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Abstract Ventricular growth is widely considered to

be an important feature in the adverse progression of

heart diseases, whereas reverse ventricular growth (or

reverse remodeling) is often considered to be a favorable

response to clinical intervention. Over the recent years,

a number of theoretical models have been proposed to

model the process of ventricular growth while little has

been done to model its reverse. Based on the framework

of volumetric strain-driven finite growth with a homeo-

static equilibrium range for the elastic myofiber stretch,

we propose here a reversible growth model capable of

describing both ventricular growth and its reversal. We

used this model to construct a semi-analytical solution

and a numerical solution for reversible growth in an

idealized cylindrical tube geometry and a human left

ventricular geometry that was reconstructed from mag-

netic resonance images, respectively. We show that our

model is able to predict key features in the end-diastolic

pressure-volume relationship that were observed exper-

imentally and clinically during ventricular growth and

reverse growth. We also show that the residual stress

fields generated as a result of differential growth in the
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1 Introduction

Maladaptive ventricular growth or remodeling1 is

widely considered to be an important determinant of

the clinical course of heart failure (Cohn et al. 2000).

In its classical form, cardiac remodeling can be catego-

rized into two different types: (1) concentric remodeling

with a thickening of the ventricular wall that is induced

by an overloading of pressure and (2) eccentric remod-

eling with a dilation of the ventricles that is induced

by an overloading of volume (Grossman et al. 1975).

These global geometrical changes in the form of con-

centric and eccentric remodeling of the heart ventricles

are induced microscopically by the parallel and series

addition of sarcomere units in the myocytes, respec-

tively. Yet, these two forms of remodeling processes are

not mutually exclusive, and can co-exist in other clini-

cal events (e.g. after myocardial infarction) (Opie et al.

2006).

Several theoretical continuum models based on the

concept of finite volume growth have recently been pro-

posed to describe ventricular geometrical remodeling

(Kroon et al. 2009; Göktepe et al. 2010a,b; Rausch

et al. 2011; Kerckhoffs et al. 2012). All these models

1 In this paper, we used the words “growth” and “re-
modeling” interchangeably although other authors have used
“growth” and “remodeling” to specifically describe a change
in mass and properties, respectively.
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were developed based upon the concept of the mul-

tiplicative decomposition of the deformation gradient

tensor into a “growth” and an elastic component. This

concept was first applied by Rodriguez et al. (1994)

to model tissue growth, and was originally developed

by Lee (1969) in the context of finite plasticity. These

ventricular growth models were developed with either

ventricular myofiber stress as the stimulant of growth

(as in Göktepe et al. (2010a,b) and Rausch et al. (2011)

for modeling concentric remodeling) or with ventricular

myofiber and/or myo-crossfiber strain as the primary

stimulant of growth (Kroon et al. 2009; Kerckhoffs et al.

2012).

Although a sizable number of theoretical models

have been developed to model the process of ventricu-

lar remodeling and to predict the effects clinical treat-

ments have on this process (Klepach et al. 2012), there

are little (if any) theoretical models that describe its

reversal. Due to the rapid advancement of clinical de-

vices and treatments, reverse remodeling of the ven-

tricles in the form of ventricular size normalization has

been observed clinically after some interventions. These

treatments include implantation of a left ventricular as-

sist device (Burkhoff et al. 2006), mitral valve repairs

(Brinke et al. 2010) and, more recently, bioinjection

treatment using calcium-sodium alginate hydrogel (Lee

et al. 2013). All of these interventions have been associ-

ated with a reduction in ventricular loading due either

to a reduction in hemodynamics loading (left ventric-

ular assist devices and mitral valve repairs) or to the

presence of mechanical support in the ventricular wall

(bioinjection treatment). As such, there is mounting ev-

idence suggesting that a reversal of ventricular remod-

eling can occur after sufficient and prolonged unloading

of the ventricles.

In this paper, we propose a theoretical constitutive

model capable of describing both ventricular remodel-

ing and its reversal. The focus here is on pathological

ventricular remodeling and reverse remodeling, which is

a subset of the broad subject of biological growth and

remodeling (Taber 1995; Ambrosi et al. 2011). Our pro-

posed model is based on the generic framework of volu-

metric strain-driven finite growth described by Göktepe

et al. (2010b). The constitutive equations describing re-

versible ventricular remodeling are given in Section 2. In

Sections 3 and 4, we describe the problem formulations

for a semi-analytical solution of reversible remodeling

in a cylindrical tube model and a numerical solution of

reversible remodeling in a realistic human left ventricle

model that was reconstructed from magnetic resonance

images, respectively. The results from these two mod-

els are described in Section 5, where we show the effects

of ventricular reverse remodeling (and remodeling) on

end-diastolic pressure volume relationship, as well as on

the ventricular myofiber stress and strain fields. Finally

in Section 6, we discuss the compatibility of our results

with clinically and experimentally observed features of

ventricular reverse remodeling and remodeling.

