
HAL Id: hal-01196360
https://hal.science/hal-01196360

Submitted on 9 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scaling strength distributions in quasi-brittle materials
from micro- to macro-scales: A computational approach

to modeling Nature-inspired structural ceramics
Martin Genet, Guillaume Couégnat, Antoni P. Tomsia, Robert O. Ritchie

To cite this version:
Martin Genet, Guillaume Couégnat, Antoni P. Tomsia, Robert O. Ritchie. Scaling strength distribu-
tions in quasi-brittle materials from micro- to macro-scales: A computational approach to modeling
Nature-inspired structural ceramics. Journal of the Mechanics and Physics of Solids, 2014, 68, pp.13.
�10.1016/j.jmps.2014.03.011�. �hal-01196360�

https://hal.science/hal-01196360
https://hal.archives-ouvertes.fr


Scaling strength distributions in quasi-brittle materials
from micro to macro scales: A computational approach to

modeling Nature-inspired structural ceramics

Martin Geneta,b,∗, Guillaume Couégnatc, Antoni P. Tomsiaa, Robert O.
Ritchiea,d

aMaterials Sciences Division, Lawrence Berkeley National Laboratory, California, USA
bMarie-Curie International Outgoing Fellow, Surgery Department, University of

California at San Francisco, USA
cLaboratoire des Composites Thermostructuraux (CNRS – Univ. Bordeaux – Herakles –

CEA), Pessac, France
dDepartment of Materials Science and Engineering, University of California at Berkeley,

USA

Abstract

This paper presents an approach to predict the strength distribution

of quasi-brittle materials across multiple length-scales, with emphasis on

Nature-inspired ceramic structures. It permits the computation of the

failure probability of any structure under any mechanical load, solely

based on considerations of the microstructure and its failure properties

by naturally incorporating the statistical and size-dependent aspects of

failure. We overcome the intrinsic limitations of single periodic unit-based

approaches by computing the successive failures of the material components

and associated stress redistributions on arbitrary numbers of periodic units.

For large size samples, the microscopic cells are replaced by an homogenized

continuum with equivalent stochastic and damaged constitutive behavior.

After establishing the predictive capabilities of the method, and illustrating
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its potential relevance to several engineering problems, we employ it in the

study of the shape and scaling of strength distributions across differing

length-scales for a particular quasi-brittle system. We find that the strength

distributions display a Weibull form for samples of size approaching the

periodic unit; however, these distributions become closer to normal with

further increase in sample size before finally reverting to a Weibull form for

macroscopic sized samples. In terms of scaling, we find that weakest link

scaling applies only to microscopic, and not macroscopic scale, samples.

These findings are discussed in relation to failure patterns computed at

different size-scales.

Highlights:

• Analysis of quasi-brittle failure including statistical and size-dependent

aspects

• Use of computational homogenization to compute up to macroscopic

scale samples

• Application to Nature-inspired ceramic structures made by freeze-

casting

• Strength distribution shape converges to Weibull for macroscopic scale

samples

• Weakest-link scaling does not apply to the Weibull-like macroscopic

strength distributions

Keywords:
Fracture; Microcracking; Ceramics; Finite element analysis; Computational
homogenization
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1. Background and Significance1

Many materials exhibit a quasi-brittle behavior, i.e., their ultimate fail-2

ure is triggered by a significant number of local events (in contrast to the3

purely brittle behavior of many ceramics and glasses), yet still is not pre-4

ceded by highly dissipative processes associated with large inelastic de-5

formations and strain hardening (as with ductile materials like metals).6

Such behavior is found in geological (e.g., rocks), biological (e.g., bone)7

and engineering/constructional (e.g., ceramic composites, concrete) mate-8

rials [Bažant, 1999, 2004]. In this paper, we are particularly interested in9

cellular ceramic structures, which have recently found potential high-impact10
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applications in tissue engineering [Deville et al., 2006] and high-performance1

composites [Munch et al., 2008].2

One issue with the engineering use of quasi-brittle materials is associated3

with the statistical and size-dependence of their failure properties, which4

can make reliable predictions a difficult challenge. Experimental analysis5

are often of little help as they cannot reach the target failure probabilities6

required for certification; for example, a prescribed failure probability of7

10−6 would require 106 repeated experiments. Moreover, the standard8

procedures of fracture mechanics, consisting of studying smaller scale sam-9

ples and then extrapolating the results to larger, more realistically scaled10

samples, are limited by the lack of methods which are effectively able to11

“bridge the length-scales”. Thus, for material design and failure prediction12

of quasi-brittle materials for engineering applications, experimental studies13

must be augmented by theoretical tools based on mechanical modeling.14

However, failure can be a complex phenomenon to model, as it involves15

both local and global phenomena, i.e., small defects induce localized cracks16

and stress redistribution at nano- to micro-scales coupled with the fact that17

the macro-scale size of a structure can statistically dictate the probability18

of activating the worse-case defects.19

20

Many authors have studied the failure of quasi-brittle materials, from21

such multiple viewpoints. Our objective here is not to draw an exhaustive22

portrait of the field, but to note several pertinent studies to better position23

