
HAL Id: hal-01196341
https://hal.science/hal-01196341

Submitted on 9 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometric optics expansions for hyperbolic corner
problems, selfinteraction phenomenon

Antoine Benoit

To cite this version:
Antoine Benoit. Geometric optics expansions for hyperbolic corner problems, selfinteraction phe-
nomenon. Analysis & PDE, 2016, 9 (6), pp.1359-1418. �hal-01196341�

https://hal.science/hal-01196341
https://hal.archives-ouvertes.fr


Geometric optics expansions for hyperbolic corner problems,

selfinteraction phenomenon.

Antoine Benoit
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Abstract

In this article we are interested in the rigorous construction of geometric optics expansions for hy-
perbolic corner problems. More precisely we focus on the case where selfinteracting phases occur. Those
phases are proper to the high frequency asymptotics for the corner problem and correspond to rays that
can display a homothetic pattern after a suitable number of reflections on the boundary. To construct
the geometric optics expansions in that framework, it is necessary to solve a new amplitude equation in
view of initializing the resolution of the WKB cascade.
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1 Introduction.

The aim of this article is to give rigorous methods to construct geometric optics expansions for linear
hyperbolic initial boundary value problems in the quarter space. Such problems will be called corner problems
and read : 

L(∂)uε := ∂tu
ε +A1∂1u

ε +A2∂2u
ε = 0, (x1, x2) ∈ R+ × R+, t ≥ 0,

B1u
ε
|x1=0 = gε,

B2u
ε
|x2=0 = 0,

uε|t≤0 = 0,

(1)

where the matrices A1, A2 are in MN (R) and where the boundary matrices B1, B2 are elements of Mp1,N (R)
and Mp2,N (R) respectively (the values of the integers p1 and p2 will be made precise in Assumption 2.2).

We have, in this article, chosen to work with only two space dimensions in order to save some notations.
However, all the following results can be generalized if one looks at problem (1) with extra space variables
x′ ∈ Rd−2 (with, of course, the suitable modifications on the operator L(∂) to preserve hyperbolicity).

This article can be seen, in some sense, as a complement to the paper by Sarason and Smoller [17] in
which the authors give intuitions and elements of proof about how to construct geometric optics expansions
but where the construction is not performed rigorously. To our knowledge it is the only paper about this
subject in the literature for general first order systems and we shall rely on some of the deep ideas of this
seminal work. In particular, the links between the phase generation by reflections and the geometry of the
characteristic variety will be the foundation of the proofs in this article (see section 3 and [17, section 6], for
more details).

Indeed, in [17] the authors give examples of corner problems whose characteristic variety is such that,
according to their argumentation, the associated ansatz of the geometric optics expansion has to contain
more phases than the analogous ansatz for each problem in the half spaces {x1 > 0} and {x2 > 0} . They
also show that a new phenomenon, specific to corner problems, may happen for some characteristic variety
configurations : the existence of ”selfinteracting phases”. By ”selfinteracting phases” we mean that some
phases can regenerate themselves after a suitable number of reflections on both sides of the corner. Such
spectral configurations trap part of the solution in a periodically repeating pattern of reflections from one
side to the other (see definition 4.5 and Figure 6 for more details).

Our aim is to give a rigorous construction of the geometric optics expansion when selfinteracting phases
occur. This result is achieved in Theorem 4.2. The most interesting thing during this construction is the
appearance of a new amplitude equation whose resolution is needed to initialize the resolution of the whole
cascade of equations. More precisely, the resolution of the new amplitude equation requires the invertibility
of an operator acting on the trace of one of the self-interacting amplitudes. This operator arises under the
form (I − T) and is reminiscent of Osher’s invertibility assumption [14] for proving a priori estimate for
(1). We show in Theorems 4.3 and 4.4 that a sufficient and necessary (in many meaningful cases) condition
for the new amplitude equation to be solvable in L2(R+) is that the energy associated with the trapped
information does not increase. Such a formulation matches with the naive (but intuitive) idea that if part
of the information is trapped and increases after running through one cycle, then the associated geometric
optics expansion will blow up after repeated cycles.

Inverting an operator of the form (I − T) in view of constructing the geometric optics expansion is not
surprising. Indeed, if we make the analogy with the analysis of the initial boundary value problem in the
half space, the necessary and sufficient condition to ensure strong well-posedness is the so-called uniform
Kreiss-Lopatinskii condition (see [7] and Assumption 2.3). When one wants to construct geometric optics
expansions for such problems in a half space, a ”microlocalized” version of this condition arises [19]. So
one should expect that an analogous situation takes place for the corner problem and that the solvability
condition we exhibit here is a ”microlocalized” version of a stronger condition ensuring well-posedness of (1).

The full characterization of strong well-posedness for the corner problem has not been achieved yet. Some
partial results are known, for example for symmetric corner problems with strictly dissipative boundary con-
ditions (in that framework the strong well-posedness can easily be obtained with few modifications of the
proofs of [10] and [3] for half space problems). However there are, to our knowledge, few results concerning

2



the general framework, that is to say corner problems only satisfying the uniform Kreiss-Lopatinskii condi-
tion on each side. A fundamental contribution to this study is the article by Osher [14]. In this paper, the
author uses the invertibility of an operator reading (I − Tζ)-here ζ denotes a time frequency-to establish a
priori energy estimates. More precisely, he uses such an invertibility property to construct a ”Kreiss type
symmetrizer” providing a priori energy estimates with a loss of regularity from the source terms to the
solution. Unfortunately the number of losses in the estimate it not even explicit. However, some new results
about the possibility to obtain energy estimates without loss can be found in [2].

We believe that, as for the half space problems, the invertibility condition on (I − T) is a microlocal-
ized version of Osher’s condition. It is also interesting to remark that the example given in paragraph 3.5
shows that the invertibility condition on (I − T) may not be satisfied if we only impose the uniform Kreiss-
Lopatinskii condition on either side of the corner. But, looking still at the example of paragraph 3.5, we
observe that the invertibility condition on (I − T) is automatically satisfied if the boundary conditions are
strictly dissipative.

The paper is organized as follows : in section 2 we define some objects and introduce notations for dealing
with geometric optics expansions for initial boundary value problems. We also give in section 2 some known
results about the well-posedness theory for the corner problem (1). In section 3, we explain, and make
complete, the phase generation process by reflection as studied in [17]. We also briefly give an example of a
2×2 corner problem for which geometric optics expansions contain infinitely many phases.

Section 4 is devoted to the proof of our main result. Firstly, we give a rigorous framework for the
description of the phases obtained by successive reflections. This framework has to be general enough to
take into account selfinteracting phases. Then we construct the geometric optics expansion. To do that it
is, in a first time, necessary to exhibit a global ”tree” structure on the set of phases, then to find a way to
initialize the resolution. As already mentionned, the initialization needs solving a new amplitude equation for
the trace of a selfinteracting amplitude. The derivation of this equation is performed in paragraph 4.2.2. Then
we show that, once we have organized the set of phases and we have constructed one of the selfinteracting
amplitudes, we can construct all amplitudes associated with phases ”close to” the selfinteracting ones. A
more precise study of the structure of the phase set then permits to determine all the phases in the geometric
optics expansion.

The end of section 4 aims at justifying the geometric optics expansion and then at giving a necessary
and sufficient condition to ensure that the operator (I − T) is invertible. We also give examples of corner
problems with one loop and revisit some of the conclusions of [17]. Eventually, we make some comments on
our results and give some prospects in setion 5.

2 An overview of well-posedness for half space and corner prob-
lems.

2.1 Notations and definitions.

Let

Ω :=
{

(x1, x2) ∈ R2 \ x1 ≥ 0, x2 ≥ 0
}
, ∂Ω1 := Ω ∩ {x1 = 0} , and ∂Ω2 := Ω ∩ {x2 = 0} ,

be the quarter space and both its edges. For T > 0, we will denote :

ΩT := ]−∞, T ]× Ω, ∂Ω1,T := ]−∞, T ]× ∂Ω1, and ∂Ω2,T := ]−∞, T ]× ∂Ω2.

The used function spaces the usual Sobolev spaces Hn(X), with the notations L2(X) = H0(X) and
H∞(X) := ∩nHn(X), where X is some Banach space. But we will also need the weighted Sobolev spaces
defined by : for γ > 0, Hn

γ (X) := {u ∈ D′(X) \ e−γtu ∈ Hn(X)}.
At last, during the construction of the WKB expansion, to make sure that amplitudes are smooth enough,

we shall need the source term in (1) to be flat at the corner. The associated space of profiles is thus defined

3



as : for n ∈ N ∪ {∞},
Hn
f :=

{
g ∈ Hn(R× R+) \ ∀k ≥ n, ∂kxg(t, x)|x=0 = 0

}
. (2)

The flat at the corner weighted Sobolev spaces Hn
f,γ are defined in a similar way.