2 Methods

2.1 Kinematics of Growth and Reversible Growth

Following Rodriguez et al. (1994) and Göktepe et al.

(2010b), we multiplicatively decomposed the deforma-

tion gradient F into an elastic part Fe and a growth

part Fg, i.e.,

F = Fe · Fg . (1)

Without loss of generality, we assumed that the

growth tensor Fg is isotropic. Consequently, Fg can be

parameterized by a scalar growth multiplier θ, i.e.,

Fg = θI , (2)

where I is the identity tensor.

Using the definition of an isotropic growth tensor Fg

given in Eq. (2) and the multiplicative decomposition

of the deformation gradient given in Eq. (1), the elastic

deformation gradient tensor becomes

Fe =
1

θ
F . (3)

Correspondingly, the elastic part of the right

Cauchy stretch tensor and Green-Lagrange elastic

strain tensor are then:

Ce = FeTFe, and Ee =
1

2
(Ce − I) ,

(4a, b)

respectively.

2.2 Elastic Constitutive Model

The elastic deformation of the myocardial tissue is de-

scribed using a Fung-type transversely isotropic hyper-

elastic constitutive model with the following strain en-

ergy function (Guccione et al. 1991):

W (Ee) =
C

2
(expQ− 1) , (5a)

where

Q =bfE
e
ff

2 + bs

(
Eess

2 + Eenn
2 + Eesn

2 + Eens
2
)

+

bfs

(
Eefs

2 + Eesf
2 + Eefn

2 + Eenf
2
)
.



A Computational Model that Predicts Reverse Growth in Response to Mechanical Unloading 3

(5b)

In Eq. (5), C, bf , bs and bfs are the material parameters

and Eij with (i, j) ∈ (f, s, n) are the components of

the Green-Lagrange strain tensor Ee, which correspond

to the material coordinates in the fiber f , sheet s and

sheet-normal n directions.

The incompressiblility of the material is enforced by

an augmented strain energy function Ŵ

Ŵ (Ee, p) = W (Ee)− p(detFe − 1) , (6)

where p is a hydrostatic pressure that functions as a La-

grange multiplier for the kinematic constraint detFe =

1.

The resultant second Piola-Kirchkoff stress tensor is

defined as

Se =
dŴ

dEe
=
dW

dEe
− p (Ce)

−1
, (7)

and the Cauchy stress tensor is

σ =
1

detFe
Fe Se FeT . (8)

The Cauchy stress enters the equilibrium equation

div σ = 0 . (9)

where div denotes the divergence with respect to the

deformed coordinates and body forces have been ne-

glected.

2.3 Kinetics of Growth

The constitutive model of a reversible growth multi-

plier is motivated by the strain-driven eccentric growth

model proposed by Göktepe et al. (2010b):

dθ

dt
= k(θ)φ(λe) . (10)

In Eq. (10), the evolution of the growth multiplier

depends on two scalar functions, namely, a rate limiting

scalar function k(θ) and a growth driving function φ(λe)

that depends on the elastic myofiber stretch λe.

Consistent with the hypothesis that excessive

stretch of the myofiber beyond some homeostatic value

λh2 can lead to growth and dilation of the ventricles (as

in the case when the ventricle is “volume-overloaded”),

the functions k(θ) and φ(λe) have the following forms

when λe ≥ λh2:

k(θ) =
1

τg

(
θmax − θ

θmax − θmin

)γg
, (11a)

φ(λe) = λe − λh2 . (11b)

Equation (11) is similar to the strain-driven eccen-

tric growth model by Göktepe et al. (2010b). In this

equation, γg, τg, θmax and θmin are the degree of non-

linearity of sarcomere deposition, a time-scale associ-

ated with tissue growth and the prescribed maximum

and minimum permissible values of the growth multi-

plier θ, respectively. If we denote the myofiber direc-

tion as f0, the stretching of the myofiber as a result

of growth (or growth stretch) is λg =
√

f0 · FgTFg f0.

Correspondingly, the elastic myofiber stretch is λe =

1/λg
√
f0 · FTF f0. It is evident from this equation that

growth terminates when either criterion θ = θmax or

λe = λh2 is met.