our own approach. A critical analysis is undoubtedly the Weibull theory24

which describes the failure of brittle (“in-series”) systems, based on a specific25

strength (i.e., Weibull) distribution and a power law for the volumetric26

scaling [Weibull, 1939, 1951; Hild, 2001], together with that of Daniels who27
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established that the corresponding strength distribution of large in-parallel1

systems must tend toward a Gaussian distribution [Daniels, 1945]. These2

analyses are essential for the understanding of the statistical failure of quasi-3

brittle materials. They have been extended by many authors to account4

for, e.g., multiaxial fracture in Weibull theory [Evans, 1978; Guillaumat5

and Lamon, 1996], or different load sharing mechanisms in Daniels theory6

[Phoenix, 1974, 1978; Calard and Lamon, 2004]. They are, however, limited7

in their application to realistic systems, as for example with Daniels theory8

which fails to describe the transition from Weibull to Gaussian behavior,9

and to predict the distribution’s tail (which cannot be Gaussian) [Bažant,10

2004; Bažant and Pang, 2007].11

With respect to cellular ceramics, Gibson & Ashby [Gibson and Ashby,12

1997] derived the structure-stiffness relationships for many porous struc-13

tures simply using beam and plate theories, although their approach cannot14

directly treat the statistical and size-dependent aspects of failure.15

Similar micromechanical approaches have been proposed for many bio-16

logical and synthetic quasi-brittle materials, e.g., [Ji and Gao, 2004; Begley17

et al., 2012], but again the key stochastic and size-dependent aspects of18

quasi-brittle failure were not directly considered. (These analyses are in-19

variably based on a single representative volume element, where Cox’s shear20

lag principle [Cox, 1952] is used to estimate the redistribution of stresses21

around cracks.)22

There are also the purely macroscopic approaches, e.g., [De Borst et al.,23

1995; Desmorat et al., 2007; Genet et al., 2013b]; but as these analyses24

are based on continuum damage mechanics [Lemâıtre and Desmorat, 2005;25

Lemâıtre et al., 2009], they cannot explicitly model microstructure or micro-26

scopic damage processes, but only their indirect effect on the macroscopic27
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mechanical properties. They are, however, extremely efficient at dealing1

with specific structures and loads, but require a large amount experimental2

data for calibration, and are not suitable to derive true structure-properties3

relationships.4

An intermediate approach is that of Bažant et al. [Bažant et al., 1991;5

Bažant and Xi, 1991; Bažant, 1999, 2004]. Based on energetic principles,6

these authors were able to derive scaling laws for the strength of various7

quasi-brittle materials, although this method does not permit the scaling of8

the distributions themselves [Bažant, 2004]. More recently, they introduced9

a hierarchical model of chains and bundles of representative volume ele-10

ments (RVEs), starting from the atomic scale, to derive some fundamental11

conclusions on the theoritical scaling of strength in quasi-brittle systems12

[Bažant and Pang, 2007; Bažant et al., 2009; Le et al., 2011; Le and Bažant,13

2011]. Most importantly, they were able to predict the transition from14

Gaussian to Weibull of the strength distributions of structures of increasing15

sizes [Bažant and Pang, 2007].16

17

In a recent article, we presented our first approach to bridge the scales,18

with a model based on Sanchez-Palencia’s theory of periodic homogeniza-19

tion and Weibull’s theory of statistical failure [Genet et al., 2013a], with20

application to robocast scaffolds [Houmard et al., 2013]. Material struc-21

ture is introduced at microscopic scales, while the sample size is naturally22

handled on the macroscopic level, the two dimensions being linked through23

homogenization; statistical failure is then predicted through the computa-24

tion of a Weibull-like integral at both size-scales. This approach has sig-25

nificant predictive capabilities but also limitations; as the successive failure26

of the material’s constituents are not explicitly represented, a virtual, ad27
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hoc, “macroscopic” crack population is introduced, which must be identified1

experimentally on the macroscopic scale.2

In the present paper, we propose a computational method to directly3

link the strength distributions of the constituents of quasi-brittle materi-4

als and macroscopic samples made from these constituents. The idea is5

to overcome the intrinsic limitations of approaches based on a single RVE,6

which are really only suitable to deal with homogeneous phenomena (on the7

scale of the structure), but not strictly with localized events such as those8

triggering failure. We achieve this by modeling as many RVEs as neces-9

sary to produce reliable predictions. Since the number of RVEs that can10

be modeled at a microscopic level of description is rapidly limited by com-11

putational capabilities, we introduce a multi-level numerical method which12

permits the computation of samples of virtually any size, with essentially no13

loss of information compared to a direct microscopic computation but with14

a drastically reduced computational cost. Micro-cells, where physical mech-15

anisms are finely described, are replaced by mechanically and statistically16

equivalent “macro-cells” containing only a very few degrees of freedom. As17

a consequence, structural-level computations can be run at a very reduced18

cost, and a large number of stochastic cases can be explored in a reasonable19

time.20

Fundamentally, we build upon [Bažant and Pang, 2007; Bažant et al.,21

2009; Le et al., 2011; Le and Bažant, 2011] and study the scaling of strength22

induced by both the intrinsic micro-scale defects and the ones generated23

by the microstructure itself, i.e., the stress redistribution induced by its24

geometrical features. An important difference with these previous works is25

that we do not need to idealize the considered microstructure as a series of26

chains and bundles since we perform direct numerical computations on the27
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real microstructure. Thus, stress redistributions are directly induced by the1