Hereof L will be the symbol of the differential operator L(∂), i.e. for τ ∈ R and ξ ∈ R2 :

L (τ, ξ) := τI +

2∑
j=1

ξjAj .

The characteristic variety V of L(∂) is given by :

V :=
{

(τ, ξ) ∈ R× R2 \ det L (τ, ξ) = 0
}
.

In this article we choose to work with constantly hyperbolic operators. However it had to be mentioned that
the analysis of section 4 is slightly easier in the particular framework of stricly hyperbolic operators. We
thus assume the following property on L(∂) :

Assumption 2.1 There exists an integer q ≥ 1, real valued λ1, ..., λq analytic on R2 \ {0} and positive
integers µ1, ..., µq such that :

∀ξ ∈ S1,det L (τ, ξ) =

q∏
j=1

(τ + λj(ξ))
µj ,

where the semi-simple eigenvalues λj(ξ) satisfy λ1(ξ) < ... < λq(ξ).

Let us also assume that the boundary of Ω is non-characteristic, and that the matrices B1 and B2 induce
the good number of boundary conditions, that is to say :

Assumption 2.2 We assume that the matrices A1, A2 are invertible. Then p1 (resp. p2), the number of
lines of B1, equals the number of positive eigenvalues of A1 (resp. A2).

Moreover we also assume that B1 and B2 are of maximal rank.

Under Assumptions 2.1 and 2.2, we can define the resolvent matrices :

A1(ζ) := −A−1
1 (σI + iηA2) and A2(ζ) := −A−1

2 (σI + iηA1) ,

where ζ denotes an element of the frequency space :

Ξ := {ζ := (σ = γ + iτ, η) ∈ C× R, γ ≥ 0} \ {(0, 0)} .

For convenience, we also introduce Ξ0 the boundary of Ξ :

Ξ0 := Ξ ∩ {γ = 0} .

For j = 1, 2, ζ ∈ (Ξ \ Ξ0), we denote by Esj (ζ) the stable subspace of Aj(ζ) and Euj (ζ) its unstable
subspace. These spaces are well-defined according to [6]. The stable subspace Esj (ζ) has dimension pj ,
whereas Euj (ζ) has dimension N − pj . Let us recall the following Theorem due to Kreiss [7] and generalized
by Métivier [12] for constantly hyperbolic operators :

Theorem 2.1 (block structure) Under Assumptions 2.1 and 2.2, for all ζ ∈ Ξ, there exists a neighbor-
hood V of ζ in Ξ, integers L1, L2 ≥ 1, two partitions N = ν1,1+...+ν1,L1

= ν2,1+...+ν2,L2
with ν1,l, ν2,l ≥ 1,

and two invertible matrices T1, T2, regular on V such that :

∀ζ ∈ V , T1(ζ)−1A1(ζ)T1(ζ) = diag (A1,1(ζ), ...,A1,L1
(ζ)) ,

T2(ζ)−1A2(ζ)T2(ζ) = diag (A2,1(ζ), ...,A2,L2
(ζ)) ,

where the blocks Aj,l(ζ) have size νj,l and satisfy one of the following alternatives :
i) All the elements in the spectrum of Aj,l(ζ) have positive real part.

4



ii) All the elements in the spectrum of Aj,l(ζ) have negative real part.
iii) νj,l = 1, Aj,l(ζ) ∈ iR, ∂γAj,l(ζ) ∈ R \ {0}, and Aj,l(ζ) ∈ iR for all ζ ∈ V ∩ Ξ0.
iv) νj,l > 1, ∃kj,l ∈ iR such that

Aj,l(ζ) =

kj,l i 0
. . . i

0 kj,l

 ,
the coefficient in the lower left corner of ∂γAj,l(ζ) is real and non-zero, and moreover Aj,l(ζ) ∈ iMνj,l(R)
for all ζ ∈ V ∩ Ξ0.

Thanks to this Theorem it is possible to describe the four kinds of frequencies, for each part of the boundary
∂Ω :

Definition 2.1 For j = 1, 2, we denote by :
1) Ej the set of elliptic frequencies, that is to say the set of ζ ∈ Ξ0 such that Theorem 2.1 for the matrix

Aj(ζ) is satisfied with one block of type i) and one block of type ii) only.
2) Hj the set of hyperbolic frequencies, that is to say the set of ζ ∈ Ξ0 such that Theorem 2.1 for the

matrix Aj(ζ) is satisfied with blocks of type iii) only.
3) E H j the set of mixed frequencies, that is to say the set of ζ ∈ Ξ0 such that Theorem 2.1 for the

matrix Aj(ζ) is satisfied with one block of type i), one of type ii) and at least one of type iii), but without
block of type iv).

4) Gj the set of glancing frequencies, that is to say the set of ζ ∈ Ξ0 such that Theorem 2.1 for the matrix
Aj(ζ) is satisfied with at least one block of type iv).
Thus, by definition, Ξ0 admits the following decomposition :

Ξ0 = Ej ∪ E H j ∪Hj ∪ Gj .

The study made in [7] and in [12] shows that the subspaces Es1(ζ) and Es2(ζ) admit a continous extension
up to Ξ0. Moreover, if ζ ∈ Ξ0 \ (G1 ∪ G2) one can decompose :

CN = Es1(ζ)⊕ Eu1 (ζ) = Es2(ζ)⊕ Eu2 (ζ), (3)

and for j ∈ {1, 2} :

Esj (ζ) = Es,ej (ζ)⊕ Es,hj (ζ), Euj (ζ) = Eu,ej (ζ)⊕ Eu,hj (ζ).

where Es,ej (ζ) (resp. Eu,ej (ζ)) is the generalized eigenspace associated with eigenvalues of Aj(ζ) with negative

(resp. positive) real part, and where the spaces Es,hj (ζ) and Eu,hj (ζ) are sums of eigenspaces of Aj(ζ)
associated with some purely imaginary eigenvalues of Aj(ζ). From assumption 2.2 we also have :

CN = A1E
s
1(ζ)⊕A1E

u
1 (ζ) = A2E

s
2(ζ)⊕A2E

u
2 (ζ). (4)

In fact, it is possible to give a more precise decomposition of the spaces Es,hj (ζ) and Eu,hj (ζ). Indeed, let
ωm,j be a purely imaginary eigenvalue of Aj(ζ), that is :

det(τ + ηA1 + ωm,2A2) = det(τ + ωm,1A1 + ηA2) = 0.

Then, using Assumption 2.1, there exists an index km,j such that :

τ + λkm,2(η, ωm,2) = τ + λkm,1(ωm,1, η) = 0,

where λkm,j is smooth in both variables. Let us then introduce the following classification :

Definition 2.2 The set of incoming (resp. outgoing) phases for the side ∂Ω1, denoted by I1 (resp. O1), is
the set of indeces m such that the group velocity vm := ∇λkm,1(ωm,1, η) satisfies ∂1λkm,1(ωm,1, η) > 0 (resp.
∂1λkm,1(ωm,1, η) < 0).

Similarly, the set of incoming (resp. outgoing) phases for the side ∂Ω2, denoted by I2 (resp. O2, is the
set of indeces m such that the group velocity vm := ∇λkm,2(η, ωm,2) satisfies ∂2λkm,2(η, ωm,2) > 0 (resp.
∂2λkm,2(η, ωm,2) < 0).

5



Thanks to this definition, we can write the following decomposition of the stable and unstable components
Es,hj (ζ) and Eu,hj (ζ) :

Lemma 2.1 For all ζ ∈Hj ∪ E H j, j = 1, 2 there holds

Es,h1 (ζ) = ⊕m∈I1
ker L (τ , ωm,1, η), Eu,h1 (ζ) = ⊕m∈O1

ker L (τ , ωm,1, η), (5)

Es,h2 (ζ) = ⊕m∈I2
ker L (τ , η, ωm,2), Eu,h2 (ζ) = ⊕m∈O2

ker L (τ , η, ωm,2). (6)

From Assumption 2.2 we can also write :

A1E
s,h
1 (ζ) = ⊕m∈I1

A1 ker L (τ , ωm,1, η), A1E
u,h
1 (ζ) = ⊕m∈O1

A1 ker L (τ , ωm,1, η), (7)

A2E
s,h
2 (ζ) = ⊕m∈I2

A2 ker L (τ , η, ωm,2), A2E
u,h
2 (ζ) = ⊕m∈O2

A2 ker L (τ , η, ωm,2). (8)

We refer, for example, to [5] for a proof of this lemma.

2.2 Known results about strong well-posedness.

We consider the corner problem with source terms in the interior of ΩT and on either side of the boundary
∂ΩT , it reads : 

L(∂)u = f, on ΩT ,
B1u|x1=0 = g1, on ∂Ω1,T ,
B2u|x2=0 = g2, on ∂Ω2,T ,
u|t≤0 = 0.

