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Abstract 

Computational modeling has pervaded in many areas of science and engineering, but it is only fairly 

recently that advances in experimental techniques and medical imaging have allowed this tool to be 

applied in cardiac surgery. Despite its infancy in cardiac surgery, computational modeling has been useful 

in elucidating and predicting the effects of various heart diseases and clinical interventions. In this review, 

we used various examples to demonstrate the capabilities of computational cardiac modeling. 

Specifically, we demonstrate its ability to simulate surgery, predict myofiber stress and pump function, 

and quantify changes to myocardial material properties. In addition, some of the issues that would need to 

be resolved in order for computational modeling to play a greater role in cardiac surgery are also laid out 

in this review.  

 

Keywords: Computational modeling, Finite element method, Medical devices, Myocardial infarction. 
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1.  Introduction 

Computational modeling (or computer simulation, mathematical modeling) has pervaded in many areas of 

science and engineering. With the continuing increase in computing power, mathematical modeling has 

become an indispensable tool in scientific research and engineering product development of many 

industries, such as the automotive and aerospace industries. 

Among the many benefits associated with the use of computational modeling, two key benefits stand out. 

First, computational modeling is versatile and can be used to probe the many “what if” scenarios without 

incurring the typical high costs associated with constructing new experiments. For example, once a 

computational model is created, the model can be used to quantify the relative contribution of each 

mechanism in the human heart towards some observed phenomenon. Second, computational modeling is 

particularly useful in quantifying results that are difficult or impossible to measure in experiments, e.g. 

when the placement of accelerometers to measure vibrational response is difficult or impossible at certain 

locations in an automobile or aircraft. 

Compared to these engineering areas, computational modeling of the heart is still at its infancy. This is 

primarily so because living tissues, unlike engineering materials, have highly complex microstructure and 

can have behavior that evolves with time (i.e. it can remodel and grow)  [1,2]. As a consequence, and due 

in part to the inherent difficulties in performing experiments on living tissues, constitutive relationships of 

the myocardium such as stress-strain relationship are difficult to construct. Nevertheless, computational 

models of the heart have continued to improve tremendously over the past few decades. To get a glimpse 

of this improvement, all one needs to do is to compare early computational models of the heart to the 

latest models. For example, one of the earliest computational model of the left ventricle (LV) was 

formulated based on small deformation theory with the assumption that the myocardium is isotropic and 

has a linear elastic stress-strain relationship [3]. By comparison, a recent biventricular model was not only 

formulated based on large deformation theory but also takes into account the microstructural arrangement 

of fiber in the myocardium (i.e. accounting for anisotropy1), nonlinearity of the myocardial stress-strain 

relationship and excitation-contraction coupling of the myocardial tissues [4].  For a more detailed history 

of the computational modeling in cardiovascular mechanics, refer to Guccione et al. [5]. 

With these improvements, computational modeling is increasingly applied to problems in cardiac surgery 

over the past decade. These applications range from elucidating the effects of various heart diseases to 

predicting the effects of clinical interventions. The goal of this article is to demonstrate the specific 

capabilities of computational cardiac modeling using various examples, specifically, its ability to simulate 

																																																													
1 Anisotropy, as opposed to isotropy where the material response is independent of the direction, implies that the material 
response is direction-dependent.  
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surgery, predict myofiber stress and pump function, and quantify changes to myocardial material 

properties. Due to space constraint, we shall confine this review to applications involving only 

computational modeling of cardiac mechanics, while neglecting the discussion of computational modeling 

of other equally important sub-fields in cardiac surgery such as electrophysiology. Also, as an aside, most 

existing computational models of the heart are not truly mechanistic models, which are solely derived 

from the most basic law of physics. These models are largely phenomenological, and are constructed 

based on experimental observations (e.g. through mechanical testing of cardiac tissues).    

 

2.  Computational Modeling  
2.1 Computational Cardiac Mechanics 

Broadly speaking, computational cardiac mechanics is at the intersection of three scientific domains, 

namely, continuum mechanics, materials science and numerical methods (Fig. 1a). Continuum mechanics 

is the basic reference framework of mechanical engineering that was developed with the expansion of 

engineering. For a description of the history of continuum mechanics, refer to Fung [6]. Continuum 

mechanics is based upon a bold hypothesis: that matter is continuous. This is, of course, not exactly true. 