laws of continuum mechanics and the features of the studied microstructure2

itself, without any additional assumptions.3

Our approach is general, and can be applied to any cellular ceramic,4

indeed to any quasi-brittle material. We illustrate the methodology here5

with reference to the ceramic scaffolds that can be made by freeze-casting6

[Deville et al., 2006; Munch et al., 2008; Naglieri et al., 2013]. In order to7

focus on the method itself, which is presented section 2.2, we first develop8

a simple micromechanical model (section 2.1), and then present some key9

results, including numerical validation (section 3.3), comparison to a basic10

power law (“in-series”) scaling (section 3.2), and application to macro-scale11

samples (section 3.4).12

2. Modeling and Methods13

2.1. The reference micromechanical model14

Our approach in this paper is on the failure prediction of porous ce-15

ramic scaffolds made by freeze-casting [Deville et al., 2006; Munch et al.,16

2008; Naglieri et al., 2013]. A scanning electron microscopy (SEM) image17

of a scaffold is shown Figure 1(a); our associated idealized geometry in Fig-18

ure 1(b). This geometry consists of a lamellar ceramic framework linked19

by periodic bridges to give a brick-like structure, which resembles a coarse20

nacre-like architecture; in the final bio-inspired materials, the pores in be-21

tween the “bricks” are infiltrated with a compliant phase, i.e., a polymer22

or metal, to give a highly damage-tolerant “brick-and-mortar” structure23

[Munch et al., 2008]. To focus on the theoretical strategy itself, we have24

restricted the analysis to in-plane properties, and chosen a simple geometry,25
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perfectly periodic and deterministic, characterized by only three parame-1

ters, namely the distances between brick walls and bridges, respectively, dw2

and db, and the thickness, e, of these walls and bridges (Figure 1(b)). An3

additional parameter must also be introduced to fully define the computed4

microcells, namely the number, r, of RVEs that they contain. Note that5

several authors have proposed methods to generate statistical microstruc-6

tures from images such as the one in Figure 1(a) [Jeulin, 2001; Torquato,7

2002; Couégnat, 2008], although this has not been undertaken in the present8

model.9

With respect to the phenomenology, the macroscopic failure of these cel-10

lular ceramics is induced by the successive failures of individual constitutive11

walls. Such local failures are triggered by the activation of small defects in12

tension or shear, or by the wall bending in compression. The failures are13

highly probabilistic because the distributions of sizes and shapes of defects14

and walls are very broad. There is other important process that appears in15

compression, that of the crushing of broken walls, which ultimately results in16

the ceramic scaffold becoming fully fragmented; for the sake of simplicity we17

do not consider wall bending/crushing in compression in the current variant18

of the model. (Such crushing in cellular ceramics usually occurs beyond the19

scope of application of most models, as the material is then fully fragmented20

and cannot withstand any other load than compression.)21

Thus, initially the micromechanical model will only be developed to con-22

sider the defect-activated failure of the ceramic walls, which are assumed to23

display isotropic elastic-brittle behavior with Young’s modulus E and Pois-24

son’s ratio ν. The response of the microstructure to mechanical loading is25

computed using the finite element method. Since the defects are actually26

too small and too numerous to be characterized, Weibull theory [Weibull,27
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1939] will be used here to model the wall failures.11

As the Weibull theory is a non-local theory of fracture, and we need

to represent the successive failures of walls and bridges, they must be split

between several elements of volume. This decomposition depends on the

considered microstructure, and is illustrated for the freeze-cast scaffold in

Figure 1(b), where every color represents a single element of volume (note

the periodicity of the border volume elements). Basically, every bridge is an

element of volume, as well as every piece of wall between two bridges. For

each element of volume, it is assumed that failure is triggered by positive

deformations, a hypothesis often made for brittle and quasi-brittle materials

[Mazars and Pijaudier-Cabot, 1989; Lemâıtre and Desmorat, 2005; Genet

et al., 2012; Fagiano et al., 2014], and incorporated in the Weibull framework

in [Genet et al., 2013a]. The failure probability of any given element of

volume is then:

pF = 1− exp

(
− V
V0

(
ε̃

ε0

)m)
(1)

with ε̃ =
1

V

∫
V
‖〈ε〉+‖dV

where V is its volume and V0 a reference volume, ε is the strain tensor2

field, 〈·〉+ denotes the positive part of second order symmetric tensors in the3

classical sense [Lemâıtre et al., 2009], and ε0 and m are, respectively, the4

two classical Weibull coefficients [Weibull, 1939; Hild, 1998].5

Each element of volume contains a potential crack, which is initially6

1Despite the fact that it was introduced by Weibull himself based on phenomenological

considerations [Weibull, 1939], it was later proven to have more fundamental basis; the

theory actually relies upon a Poisson’s distribution of defect sizes and a simple fracture

criterion [Freudenthal, 1968; Hild, 1998; Bažant, 1999]. Note that more complex fracture

criteria can be used, leading to slightly different laws [Batdorf and Heinisch, 1978].
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closed but will eventually become opened at some point in the computation.1

