecture is shown in Fig. 1.

Fig. 1. Block diagram of architecture

The proposed architecture is divided into two domains: the

Processing System (PS) and the Programmable Logic (PL).

Processing System is the central processing unit and includes

the software computing resources, such as the DDR on chip

memory (OCM), the ARM Cortex-A9 processor and various

peripherals. On the CPU, a simplified microkernel hosts guest

applications/software and specific user services in the user

space. Microkernel is responsible to schedule these

components properly. The Programmable Logic mainly

consists of the FPGA fabric, which houses different hardware

accelerators and executes concurrently with the PS side. To

control and reconfigure the FPGA modules dynamically, a

specific user service routine Hardware Task Manager is

proposed as a guest in the user space. In this way the FPGA

resource can be dispatched as standards user application and

thereby hardware and software tasks can be managed

concurrently in our framework.

With DPR technique, it is possible to switch one or several

HW tasks without interfering the rest of the accelerators. Such

a feature can be applicable not only in increasing the system

performance, but also in some scenarios where heterogeneous

hardware structures are mandatory. For example, to offer the

support for coexistence communication standards such as

cellular communication standards and wireless LAN(WLAN),

a reconfigurable platform could be quite suitable. We will

present a practical use case in Section V.

A. Hardware task organization

In reconfigurable embedded systems, hardware tasks are FPGA

modules with different functionalities and fabric structures,

which are either custom-designed computing blocks or

commercial IP cores. In our system, hardware tasks are pre-

defined and synthesized by Xilinx XPS design flow, generating

different bitstream-format files which hold the modules’ fabric

information. These bitstream files can be stored in memory

device and implemented in certain areas of the FPGA.

As shown in Fig.2, within the FPGA fabric there exist

multiple pre-defined areas to house hardware tasks separately,

 WITS-2015 Page 3

The International Conference on WIreless Technologies embedded and intelligent Systems

ENSA of Fez 29-30 April 2015

Fig. 2. Hardware task organization

which are called partial reconfiguration regions (PRR). The

PRR corresponding to each HW task is pre-determined. These

hardware task containers execute under the supervision of the

PRR controller, a special function block to control the behavior

of hardware tasks. All bitstream files are indexed in a look-up

table (LUT) by the unique IDs of each HW task, which

contains the descriptors of each hardware task. The descriptor

entry indicates the bitstream file’s ID, name, address, size,

reconfiguration overhead and pre-defined PRR. Different HW

tasks are dispatched by downloading its bitstream file into its

assigned PRR. Normally more frequently-called HW tasks may

have multiple PRRs so that they can be used by different guests

concurrently.

We should also note that since the bitstream size is

determined by the PRR’s size, the reconfiguration overhead is

also linearly correlated to the PRR’s area and then can be

precisely predicted.

B. PL/PS communication port

To connect PL with PS, we applied 2 types of interface

based on the standard AXI interface. Some technical statistics

related to this interface are listed in TABLE I. The general-

purpose AXI port (AXI_GP) is designed for low-speed general

purpose communication, while the high performance AXI port

(AXI_HP) is defined for high performance with burst transfer.

AXI_GP offers a unified mapping to the processor and can be

accessed as a normal memory access. AXI_HP may transfer

data blocks as large as 4KB for one burst, which is sufficient

for general data-processing application.

On our platform, HW task manager takes control of two

master AXI_GP interfaces as main method to configure and

read back the states of HW tasks. It is also possible to have 4

AXI_HP interfaces that are used at HWs service and in charge

of accessing both on chip memory (OCM) and DDR. Since

AXI_HP is working in the slave mode, data are fetched and

written back without acknowledging the processor, allowing

the processor to run simultaneously with HW tasks.