However, at scales above the nanometer, this hypothesis is very realistic and provides an adequate 

description of the deformation of matter through the equilibrium equations that all matters must satisfied. 

These equilibrium equations are derived from basic conservation laws, which are namely, the 

conservation of mass, momentum, energy. They are general and apply to all types of materials, be it 

ceramics, metals or living tissues.  

The material or constitutive law differentiates between materials. Developed for each specific material, 

this law describes how much force is developed when the material is stretched or strained, or the 

converse. Simply put, the constitutive law describes the material mechanical behavior. Many different 

constitutive laws have been formulated for cardiac tissues and they all share the key features of having a 

nonlinear and anisotropic stress-strain relationship, and having the ability to contract in the muscle fiber 

direction when stimulated. Due to its simplicity, we have mostly used the constitutive laws formulated by 

Guccione et al. [7, 8] in our models. These laws have been extensively validated in large animal studies. 

Combining the equations from continuum mechanics and constitutive law leads to a set of (coupled 

partial differential) equations. The displacement/strain/stress at every material point within the heart wall 

and every time point during the cardiac cycle can be found once these coupled equations are solved. 

However, these equations usually cannot be solved analytically for real heart geometries and loading; and 

its solution can only be found for a few specialized cases with idealized heart geometry. Therefore, one is 

forced to look for approximated solutions of this set of equations. 
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Numerical methods, which forms the last pillar of computational cardiac mechanics, is often used to 

approximate systems of differential equations. Although many numerical methods can be used to 

approximate systems of equations in cardiac mechanics, the most widely used method is the finite 

element (FE) method. Its popularity is largely due to its versatility, performance and solid theoretical 

foundation (e.g. proof of convergence, error control, etc.). The main idea behind the FE method (and in 

all numerical methods) is to split the original continuous problem into a discrete one, a process typically 

known as “discretization”. To achieve that, the FE method split the material domain into many subparts 

called elements whose vertices are called nodes. Together, the nodes and elements form the mesh that is 

typically known as an FE mesh (Fig. 1b). In the FE method, the approximate solution is expressed as the 

weighted sum of a finite number of known functions called shape functions. One shape function is 

associated with each node and the shape function is usually chosen to be linear within each element; 

though higher order shape functions (such as quadratic shape functions) can also be used. The weights 

associated with each shape function are derived to obtain the best possible approximation with that 

particular set of shape functions. The result is a large system of algebraic equations that can be solved 

most efficiently with computers.2   

For the interested readers, we have provided a more simplified description of the FE method in relation to 

the three abovementioned domains in the Appendix. 

 

2.2 Finite element over Laplace’s law to calculate ventricular wall stress 

Given the popularity of using Laplace’s law to calculate ventricular wall stress among clinicians, it is 

worthwhile to examine some of the key merits of using the FE method over Laplace’s law. Certainly, 

there must exist some very good reasons why the FE method should be preferred over Laplace’s law, 

especially since the FE method is much more complicated and requires significantly more effort than 

Laplace’s law. For a comprehensive review of the analytical and numerical methods used to calculate 

ventricular wall stresses, refer to Yin [9]. 

The key indisputable advantage of FE method over Laplace’s law is its versatility. In particular, once the 

stress-strain relationship is validated, the FE method can be used to calculate regional stresses in any 

arbitrary geometry and under any arbitrary load(s). In comparison, Laplace’s law was formulated based 

on the restrictive assumption of a thin ventricular wall, where the law (in its simplest form) states that the 

ventricular wall stress is directly proportional to the ventricular cavity pressure and endocardial radius of 

curvature, and is inversely proportional to the ventricular wall thickness. As a consequence, stress is 

																																																													
2 When the system of algebraic equations is nonlinear, these equations are typically turned into a series of linear equations or 
“linearized” or before solving with a computer. The most commonly used method for this “linearization” is the Newton-Raphson 
method    
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uniform across the ventricular wall. Laplace’s law therefore can only calculate average stresses across the 

ventricular wall. Because the ventricular wall is inhomogeneous with muscle fiber orientation varying 

across the wall thickness [10], the use of Laplace’s law to quantify forces acting or generated by the 

muscle fiber (i.e. myofiber stress) is bound to be erroneous.  To illustrate this, Zhang et al. [11] recently 

compared stresses in an infarcted sheep LV calculated from the FE method to that calculated from 