Since the position of the crack within the element of volume is not really2

significant for the remainder of the computation, such cracks will arbitrarily3

be positioned at the middle of each element of volume.2 At the beginning of4

the computation, every element of volume is given a critical probability of5

failure, i.e., a random number in the range ]0; 1[. During the loading, when6

the probability of failure of an element of volume reaches its critical value,7

then it is considered as broken, and the potential crack that it contains is8

considered open.9

This simple model permits the representation of the successive failures10

of the constituents of a piece of ceramic scaffold of arbitrary size under11

arbitrary load, from the initial to critical failure event, i.e., from damage12

initiation to macroscopic crack initiation, and as such provides an assessment13

of the statistical strength of the scaffold. Note that the model also allows an14

evaluation of the failure of the walls and bridges at the macroscopic crack15

tip, i.e., of the propagation of a macroscopic crack, and therefore can provide16

an assessment of the toughness of the scaffold, although this feature will not17

be addressed in the present paper.18

The geometrical and materials parameters of the freeze-cast ceramic scaf-19

folds used for the computations are presented Tables 1 and 2.20

With respect to the computational procedures, we used GMSH [Geuzaine21

and Remacle, 2009] (coupled with an in-house Python code) to generate22

(triangular) meshes, and the LMT++ library [Leclerc, 2010; Genet, 2010]23

(which uses the CHOLMOD linear solver [Chen et al., 2008]) for finite ele-24

2Note that it was already shown for similar computations that choosing a probabilistic

position has no significant effect on the model’s predictions [Lamon, 2009].
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dw (µm) db (µm) e (µm)

25 75 5

Table 1: Geometrical coefficients used for the computations presented in this paper: dw is

the distance between the walls, db the distance between the bridges, and e the walls and

bridges thickness.

ment computations.1

(a) SEM image [Launey et al., 2009]

  

db

dw

e

(b) Idealized geometry

Figure 1: Representative SEM image of a ceramic scaffold made by freeze-casting, and

its associated idealized geometry. The idealized geometry consists of walls connected by

bridges positioned in staggered rows. There are three geometrical parameters: dw, the

distance between the walls; db, the distance between the bridges; e, the thickness of the

walls and bridges. A microcell is defined by r×r RVEs. To describe the successive failures

of walls and bridges, the scaffold is divided into many elements of volume, represented

here in different colors (note the periodicity of the border volume elements).

2.2. Computational homogenization-based scaling method for strength dis-2

tribution3

There is actually no theoretical way to scale strength distributions of sys-4

tems with complex failure patterns such as the one presented in the previous5

section. In this paper, we propose the computational method to achieve this6

for any quasi-brittle system illustrated in Figure 2.7

12



E (MPa) ν () V0
(
mm2

)
σ0 (MPa) m ()

3.5 0.2 1 100 5

Table 2: Material coefficients used for the computations presented in this paper: E and ν

are the Young’s modulus and Poisson’s ratio of the walls and bridges; V0, σ0 and m are the

three Weibull coefficients (i.e., reference volume, scale parameter and shape parameter)

of the walls and bridges. Note that ε0 = σ0/E, in Equation (1).

On the macroscopic scale, we have a general continuum mechanics prob-1

lem, with a sample submitted to boundary conditions and loading (repre-2

sented here by the external traction T ). Since the system is probabilistic,3

its failure will follow a probability law. The objective of our method is4

to compute this probability law solely based upon the mechanical proper-5

ties of the sample’s constitutive material, without additional assumptions6

or parameters. To achieve this, the macroscopic problem is discretized and7

solved using the finite element method, where each element is given a size-8

dependent and probabilistic mechanical behavior interpolated among a set9

of responses pre-computed on the microscopic level. It is important to note10

that the method is not restricted to the study of macroscopically homo-11

geneous systems, but could handle cases, without modification, where, for12

example, the local material orientation changes from one region to the other,13

as it is the case for the structure shown in Figure 1(a).14

Pre-computations for a given micro-cell (i.e., geometry of the RVE, num-15

ber of RVEs, elastic and failure material properties) comprise computing,16

for a set of macroscopic loading Σ̃
i
, the micro-cell’s range of stochastic re-17

sponses, as illustrated in Figure 4. A possible set of 2D macroscopic tension18

load cases is shown in Figure 3, with canonical (i.e., pure tension in each di-19