(9)

By strong well-posedness for the corner problem (9) we mean the following :

Definition 2.3 The corner problem (9) is said to be strongly well-posed if for T > 0, for all f ∈ L2(ΩT ),gj ∈
L2(∂Ωj,T ), the corner problem (9) admits a unique solution u ∈ L2(ΩT ) with traces in L2(∂Ω1,T ) and
L2(Ω2,T ) satisfying the following energy estimate :

‖u‖2L2(ΩT ) + ‖u|x1=0‖2L2(∂Ω1,T ) + ‖u|x2=0‖2L2(∂Ω2,T ) ≤ CT
(
‖f‖2L2(ΩT ) + ‖g1‖2L2(∂Ω1,T ) + ‖g2‖2L2(∂Ω2,T )

)
, (10)

for some constant CT depending on T .

As we have already mentionned in the introduction, the full characterization of strong well-posedness for the
corner problem (9) has not been achieved yet. However we have some partial results.

First of all, the strong well-posedness is proved in the particular framework of symmetric operators with
strictly dissipative boundary conditions, that is boundary conditions defined as follows :

Definition 2.4 For j = 1, 2, the boundary condition Bju|xj=0 = gj is said to be strictly dissipative if the
following inequality holds :

∀v ∈ kerBj \ {0} , 〈Ajv, v〉 < 0

and kerBj is maximal (in the sense of inclusion) for this property.

We thus have the following result :

Theorem 2.2 [2, chapter 4]Under Assumption 2.2, if the matrices A1 and A2 are symmetric and if the
boundary conditions of the corner problem (9) are strictly dissipative, then under a certain algebraic condition
on the matrix A−1

1 A2, the corner problem (9) is strongly well-posed is the sense of Definition 2.3.
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We refer to [2, chapter 4] for a proof of this result and for more details about the mentionned algebraic
condition (see Assumption 4.1.2 of [2])1.

It is also easy to show (see [2, paragraph 5.3.1]) that a necessary condition for (9) to be strongly well-posed
is that each initial boundary value problem :

L(∂)u = f, on {xj > 0, x3−j ∈ R},
Bju|xj=0 = gj ,
u|t≤0 = 0,

(11)

is strongly well-posed in the usual sense for initial boundary value problems in the half-space (see for example
[3]).

This implies that Theorem 2.2 is not sharp (except for N = 2 thanks to [18]) because there exist non-
stricly dissipative boundary conditions leading to a strongly well-posed initial boundary value problem (11)
(see for example [1, paragraph 5.3] ).

However, the set of the boundary conditions making (11) strongly well-posed has been characterized by
[7] and is composed of the boundary condition satisfying the so-called uniform Kreiss-Lopatinskii condition
:

Definition 2.5 The initial boundary value problem (11) is said to satisfy the uniform Kreiss-Lopatinskii
condition if for all ζ ∈ Ξ, we have

kerBj ∩ Esj (ζ) = {0} .

So for the corner problem (9) to be strongly well-posed it is necessary that for j = 1, 2, the initial boundary
value problem (11) satisfies the ”uniform” Kreiss-Lopatinskii condition. We thus make the assumption :

Assumption 2.3 For all ζ ∈ Ξ, we have

kerB1 ∩ Es1(ζ) = kerB2 ∩ Es2(ζ) = {0} .

In particular, the restriction of B1 (resp. B2) to the stable subspace Es1(ζ) (resp. Es2(ζ)) is invertible, its
inverse is denoted by φ1(ζ) (resp. φ2(ζ)).

Unsurprisingly, the cunterexample [15] shows that imposing the uniform Kreiss-Lopatinskii condition on
each side of the boundary is not sufficient to ensure that the corner problem (9) is strongly well-posed.

3 The phase generation process and examples.

Before constructing the geometric optics expansions, it is necessary to describe the expected phases in these
expansions. Since the boundary of the domain Ω is not flat, we expect that it is possible to generate more
phases than for half space problems. Indeed, at the very first glance, we can think that a ray of geometric
optics can be reflected several times on the boundary of the domain, with different new phases generated at
each reflection.

It is thus very important in order to postulate an ansatz to be able to describe all the phases that can
be obtained by successive reflections on each side of the boundary.

Here, we shall go back to the discussion by Sarason and Smoller in [17] explaining this phenomenon and
establishing a very strong link between the geometry of the characteristic variety of L(∂) and the phase
generation process.

As already mentionned in the introduction, we are interested here in corner problems which are homo-
geneous in the interior and on one side of the boundary. The only non-zero source term, which arises in
the boundary condition on ∂Ω1, will be highly oscillating, and we want to understand which phases can be
induced by this source term. We will here describe the phase generation process when the source term is
taken on ∂Ω1 ; the arguments are the same for a source term on ∂Ω2.

1We do not want to give more details about this condition because it is not used to construct the WKB expansion. Moreover,
this condition will be satisfy by all our examples.
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3.1 Source term induced phases.

Our problem of study reads : 
L(∂)uε = 0, on ΩT ,
B1u

ε
|x1=0 = gε, on ∂Ω1,T

B2u
ε
|x2=0 = 0, on ∂Ω2,T

uε|t≤0 = 0,

(12)

where the source term on ∂Ω1,T is given by :

gε(t, x2) := e
i
εϕ(t,x2)g(t, x2), (13)

where the amplitude g ∈ H∞f , and is zero for negative times. The planar phase ϕ is defined by :

ϕ(t, x2) := τt+ ξ
2
x2,

for two fixed real numbers τ > 0 and ξ
2
.

The fact that g belongs to H∞f implies that gε is zero at the corner. Assume that g identically vanishes
in a neighborhood of the corner. Then by finite speed of propagation for the half-space problem, we can,
at least during a small time interval, see the corner problem (12) as a boundary value problem in the half
space {x1 ≥ 0}.

Geometric optics expansions for boundary value problem in the half space have already been studied (see
for example [19]) and, going back over the existing analysis, we expect that the source term gε on the side
∂Ω1 induces in the interior of the domain several rays associated with the planar phases :

ϕ0,k(t, x) := ϕ(t, x2) + ξ0,k

1
x1,

where the (ξ0,k

1
)k are the roots in the ξ1 variable to the dispersion relation :

det L (τ , ξ1, ξ2
) = 0. (14)

An important remark to understand the phase generation process is that the (ξ0,k

1
)k are the intersection

points (with the convention that complex roots are viewed as intersection points at infinity) between the line{
(τ , ξ1, ξ2

), ξ1 ∈ R
}

and the section of the characteristic variety V at τ = τ .

Let us denote by pr the number of real roots to (14) and by 2pc the number of complex roots (which
occur in conjugate pairs). We also assume that (τ , ξ

2
) is not a glancing frequency for the matrix A1, hence

pr can be decomposed as pir + por, where pir (resp. por) is the number of real roots inducing an incoming
(resp. outgoing) group velocity (see definition 2.2). We thus have p1 = pir + pc and N − p1 = por + pc by
Theorem 2.1. Firstly we shall consider ϕ0

i , one of the pir phases with an incoming group velocity and ϕ0
o, one

of the por phases with an outgoing group velocity. We also denote by v0
i and v0

o the associated group velocity.
Phases associated with complex roots will be dealt with in a second time. The following discussion should
be performed for each such real phase.

We shall study separately the influence of the phases ϕ0
i and ϕ0

o upon the generation of phases.

� The phase ϕ0
o.

The phase ϕ0
o, associated with an outgoing group velocity, describes the ”past” of the information reflected

on the side ∂Ω1 at the initial time. In other words, to know the origin of a point on the side ∂Ω1, it is
sufficient to travel along the characteristic with group velocity v0

o by rewinding time back to −∞.
This leads us to separate two cases, making, thus, more precise the definition 2.2 :

Definition 3.1 An outgoing group velocity v = (v1, v2) for the side ∂Ω1 (i.e. v1 < 0) is said to be :
• outgoing-incoming if v2 > 0.
• outgoing-outgoing if v2 < 0.
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• First subcase : v0
o outgoing-outgoing.

Let us fix a point on the side ∂Ω1 and we draw the characteristic line with group velocity v0
o passing through

this point. Since v0
o is outgoing for each side of the boundary, the information at the considered point of ∂Ω1

can only come from information in the interior of the domain which has been transported towards the side
∂Ω1 see Figure 1. But, without source term in the interior of Ω such information is zero. As a consequence,
the amplitude u0

o associated with the phase ϕ0
o is zero, since according to Lax’ lemma [8] it satisfies the

transport equation : {
∂tu

0
o + v0

o · ∇xu0
o = 0,

u0
o|t≤0

= 0.