The concept of a homeostatic target value of the my-

ofiber stretch is consistent with the experimental results

by Omens (1998), who suggested end-diastolic myofiber

strain as the primary stimulus for myocardial growth in

volume-overload hypertrophy (instead of end-diastolic

stress). This concept is also consistent with the growth

models of Kroon et al. (2009), Kerckhoffs (2012) and

Taber (2001), although in the latter, myocardial stress

(instead of strain) was postulated to be restored to a

homeostatic value during growth.

2.4 Kinetics of Reversible Growth

In contrast to Göktepe et al. (2010b) where growth is

irreversible, we hypothesize that cardiac growth is re-

versible in a way that the elastic myocardial stretch

λe is always normalized to a homeostatic range λh1 ≤
λe ≤ λh2. Consequently, reverse growth occurs when

the elastic myofiber stretch is less than the prescribed

homeostatic myofiber stretch λh1. To model reversible

growth, we propose the following functional forms for

k(θ) and φ(λe) when λe ≤ λh1

k(θ) =
1

τrg

(
θ − θmin

θmax − θmin

)γrg
, (12a)

φ(λe) = λe − λh1 . (12b)

Similar to Eq. (11), γrg and τrg in Eq. (12) are the

degree of nonlinearity of sarcomere removal and a time-

scale associated with reverse growth, respectively. We

also note that reversal of growth terminates when either

criterion: θ = θmin or λe = λh1 are met. In addition,

the physical limit requires that θmin > 0.

Last, to ensure that growth does not occur within

the homeostatic range of the elastic myofiber stretch,

we prescribed φ = 0 when λh1 ≤ λe ≤ λh2.
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3 Growth and Reverse Growth of a Cylindrical

Tube

To demonstrate the effects of our proposed constitutive

model, we constructed a semi–analytical solution of an

inflated cylindrical tube undergoing reversible growth

in response to changes in the hemodynamics load.

R

Reference Configuration Current Configuration 

r

Fig. 1: Inflation of cylindrical tube. The base vectors ez
and eZ point out of the page.

For a cylindrical tube undergoing homogeneous in-

flation (Figure 1), the deformed radial position r is a

function of only the initial radial position R, i.e., r(R)

and the resultant deformation gradient tensor is:

F =
dr

dR
er ⊗ eR +

r

R
eφ ⊗ eΦ + ez ⊗ eZ . (13)

We prescribed the values of the undeformed inner ra-

dius Ri and outer radius Ro to be 40 mm and 50 mm,

respectively.

For an incompressible material, the deformation is

isochoric and is subjected to the kinematic constraint

det Fe = 1. Using Eqs. (3) and (13), this kinematic

constraint reduces to

dr

dR
=
θ3R

r
. (14)

Integrating this kinematic constraint leads to:

r − ri =

∫ R

Ri

θ3R dR . (15)

The fiber direction in the cylindrical tube model was

prescribed to be in the circumferential direction, i.e.,

(f, s, n) = (Φ,R,Z), and the material parameters of

the Fung’s law in Eq. (5) were given values C = 0.1kPa,

bf = 20, bs = 3 and bfs = 3.

The shear stresses σrz = σrθ = σφz = 0 and the

normal stresses σrr, σφφ, σzz are functions of only the

radial position r when the cylindrical tube is inflated.

Thus, the equlibrium equation (9) is reduced to a scalar

equation:

dσrr
dr

+
σrr − σφφ

r
= 0 . (16)

With a prescribed internal pressure pi and zero external

pressure, the boundary conditions at the tube inner and

outer radius are

σrr|r=ri = −pi , σrr|r=ro = 0 . (17a, b)

Integrating the equilibrium equation (16) and incorpo-

rating the boundary conditions leads to the following

integral equation for the internal pressure,

pi = −
∫ ro

ri

σrr − σφφ
r

dr . (18)

Combining Eqs. (3) - (8) and (13), we can rewrite Eq.

(18) in the following form,

pi =− 1

2
C

∫ ro

ri

expQ

{
b3

(
θ8R4

r4
− θ4R2

r2

)
−

b1

(
r4

R4θ4
− r2

R2θ2

)}
1

r
dr .

(19)

However, integration of (19) requires knowledge of the

dependency of r on R. This dependency is obtained

through the integral form of the kinematic constraint

in Eq. (15).