rection, plus pure shear) and intermediate loading directions. As many sets20

13



are possible, it is important to select as many cases as needed for the anal-1

ysis. The macroscopic finite element behavior is then interpolated between2

the pre-computed behaviors. In practice, for a given stress Σ applied to an3

element which does not correspond a priori to any of the pre-computed cases4

Σ̃
i
, we compute the associated strain as a linear combination of strains asso-5

ciated with neighboring load cases, using the same interpolation for stresses6

and strains. One recognizes here the iso-parametric principle used in finite7

element technology, where the same shape functions are used to interpolate8

both position and displacement from nodes. Because we are presenting only9

results on unidirectional load cases, for the computations carried out in this10

work, we have pre-computed solutions for only one loading direction, which11

corresponds to the macroscopic loading direction.12

Resulting size effects on the macroscopic level are then directly handled13

through a competition between microscale failures and multiscale stress re-14

distribution. Our method allows the computation of the strength distribu-15

tion of any structure under any loading, solely from the stochastic behavior16

of its constitutive material. Because of this two-level approach, the compu-17

tation is achieved at a much lower cost than if run directly based upon the18

micromodel (which would be impossible for macro-scale samples), with vir-19

tually no information loss. Let us also point out that if needed, the method20

could be extended with more than two levels, so that pre-computations21

would be run scale by scale, from the micromodel up to the desired struc-22

tural level. Thus, with enough levels of homogenization, the computational23

cost of solving structural problems becomes low enough to perform thou-24

sands, if not millions, of cases in a reasonnable time.25

On a more technical basis, we implemented the multi-level method us-26

ing an in-house finite element framework [Couégnat et al., 2013] with the27
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MUMPS library [Amestoy et al., 2000] as a linear solver.1

3. Results and Applications2

3.1. Response of the reference micromechanical model3

Figure 4 shows the result of one run of the micromechanical model,4

previously introduced in Section 2.1, on a portion of scaffold of size r = 5×55

RVEs under pure traction with periodic boundary conditions. The resulting6

stress-strain curve is shown, as well as the strain fields over the deformed7

geometries for several states reached during the computation. It is important8

to note that, even if its ingredients are relatively basic, the present model is9

already able to capture several fundamental features of actual failures of the10

ceramic scaffolds, specifically that: (i) both bridges and wall failures occur,11

(ii) bridges and wall failures are present outside the main crack, i.e., there12

is damage away from the macroscopic crack, (iii) the main crack is not fully13

straight, and not fully orthogonal to the loading direction.14

This micromechanical model can be used to compute the strength distri-15

butions of micro-cells of virtually any size, under any loading, with virtually16

any precision; the actual size of the considered micro-cell is evidently lim-17

ited by the computational cost, hence the interest of the two-level method18

presented in this paper. Figure 5 represents the cumulative strength distri-19

bution of micro-cells of size r = 1× 1, 2× 2, 4× 4, 8× 8 and 16× 16 RVEs,20

loaded in tension in the direction parallel to the bridges. Strength distribu-21

tions are defined as follows: for a given series of N runs, the strength values22

are sorted in ascending order, and then assigned a failure probability of23

1/ (N + 1), 2/ (N + 1), . . . , N/ (N + 1). At least 1000 runs were computed24

for each size, so that the failure probabilities go from ≈ 0.001 to ≈ 0.999.25

15



  

Macroscopic scale

Stochastic
macro­problem, 
solved with the 
finite element 
method

Macroscropic 
failure probability

Microscopic scale

Stochastic micro­problem, solved with 
the finite element method

Microscropic
failure probabilities

Figure 2: Illustration of our multi-level method. The main goal is to compute the macro-

scopic failure probability law solely based upon the mechanical properties of the sample’s

constitutive material on the microscopic level. The macroscopic problem is discretized and

solved using the finite element method. Each finite element is given a size-dependent and

probabilistic mechanical behavior, interpolated among a set of responses pre-computed on

the microscopic level.
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Figure 3: An example of a set of 2D macroscopic loading cases for the stochastic pre-

computations on the micro-cell, containing the canonical loading cases Σ̃
1

(pure tension

in the bridges direction), Σ̃
2

(pure tension in the wall directions) and Σ̃
3

(pure shear), as

well as intermediate cases. For a given macroscopic finite element stress, the behavior is

interpolated between the neighboring pre-computed microscopic behaviors.

This figure clearly illustrates the major size effect in this structure, with an1

average strength reduced by a factor of two between sizes of r = 1× 1 and2

r = 16× 16.3

In addition to the stress-strain curve and the strength computed on each4

run, the evolution of the homogenized elastic properties is also calculated5

for the homogenized computations described in section 2.2. Thus, for any6

deformation level, we know the distribution of homogenized stiffness tensors7

(more precisely, the distributions of their components) of the micro-cells.8

Figure 6 shows the distributions, specifically the mean value and those at9

10% and 90%, of the components of the homogenized stiffness tensor (using10

classical matrix notations [Walpole, 1984; François, 1995]) as a function of11

the applied deformation (cells are loaded in tension in the bridges direction)12

for a cell of size r = 5× 5 RVEs. It is worth noting that the cell stiffness in13

both the orthogonal (walls) direction (term H22) and the shear (term H33)14

17



are drastically reduced even if the cell is loaded uniaxially in the bridges1

direction. This highlights the need to take into account the whole stiffness2

tensor to accurately simulate the failure process as the stress redistribution3

between neighboring cells is influenced by their local stiffness.4

  

Figure 4: One run of the micromechanical model on a portion of scaffold (size r = 5 × 5

RVEs) under pure traction (plus periodicity conditions), showing the macroscopic stress-

strain curve, and displacement fields over the deformed geometries for several reached

states. Despite being very basic, the model is able to represent failure of both walls and

bridges, eventually outside the main crack, which is not fully orthogonal to the macroscopic

loading.