Outgoing-outgoing phases do not have any influence on the WKB expansion or on the phase generation
process and are therefore ignored from now on.
• Second subcase : v0

o outgoing-incoming.
Once again, we fix a point on the side ∂Ω1 and we draw the characteristic line with group velocity v0

o passing
through this point. As in the subcase of an outgoing-outgoing, the information at the considered point of
∂Ω1 can not come from the interior of the domain.

However, the characteristic associated with the group velocity v0
o hits the side ∂Ω2 when we rewind the

time back to −∞, so the information at the point of the side ∂Ω1 could a priori come from some information
on the side ∂Ω2 which would have been transported towards the side ∂Ω1. But this is not possible at time
t = 0 since the boundary condition on ∂Ω2 is homogeneous for negative times.

So, the amplitude associated with the outgoing-incoming phase ϕ0
o is zero at time t = 0 and even on a

small time interval if gε identically vanishes near the corner. That is why we do not take into account the
phase ϕ0

o initially in the phase generation process.

Let us stress here that the phase ϕ0
o is moved apart a priori only at time t = 0. Indeed, for some

configuration of the characteristic variety, this phase can be generated at a future reflection on the side ∂Ω2,
and will finally be included in the ansatz. We will make more comments on this point at paragraph 3.3,
after having precisely described which reflections are taken into account.

� The phase ϕ0
i .

The phase ϕ0
i is associated with an incoming group velocity for the side ∂Ω1. Opposite to the phase

ϕ0
o, it describes the ”future” of the source term gε. That is to say, when time goes to +∞, part of the

oscillations in gε is transported along the characteristic with group velocity v0
i . So, the phase ϕ0

i carries a
non-zero information and has to be taken into account in the phase generation process.

However, once again, we have to separate two subcases, according to the following refinement of the
definition 2.2 :

Definition 3.2 An incoming group velocity v = (v1, v2) for the side ∂Ω1 (i.e. v1 > 0) is said to be :
• incoming-incoming if v2 > 0.
• incoming-outgoing if v2 < 0.

The four kinds of (non-glancing) oscillating phases used in this analysis are drawn in Figure 1.
• First subcase : v0

i incoming-incoming.
We choose a point (0, x2), on ∂Ω1 such that gε(0, x2) is non-zero and we draw the characteristic with

velocity v0
i passing through this point. When t goes to +∞, the information transported along this ray will

never hit the side ∂Ω2 and will be unable to generate new phases by reflection. So, when the group velocity
v0
i is incoming-incoming, the phase generation process for the phase ϕ0

i stops.
• Second subcase : v0

i incoming-outgoing.
We fix a point (0, x2) ∈ ∂Ω1 with gε(0, x2) 6= 0, and we draw the characteristic with velocity v0

i passing
through this point. As v0

i,2 is negative, this ray will hit, after a while, the side ∂Ω2. We thus expect that
this ray will give rise to reflected oscillations and that this reflection will create new phases. This reflection
phenomenon and more specifically the new expected phases will be described in the next paragraph. But
before that, we will conclude the discussion on the phases induced by the source term gε by considering the
possible complex valued phases.

9
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Figure 1: The four different kinds of phases.

� ϕ0
k complex valued.

We now deal with phases corresponding to roots in the ξ1 variable to the dispersion relation (14) with
non-zero imaginary part. Let us first introduce some vocabulary.

Definition 3.3 A phase ϕ0
k with ξ0,k

1
∈ C \ R is said to be :

• evanescent for the side ∂Ω1 if Im ξ0,k

1
> 0.

• explosive for the side ∂Ω1 if Im ξ0,k

1
< 0.

Thanks to the construction of geometric optics expansion for complex valued phases made for example
in [11] and [9], the expected behaviour of the amplitudes associated with these phases is a propagation of
information in the normal direction to the side ∂Ω1. However, this propagation is exponentially decreasing
(resp. increasing) according to the variable x1 for the amplitudes linked with evanescent (resp. explosive).
In all that follows, as we are looking for amplitudes in L2(Ω) so as in [9],[11] and [19] we do not take into
account explosive phases.

Thus, we only keep the evanescent phases. Since, for regularity considerations on the oscillating am-
plitudes, we are working with a source term in H∞f , this source term satisfies, in particular, g(t, 0) = 0.
Consequently, the information carried by evanescent phases will never hit the side ∂Ω2 and the evanescent
phases for the side ∂Ω1 are, as well as the incoming-incoming ones, stopping conditions in the phase gener-
ation process.

To summarize, the phases induced directly by the source term gε are the incoming (for the side ∂Ω1)
phases and the evanescent phases for the side ∂Ω1. Incoming-incoming and evanescent phases will not be
reflected, thus we only have to study the reflections on ∂Ω2 associated with incoming-outgoing phases.

3.2 The first reflection.

We assume that the dispersion relation (14) has at least one solution in the ξ1 variable generating an
incoming-outgoing group velocity. We shall describe the reflection of one of these phases. Of course, to
determine all the expected phases in the WKB expansion, the following discussion has to be repeated for
each of these phases.

Let ξ0

1
be a fixed root in the ξ1 variable to (14). We denote by v0

i the associated incoming-outgoing group
velocity which corresponds to rays emanating from ∂Ω1 and hitting ∂Ω2 in finite time. Let us also assume
that time is large enough so that the ray associated with v0

i and emanating from the support of gε has hit
∂Ω2. Once again, by (formal) finite speed of propagation arguments, the reflection of the ray can not hit
immediatly the side ∂Ω1. Thus during a small time, we can represent our situation as an initial boundary

10



value problem in the half space {x2 ≥ 0} whose boundary source term has been turned on by the amplitude
for the outgoing (for the side ∂Ω2) phase ϕ0

i .
We thus have to determine the roots (ξ1,k

2
)k in the ξ2 variable to the dispersion relation :

det L (τ , ξ0

1
, ξ2) = 0. (15)

Let us stress that we already know one of them, that is ξ
2
. For each of the new roots, we associate the

phase :
ϕ1,k(t, x) := τt+ ξ0

1
x1 + ξ1,k

2
x2.

It is interesting to note that the (ξ1,k

2
)k are the intersection points between V ∩ {τ = τ} and the line{

(τ , ξ0

1
, ξ2), ξ2 ∈ R

}
. Thus to determine the phases generated by the source term, it has been necessary to

consider the intersection of V ∩ {τ = τ} with a horizontal line, and to determine the phases generated by
the first reflection we have to consider the intersection of V ∩ {τ = τ} with a vertical line (see Figure 2).
To determine the phases generated by the second reflection, we will have to consider the intersection with a
horizontal line and so on. We see that this process strongly depends on the geometry of the characteristic
variety V .

Figure 2: The geometry of the characteristic variety and the phase generation.

Repeating exactly the same arguments as those used for the phases induced by the source term, we
claim that outgoing-outgoing and incoming-outgoing phases can be neglected (at least initially for incoming-
outgoing phases). Consequently, for real roots to (15), we just have to consider those associated with an
incoming-incoming or outgoing-incoming group velocity. Let ϕ1

i denote one of these phases and v1
i its group

velocity.

� v1
i incoming-incoming.

In that case, as when the group velocity v0
i was incoming-incoming, the considered ray will never hit the

side ∂Ω1, and it will never be reflected. The phase generation process for the phase ϕ1
i stops, and we are

free to study the reflection(s) of another root to (15).

� v1
i outgoing-incoming.

The reflected ray travels towards ∂Ω1, it will hit ∂Ω1 after a while, and we will have to determine how
it is reflected back. So the phase generation process for the phase ϕ1

i continues.

Concerning complex roots to (15) (if such roots exist), we only add in the WKB expansion those associated
with evanescent phases for the side ∂Ω2 (that is to say those satisfying Im ξ1,k

2
> 0). As for the complex

11



valued phases induced by the source term, they will never be reflected back and the phase generation process
for these phases stops.

3.3 Summary.

To summarize the phase generation process is the following : we start from a source term on ∂Ω1 and we
only study the reflections for the incoming phases that it induces. If all of the phases are incoming-incoming
(or evanescent), then the process stops. Otherwise we determine the reflections on ∂Ω2 of all the incoming-
outgoing phases and we shall consider them into the ansatz. If one of these reflected phases is outgoing-
incoming we will determine its reflection on ∂Ω1 otherwise the phase generation process stops... This leads
us to consider sequences of phases which are alternatively incoming-outgoing and outgoing-incoming until
we find an incoming-incoming or evanescent phase during a reflection which ends the sequence.

There are, of course, two possibilities : either each of these sequences of phases generated by successive
reflections is finite. Then the number of phases in the ansatz will be finite (see example of paragraph 3.5). Or
at least one of these sequences is infinite, then the number of phases in the ansatz is infinite (see example 3.4).

In all the preceding discussion, we used the tacit assumption that we never meet glancing phases. This
assumption is satisfied in all our examples and it will be clearly stated in Theorem 4.2. Formally glancing
phases should be stopping criterion as well as incoming-incoming and evanescent phases. However, how to
include rigorously glancing modes in the WKB expansion is left for future studies.