Laplace’s law.  Not only did they find that Laplace’s law severely underestimated the average myofiber 

stress in both remote (by 64%) and borderzone (BZ) region (by 35%) at end-systole (ES) when compared 

to the FE method, they also found a significant disparity in stress predicted by the two methods when 

used to study the effects of Dor procedure. Being more general and without any restrictive assumptions 

other than the validity of the material constitutive law, the FE method is clearly more accurate. Hence, 

caution should be exercised when using Laplace’s law to quantify myofiber stress. 

The other advantage of FE method is that it has a more extensive predictive capability than Laplace’s law, 

whose only utility is in ventricular stress estimation. Not only does it predict regional stresses more 

accurately, it can also be used to predict material deformation that is impossible to do so using Laplace’s 

law. This predictive capability enables other metrics of cardiac function, such as stroke volume and 

regional myocardial strains, to be quantified. Moreover, clinical interventions and the effects due to the 

progression of heart diseases can also be simulated realistically using the FE method. All these 

capabilities make the FE method a potentially powerful tool with high clinical value. 
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3. Application in Cardiac Surgery 
In his 1981 review paper on ventricular wall stress, Yin [9] aptly stated: “Our ability to optimally utilize 

this powerful [FE] method of analysis is also currently limited by our inability to define very accurately 

the moment-to-moment three-dimensional geometry of the ventricle and our lack of data relative to the 

regional constitutive relations of myocardial tissue. Unfortunately, until all of these problems are 

resolved satisfactorily, this powerful tool, which has the potential for providing otherwise unobtainable 

insight into regional myocardial mechanics, remains of qualitative use and is of limited utility for clinical 

applications.” Some thirty years later, with the advancement in experimental techniques to quantify 

myocardial material response, and imaging techniques that not only makes it possible to construct 

accurate patient-specific ventricular geometry but is also capable of measuring in vivo myocardial 

deformation, computational cardiac modeling has become more applicable for clinical use. Indeed, 

computational cardiac modeling has increasingly been used to elucidate the effects of various heart 

diseases and clinical interventions. We now demonstrate four specific capabilities of computational 

cardiac modeling using examples. 

3.1  Prediction of myofiber stress 

Since elevated myofiber stress is widely believed to be responsible for adverse cardiac remodeling [12], 

knowledge of the in vivo regional myofiber stress may shed considerable light on the prognosis of heart 

diseases in patients and/or the efficacy of any particular treatment received by the patients. To these ends, 

Laplace’s law is often used to estimate ventricular myofiber stress. However, as mentioned earlier, the 

accuracy of Laplace’s law can suffer due to the restrictive assumptions associated with it, and the 

myofiber stress predicted by this method can be significantly different from that predicted using a more 

general FE method [11]. Thus, the FE method should be used to estimate ventricular myofiber stress 

when available. Such was the case in a study of the Cardiokinetix Parachute device [cite]. 

In this analysis, the FE method was used to analyze the effects of the Parachute® developed by 

CardioKinetix Inc (Menlo Park, CA) that is intended to reverse LV remodeling after antero-apical 

myocardial infarction (MI). This device consists of an expanded polytetrafluoroethylene (ePTFE) 

membrane bonded to an expanded Nitinol frame consisting of 16 struts. The Nitinol frame is attached to a 

radioplaque foot. In the deployment process, the device is first collapsed and then delivered 

percutaneously from the femoral artery by standard catheterization technique. Once in position, the 

Parachute device is expanded and the anchor tip of each strut engages and hooks on to the LV endocardial 

wall. In the final deployed configuration, the Parachute device partitions the LV into an upper and a lower 

chamber (Fig. 2a).   
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Treatments using this device have shown to lead to a reduction in LV end-diastolic volume (EDV) and 

end-systolic volume (ESV) in both animals [13] and humans [14] but the mechanism that led to these 

improvements is unclear. To elucidate its effects, an FE model of the LV implanted with the Parachute® 

device was constructed. This model is realistic, in particular because 1) the FE LV model was 

reconstructed from CT images of a patient before Parachute device implantation and 2) the deployment 

process was simulated in addition to the end-diastole (ED) and ES phases (Fig. 2b). 