TABLE I. PL/PS COMMUNICATION INTERFACE

Type Num Mode (PS) Access Speed

AXI_GP 4
2 Master,
2 Slave

Unified
Addr space

600MB/s

AXI_HP 4 4 Slave DMA 1200MB/s

Fig. 3. PRR Controller Structure

C. Reconfiguration interface

 Two methods for partial reconfiguration are supported on

the Zynq platform. As shown in the datapath of Fig. 1, PS

(Processing System) is enabled to initialize bitstream transfers

from memory to PL (Programmable Logic) through the Device

Configuration Interface (DevCfg), which will launch a DMA

transfer via the Processor Configuration Access Port (PCAP).

Another available reconfiguration datapath is the Internal

Configuration Access Port (ICAP), which is capable of self-

configuration from the PL side with an AXI4-Lite as transfer

port. Such a mechanism severely limits the throughput of data

reconfiguration to 19MB/s. Another drawback of ICAP is the

additional FPGA resource consumption for its implementation,

since it requires a hardware structure and will occupy at least

one AXI interface. To achieve better performance and reduce

resource consumption, PCAP is used in our platform.

D. PRR Controller

In the PL domain, a partial reconfiguration region (PRR)

controller block is proposed to monitor the behavior of

hardware tasks. It cooperates with the special user service

Hardware Task Manager to coordinate the execution of

software and hardware tasks. As demonstrated in Fig.3, the

PRR controller allocates to each PRR a group of registers,

which are mapped into the unified memory space via AXI_GP

ports, so that CPU may access to them directly. By reading and

setting values of these registers, CPU is able to monitor and

change the HW task’s behavior.

1) Reconfiguration : One major responsibility of the PRR

controller is to monitor and guarantee the security of HW task

reconfiguration. It should control the state of PRR and avoid

unsafe reconfigurations which may cause undesired states such

as invalid data output or incomplete data frame. Thus when a

PRR reconfiguration is required, several concerns are involved:

 If the HW task to be reconfigured is part of a certain

multi-block pipeline structure, the pipeline should be

emptied before any HW task switch, so that invalid

output data are avoided.

 To maintain the integrity of the data structure being

processed, considering that for certain computation

 WITS-2015 Page 4

The International Conference on WIreless Technologies embedded and intelligent Systems

ENSA of Fez 29-30 April 2015

processes it is mandatory to work with packages of

data with determined length, PRR reconfigurations

should be launched in interval of data frames to protect

data and ensure a smooth HW task switch.

 A reset should be inserted to the reconfigured PRR to

put it into a desired state. The new HW task is allowed

to be activated only after the first complete reset.

The states of PRRs are presented in their register groups. If

PRR is not ready to be reconfigured because of the above

situations, then PRR controller would set the PRR_Reco_Rdy

bit in the state register to zero so that the CPU won’t try to

reconfigure it. Once the PRR is ready to be reconfigured, the

PRR controller sets this bit to high again.

2) AXI interface : The PRR controller also manages HW

tasks accesses to the AXI_HP interface. Normally, HW tasks

are given access to the AXI_HP interface on their own.

However, in cases where AXI interfaces are insufficient for the

HW tasks, the PRR controller manages the time-multiplexed

sharing of this AXI interface. In this case, the PRR controller

works as a crossbar of datapaths among HW tasks.

3) Interrupts : the PRR controller is able to generate

general-purpose interrupts through Shared Peripheral Interrupts

(SPI) connected to the generic interrupt controller (GIC). These

IRQs are used to acknowledge important events to the CPU, or

to synchronize the software tasks with the hardware task’s

states. They are handled by the microkernel and passed to the

Hardware Task Manager for proper handling.

IV. MINI-NOVA MICROKERNEL

As discussed in Section II, applying microkernel in ARM-

FPGA architecture can greatly improve the management of

SW/HW tasks since it offers higher security and better

flexibility. Mircokernel runs on top of bare-metal CPU with the

basic OS capabilities, serving as an abstract layer between

physical machine and user applications. The principle of least

privilege should be strictly followed o guarantee that a minimal

trust computing base (TCB) is achieved for our microkernel.