3.2. Limitations of the weakest link theory5

Compared to the current method, Weibull’s weakest link theory [Weibull,6

1939] has many limitations in the scaling of strength distribution in quasi-7

brittle systems. Basically, it presents a relationship between failure proba-8

bilities at different volumes V1 and V2 as:9

pF (V2) = 1−
(
1− pF (V1)

)V2
V1 (2)
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Figure 5: Strength distribution of successively larger micro-cells (size r = 1 × 1, 2 × 2,

4× 4, 8× 8 and 16× 16 RVEs), highlighting the important size effect in such quasi-brittle

structures.

Since this relies on the idea that the failure of a single element of volume1

induces the failure of the whole structure (more precisely, if V2 > V1, the2

failure of an element of size V1 induces the failure of the larger element of size3

V2), it cannot be strictly applicable for quasi-brittle materials. This is illus-4

trated in Figure 7, where for several micro-cells of increasing size (r = 2×2,5

4×4, 8×8 and 16×16 RVEs), we compare their strength distribution com-6

puted using the micromechanical model to the one obtained by scaling the7

strength distribution of one RVE using Equation (2). Clearly, the weakest8

link theory is only valid for the smaller sizes, which are actually brittle and9

for which the exact and scaled strength distributions match perfectly. This10

is not the case anymore for the larger sizes, for which several local failures11

are required to trigger the global failure.12
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Figure 6: Distributions of homogenized stiffness tensor components (in matrix notations

[Walpole, 1984; François, 1995]) (Hij) as a function of applied strain (ε) on a cell of size

r = 5× 5 RVEs. Cells are loaded in tension in the bridges direction. Mean values, as well

as 10% smallest and largest values, are show to highlight the dispersion. One can see the

progressive reduction of mechanical properties associated to successive local failures.
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Figure 7: Comparison between the strength distributions obtained on one RVE and then

scaled to a larger volume (circles), and the strength distributions directly obtained on

larger micro-cells (solid lines). One can see that the weakest link scaling only applies for

very small cells where behavior is brittle.
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3.3. Validation of the computational homogenization-based scaling method1

for strength distribution2

In order to establish the proposed homogenized model, we compared3

its predictions to those obtained directly with the micromechanical model4

detailed in section 2.1. To do so, we created macroscopic meshes equivalent5

to the microscopic ones, where each micro-cell is replaced by a macro-cell of6

the same shape and size, but meshed with only a few triangular elements,7

as illustrated in Figure 8. Note that, in principle, a single quadrangle finite8

element could have been used for each macro-cell. We have checked that the9

discretization of the macro-cells did not have any effect on the macroscopic10

results. The resulting strength distributions are shown on Figure 9. The11

predictions based upon the homogenized model match almost perfectly the12

ones based on the micromechanical model, and this for small sizes (where13

the final failure is brittle) as well as for larger sizes (where the final failure is14

induced by many local failures). We also found that the failure patterns were15

visually similar between the micro- and macro-models. These results prove16

that it is sufficient to handle the stress redistribution between neighboring17

RVE in a homogenized manner. As each RVE exhibits a brittle failure18

triggered by the first bridge break, it could be chosen as the minimal failure19

volume in the structure. Therefore, only the average stress state over the20

RVE has to be considered with respect to the RVE failure. Moreover, the21

stiffness reduction in the other directions is captured by the evaluation of22

the residual mechanical properties for each damage state.23

3.4. Application to failure prediction of macroscopic scale samples24

Based on the homogenized model established in this work, we can now25

scale the strength distributions obtained on a given micro-cell to virtually26

22



Figure 8: Finite element mesh of a micro-cell with r = 4×4 RVEs (left) and corresponding

mesh used for the homogenized computations (right). Each RVE is replaced by a macro-

cell of the same size but meshed with only 16 triangular elements.