The main result of this simulation is that treatment using the Parachute device leads to a substantial 

reduction in ED myofiber stress. The ES myofiber stress, by comparison, was predicted to be a little 

changed after implantation. Specifically, the average ED myofiber stress was predicted to be 30% lower 

than that before treatment with the bulk of that reduction coming from the partitioned lower chamber of 

the LV (Fig. 2c). The results from this single-patient study suggest that the reported therapeutic effects 

arising from Parachute device treatment may be an outcome of a reduction in ED myofiber stress. Clearly, 

these results are preliminary and studies involving more patients are required to confirm this result. 

3.2  Prediction of pump function 

As mentioned earlier, the ability to predict material deformation using the FE method enables it to be used 

to quantify the ventricular pump function, which is impossible to do so using Laplace’s law. This utility 

was demonstrated in an analysis of the Acorn CorCap Cardiac Support Device (Acorn CSD) using the FE 

method [15]. 

The Acorn CSD is a bidirectional woven polyester yarn jacket that is implanted to the epicardial 

ventricular wall, can be classified under a class of device commonly referred to as a cardiac passive 

restraint device. Other such devices include the Paracor HeartNet device [16] and the adjustable 

ventricular restraint device [17]. The primary aim of the restraint device is to reduce elevated ventricular 

wall stress that is associated with progressive ventricular dilation by mechanically restraining the 

ventricles. It is hypothesized that doing so will halt or even reverse the adverse ventricular remodeling 

process.  

In this analysis, the mechanical effects of Acorn CSD were simulated using a FE model of a dog 

biventricular unit with induced dilated cardiomyopathy from rapid pacing (Fig. 3a). We note that a prior 

FE LV model has also been used to simulate the effects of passive restraint device [18] but that model is 

highly idealized because it assumed that the LV is a prolate spheroid and the effects of the device is 

equivalent to that of a constant pressure applied to the epicardium. The biventricular FE model is not 

restricted by any of these assumptions. In addition, the effects of pre-stretch of the Acorn CSD was also 
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modeled to address the issue on how tight the Acorn CSD needs to be when it is implanted to the 

epicardial wall; all that was mentioned in previous studies is that the CSD has to be fitted “snugly” [19].  

The results from the simulation show even though the Acorn CSD can reduce the ED myofiber stress 

substantially (by as large as 78%), and more so with pre-stretch, this huge reduction in myofiber stress 

was always accompanied by a decrease in diastolic compliance. Consequently, both LV and RV ED 

pressure-volume relationships were shifted to the left by 7% without pre-stretch and 11% with pre-stretch 

(Fig. 3b). Because the LV and RV end-systolic pressure-volume relationships were predicted to be 

insensitive to the presence of Acorn CSD, the Starling’s relationship became more depressed and stroke 

volume was reduced by 23% (without pre-stretch) and 30% (with pre-stretch) as a result (Fig. 3c). Thus, it 

would be impossible to query the possibility of the Acorn CSD in depressing the ventricular pump 

function if Laplace’s law was used in place of the FE method to evaluate this device. 

 

3.3  Inverse prediction of myocardial material parameters 

Because in vivo pathological changes of the ventricles are reflected in its regional material properties, the 

capability to quantify regional ventricular material properties enables one to not only track the evolution 

of heart diseases but also to quantify the effects of clinical intervention that are intrinsic to the cardiac 

tissues. The FE method possessed this capability when used in combination with medical imaging 

techniques capable of measuring in vivo myocardial strain, as was demonstrated in a study of the Dor 

procedure [20].  

The Dor procedure (also known as the endoventricular patch plasty procedure) is a surgical procedure 

used to reduce the LV volume after MI and subsequent LV remodeling. The primary aim of this 

procedure is to reduce LV wall stress, which is associated to the LV volume according to Laplace’s law 

[21]. It has also been suggested that the Dor procedure may help reduce BZ stress and strain that would 

improve myocardial contractility at the BZ [22]. 