Based on these considerations, we propose a simplified

microkernel Mini-NOVA; which has dedicated user service

and scheduling strategy to support DPR management.

A. Mini-NOVA Overview

Mini-NOVA is revised from the NOVA micro-hypervisor

[14], with simplified functionality and reduced complexity,

which makes it more suitable for embedded systems and also

more adaptable. Since NOVA is originally designed on x86

platform, several modifications are made to port it to ARM

Cortex-A9 architecture, with additional supports for the Zynq-

7000 platform. The overview Mini-NOVA structure is shown

in Fig.4. The software space is divided into kernel space and

user space, with different privilege levels. The kernel code runs

in the higher level, while user applications and some user

services run in the lower level (user space), which are referred

to as the user guests. As the host, the microkernel code is

restricted to the basic functionalities such as memory manage-

ment and scheduler, to minimize the TCB size. Most board-

specific support APIs and services are implemented in user

Fig. 4. Mini-NOVA architecture

space, including HW task manager, application bootloader, and

supports for on-board peripheral resources.

To provide isolated execution environment, Mini-NOVA

creates a kernel object Execution Context (EC) as the

abstraction of user threads or applications. Each EC is

exclusively attached to one user guest and saves its execution

state such as the CPU/FPU register state, stack location, and

scheduling sequence. By saving and resuming its EC, a given

task can be scheduled. Since EC is governed by Mini-NOVA

in kernel space, it is protected from any attacks from user space

and thus guarantees the isolation and security of each guest.

Normally user guest are not authorized to perform sensitive

operations (i.e. page allocation, thread creation, cache

operation, etc.), which should be handled by Mini-NOVA by

generating system calls.

The main features of Mini-NOVA are:

 Small TCB size (3.5 KLOC in total);

 Multiple system calls and IRQs provided to user guests

to handle privileged operations;

 Separate virtual address spaces for kernel and guest,

and separated execution environment for each user

application;

 Specific Priority-based round-robin scheduling to

support DPR;

 Specific user service Hardware Task Manager.

B. Scheduling Strategy

Mini-NOVA implements a priority-based round-robin

scheduling mechanism, which permits the user guests with the

same priority level to equally share the CPU resource, while

the higher priority application can always preempt the lower

ones. The scheduler of Mini-NOVA schedules the user guests

by manipulating their Execution Contexts (EC). Each EC is

assigned with a fixed priority level value at its creation.

Basically, all general guest applications are given the same

priority level (1 by default) and occupy the CPU in turn. Kernel

scheduler allocates to each EC a fixed time quantum, and

forces it to switch to the successor when its time slot is used

up.

 However, based on the consideration that hardware tasks

always require tighter time constrains, a quick response to

 WITS-2015 Page 5

The International Conference on WIreless Technologies embedded and intelligent Systems

ENSA of Fez 29-30 April 2015

EC1 EC2 EC3

HW Task

Manager

EC1 EC2 EC3

Prio=2

Prio=1

Dequeue(hw_tsk_mgr)

Reschedule()

Enqueue(hw_tsk_mgr)

Reschedule()

Suspended

Interrupted

Activated

Run_queue Run_queue

(a) (b)

hardware task management should be guaranteed. Thereby, we

introduce higher priority levels to the specific services which

requires hard real-time constrain, such as the HW Task

Manager. In this case, once scheduled, it can always preempt

lower priority users can execute immediately.

As presented in Fig.5, the scheduling strategy is

implemented by managing the run_queue list, which is

composed of all executable ECs. ECs at the same priority level

are organized as double-linked queues. Multiple priority levels

may coexist in the run_queue, while the CPU is always

occupied by the highest level ECs. Kernel functions Enqueue()

and Dequeue() are used to add/delete certain EC to/from the

run_queue. Whenever the run_queue is changed the kernel

always invokes the reschedule() function to re-pick the highest

priority level EC. For example, initially the HW Task Manager

is created with the priority level 2 and not included in

run_queue, while general applications equally shares the CPU.