Equations (15) and (19), together with the kinetics

of growth and reverse growth in Eqs. (10) - (12) form

an initial value problem. We prescribed τg = τrg =

1s, γg = γrg = 1, λh1 = λh2 = 1.3, θmax = 2 and

θmin = 1 for the parameters describing the kinetics

of growth and reverse growth in the cylindrical tube

model. The unknowns for this set of equations are the

growth multiplier θ and the inner radius of the tube

in the current configuration ri. Since the elastic fiber

stretch λe is a function of the radial coordinate R in

the undeformed configuration, the growth multiplier θ

depends on the radial position and may vary across the

thickness.

To mimic the hemodynamic loading of the heart,

we prescribed a sawtooth time-periodic pressure-time

curve for inner pressure pi(t) (Figure 2).

We assumed that the timescale for growth is sig-

nificantly larger than the time scale for hemodynamic

loading, which allows us to separate the time scales be-

tween growth and hemodynamics. As such, we locally

update the growth multiplier θ using explicit-time in-

tegration only at the end of each loading cycle. Within
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P
re

ss
ur

e

Time

1 cycle

200 cycles 200 cycles

  30 mmHg

  10 mmHg

Fig. 2: Prescribed cyclical hemodynamics load pi of the

cylindrical tube model

each cycle, Eqs. (15) and (19), with θ treated as a con-

stant, are recast into a nonlinear root finding problem

for a scalar function defined as

F (ri) =pi +
1

2
C

∫ ro

ri

expQ

{
b3

(
θ8R4

r4
− θ4R2

r2

)
−b1

(
r4

R4θ4
− r2

R2θ2

)}
1

r
dr = 0 ,

(20)

where

r(R) = ri +

∫ R

Ri

θ3R dR . (21)

The explicit-time integration of Eq. (3) is implemented

in MATLAB (The MathWorks, Inc) to solve the initial

value problem. The MATLAB functions “fsolve” and

“quad” are used to solve Eqs. (20) and (21), and eval-

uate the integrals, respectively.

4 Growth and Reverse Growth of a Human

Left Ventricle

After testing our model on an idealized cylindrical tube

model, we applied our model to a more realistic left

ventricular geometry of a normal human subject.

The construction of the left ventricle is shown in

Figure 3. Specifically, the left ventricular epicardial

and endocardial surfaces were reconstructed from mag-

netic resonance images (MRI) by manual segmentation

using MeVisLab (MeVis Medical Solutions AG, Bre-

men, Germany) (Figure 3(a) and (b)). A hexahedral

mesh consisting of 3456 trilinear elements was gener-

ated in the ventricular wall bounded by the epicardial

and endocardial surfaces using the meshing software

TrueGrid (XYZ Scientific Application, Livermore, CA,

USA) (Figure 3(c)). Following Legrice et al. (1997),

we prescribed a rule-based local myofiber orientation

field in the ventricular wall, where the myofiber helix

angle (measured with respect to the counter-clockwise

circumferential direction) varies linearly from −60◦ at

the epicardial wall to 60◦ at the endocardial wall (see

Figure 3(d)).

(a) (b)

(d) (c)

Fig. 3: Construction of the human left ventricle finite

element model: (a) segmentation of the MRI, (b) recon-

struction the endocardial (red) and epicardial (green),

(c) construction of the finite element mesh and (d) as-

signment of rule-based myofiber orientation - stream-

lines follow fiber direction and are color coded with fiber

helix angle.

Similar to the cylindrical tube model, the elastic de-

formation of the ventricle is described using Fung’s con-

stitutive equation given in Equation (5). The material

parameters are C = 0.195kPa, bf = 24.63, bs = 9.63

and bfs = 8.92, which correspond to the values defined

in the human modeling study by Wenk et al. (2012).

For the growth parameters, we chose τg = τrg = 1 s

and γg = γrg = 1.

The homeostatic range of the elastic stretch at

which neither growth nor reverse growth occurs (λh1 ≤
λe ≤ λh2) was chosen as the range of the elastic stretch

under a nominal end-diastolic pressure P̄ = 10 mmHg

applied to the endocardial surface.

Figure 4 shows the prescribed pressure-time varia-

tion to simulate growth and reverse growth in the hu-

man left ventricle. A cyclical high end-diastolic pres-

sure P̄+ = 30 mmHg was applied successively to in-

duce stretch-driven growth. The high pressure loading

was applied until growth has converged to a biological

equilibrium state. Thereafter, a low end-diastolic pres-
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Fig. 4: Loading curve for the left ventricle. In practice

we computed five loading-unloading cycles with high

pressure, and five with low pressure. Every growth step

lasts one characteristic time of the growth model.

sure P̄− = 2 mmHg was applied cyclically to induce

reverse growth and shrink the ventricular geometry un-

til reverse growth had converged to a second biological

equilibrium state.