To quantify the effects of Dor procedure on regional contractilities and myofiber stress, five MRI-

reconstructed FE models of the sheep LV were created at 3 different time points in this study, namely, 2 

weeks before surgery, 2 weeks after surgery and 6 weeks after surgery. Based on MR images, the 

dyskinetic infarct, the BZ and the remote regions were identified and delineated in the LVs as distinct 

material regions, each with a different contractility reflected by a material parameter of the constitutive 

law (Fig. 4a). Regional myocardial strain was also measured non-invasively using tagged MRI at these 

time points. In these FE models, the regional material parameter associated with the tissues contractility 

were adjusted in a systematic way using computational optimization method so as to minimize the 
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difference between the FE-predicted and the MR-measured 3-dimensional systolic myocardial strain and 

the LV cavity volume at ED and ES [23]. Myofiber stress in these sheep models was calculated based on 

the set of “optimized” material parameters. 

Contrary to the hypothesis that BZ contractility would improve after Dor procedure, this study found that 

the BZ contractility remained depressed when compared to the remote region. Not only did the BZ 

contractility failed to improve after the Dor procedure, the study also found that the remote region’s 

contractility has decreased by 24% after the procedure (Fig. 4b). On the other hand, myofiber stress at ED 

and ES were predicted to decrease after the Dor procedure (Fig. 4c). Interestingly, the Surgical Treatment 

for Ischemic Heart Failure (STICH) trial concluded that adding the Dor procedure to coronary artery 

bypass grafting adds no benefits to the patient [24] even though that result is controversial and other 

clinical studies have found that such a procedure can benefit patients [25]. Given that there are other kinds 

of variants of the Dor procedure (e.g. the Pacopexy technique [26]), computational modeling, as shown in 

this study, can be both useful and efficient in providing an insight to the regional pathological changes of 

the ventricles associated with such procedures.   

3.4  Simulation of surgery 

Because of its versatility, the FE method can be used to simulate surgery and hence, can potentially be 

used for surgery planning. The key to this potentiality lies in the method’s ability to simulate the suturing 

process, as was demonstrated in our two recent analyses of mitral annuloplasty [26, 27]. 

Though FE modeling has been used extensively to model mitral regurgitation (e.g. [29]) and the effects of 

the mitral annuloplasty using different type of rings (e.g. [30–32]), the mitral valve apparatus is usually 

isolated from the LV and studied individually. Recently, our group created the first FE model of the 

mitral valve incorporated into an animal-specific infarcted LV [11]. This model contains most of the 

structural components found in a complete LV-mitral-valve assembly. Specifically, the model contains 

the mitral valve leaflets, the chordae tendinae, the papillary muscles and the LV, which are all connected 

to one another in an anatomically realistic fashion (Fig. 5a). Building upon this model, Wong et al. [28] 

investigated the effects of mitral annuloplasty shape in ischemic mitral regurgitation by virtually suturing 

two different shaped mitral annuloplasty rings, namely, a saddle-shape and an asymmetric-shape (Fig. 

5b), to the mitral annulus of the model. The virtual sutures were modeled using two-node “beam” 

elements with one end attached to the annuloplasty ring and the other attached to the mitral annulus (Fig. 

5c). An axial tension was then prescribed in each “suture” element so that its two ends were “pulled” 

towards each other. As a result, the mitral annulus was pulled towards the annuloplasty ring until the 

annulus conformed to the ring shape. 
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Besides the principal findings of this study: that the effects of mitral annuloplasty are generally 

insensitive to the shape of annuloplasty ring such that both septolateral distance and coaptation of the 

mitral leaflets were improved with implantation of these two types of annuloplasty rings (Fig. 5d), the 

modeling of sutures as described in this study should in principle also enable the FE method to be used 

for planning and/or optimizing of other cardiac surgical procedures.    
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4. Conclusion  

Using various examples, we have demonstrated four specific capabilities of computational cardiac 

modeling, namely, its ability to simulate surgery, predict myofiber stress and pump function, and quantify 

changes to myocardial material properties. In this review, we have offered only a glimpse of the 

potentially huge role that computational modeling can play in cardiac surgery. We foresee that in time, 

computational modeling will become an indispensable tool in accelerating the development of effective 

medical treatments and in improving patient care. Perhaps one day, patient-specific computational 

modeling may even form the basis for clinical decision making. 