any size, thereby enabling the study of the shape and scaling properties of1

the strength distributions across scales. The ceramic brick-like microstruc-2

ture studied in the present work (Figure 1(a)) represents a complex system3

with in-parallel (i.e., where local failures generate over-load on the neigh-4

boring constituents) and in-series (i.e., where local failures also unload some5

neighboring constituents) connections; as such its strength distribution can-6

not be represented a priori by canonical distributions such as the Weibull7

distribution (as is the case for in-series systems) or a normal distribution8

(as is the case for large in-parallel systems [Daniels, 1945]). Similarly, as9

evidenced by Figure 7, except for very small sample sizes the size effect on10

the strength distributions cannot be described by a simple law such as the11

power law (as is the case for solely in-series systems). However, it is pos-12

sible to investigate the shape and scaling properties a posteriori from the13

23
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Figure 9: Comparison of strength distribution predicted by the micro model (continuous

lines) and the homogenized model (circles) for microstructures of various size scales. This

establishes the capability of the proposed homogenized model to predict the strength

distribution of structures of virtually any size.
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numerical computations. For instance, Figure 10 illustrates the evolution1

of the strength as a function of the size of the considered microstructure,2

from micro to macro scales. One can recognize the size effect that has been3

documented experimentally for quasi-brittle materials, e.g., [Bažant, 1999].4

Since we compute the entire strength distributions for several sample5

sizes, it is possible to study their shape and scaling relationships. Figure 116

shows the fit error (i.e., the distance between the set of points and the fitted7

law), for both Weibull and normal distribution laws, as a function of the8

sample size. One can distinguish three domains on the curves: (i) for very9

small samples, i.e., of the size of RVE, the strength distribution is of Weibull10

shape, which is consistent with the hypothesis that walls and bridges failure11

follows a Weibull law and that the brittle failure of the RVE is triggered by12

the first bridge break; (ii) there is an intermediate domain where strength13

distribution is closer to a normal distribution than to Weibull; (iii) finally,14

for macroscopic scale samples, the strength distribution appears to revert15

to a Weibull shape. Note that the parameters of the macroscopic Weibull16

distribution differ from the ones of the RVE scale and cannot be predicted17

by simply scaling the RVE scale parameters. The particular relationship18

between the sets of parameters is indeed an outcome of our method. The19

conclusions are admittedly linked to the particular system studied in this pa-20

per and the hypothesis underlying the chosen micromodel, but our approach21

does illustrate the prediction capabilities of the proposed method.22

Not surprisingly, these findings are similar to the predictions of [Bažant23

and Pang, 2007]. The only difference is that the initial strength distribution24

is Weibull-shaped and not Gaussian, which is due to the modeling choices25

underlying the micromechanical model, especially the fracture model of the26

material constituents. Here we assumed that the defects triggering failure27

25



are at a much lower length scale, so that the constituents failure is well de-1

scribed by a Weibull law, which in turns generate a Weibull-shaped strength2

distribution for the geometrical RVE.3

The above discussion is concerned only with the shape of the strength4

distribution across scales, but scaling relationships can also be studied. Fig-5

ure 13 shows the scaling error (i.e., the distance between the scaled strength6

distribution and the reference one), supposing a weakest link scaling, as a7

function of sample size for several cells of increasing size. The strength dis-8

tribution of cells of size r = 1 × 1 to r = 64 × 64 is scaled up to larger9

sample sizes using Equation 2. One can see that for any initial cell size,10

the scaling error rapidly increases when considering a larger sample. For a11

cell size of r = 1, the weakest link scaling hypothesis is only relevant for12

very small samples (< 0.1 mm), as previously discussed in section 3.2. Even13

when considering a larger cell size, it is not possible to accurately predict14

the strength distribution of significantly larger samples. As a consequence,15

for macroscopic samples, the brittle-like failure of this microstructure is not16

triggered by the weakest local defects, nor by the failure of a critical volume17

of material (i.e., by the failure of a cell of size r � 1× 1).18

Another way to look at this is to investigate the failure patterns across19

scales. For very small size samples, failure is fully brittle and is triggered20

by the first wall or bridge to break. For intermediate size samples, we21

have seen that the final failure is triggered by the percolation of several22

bridge/wall breaks, and is mainly governed by the stress redistribution after23

each break (Figure 4). For larger sample sizes, the failure process appears24

to be different. Figure 12 illustrates the failure process in a large structure25

(r = 256 × 256 RVEs). An initial step in the fracture process consists26

of a widespread development of damage due to the uncorrelated failure of27

26



the weakest local defects. Stress redistribution caused by these failures is1

not significant enough to make the neighboring cells break or to initiate a2

macrocrack as the clusters of broken cells remain small with a typical size3

of 2–3 cells. Eventually a critical defect is activated, rapidly leading to the4

development of an incipient macrocrack which leads to the final failure of5

the specimen. It is important to distinguish this type of “brittle-like” failure6

from a failure that would be induced by many correlated events. The “fatal”7

macrocrack does not result from the percolation of previously damaged cells;8

moreover, the location of the critical defect is not necessarily within the most9

damaged area of the specimen. It appears that two populations of defects10

can be identified: (i) a population of non-critical defects corresponding to11

the weakest local defects activated at a low stress level; and (ii) a population12

of critical defects, uncorrelated from the first ones, which can lead to the13

brittle failure of the specimen. Indeed, this represents another example why14

it is possible to predict the failure of similar materials based on an ad hoc15

description of the critical defects population, as previously shown by the16

authors [Genet et al., 2013a].17

4. Summary and Perspectives18

We have presented a multi-level numerical method which provides the19

means to derive reliable structure-strength relationships including statistical20

and size-dependent aspects, suitable to virtually any quasi-brittle material21

and any engineering component made from it. There are numerous potential22

applications with this methodology. Such models can be used by materials23

engineers to optimize fabrication processes to optimize their microstructures24

in a quantitative way; they can also be used by mechanical or civil engineers25

27



 5

 10

 15

 20

 25

 30

 35

 40

 0.1  1  10

St
re

ng
th

 (M
Pa

)