(Fig.5 (b)) However when HW task management is required,

the kernel adds the HW Task Manager service into the

run_queue, and invokes reschedule() to dispatch it as higher

priority EC. After the requirement is properly handled, the

Dequeue() is called to remove the HW Task Manager from the

run_queue and the interrupted round-robin scheduling is

permitted to continue. This strategy ensures a quick response to

any hardware task requirement.

C. Hardware Task Manager

Hardware Task Manager is proposed as a user service

provided to guest applications. It cooperates closely with the

microkernel and is responsible for the DPR management in our

system. As described in Section III, hardware tasks, or DPR

modules are stored as bitstreams in the DDR memory, which is

only accessible by the Hardware Task Manager. Any request to

reconfigure or dispatch hardware tasks are governed and

performed by the HW Manager, so that the hardware task

resources are isolated from other user guests, ensuring the the

security of the FPGA fabric. To facilitate general user guests to

requires for hardware task management, we provide a specific

system call to call the HW Task Manager, whose prototype is:

Syscall_HW_Manager (HW_task_id, arg01, arg02, arg03)

Guests may invoke this system call to require for the HW

Fig. 5. Scheduling Strategy. (a) Preemptive scheduling; (b) Round-robin
scheduling

Fig. 6. HW Task Manager Process

task it desires to implement, by indicating the ID number of

the target hardware task, and the initial parameters it would

like to set to the register group of the task (as described in

Section III). The calling process is demonstrated in Fig. 6.

As we described, the HW Task Manager is initially not

activated and stays in suspension. On receiving the system call,

Mini-NOVA enqueues the HW Task Manager to preempt the

caller guest, while passing the target hardware task ID and

arguments to the Manager, too. HW Task Manager then

handles the caller’s requirement by reconfiguring the desired

HW task. Then the HW Task Manager generates another

system call and dequeues itself from the run_queue, giving

back control to the interrupted caller guest. Different return

value (Success, Busy, Suspend or Error) is also returned to the

guest to indicate the status of its requirement. The detailed

process sequence is listed as following:

a) First, according to the HW task ID, the HW Manager

walks through the hardware task LUT to get the information

of the target HW task, i.e., its container PRR, and the address

of its bitstream file.

b) Then the HW Manager checks the state of the PRR

container, verifying if its available to be reconfigured. If it is

currently occupied by another guest, then the HW Manager

quits execution and returns to the caller guest as Busy,

meaning that its requirement can’t be handled right now.

c) In other cases, the container PRR is available but not

ready to be reconfigured yet, since it may be in the middle of

data processing or a running pipeline, which status is indicated

by the PRR_Reco_Rdy bit in the PRR register group. In this

case the HW Manager suspends itself and gives up the CPU

control to the caller guest with Suspend.

d) If the container PRR is ready to be reconfigured, then

the HW Manager writes the arguments to the register group

and launches a PCAP transfer to download the target bitstream

file from the DDR into the container PRR. Then it returns to

the caller guest with the flag Success.

 WITS-2015 Page 6

The International Conference on WIreless Technologies embedded and intelligent Systems

ENSA of Fez 29-30 April 2015

Mini-NOVA

Channel Sensor

HW Task Manager

PRR0 (HW_QAM4)

PCAP Transfer

t1 t2 t3 t4 t5 t6 t

task

PPR2 (HW_IFFT256)

t1: syscall_HW_Manager() t2: reschedule() t3: PCAP_Transfer; Dequeue()

t4: reschedule() t5: PCAP_Done t6: Data frame over

PRR1 (HW_QAM16)

PPR3 (HW_IFFT512)

ReconfigurationIdle Pipeline suspension

e) Following step b), when the HW Manager is

suspended waiting for the target PRR to be ready for

reconfiguration, the PRR controller keeps monitoring the

target PRR and generates an IRQ (IRQ_Reco_Rdy) to

acknowledge the HW Manager as soon as PRR is ready (i.e. at

the completion of data frame or pipeline). When receiving this

IRQ, microkernel resumes the HW Manager to complete the

PRR’s reconfiguration, repeating step d).