Several issues would need to be resolved in order for computational modeling to play a greater role in 

cardiac surgery, especially in patient-specific computational modeling. First, the construction of patient-

specific FE model is generally time-consuming and requires laborious steps. This is especially so given 

the current lack of automatic segmentation tools to reconstruct ventricular geometry from medical images 

that is suitable for FE modeling. Second, current constitutive laws of cardiac tissues were formulated 

mostly based on ex vivo experimental tests and may not reflect all the properties encapsulated in vivo. For 

example, no constitutive law describing the growth in living cardiac tissues have been rigorously 

validated experimentally (though several such laws have been proposed). Thus, current computational 

model can only be suitably applied to study the acute effects of diseases and clinical interventions. Third, 

microstructure of the cardiac tissues (e.g. myofiber orientation in the ventricular walls) is only known 

grossly in the explanted heart via invasive histological measurements or non-invasive diffusion tensor 

imaging. As such, current patient-specific ventricular models are only “geometrically” patient-specific, 

and by no means are “microstructurally” patient-specific.  It is only very recently that in vivo 

measurement of myofiber orientation with diffusion tensor imaging becomes possible although the total 

scan time of 10 – 15 minutes per image slice [33] may still be challenging for heart failure patients.  All in 

all, the issues mentioned here are not exhaustive but nonetheless, the future of computational modeling in 

cardiac surgery remains bright with huge potential to be reaped. 
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7. Figures 
 

 
Figure 1(a): Computational cardiac mechanics as an intersection of three domains: continuum 

mechanics, material science and numerical method. (b): A FE mesh of a LV.  The elements (demarcated 

by the black lines) are inter-connected through nodes (shown in pink). 
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Figure 2: Simulation of the Cardiokinetix Parachute Device. (a) Upper: CT image of the Parachute device 

implanted in a patient. Lower: the Parachute device. (b) Simulating the deployment of the Parachute 

device in the FE model. (c) Comparison of the LV myofiber stress distribution at ED before and after 

treatment. 
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Figure 3: Simulation of the Acorn CorCap CSD. (a) Upper: biventricular FE model showing the LV in 

red and right ventricle in grey. Lower: CSD model before attachment to the biventricular model as 

outlined by the red and gray lines. Criss-cross white lines indicate the CSD fiber orientations. (b) Effects 

of CSD on ED and ES pressure-volume relationships. (c) Effects of CSD on Starling’s relationships. 

“Tight ACORN” refers to the case when a 5% pre-stretch was applied to the CSD and “LV-Only” refers 

to the case when the CSD encircles only the LV. 
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Figure 4: Simulation of the Dor procedure. (a) Left: magnetic resonance image showing the long-axis 

view of the sheep LV after MI. MI and SI denote the dyskinetic and septal infarct, respectively. Tagged 

lines used to compute the myocardial strain can also be seen in the image. Top right: FE model of the LV. 

Bottom right: view of a cross section slice of the FE model. Blue, red, brown and green regions denote the 

infarct, the BZ 1, BZ 2 and the remote region, respectively. (b) Effects of Dor procedure on the regional 

myocardial contractility as reflected by the systolic material parameter. (c)  Effect of Dor procedure on 

the longitudinal and transmural distributions of end-systolic myofiberstress pre-Dor (left) and 6weeks 

post-Dor (right) in a typical sheep. Fringe level units in hPa. 
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Figure 5: Simulation of mitral valve annuloplasty. (a) FE model of the LV with the mitral valve apparatus 

i.e. mitral valve leaflets, chordae tendinae and the papillary muscle. (b) Annuloplasty rings with different 

shapes (from Edward Lifesciences, Inc, Irvine, CA). Top: saddle shape ring (Physio II). Bottom: 

asymmetric ring (IIMR ETlogix).  (c): Annuloplasty ring virtually sutured to the mitral annulus (MA). 

Tension is imposed in the virtual suture (VS, shown here without tension) so that MA is pulled towards 

annuloplasty ring (AL = anterior leaflet, PL = posterior leaflet). (d): Improvement of the mitral leaflet 

coaptation after mitral annuloplasty.    
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Appendix: A simplified description of the finite element method 

As discussed in the main text, computational cardiac mechanics is at the intersection of three scientific 

domains, namely, continuum mechanics, materials science and numerical methods. Here, we use a simple 

one-dimensional linear and static example problem to illustrate these three intersecting domains, as well 

as key aspects of the finite element method. For more detailed formulations, please refer to [A1]. 