Similar to the idealized cylindrical tube model, we

hypothesize that the timescale of a cardiac cycle and the

timescales of growth or reverse growth are separable.

This implies that we update the growth multiplier θ

only at peak pressure in each cycle.

5 Results

5.1 Growth and Reverse Growth of a Cylindrical Tube

Figure 5 shows the evolution of the growth multiplier

θ at the inner and outer surfaces Ri and Ro under

the imposed hemodynamic pressure loading (Figure 2).

For the first 200 cycles at which the pressure pi was

elevated, the growth multiplier θ increased monotoni-

cally at a decreasing rate and approached steady-state

with different values at the inner and outer surfaces of

the tube. Because the steady-state values lay between

the maximum and minimum permissible values of the

growth multiplier i.e. θmin = 1 and θmax = 2, the van-

ishing growth rates at steady-state at both inner and

outer surfaces are the outcome of λe → λh2 as the elas-

tic stretch approached its homeostatic value. In a simi-

lar fashion, the growth multiplier θ decreased after 200

cycles in response to the reduced pressure pi, and ap-

proached a steady-state value as λe → λh1.

Figure 6 shows the effects of (a) growth and (b)

reverse growth on the relationship between pressure pi
and the tube internal radius ri. During growth, both the

internal radius of the unloaded tube (i.e. ri at pi = 0)

and the entire pi - ri relationship shifted to the right and

asymptotically approached the first equilibrium state

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 50 100 150 200 250 300 350 400

θ

Cycle Number

Growth Reverse Growth

outer
inner

Fig. 5: Growth multiplier θ at the inner and outer sur-

faces as a function of the cycle number. Cross section of

the unloaded cylindrical tube are shown in the inset at

cycles 0, 200 and 400. Color denotes growth multiplier

θ in cycles 200 and 400.

at which λe = λh2. During reverse growth, the inner

radius and the pi - ri relationship shifted to the left

and asymptotically approached the second equilibrium

state at which λe = λh1
We note that the pi− ri relationship at the equilib-

rium state after reverse growth (N = 400) is different

from the original one before the onset of growth i.e. at

cycle = 1 (dotted line). This is because of the existence

of differential growth across the cylindrical tube wall.

Therefore, residual stresses, i.e., internal stresses in the

unloaded tube, were generated as a result.

Figure 7 shows the variation of normal residual

stresses σrr, σφφ and σzz across the tube wall at (a)

the “fully grown” steady-state, and at (b) the “fully

shrunk” steady-state. Although residual stresses in the

“fully shrunk” steady-state are substantially smaller

than that in the “fully grown” steady-state, they all

share the same features. Specifically, the circumferen-

tial normal stress σφφ varies from negative at the in-

ner wall indicating compression to positive at the outer

wall indicating tension. By comparison, the longtitudi-

nal normal stress σzz is negative across the entire tube

wall. A compressive σzz arises largely because the pre-

scribed plane deformation of the model in Eq. (13) is

not compatible with the isotropic growth deformation

prescribed in Eq. (2). Therefore, in order to maintain

the plane deformation prescribed in Eq. (13), the tube

must be elastically compressed in its longitudinal di-

rection when growth occurs. On the other hand, the

normal radial stress σrr satisfies the boundary condi-

tions in Eq. (17) with pi = 0, and is relatively small

when compared to the other two stress components.
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Fig. 6: Internal pressure pi vs inner radius ri at every

10th cycle in (a): cycles 1 - 200 during growth (inset:

unloaded cylindrical cross section at cycles 1, 20, 200)

and (b) cycles 200 - 400 during reverse growth (inset:

unloaded cylindrical cross section at cycles 200, 220,

400). Dotted line: pi vs ri at first cycle.

5.2 Growth and Reverse Growth of a Human Left

Ventricle

For the nominal pressure P̄ = 10 mmHg, the range of

elastic stretch in the left ventricle lay between lower

and upper limits of 1.05 and 1.15, respectively. These

limits were used to set the homeostatic range of elastic

stretch, i.e., λh1 = 1.05 and λh2 = 1.15 in the reversible

growth constitutive model (see Sections 2.3 and 2.4).