We should note that the DPR overhead remains an major

drawback for embedded systems. As a solution, after launching

a PCAP transfer, we abort the polling-for-done mechanism,

meaning that the CPU control is directly given back to the

guest without waiting for the reconfiguration completion. The

PCAP completion can be acknowledged via PCAP interrupt or

the guest checking PCAP state.

V. USE-CASE STUDY

To verify and evaluate the architecture we proposed, a use

case based on real application scenario is studied in this

section. In the use case, a mobile wireless terminal alters the

configuration of its communication modules to adapt better to

the channel conditions, which is implemented by dynamically

reconfigure the hardware accelerators. For example, according

to the condition of the noise in the channel, different QAM

modulations are required by the transmitter so that the

throughput can rapidly adapt to the environment.

A. Implementation

The implementation is depicted in Fig.7. In the CPU user

space, the Channel_Sensor keeps estimate the best level of

performance in terms of throughput and error rate. It invokes

the HW Task Manager via system call whenever it decides to

alter the hardware task modules to adapt to the channel

condition. In the FPGA fabric, two hardware blocks HW_QAM

and HW_IFFT are running in pipeline, which respectively

handles the modulation scheme and the IFFT in the OFDM

context. For both modulation and IFFT blocks, several optional

hardware tasks are provided: three constellation-sizes QAM

modules (4, 16 and 64) and IFFT of different points (from 256

to 8192 points).

Note that, since QAM and IFFT blocks run in pipeline, the

reconfiguration of either one will stall the pipeline and thus

significant overhead. Thereby, we introduced a multi-path

structure, implementing a pair of identical PRRs to QAM and

IFFT receptively, so that during the reconfiguration the

pipeline continues because only the idle PRR is being reloaded.

Thus the DPR overhead can be overlapped by the pipeline

execution.

B. Result and evaluation

We obtained the evaluation result under the following

settings: 100 MHz FPGA Clocking, 18,800 Bits data frame

size. The execution of different tasks has been recorded in the

Gantt chat in Fig. 8. Initially, a QAM4 modulation scheme

(PRR0) and a 256 points I-FFT (PRR2) are running, when the

Channel_Sensor calls the HW Task Manager to switch I-FFT

mode to 512 points for better performance (t1-t2). Then while

PRR1 continues running, a PCAP transfer is launched to load

Fig. 7. Use-case implementation

Fig. 8. Use-case execution Gantt chat

the HW_IFFT512 module to PRR2, which is currently idle (t3-

t5). At the completion of PCAP transfer (t5), the new IFFT task

has been implemented in PRR2, but the pipeline goes to a

suspension to ensure the currently-processed data frame is

completely processed (t5-t6). Then the HW_IFFT512 is

activated and the new pipeline starts to execute (t6).

We also measured the performance of HW task manager

through large number of iterations of different cases, and the

result is listed in TABLE II. EC Switch measures the response

time from the guest’s requirement to the HW Task Manager’s

reply. Due to the low complexity and scheduling strategy of

Mini-NOVA, the hw task requirement can be answered within

0,0023 ms. We also should note that although the DPR

overheads of hardware modules are significant, the pipeline

TABLE II. PERFORMANCE OF HW TASK MANAGEMENT (MS)

Task Execution Reconfig. Resource

Channel_Sensor 3 / /

HW Task Manager 0.0096 / /

EC Switch 0.0023 / /

Pipeline suspension 0.03-0.168 / /

HW_QAM (4/6/64) 0.03-0.09 /frame 0.231 2%

HW_IFFT(256-8192) 0.006-0.168/frame 2.71 13%

 WITS-2015 Page 7

The International Conference on WIreless Technologies embedded and intelligent Systems

ENSA of Fez 29-30 April 2015

suspension is limited (0.168 ms in worst case) because pipeline

is not stalled during the reconfiguration. The advantage of DPR

technology can be proved by the consumed FPGA resources.