Let us also stress that during a reflection on the side ∂Ω1 (resp. ∂Ω2), the fact that outgoing-incoming
(resp. incoming-outgoing) phases are not considered do not prevent these phases to appear in the WKB
expansion.

Indeed, let (τ , ξ
1
, ξ

2
) be an incoming-outgoing phase generated by the source term gε and

(
τ , ξ

1
, ξ̃

2

)
be

an outgoing-incoming phase also generated by the source term. This phase is a priori not taken into account
in the WKB expansion at the first step of the phase generation process described above. Let us assume that

the intersection between the characteristic variety Vτ=τ and the line
{

(τ , ξ
1
, ξ2), ξ2 ∈ R

}
contains a value

of ξ2, ξ̃
2
, such that the associated oscillating phase is outgoing-incoming and that the intersection between

Vτ=τ and the line
{

(τ , ξ1, ξ̃2
), ξ1 ∈ R

}
contains the frequency

(
τ , ξ̃

1
, ξ̃

2

)
(in other words, it is equivalent

to say that there exists a rectangle with sides parallel to the x and y axis whose corners are four points of

Vτ=τ ). If the frequency
(
τ , ξ̃

1
, ξ̃

2

)
is associated with an incoming-outgoing group velocity, we remark by

applying the phase generation process (more precisely during the third reflection), that we have to consider

the frequency
(
τ , ξ

1
, ξ̃

2

)
which has been initially excluded.

Moreover, when we study the reflections of the phase associated with the frequency
(
τ , ξ̃

1
, ξ̃

2

)
on the

side ∂Ω1, we are led to consider one more time the phase with frequency (τ , ξ
1
, ξ

2
). So, the phase associated

with the frequency (τ , ξ
1
, ξ

2
) is ”selfgenerating” or ”selfinteracting” because it is in the set of the phases that

it generates. Such a configuration in the characteristic variety will be called a ”loop”. An explicit example
of a corner problem with a loop will be given in paragraph 3.5.

The fact that at each reflection there is more than one generated phase and this selfinteraction phenomeon
between the phases imply that there is no natural order on the set of phases as in the N = 2 framework.
Indeed, when N > 2 we have to deal with a tree matching the phase generation at each reflection. Thus,
constructing the WKB expansion when N > 2 will be less intuitive as when N = 2, a framework in which
it is sufficient to use the order induced by the phase generation process. In paragraphs 4.2.1 and 4.2.4, we
show how to overcome this lack of natural order in view of constructing the WKB expansion.

12



3.4 An example with infinitely many phases.

The aim of this paragraph is to illustrate the phase generation process and to give an explicit example of
a corner problem whose geometric optics expansion contains an infinite number of phases. Moreover, this
example will also stress the fact that the phase generation process is much simpler when N = 2, since it
gives a natural order of construction of the WKB expansion.

Let us consider the corner problem (12) with

A1 :=

[
0 −1
−1 −1

]
, A2 :=

[
0 1
1 −1

]
.

It is thus clear that p1 = p2 = 1 then we have to choose B1, B2 ∈M1,2(R) in such a way that the boundary
conditions on ∂Ω1 and ∂Ω2 are strictly dissipative [18]. Moreover one can easily check that this corner
problem satisfies Assumptions 2.1, 2.2.

We choose for source term on ∂Ω1 in the corner problem (12) :

gε(t, x2) := e
i
ε (t+ 1

2x2)g(t, x).

Then the phase generation process for this problem is precisely described in [2, paragraph 6.6.1], and is
illustrated in Figure 3. The phases that we have to consider form a ”stairway” in a parabola (see Figure

Figure 3: Phase generation for the corner problem of paragraph 3.4.

3). The points of this ”stairway” are labelled by two sequences (ξ1,p)p∈N and (ξ2,p)p∈N in such a way that
points (ξ1,p, ξ2,p)p∈N match with points in the ”top of the parabola” whereas points (ξ1,p, ξ2,p+1)p∈N match
with points in the ”bottom of the parabola”. Finally we initialize at ξ1,0 = − 1

2 and ξ2,0 = 1
2 . A simple

computation shows that we have :

ξ1,p = −2p2 − 3p− 1

2
, ξ2,p = −2p2 − p+

1

2
,

and

vp =
1

4p2 + 4p+ 2

[
4p+ 1
−(4p+ 3)

]
,

wp =
1

4p2 + 8p+ 5

[
−(4p+ 5)

4p+ 3

]
.

13



So all the points of the ”top” are associated with incoming-outgoing group velocities while points of the
”bottom” are associated with outgoing-incoming group velocities. Thus according to the phase generation
process described in above the number of phases in the expansion will be infinite.

We refer to [2, paragraphs 6.6.2 and 6.6.3] for a rigorous construction of the geometric optics expansion
and a justification of its convergence towards the exact solution. The difficult part of this analysis does not
come from the construction because we are in the confortable case N = 2 but it comes from the justification.
Indeed, when infinitely many phases occur, to ensure that the WKB expansion (at a finite order in terms of
powers of ε) makes sense, we have to ensure that a series converges.

Eventually, let us remark the following phenomenon. If we fix a point (0, yp) ∈ ∂Ω1 and follow the
characteristic with group velocity vp, then we will hit ∂Ω2 at time tvp in a point (xp, 0). Then if we start
from (xp, 0) ∈ ∂Ω2 and follow the characteristic line with group velocity wp, will hit ∂Ω1 at time twp in a
point (yp+1, 0). A simple computation shows that the considered sequences are given by :

yp =
1

4p+ 1
y0, xp =

1

4p+ 3
y0, t

v
p =

1

vp,1
yp, t

w
p =

1

vp,2
xp,

from which we deduce that from the starting point (0, y0), y0 > 0, we will get closer and closer of the corner
at each reflection and will reach the corner in an infinite time. A scheme illustrating the characteristic lines
for this corner problem is given in Figure 4.

x1

x2

Figure 4: Appearance of the characteristics for problem of paragraph 3.4.

3.5 An example with a loop.

We consider the following corner problem :
∂tu

ε +A1∂1u
ε +A2∂2u

ε = 0, (x1, x2) ∈ Ω,
B1u

ε
|x1=0 = 0,

B2u
ε
|x2=0 = gε,

uε|t≤0 = 0,

(16)

with :

A1 :=

 0 0
√

5
0 5

7 0√
5 0 4

 , A2 :=

1 0 0
0 −1 0
0 0 −1

 ,
14



This system does not have any physical meaning and is composed of a ”wave type” equation and a scalar
transport equation. It is clear that the corner problem (16) satisfies Assumption 2.2 with p1 = 2 and p2 = 1.
The corner problem (16) does not satisfy Assumption 2.1, but it is hyperbolic in the sense of geometrically
regular hyperbolic systems (see [13, definition 2.2]). This hyperbolicity assumption is sufficient for our
discussion as long as we do not have to consider in the ansatz frequencies corresponding to intersection
points2 of the different sheets of the characteristic variety.

For the corner problem (16), the equation of the section of the characteristic variety with the plane
{τ = 1} is given by :

(Vτ=1)
(
−5ξ2

1 − 4ξ2
2 + 4ξ1ξ2 + 4ξ1 + 1

)(
1 +

5

7
ξ1 − ξ2

)
= 0,

and is composed of an ellipse and a crossing line, see Figure 5. If we choose for source term gε on ∂Ω2 in

Figure 5: Section of the characteristic variety and the phase generation for corner problem (16)

(16) :

gε(t, x1) = e
i
ε (t+

21
5 x1)g(t, x1).

then after application of the phase generation process (see Figure 5), we obtain a loop as introduced in

2 We have to stress that these intersection points, specific to geometrically regular hyperbolic systems, can, generically,
induce an infinite number of phases in the WKB expansion. Indeed, let us assume that in a given intersection point, one of
the sheets of the variety is associated with an incoming-outgoing group velocity whereas the other sheet is associated with an
outgoing-incoming group velocity. Then, using the fact that the group velocities are regular, one can find a neighborhood on
each sheet such that the group velocity does not change type on this neighborhood. It immediatly follows that if a ray of the
geometric optics expansion contains a frequency in these neighborhoods it is automatically attracted toward the intersection
point by forming a ”stairway” like in paragraph 3.4. The fact that this phenomenon does not occur for the corner problem
(16), and that the number of generated phases in finite, is somewhat very special.
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paragraph 3.3. The four selfinteracting phases and the associated group velocities are given by :

ϕ1(t, x) := t+
21

5
x1 + 8x2, v1 =

1√
5

[
−3
2
5

]
, (17)

ϕ2(t, x) := t+
21

5
x1 + 4x2, v2 =

[
5
7
−1

]
,

ϕ3(t, x) := t+ 3x1 + 4x2, v3 =

[
−5
2

]
,

ϕ4(t, x) := t+ 3x1 + 8x2, v4 =

[
3
−2

]
,

v1 and v3 are outgoing-incoming whereas v2 and v4 are incoming-outgoing. The precise values of the eight
others expected phases in the WKB expansion can be found in [2, paragraph 6.9.1].