Figure 8 shows the pressure-volume relationship of

the left ventricle model under the prescribed loading

given in Figure 4. The curves display similar features as

the pressure-radius relationship of the idealized cylin-

drical tube model in Figure 6, where the entire pressure-

volume relationship shifted to the right under a high

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

40 42 44 46 48 50

σ 
(k

Pa
)

R (mm)

Residual stress after growth

σφφ

σrr

σzz

(a)

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

40 42 44 46 48 50

σ 
(k

Pa
)

R (mm)

Residual stress after reverse growth

σφφ

σrr

σzz

(b)

Fig. 7: Residual normal stresses in the circumferential

(σφφ), radial (σrr) and longitudinal (σzz) directions vs

referential radial positionR at the beginning of (a) cycle

201 and (b) cycle 400 with pi = 0.

end-diastolic pressure loading of P̄+ = 30 mmHg (Fig-

ure 8a), and shifted to the left under a low end-diastolic

pressure of P̄− = 2 mm Hg (Figure 8b). Correspond-

ingly, the unloaded LV cavity volume also increased and

decreased (both by ∼ 5 ml) in response to the high and

low end-diastolic pressure loading, respectively. Simi-

lar to the cylindrical tube model, the pressure-volume

relationship in the final cycle of reverse growth is not

identical to the initial one before the onset of growth

although their unloaded left ventricular cavity volume

are close to one another.

Figure 9 shows the evolution of the left ventricular

geometry color-coded with the growth multiplier θ field

as a result of growth and a subsequent reverse growth.

In the figure, the ventricle increased slightly in size with

growth (Figure 9b), corresponding to 20% increase in

left ventricular volume, and shrinked longtitudinally as
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a result of reverse growth (Figure 9d), corresponding to

a recovery of the initial ventricular volume. Growth is

largely heterogeneous in which the endocardial (inner)

wall exhibits larger growth when compared to the epi-

cardial (outer) wall. This result is consistent with obser-

vations from the cylindrical tube model (see Figure 5).

The apical region exhibits a little shrinkage (i.e. θ < 1)

during growth (Figure 9b) and more substantial shrink-

age during reverse growth (Figure 9d). During growth,

the ventricle grows and becomes more spherical. This

is in agreement with clinical observations during eccen-

tric hypertrophic growth and implies that the apex is

mechanically unloaded. The reduced apical stretch ini-

tiates negative growth in the apical region even during

a global overload.
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Fig. 8: Evolution of the pressure-volume relationship

of the left ventricle during (a) growth and (b) reverse

growth. The first and last cycle of the pressure-volume

relationship in (a) is also shown in (b) as solid and

dotted lines, respectively. Refer to text for definition of

P̄−, P̄ and P̄+.

Figure 10 shows the evolution of the elastic myofiber

stretch λe field as a result of growth and reverse growth.

The regional profile of the elastic fiber stretch is simi-

lar to the profile of the growth multiplier (Figure 9) as

the stretch is the driving mechanism for growth. During

growth and reverse growth, the elastic fiber stretch be-

comes more homogeneous across the ventricular wall.

Specifically, the range of elastic fiber stretch changed

from λe = 1.02− 1.22 to λe = 1.04− 1.18 after growth

(between cycle 1 - 5) and from λe = 0.97 − 1.10 to

λe = 1.01 − 1.07 during reverse growth (between cycle

6 - 10).

6 Discussions

We have established a constitutive model for reversible

growth based on the frameworks of irreversible stretch-

driven growth by Göktepe et al. (2010b) and the mul-

tiplicative decomposition of deformation gradient into

an elastic and “growth” component by Rodriguez et al.

(1994). Specifically, we have established the first model

with a homeostatic equilibrium range for soft tissue

growth that is analogous to hard tissue growth in bone.

This homeostatic equilibrium zone is often referred to

as a “lazy” zone in bone (Frost 2003).

Using this constitutive model, we have constructed

a semi-analytical solution based on an idealized cylin-

drical tube model and a numerical solution based on

a realistic model of an MRI-reconstructed human left

ventricle. We have shown that in these models, growth

and reverse growth were induced by a change in peak

hemodynamic load where the global effects of growth

and reverse growth were manifested by a rightward and

leftward shift of the entire pressure-volume relationship,

respectively (Figures 6 and 8). We have also shown that

the resultant elastic myofiber stretch field after growth

and reverse growth was more homogeneous in the left

ventricle.