For example, implemented by Xilinx Planahead synthesis tool,

the computing-intensive IFFT module takes up massive FPGA

resources (i.e. 5600 LUTs and 1600 SLICEs for 8196 points

IFFT). With static FPGA circuit, implementing IFFT modules

from 256 points to 8196 points consumes up to 50% FPGA

area, while in our system, by reusing the DPR fabric, only 26%

resources (2 PRRs) are used. Thus the chip cost is significantly

reduced.

VI. CONCLUSION

In this paper, we have proposed a microkernel based on the

ARM-FPGA architecture, devoted to an efficient management

of dynamic partial reconfiguration. Specific architectures and

scheduling strategy have been introduced to the microkernel

for better performance and higher security. In the use case

study, we have evaluated our system with practical applications

and analyzed the results, which proved that our microkernel

system is able to manage SW/HW tasks and minimize the

performance degradation caused by the DPR overhead.

REFERENCES

[1] C. Beckhoff, D. Koch and J. Torresen, “Go Ahead: A partial

reconfiguration framework,” in 20th Annual International

Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2012, pp. 37-44.

[2] G. Heiser, “The role of virtualization in embedded systems,” in

Proceedings of the 1st workshop on Isolation and integration in

embedded systems, ACM, 2008, pp. 11-16.

[3] UG585: Zynq-7000 All Programmable SoC Technical

Reference Manual, Xilinx Inc., Mar. 2013.

[4] S. Hauck, and A. DeHon, “Reconfigurable computing: the

theory and practice of FPGA-based computation,” Morgan

Kaufmann, 2010.

[5] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R.

Lauwereins, “Designing an operating system for a

heterogeneous reconfigurable SoC,” in Proceedings of

International on Parallel and Distributed Processing Symposium,

2003, IEEE, 2003, pp. 174-180.

[6] K. Vipin, and S. A. Fahmy, “A high speed open source

controller for FPGA Partial Reconfiguration,” in FPT, 2012, pp.

61-66.

[7] D. Gohringer, M. Hubner, E. N. Zeutebouo, and J. Becker,

“Operating system for runtime reconfigurable multiprocessor

systems," International Journal of Reconfigurable Computing,

vol. 2011, January 2011.

[8] C. Steiger, H. Walder, and M. Platzner, “Operating systems for

reconfigurable embedded platforms: online scheduling of real-

time tasks,” IEEE Transactions on Computers, vol. 53, no. 11,

pp. 1393-1407, Nov. 2004.

[9] K. Danne, R. Miihlenbernd, and M. Platzner, ”Executing

hardware tasks on dynamically reconfigurable devices under

real-time conditions,” in FPL’06, IEEE, 2006, pp. 1-6.

[10] K. Vipin, and S. A. Fahmy, “ZyCAP: Efficient Partial

Reconfiguration Management on the Xilinx Zynq,” in IEEE

Embedded Systems Letters, 2014, vol. 6.

[11] J. Agron, and D. Andrews, “Building heterogeneous

reconfigurable systems with a hardware microkernel,” in

Proceedings of the 7th IEEE/ACM international conference on

Hardware/software codesign and system synthesis, ACM, 2009,

pp. 393-402.

[12] G. Heiser, ”The role of virtualization in embedded systems,” in

Proceedings of the 1st workshop on Isolation and integration in

embedded systems, ACM, 2008, pp. 11-16.

[13] K. Dang Pham, A. K. Jain, J. Cui, S. A. Fahmy and D. L.

Maskell, “Microkernel hypervisor for a hybrid ARM-FPGA

platform,” in ASAP, IEEE, 2013. pp. 219-226.

[14] U. Steinberg and B. Kauer, ”NOVA: a microhypervisor-based

secure virtualization architecture,” in Proceedings of the 5th

European conference on Computer systems, ACM, 2010, pp.

209-222.