As in paragraph 3.4 we are not interested in the construction of the geometric optics expansion but we
want to study the behaviour of the rays associated with the phases (ϕj)j=1,...,4 when T being big.

If we start from a point (x0, 0) ∈ ∂Ω2 and make it travel along the characteristics with group velocity
v1, v2, v3 and v4, then after one cycle the ray will hit ∂Ω2 after a time of travel t0 in a point (x2, 0). Some
computations, like those made in paragraph 3.4, show that, for x0 > 0 we have :

x2p = β−px0, tp = α̃β−px0,

with

β−1 :=
2

35
=
v1,2

v1,1

v2,1

v2,2

v3,2

v3,1

v4,1

v4,2
,

and α̃ a non-relevant parameter for our purpose. Since β > 1 the ray concentrates at the corner. Moreover
the total time of travel towards the corner

∑
p≥0 tp is the sum of a finite geometric sum so the ray reaches

the corner in finite time.

We will come back in paragraph 4.4 on this example, and more precisely on the resolution of the new
amplitude equation needed to construct the geometric optics expansion. Let us conclude this paragraph, by
Figure 6 that depict the characteristics associated with the group velocities (vj)j=1,...,4 :

Figure 6: The loop.
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4 Geometric optics expansions for selfinteracted trapped rays.

Until the end of this paper, we will study the following hyperbolic corner problem with N equations :
∂tu

ε +A1∂1u
ε +A2∂2u

ε = 0, (t, x1, x2) ∈ ΩT ,
B1u

ε
|x1=0 = gε,

B2u
ε
|x2=0 = 0,

uε|t≤0 = 0,

(18)

where, we recall that A1, A2 ∈ MN (R) with N ≥ 2, B1 ∈ Mp1,N (R) and B2 ∈ Mp2,N (R). Our goal is to
construct the WKB approximation to the solution uε to (18) when selfinteracting phases occur. But before
starting the construction of the geometric optics expansion we shall give a precise and rigorous meaning of
the phase generation process described in section 3. This is the object of the following paragraph.

4.1 General framework.

In this paragraph we define a general framework wherein we can construct rigorously geometric optics
expansions for corner problems. As already mentioned the geometry of the characteristic variety influences
the phase generation process and consequently it also influences the geometric optics expansion. Though
not the most general, our framework will be general enough to take into account one loop and selfinteracting
phases. Possible extensions are indicated at the end of this article.

4.1.1 Definition of the frequency set and first properties.

Let us start with the definition of what we mean by a frequency set :

Definition 4.1 Let I be a subset of N and τ ∈ R, τ 6= 0. A set indexed by I ,

F :=
{
fi := (τ , ξi1, ξ

i
2), i ∈ I

}
,

will be a set of frequencies for the corner problem (18) if for all i ∈ I , fi satisfies

det L (fi) = 0,

and one of the following alternatives :
i) ξi1, ξ

i
2 ∈ R.

ii) ξi1 ∈ (C \ R) , ξi2 ∈ R and Im ξi1 > 0.
iii) ξi2 ∈ (C \ R) , ξi1 ∈ R and Im ξi2 > 0.

In all what follows, if F is a frequency set for the corner problem (18), we will define :

Fos := {fi ∈ F satisfying i)} ,
Fev1 := {fi ∈ F satisfying ii)} ,
Fev2 := {fi ∈ F satisfying iii)} .

It is clear that the sets Fos, Fev1 and Fev2 give a partition of F . Moreover to each fi ∈ Fos, we can
associate a group velocity vi := (vi,1, vi,2). Let us recall that the group velocity vi is defined in Definition
2.2. The set Fos can be decomposed as follows :

Fii := {fi ∈ Fos \ vi,1, vi,2 > 0} , Fio := {fi ∈ Fos \ vi,1 > 0, vi,2 < 0} ,
Foi := {fi ∈ Fos \ vi,1 < 0, vi,2 > 0} , Foo := {fi ∈ Fos \ vi,1 < 0, vi,2 < 0} .
Fg := {fi ∈ Fos \ vi,1 = 0 or vi,2 = 0} .

The partition of F induces the following partition of I :

I = Ig ∪Ioo ∪Iio ∪Ioi ∪Iii ∪Iev1 ∪Iev2,
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where we have denoted by Iio (resp. g, oo, oi, ii, ev1, ev2) the set of indeces i ∈ I such that the corresponding
frequency fi ∈ Fio (resp. g, oo, oi, ii, ev1, ev2).

From now on, the source term gε on the boundary in (18) reads :

gε(t, x2) := e
i
ε (τt+ξ

2
x2)g(t, x2), (19)

where the amplitude g ∈ H∞f and is zero for negative times.
The following definition gives a precise framework for the phase generation process described in section 3.

More precisely, this definition qualifies the frequency set that contains all (and only) the frequencies linked
with the expected non-zero amplitudes in the WKB expansion of the solution to the corner problem (18).

Definition 4.2 The corner problem (18) is said to be complete for reflections if there exists a set of fre-
quencies F satisfying the following properties :

i) F contains the real roots (in the variable ξ1) associated with incoming-outgoing or incoming-incoming
group velocities and the complex roots with positive imaginary part, to the dispersion equation

det L (τ , ξ1, ξ2
) = 0.

ii) Fg = ∅.3

iii) If (τ , ξi1, ξ
i
2) ∈ Fio, then F contains all the roots (in the variable ξ2), denoted by ξp2 , to the dispersion

relation det L (τ , ξi1, ξ2) = 0, that satisfy one of the following two alternatives :
iii′) ξp2 ∈ R and the frequency (τ , ξi1, ξ

p
2) is associated with an outgoing-incoming group velocity or an

incoming-incoming group velocity.
iii′′) Im ξp2 > 0.

iv) If (τ , ξi1, ξ
i
2) ∈ Foi, then F contains all the roots (in the variable ξ1), denoted by ξp1 , to the dispersion

relation det L (τ , ξ1, ξ
i
2) = 0, that satisfy one of the following two alternatives :

iv′) ξp1 ∈ R and the frequency (τ , ξp1 , ξ
i
2) is associated with an incoming-outgoing or an incoming-incoming

group velocity.
iv′′) Im ξp1 > 0.

v) F is minimal (for the inclusion) for the four preceeding properties.

Remark Point i) imposes that the frequency set F contains all the incoming phases for ∂Ω1 that are
induced by the source term gε.

Point iii) (resp. iv)) explains the generation by reflection on the side ∂Ω2 (resp. ∂Ω1) of a wave packet
that emanates from the side ∂Ω1 (resp. ∂Ω2).

An immediate consequence of the minimality of F is that Foo is empty. In all what follows, we will assume
that the dispersion relation det L (τ , ξ1, ξ2

) = 0 has at least one real solution ξ
1

such that the group velocity
for the frequency f := (τ , ξ

1
, ξ

2
) is incoming-outgoing. This assumption is, of course, not necessary. However,

without this assumption, it is easy to see that the phase generation for the corner problem (18) is not richer
than the phase generation for the standard boundary value problem in the half space {x1 ≥ 0}. Indeed, the
minimality of the frequency set F would imply in this case :

F = Fii ∪Fev1 and ∀fi ∈ F , ξi2 = ξ
2
.

For a corner problem that is complete for reflections, one can define the following applications. These
applications are defined on the index set I and give, in the output, the indeces ”in the direct vicinity” of
the input index :

Φ, Ψ : I −→PN (I ),

3This restriction is probably not necessary. However, for a first work on this subject we did not want to add the technicality
induced by the determination of amplitudes associated with glancing frequencies (see [20] for such a construction). Incorporating
glancing modes in the WKB expansion is left for future studies.
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where PN (I ) denotes the power set of I with at most N elements. More precisely, the definitions of Φ
and Ψ are : for i ∈ I , fi = (τ , ξi1, ξ

i
2),

Φ(i) :=
{
j ∈ I \ ξj2 = ξi2

}
and Ψ(i) :=

{
j ∈ I \ ξj1 = ξi1

}
.

Thanks to these applications, the index set I can be seen as a graph. This graph structure will be more
abstract than the desciption of I based on the wave packet reflections, but it will be easier to handle with
when we will construct the WKB expansion. This graph structure is defined by the following relation : two
points i, j ∈ I are linked by an edge if and only if i ∈ Φ(j) or i ∈ Ψ(j).

In terms of wave packet reflection, the set Φ(i) (resp. Ψ(i)) is the set of all indeces of the phases that
are considered in the reflection of the wave packet with phase fi on ∂Ω2. Let us stress that the index i is
not necessarily the index of an incident ray but can be the index of one of the reflected rays.