6.1 Compatibility with experimental studies and

clinical observations of ventricular remodeling

Our model and results are consistent with a wide body

of clinical observations and experimental studies. In

terms of ventricular remodeling, the model predictions

are consistent with the classical concept of eccentric

hypertrophy arising from volume overload (e.g. mitral

regurgitation): during volume overloading, on the cellu-

lar level, myocytes in patients with ischemic cardiomy-

opathy were found to be lengthened through the se-

rial addition of sarcomeres (Gerdes et al. 1992). On

the organ scale, hearts of these patients became en-

larged and more spherical (Cohn et al. 2000). Our
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(a) Before growth
(Cycle 1)

(b) After growth
(Cycle 5)

(c) Before reverse growth
(Cycle 6)

(d) After reverse growth
(Cycle 10)

Fig. 9: Evolution of the unloaded geometry and growth multiplier θ field of the left ventricle as a result of growth

and reverse growth. Geometries are of the same scale. Black and red line in (a) correspond to the geometry outline

of (b) and (d), respectively. Note: (b) and (c) are identical since no growth or reverse growth occurred between

these 2 time points.

(a) Before growth
(Cycle 1)

(b) After growth
(Cycle 5)

(c) Before reverse growth
(Cycle 6)

(d) After reverse growth
(Cycle 10)

Fig. 10: Evolution of elastic myofiber stretch λe in the left ventricle as a result of growth and its reversal. Geometries

are of the same scale.

model predicts the increase of sphericity in response

to overload. In particular, we observed that eccentric

growth tends to unload the apex, in which we observed

negative growth, even during overload. In contrast to

the original hypothesis by Grossman et al. (1975) that

end-diastolic myofiber stress is the myocardial growth

stimulant during volume overload, Omens (1998) sug-

gested end-diastolic myofiber strain as the growth stim-

ulant. Specifically, Omens (1998) showed that the end-

diastolic myofiber strain in rats induced with volume

overload was normalized by 6 weeks during volume-

overload hypertrophy whereas end-diastolic myofiber

stress remained elevated during this time period. The

global effects of an increase in preload associated with

volume-overload hypertrophy are observed clinically in

the form of pressure-volume relationship. For example,

with the development of chronic mitral valve regurgi-

tation, the entire pressure-volume relationship in pa-

tients has frequently been observed to shift rightwards

(Gaasch and Meyer 2008) in a manner that is qualita-

tively consistent with our models’ prediction.

6.2 Compatibility with experimental studies and

clinical observations of ventricular reverse remodeling

In contrast to myocardial growth and remodeling which

has been the subject of intense mathematical model de-

velopment (Göktepe et al. 2010b; Kerckhoffs et al. 2012;

Kroon et al. 2009), there are few, if any, mathematical

models that describe the reverse of growth and remodel-

ing. However, the phenomenon of reverse growth has in-

creasingly been observed both experimentally and clin-

ically, especially in response to recent clinical interven-

tions. The original concept of reverse remodeling was
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spawned by the effects of left ventricular assist devices

in normalizing end-diastolic pressure-volume relation-

ship in patients with end-stage cardiomoypathy (Levin

et al. 1995) that has been frequently observed in clinical

practice (Burkhoff et al. 2006; Drakos et al. 2007; Am-

bardekar and Buttrick 2011). In particular, prolonged

unloading of the left ventricular pressure (and volume)

after device implanation (Figure 1 in Burkhoff et al.

(2006)) led to a decrease in left ventricular volume, and

a concurrent leftward shift in the end-diastolic pressure-

volume relationship (Figure 2 in Levin et al. (1995)).

Microscopically, these effects were accompanied by a

decrease in myocyte size (Figure 2 in Madigan et al.

(2001)). The fact that these effects were typically not

seen in the right ventricle, where the hemodynamics

loading remained elevated (Burkhoff et al. 2006), pro-

vided perhaps the strongest support of a causal rela-

tionship between a reduction in ventricular loading and

the reversal of remodeling.

Reverse remodeling was also observed in other clin-

ical interventions that are associated with a reduction

in ventricular loading, albeit less frequently than with

left ventricular assist devices. For example, a significant

reduction in the left ventricular size (up to 50%) was

observed in patients that underwent bioinjection treat-

ment with Algiysl-LVR, a calcium-sodium-alginate hy-

drogel proprietary to Lonestar Heart, Inc (Lee et al.

2013). In previous studies, the bioinjection treatment

was associated with a decrease in end-diastolic my-

ofiber stress (Wenk et al. 2011) and a leftward shift in

end-diastolic pressure-volume relationship (Wall et al.