Consider the following problem in which we want to determine the equilibrium state of a long and slender 

structure (e.g. a leg bone) under the influence of body force (e.g. gravity) and contact forces (e.g. from 

adjacent bones). To simplify this problem, we idealize the slender structure as a one-dimensional system 

represented in Figure A1.  

Figure A1. Idealization of the studied slender structure as a one-dimensional medium, with body force 

!(#)  and contact forces %& and %'   

We consider the axial displacement ( at every point of the structure defined by the point location	# as 

unknown. In other words, we seek a solution for the unknown function ((#) (or ( as a function of #) that 

is defined over the length of the structure from # = 0 to	# = ,. 

Continuum Mechanics 

The foundation of continuum mechanics lies in its three conservation principles, namely, conservation of 

mass, momentum and energy. Since the system considered here is closed i.e. there is no mass transfer, 

conservation of mass is satisfied trivially. Also, since we are not considering any other kind of energy 

(e.g. heat energy, chemical energy) besides mechanical energy, the conservation of energy does not add 

anything to the conservation of momentum. Thus the only relevant conservation principle in this problem 

is the conservation of momentum, which is expressed as follows: 

 -.

-#
+ ! # = 0	,	 (1) 

where . is the axial stress inside the beam (i.e. the axial stress that neighboring sections impose on each 

other, in 1/34 or 56), and ! is the body force (in 1/37). Note that for the sake of simplicity, we assume 

that the beam section is constant and is equal to 1. Basically, Equation (1) describes the (point-wise) 

internal equilibrium of the structure; it essentially means that the body force induce a change in stress 

	

%& %'  !(#) 

0 , 

# 



Applications of Computational Modeling in Cardiac Surgery 

-23 

within the structure.  The external equilibrium of the structure is imposed by the following 2 equations 

called boundary conditions: 

 
. 0 = %&
. , = %'

 , (2) 

where %& & %' are the contact forces. These equations essentially means that the axial stress at both ends 

of the structure must be equal to the contact force imposed at that particular end.  

Material Science 

As explained Section 2.1, the continuum mechanics principles discussed above are completely general, 

and applies to all types of materials. The different mechanical behavior exhibited by different materials is 

distinguished by a material or constitutive law that is specific to the material. The simplest possible 

material law is one in which the stress . is proportional to the strain with a constant of proportionality 8 

called the Young’s Modulus i.e. 

 . = 8
-(

-#
	. (3) 

In Equation (3), the strain is given by	:;
:<

, which is essentially the ratio between a change in length and the 

original length taken point-wise in the structure. Of course, cardiac tissue has more complex mechanical 

behavior and its constitutive laws are therefore more complex than the one described here. For example, 

stress is a non-linear function of strain in cardiac tissues. 

Numerical Methods 

Now, the goal is to find a function for the axial displacement ((#) that satisfies Equations (1) – (3). 

However, it is often difficult to find such a function that can be expressed in analytical form in problems 

involving realistic geometry and complex material behavior (though not in this example). Hence, 

numerical methods that can be implemented easily using computers are often used to find an approximate 

solution. Because of its versatility, the finite element method is often used to find an approximate solution 

for complex problems.  

Equations (1) & (2) are local or point-wise expressions of equilibrium principles, often called the strong 

form. To make the solution tractable, the finite element method splits the original continuous problem 

into a discrete one in a process typically known as “discretization”. To do so, these 2 equations must be 

expressed in a global form, often called the weak form: 

 -=(

-#

'

&
. # -# = =( #

'

&
! # -# + =( 0 %& + =( , %'	, (4) 
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where =( defines a virtual axial displacement field, a concept that will be described later. It is important 

to say that the weak and strong formulations are strictly equivalent, and they can be transformed from one 

to the other. The weak formulation is also called the variational formulation and it is essentially due to 

Galerkin. As an aside, the finite element method is also often called the Ritz-Galerkin method to reflect 

the contribution of Ritz to this method. 