It is easy to see that applications Φ and Ψ have the following properties. One can also check that these
properties are independent of the concept of ”loop” that will be introduced in the following paragraph.

Proposition 4.1 If the corner problem (18) is complete for reflections, then Φ and Ψ satisfy the following
properties :

i) ∀i ∈ I , i ∈ Ψ(i), i ∈ Φ(i).

ii) ∀i ∈ I , ∀j ∈ Ψ(i), ∀k ∈ Φ(i) we have Ψ(i) = Ψ(j) and Φ(i) = Φ(k).

iii) ∀i ∈ I , Φ(i) ∩ Iev2 = ∅ and Ψ(i) ∩ Iev1 = ∅. And, ∀i ∈ Iev1,∀j ∈ Iev2, we have Ψ(i) ⊂ Iev1,
Φ(i) ⊂ Iev2.

iv) ∀i ∈ Ios, #(Φ(i) ∩Iev1 ∩Iio ∩Iii) ≤ p1 , and #(Ψ(i) ∩Iev2 ∩Ioi ∩Iii) ≤ p2.

v) ∀i ∈ I , we have on one hand ∀i1, i2 ∈ Φ(i), i1 6= i2 :

Φ(i) ∩Ψ(i1) = {i1} and Ψ(i1) ∩Ψ(i2) = ∅,

and on the other hand, ∀j1, j2 ∈ Ψ(i), j1 6= j2 :

Ψ(i) ∩ Φ(j1) = {j1} and Φ(j1) ∩ Φ(j2) = ∅.

Proof : Points i), ii) and v) are direct consequences of the definition of the applications Φ and Ψ. Point
iii) arises from the definition of the frequency set. Finally point iv) is a consequence of the block structure
lemma (cf. Theorem 2.1).

�

Thanks to applications Φ and Ψ it is easy to define the notion of two linked indeces in the graph structure
of I . In terms of wave packet reflections, this notion means that the index i will be linked with the index j
if and only if j is obtained from the wave packet associated with i after several reflections. In other terms,
we can say that the index i generates the index j, or that i is the ”father” of j. The following definition
makes this notion more precise :

Definition 4.3 If i ∈ Iio, we say that the index j ∈ Iio ∪ Iev1 (resp. j ∈ Ioi ∪ Iev2) is linked with the
index i, if there exists p ∈ 2N+ 1 (resp. p ∈ 2N) and a sequence of indeces ` = (`1, `2, ..., `p) ∈ I p such that
:
α′) `1 ∈ Ψ(i) ∩Ioi, `2 ∈ Φ(`1) ∈ Iio, ... , j ∈ Φ(`p) (resp. j ∈ Ψ(`p)).

We say that the index j ∈ Iii is linked with the index i, if there is a sequence of indeces ` = (`1, `2, ..., `p) ∈
I p such that :

β′) `1 ∈ Ψ(i) ∩Ioi, `2 ∈ Φ(`1) ∩Iio, ...,

{
j ∈ Φ(`p), p is odd,
j ∈ Ψ(`p), p is even.
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If i ∈ Ioi, we say that the index j ∈ Iio ∪Iev1 (resp. j ∈ Ioi ∪Iev2) is linked with the index i, if there
exists p ∈ 2N (resp. p ∈ 2N + 1) and a sequence of indeces ` = (`1, `2, ..., `p) ∈ I p such that :
α′′) `1 ∈ Φ(i) ∩Iio, `2 ∈ Ψ(`1) ∈ Ioi, ... , j ∈ Φ(`p) (resp. j ∈ Ψ(`p)).

We say that the index j ∈ Iii is linked with the index i, if there exists a sequence of indeces ` =
(`1, `2, ..., `p) ∈ I p such that :

β′′) `1 ∈ Φ(i) ∩Iio, `2 ∈ Ψ(`1) ∩Ioi, ...,

{
j ∈ Ψ(`p), p is odd,
j ∈ Φ(`p), p is even.

Finally, if i ∈ Iii ∪Iev1 ∪Iev2, there is no element of I linked with i.

Moreover, we will say that an index j ∈ I is linked with the index i by a sequence of type H (for
”horizontal”) (resp. V (for ”vertical”)) and we will note i�

H
j (resp. i�

V
j) if the sequence (i, `1, `2, ..., `p, j)

satisfies α′′) or β′′) (resp. α′) or β′)).

Let us comment a bit this definition. In terms of wave packet reflections, if one fixes an index i ∈ Iio,
an index j will be linked with the index i if j comes from i after several reflections. More precisely, the
incoming-outgoing ray associated with i has hit the side ∂Ω2, has been reflected in the outgoing-incoming
ray associated with the index `1. Then the ray of index `1 has hit the side ∂Ω1, has generated the incoming-
outgoing ray associated with the index `2, this ray has hit the side ∂Ω2... and so on until the ray associated
with the index `p has generated by reflection the index j.

The distinction of cases based on the group velocity of the index j in the subcase α′) considers the fact
that a ray associated with an index in Iio ∪Iev1 (resp. Ioi ∪Iev2) can be generated by a ray associated
with `p only during a reflection on the side ∂Ω1 (resp. ∂Ω2), or equivalently after an even (resp. odd)
number of reflections. Whereas a ray with an incoming-incoming group velocity can be generated by the ray
`p during a reflection on the side ∂Ω1 or one the side ∂Ω2. That is the reason why the subcase β′) differs
from the subcase α′).

If one rather sees the index set I with a graph structure, saying that j is linked with i is no more than
saying that starting from i one can reaches the index j by passing through the indeces `i, with the following
rule of travel : if one reaches `l by following a vertical (resp. horizontal) edge of the graph, then `l+1 will
be reached by following a horizontal (resp. vertical) edge. A sequence of type H (resp. V ) just means that
when we start from i, the first edge is a horizontal (resp. vertical) one.

The following proposition is an immediate consequence of definitions 4.2 and 4.3.

Proposition 4.2 Let F be a complete for reflection frequency set indexed by I . Let I0 be the set of indeces
in I generated by the source term gε, that is to say :

I0 :=
{
i ∈ Iio ∪Iii ∪Iev1 \ det L (τ , ξi1, ξ2) = 0

}
.

Let IR be the set of indeces in I linked with one of the elements of I0. Then

IR = I .

Proof : Let FR be the set of frequencies indexed by IR. It is clear that the set FR satisfies points i)-iv)
of definition 4.2. Let us describe the verification of point iii) to be more convincing.

We fix i ∈ IR, an incoming-outgoing index. Let ` be a sequence that linked i to one of the indeces
of I0. Then indeces in Ioi ∩ Ψ(i), Iii ∩ Ψ(i) and Iev2 ∩ Ψ(i) are linked with an element in I0 by the
sequence (`, i). As a consequence, these indeces are in IR. We just showed that IR satisfies point iii) of
the definition 4.2.

We now want to show that IR = I . By contradiction, we assume that there exists j ∈ (I \IR).
Firstly, if j ∈ Iev1 ∪Iev2 ∪Iii, then the frequency set indexed by I \ {j} still satisfies points i)-iv) in the
definition 4.2. This fact contradicts the minimality of F .

Then, if j ∈ Iio∪Ioi, we construct the set of indeces linked with j, and we denote this set by Ĩ . Let F̃

be the frequency set indexed by Ĩ . The set (F̃ ∪FR) \ (F̃ ∩FR) satisfies points i)− iv) in the definition
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4.2 and is strictly included in F because j ∈ (F̃ ∩ FR). Once more, this fact is incompatible with the
minimality of the frequency set F .

�

Proposition 4.2 concludes the description of our formal framework for frequency sets. Let us stress that in
this framework we do not assume that the number of phases in the WKB expansion is finite. Assumption
”#F < +∞” will only be used to make sure that the formal geometric optics expansion constructed in
the following paragraphs is relevant, in the sense that the expansion is well-defined and that it does indeed
approximate the exact solution. But it will not be used to construct the WKB expansion, at least, at a
formal level.

4.1.2 Frequency sets with loops.

As mentioned in the beginning of this section, the aim of all that follows is to construct rigorous geomet-
ric optics expansions for corner problem where some amplitudes in the expansion display a selfinteracting
phenomenon. To do that, we will need to consider corner problems whose characteristic variety contains a
”loop”. By loop, we mean that it is possible to find at least four points on the section of the characteristic
variety V ∩ {τ = τ} such that if we draw the segments linking these points, we obtain a rectangle or a finite
”stairway” (cf. paragraph 3.3 and [17, Figure 8]).