2006), which both suggest a decrease in the elastic my-

ofiber stretch. Reverse geometrical remodeling of the

left ventricle was also observed after mitral valve re-

pair which decreases preload (Brinke et al. 2010). Given

that the experiment by Omens (1998) strongly suggests

an elevated elastic myofiber strain as the stimulant of

ventricular remodeling, it is also very plausible that

the reverse holds, i.e., a reduction in elastic myofiber

strain initiates reverse ventricular remodeling. These

observations are the basis of our proposed constitu-

tive model for reversible strain-driven growth, which

we have shown to be able to reproduce the clinically

and experimentally observed trend of the end-diastolic

pressure-volume relationship during ventricular reverse

remodeling.

6.3 Compatibility with experimental studies and

clinical observations on growth-induced residual stress

Since non-homogeneous growth generates incompatibil-

ity that must be accommodated elastically, differen-

tial growth in the left ventricle in response to a non-

homogenous strain field will generate residual stresses,

i.e., stresses in the unloaded state. The residual stress

fields generated through our constitutive model in the

idealized cylindrical model at maximal growth (Fig-

ure 7) are consistent with other models utilizing the

same cylindrical geometry (Rodriguez et al. 1994; Guc-

cione et al. 1991). In Guccione et al. (1991), the resid-

ual stress field was the result from prescribing a “cut”

cylindrical model as a stress-free reference configura-

tion whereas in Rodriguez et al. (1994), the residual

stress field was the result of stress-modulated differen-

tial growth. Consistent with these models, the circum-

ferential stress varies transmurally from compressive (at

the endocardial wall) to tensile (at the epicardial wall).

We also showed that our model predicts an increase in

residual stresses during ventricular remodeling and a

subsequent decrease in residual stresses during reverse

ventricular remodeling (Figure 7).

The effects of pathological ventricular remodeling

and reverse remodeling on residual stress and strain are

still unclear given the paucity of experiments that stud-

ied these effects. To the best of our knowledge, the only

two studies on the effects of residual stresses and strain

due to ventricular remodeling is the study by Omens

et al. (1998) on aging rat heart (i.e., physiological re-

modeling), and Taber and Chabert (2002) on develop-

ing embryonic chick heart. In the former, the opening

angle of the left ventricular equatorial ring after a ra-

dial cut was found to decrease during aging, while in

the latter, the opening angle in embryonic chick heart

was found to decrease as a result of pressure overload.

It is not entirely clear whether the reduction in open-

ing angle in the experiment by Omens et al. (1998)

was accompanied by a change in tissue stiffness, as be-

sides differential growth, a change in tissue stiffness will

also have an effect on the opening angle (Taber and

Chabert 2002). The impact on the opening angle as a

result of a change in tissue stiffness can be illustrated by

considering a hypothetical case in which the tissue be-

comes infinitely compliant (i.e. have zero stiffness) dur-

ing ventricular remodeling. In this limiting state, the

left ventricle will be in a “stress-free” state even with

finite growth and correspondingly, the opening angle

will be zero. As such, future experiments to test our

model prediction on the effects on residual stresses and

strain due to ventricular remodeling and reverse remod-

eling should separate the effects arising from differential

growth and a change in material properties.

6.4 Limitation the model

Our proposed model of reversible growth and remodel-

ing does have limitations. One key limitation is the fact

that we have neglected the effects on myocardial ma-
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terial properties due to remodeling and reverse remod-

eling. In the experiments by Omens (1998), volume-

overload ventricular remodeling in rats was found to be

associated with an increase in the mechanical stiffness

of the myocardial tissues. A change in mechanical prop-

erties would not only have a confounding effect on the

residual strain measured using the “opening angle” of

radially cut slices of the left ventricle (as expounded in

the previous paragraph), but also on the end-diastolic

pressure-volume relationship. Another limitation of our

model (as with other existing volumetric growth mod-

els) is that it cannot distinguish between a change in

the number of myocytes (i.e. hyperplasia or dysplasia)

from a change in cell size (i.e. hypertrophy or atrophy)

(Taber 2001).

7 Conclusions

In conclusion, we have established a reversible strain-

driven growth model and have shown that the pro-

posed model can qualitatively reproduce many experi-

mental and clinical observations of ventricular remodel-

ing and reverse remodeling. Specifically, we have shown

that our model prediction on the effects of end-diastolic

pressure-volume relationship due to growth and reverse

growth are compatible with clinical and experimental

observations. We had also shown that our model pre-

diction on the residual stress fields in an idealized cylin-

drical model are similar to that in other non-identical

models, namely, a model with stress-modulated growth

and a model using a longtitudinally cut cylinder as a

stress-free configuration. Although our proposed model

can qualitatively reproduce clinical and experimental
observations of ventricular remodeling and reverse re-

modeling, more experiments will be necessary to test

the basis of our proposed constitutive model and its

predictions.
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