Equation (4) is sometimes introduced directly in lieu of the conservation equations (1) & (2) by invoking 

the principle of virtual work. This principle has a clear physical meaning: every term is either a product 

between stress and strain (term in LHS) or between displacement and force (terms in RHS) and is 

therefore a mechanical work or mechanical energy. In other words, Equation (4) means that for every 

virtual axial displacement field, the virtual work due to internal forces (i.e. stresses) must be equal to the 

virtual work due to the imposed forces (i.e. the body force and the contact forces in this example). 

Substituting Equation (3) into (4), we obtain a variational equation containing the equations originating 

from continuum mechanics and material science discussed until now: 

 8
-=(

-#

'

&

-(

-#
-# = =( #

'

&
! # -# + =( 0 %& + =( , %'	∀=(	, (5) 

We are now ready to discretize Equation (5) using the finite element method. Following Ritz method, the 

approximated solution (?(#) to Equation (5) is expressed as a weighted sum or linear combination of 

known functions often called shape functions	@A # : 

 (? # = (A@A # 	
A

, (6) 

where (A are the unknown coefficients to be determined from the finite element problem. Thus, instead of 

seeking an exact solution for the axial displacement ((#) that is smooth or continuous in the structure, we 

are now seeking an approximated solution (? #  (generated by a finite number of shape functions) that is 

not as smooth as the exact solution. 

The definition of shape functions is key to the finite element method. These functions are defined in such 

a way that the structure can be divided into many simple parts called elements, whose vertices are called 

nodes. The resultant computational geometry obtained after discretization (i.e. after the assembly of nodes 

and elements) is called a finite element mesh. For simple geometries, generating the computational 

geometry can be fast and automatic but for complex geometries, this process can be extremely time-

consuming.  

For our simple problem, the structure is divided into several sub-segments (say 1 − 1 segments with 1 

nodes). Also, we consider a family of piecewise linear shape functions such that (i) there is one shape 
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function associated with each node; and (ii) each shape function equals 1 on its node and 0 on all other 

nodes as shown below. By this definition, the unknown coefficients (A are the axial displacement  at each 

node. 

 

In the above figure, one can see that by adjusting the weights associated with each shape function, this 

family of shape functions can generate every piecewise linear function over the structure. More 

complicated shape functions such as quadratic shape functions can also be used.  

Substituting Equation (6) into the weak formulation in Equation (5), we obtain: 

 8 =(D@D,< #
D

(A@A,< #
A

'

&
-# = =(A@A #

A

'

&
! # -# + =(&%& + =(E%'	∀=(A	 (7) 

Note that the same discretization has been applied to the unknown displacement function ( and the virtual 

displacement	=( leading to a symmetric LHS (i.e that term does not change if we switch the subscript F 

with G or vice-versa. Equation (7) can be written in algebraic or matrix form 

 =HIJ	H = 	=HI	%	, (8) 

which is equivalent to 

 J	H = 	%	. (9) 

In Equation (9), JAD = 8@A,<(#)@D,<(#)
'
& -# is called the stiffness matrix that contains information on 

the stiffness of each part of the system and %D = @D #
'
& ! # -# + =&D%& + =ED%'  is called the force 

vector that contains information on the loading on each part of the system. The solution of the finite 
element problem	H (a vector containing the axial displacement at each node (A) is usually computed by 

solving the linear system (9) with computers.  

@&(#) 
@K(#) 

@ELK(#) 
@E(#) 

..…. 

# 

, 0 

1 

Figure A2. Family of piecewise linear shape functions 
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Once the linear system is solved, the approximated piecewise linear solution can be constructed using 

Equation (6).  The approximated solution (? #  is shown in Figure A3 for the case without contact forces 

but with body force	! # = sin	(#). In that same figure, we also show the exact solution, which can be 

expressed analytically for this simple problem though this is usually not the case in more complicated 
problems.	

 

One can make a few observations concerning the finite element solution in Figure A3. First, it is evident 

that the finite element solution is piecewise linear and is therefore, not as smooth as the exact solution. 

However, the approximate solution will approach the exact solution as the mesh is made finer with more 

elements and nodes. Second, the stress computed by the finite element method .  is constant within 

elements and is discontinuous across elements (also true for strains). Thus, they are not “well” defined at 

the nodes. This result is largely due to our choice of the shape functions which produced piecewise linear 

solution. 
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Figure A3. Finite element solution of the problem compared to the exact solution  