Sample size (mm)

Figure 10: Strength associated with 50% failure probability (continuous line) and range

of strength associated with failure probability between 10% and 90% (grey area), as a

function of the structure size. The homogenized model based method proposed in this

work permits the computation of a very wide range of sizes, from the micro to- the

macro-scales. The computed behavior corresponds to what is found experimentally for

quasi-brittle materials [Bažant, 1999].
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sample size. Strength distributions are of Weibull type for the RVE and macroscopic

samples; they are closer to normal type for intermediate sample sizes.

to perform reliability analysis and derive optimum designs for specific ap-1

plications.2

The methodology also provides some fundamental insight to the failure of3

quasi-brittle systems, a subject of widespread interest for many decades, but4

rarely studied in its full complexity to include statistical and size-dependent5

effects. With this approach, we were able to determine three domains of6

failure patterns. Our most important conclusion is that the shape of the7

strength distribution, after being closer to normal for intermediate scale8

samples, reverts to Weibull for macroscopic scale samples. The Weibull9

coefficients of the macroscopic law are different compared to the ones of10

the microscopic law, and the link between the two sets of parameters is an11

outcome of the method. This conclusion is in qualitative agreement with12

Bažant’s theory [Bažant and Pang, 2007]. An immediate perspective of this13
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Figure 12: Stress-strain curve and stress field snapshots for one run of the homogenized

model on a large scaffold (size r = 256 × 256 RVEs) under traction (plus periodicity

conditions), with stress-strain curve and stress fields (dark blue zones correspond to zero

level stress, i.e., broken RVEs) over the deformed geometries at multiple time points,

showing that macroscopic failure is induced by the sudden activation of a macroscopic

defect.
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on the very small samples.

work will be to perform quantitative comparisons between our numerical1

predictions and this theory. However, it is important to point out that2

once the micromechanical model is defined, our approach does not require3

any additional assumption to predict the scaling laws. Thus, the number4

of “chains” and “bundles” of the equivalent hierarchical microstructure re-5

quired in the Bažant model could be identified directly by our approach.6

This capability of our approach allows us to use it to provide guidelines7

for the processing of optimized Nature-inspired materials. Indeed, as our8

intent here was to focus on the method itself, we used a simplistic microme-9

chanical model, but we plan now to study the effect of varying microstruc-10

tural parameters and the introduction of different toughening mechanisms11

on the scaling laws of a given material. These variations will impact the12

geometrical RVE failure distribution, as well as the length scales at which13
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transition between Weibull and Gaussian descriptions occur, i.e., the size of1

the “failure RVE”, which is predicted by our approach.2

Another limitation of this work, is that we have studied behavior under3

only one loading direction, in which the chosen structure has mixed in-series4

and in-parallel volume elements. We plan to study the other directions,5

where the system is mostly in-parallel. More generally, we plan to perform6

homogenized computations where the local behavior is interpolated between7

microscopic stress-strain curves corresponding to different loading directions8

to explore the effect of multi-axial loading on the stress redistribution and9

the failure patterns. Additionally, our intent is to examine the outcome of10

the method when the local behavior is not obtained on a micro-cell of size11

r = 1 × 1 RVE, as is the case in the present study, but instead on larger12

micro-cells, or even with the homogenized model itself.13
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Jia-Liang Le, Zdeněk P. Bažant, and Martin Z. Bazant. Unified nano-

mechanics based probabilistic theory of quasibrittle and brittle struc-

tures: I. Strength, static crack growth, lifetime and scaling. Journal of

the Mechanics and Physics of Solids, 59(7):1291–1321, July 2011. ISSN

38

http://dx.doi.org/10.1016/j.jmps.2004.03.006
http://dx.doi.org/10.1016/j.compscitech.2009.03.009
http://dx.doi.org/10.1016/j.actamat.2009.03.003
http://dx.doi.org/10.1016/j.jmps.2011.03.007
http://linkinghub.elsevier.com/retrieve/pii/S0022509611000524
http://linkinghub.elsevier.com/retrieve/pii/S0022509611000524


00225096. DOI 10.1016/j.jmps.2011.03.002. URL http://linkinghub.

elsevier.com/retrieve/pii/S0022509611000470.

Hugo Leclerc. Towards a no compromise approach between modularity, ver-

satility and execution speed for computational mechanics on CPUs and

GPUs. In Olivier Allix and Peter Wriggers, editors, IV European Confer-

ence on Computational Mechanics (ECCM2010), Paris, France, 2010.
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