Many kinds of loops are possible and few of them lead to a selfinteraction phenomenon. That is why,
in all that follows, we will assume that there is a unique loop and that this loop induces a selfinteraction
phenomenon. The uniqueness of the loop is probably not a necessary assumption, but it permits to simplify
many steps of the proof and to save a lot of combinatorial arguments. We refer to [2, paragraph 6.10] for
more details. The different kinds of loops are defined as follows :

Definition 4.4 Let i ∈ I , p ∈ 2N + 1 and ` = (`1, ..., `p) ∈ I p (we stress that elements of ` are not
necessarily distinct).
• We say that the index i ∈ I admits a loop if there exists a sequence ` satisfying :

`1 ∈ Φ(i), `2 ∈ Ψ(`1), ..., i ∈ Ψ(`p).

• A loop for an index i is said to be simple if the sequence ` does not contain a periodically repeated subse-
quence.
• An index i ∈ Iio (resp. i ∈ Ioi) admits a selfinteraction loop if i admits a simple loop and if the sequence
(i, `, i) is of type V (resp. H) according to Definition 4.3.

From now on, let us assume that :

Assumption 4.1 Let (18) be complete for the reflections. We assume that the frequency set F contains
a unique loop, of size 3 and that this loop is a selfinteraction loop. More precisely, we want the following
properties to be satisfied :
vi) ∃(n1, n3) ∈ I 2

io, (n2, n4) ∈ I 2
oi such that

n4 ∈ Ψ(n1), n3 ∈ Φ(n4), n2 ∈ Ψ(n3), n1 ∈ Φ(n2).

vii) Let i ∈ I an index with a loop ` = (`1, ..., `p). Then p = 3 and {i, `1, `2, `3} = {n1, n2, n3, n4}.

The fact that we restrict our attention to a loop of size 3 is just made to simplify as much as possible the
redaction of the proof. However, all the following construction can be generalized to loops with more than
3 elements.

One of the main difficulties induced by the presence of a loop is that the definition of linked indeces does
not permit anymore to define a partial order on the frequency set as it can be done in the case N = 2.
Indeed, if one considers indeces n1 and n3 defined in Assumption4.1 then we have n1 �

V
n3 and n3 �

V
n1

but n1 6= n3. We will see in paragraph 4.2.1 how this new difficulty can be overcome.

We conclude this paragraph by defining what we mean by ”trapped” and ”selfinteracting” rays.
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Definition 4.5 A ray of the geometric optics expansion is said to be trapped if when we follow its charac-
teristics, we never escape from a compact set.

A ray of the geometric optics expansion is said to be selfinteracting if when we follow its characteristics,
we can find a repeating sequence of group velocities.

So a trapped ray is a ray which will never escape to ”infinity”. The ray obtained by following the
characteristic lines for the indeces (n1, n2, n3, n4) is a selfinteracting trapped ray. Whereas, the ray describe
in paragraph 3.4 is non-selfinteracting trapped ray.

4.1.3 Some definitions and notations.

For j ∈ Iev1 ∪Iii ∪Iio (resp. i ∈ Iev2 ∪Iii ∪Ioi), we denote by f j := (τ , ξj1, ξ
2
j ) the associated frequency.

Let us recall that thanks to the uniform Kreiss-Lopatinskii condition, it is possible to define φj1 (resp. φj2)

the inverse of B1 (resp. B2) restricted to the stable subspace Es1(iτ , ξj2) (resp. Es2(iτ , ξj1)).

To construct the amplitudes in the WKB expansion, we will need the following projectors and partial
inverses :

Definition 4.6 For j ∈ {1, 2}, and fk = (τ , ξk1 , ξ
k
2 ) ∈ F , let us denote by P ks,j (resp. P ks,j), the projector on

Es,ej (iτ , ξk3−j) (resp. Eu,ei (iτ , ξk3−j)) associated with the direct sum (3), and P k1 (resp. P k2 ) the projector on
ker L (fk) associated with the sums (5) (resp. (6)).

Let us denote by Qks,j (resp. Qks,j), the projector on Es,ej (iτ , ξk3−j) (resp. Eu,ej (iτ , ξk3−j)) associated with

the direct sum (4), and Qkj (resp. Qk2) the projector on A1 ker L (fk) (resp. A2 ker L (fk)) associated with
the sums (7) (resp. (8)).

Let Rkj be the partial of L (fk), defined by the two relations

RkjL (fk) = I − P kj , P kj R
k
j = RkjQ

k
j = 0. (20)

Finally, to simplify as much as possible the notations, set :

Sk1 := P k1 φ
k
1 , Sk2 := P k2 φ

k
2 , Sks,1 := P ks,iφ

k
1 , Sks,2 := P ks,2φ

k
2 .

An important remark is that for k ∈ Fos if fk is the associated frequency then : RanL (fk) = kerQk1 =
kerQk2 , and that for j ∈ {1, 2}, Qkj induces an isomorphism from RanP kj to RanQkj .

We will have to solve transport equations, so the following variables will be convenient :

∀j ∈ Iio, t
j
io(t, x1) := t− 1

vj,1
x1, x

j
io(x1, x2) := x2 −

vj,2
vj,1

x1, (21)

∀j ∈ Ioi, t
j
oi(t, x2) := t− 1

vj,2
x2, x

j
oi(x1, x2) := x1 −

vj,1
vj,2

x2. (22)

4.2 Construction of the WKB expansion.

During all the construction, we will have to consider three kinds of phases, namely oscillating phases,
evanescent phases for the side ∂Ω1 and evanescent phases for the side ∂Ω2. These will be denoted by :

ϕk(t, x) := 〈(t, x), fk〉 , fk ∈ Fos,

ψk,1(t, x2) := 〈(t, 0, x2), fk〉 , fk ∈ Fev1 ∪Fos,

ψk,2(t, x1) := 〈(t, x1, 0), fk〉 , fk ∈ Fev2 ∪Fos.

For a given amplitude g ∈ H∞f , zero for negative times, we will work with a source term on the side ∂Ω1 of
the form :

gε(t, x2) := e
i
ε (τt+x2ξ

n1
2 )g(t, x2).
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That is to say a source term that ”turns on” the index n1 on the loop, and that has an incoming group
velocity for the side ∂Ω1. So, we expect that the source term gε will generate a wave packet propagating
towards the side ∂Ω2.

As in [9], evanescent modes will be treated in a ”monoblock” way. That is to say that for an index
i ∈ Iev1 (resp. i ∈ Iev2), all the indeces j ∈ Iev1 ∩ Φ(i) (resp. j ∈ Iev2 ∩ Ψ(i)) will contribute to a
single vector valued amplitude. To write off the ansatz and to describe with enough precision the boundary
conditions, it is useful to introduce the two equivalence relations ∼

Φ
and ∼

Ψ
defined by :

i ∼
Φ
j ⇐⇒ j ∈ Φ(i), and i ∼

Ψ
j ⇐⇒ j ∈ Ψ(i).

The fact that these relations are effectively equivalence relations is a direct consequence of Proposition 4.1.
Let C1 (resp. C2) be the set of equivalence classes for the relation ∼

Φ
(resp. ∼

Ψ
), and R1 (resp. R2), be

a set of class representative for C1 (resp. C2). So R1 (resp. R2) is a set of indeces which include all the
possible values for ξ2 (resp. ξ1) of the differents frequencies. Let us define R1 and R2 by :

R1 := {i ∈ R1 \ Φ(i) ∩Iev1 6= ∅} , (23)

R2 := {i ∈ R2 \Ψ(i) ∩Iev2 6= ∅} . (24)

R1 (resp. R2) is a set of class representative of the values in ξ2 (resp. ξ1) for which there is an evanescent
mode for the side ∂Ω1 (resp. ∂Ω2). At last, without loss of generality, we can always assume that n1 ∈ R2,
in other words, we choose n1 as a class representative of its equivalence class.

We take for ansatz :

uε(t, x) ∼
∑
k∈Ios

e
i
εϕk(t,x)

∑
n≥0

εnun,k(t, x) (25)

+
∑
k∈R1

e
i
εψk,1(t,x2)

∑
n≥0

εnUn,k,1

(
t, x,

x1

ε

)
+
∑
k∈R2

e
i
εψk,2(t,x1)

∑
n≥0

εnUn,k,2

(
t, x,

x2

ε

)
.

And we now want to determine the profiles un,k and Un,k,i. We are looking for oscillating profiles un,k in
the space H∞(ΩT ). Whereas, the space for the evanescent profiles is (see [9]) :

Definition 4.7 For i = 1, 2, the set Pev,i of evanescent profiles for the side ∂Ωi is defined as functions
U(t, x,Xi) ∈ H∞(ΩT × R+) for which there exists a positive δ such that eδXiU(t, x,Xi) ∈ H∞(ΩT × R+).

Plugging the ansatz (25) in the evolution equation of the corner problem (18) and identifying in terms of
powers of ε lead us to solve the cascade of equations :

L (dϕk)u0,k = 0, ∀k ∈ Ios,

iL (dϕk)un+1,k + L(∂)un,k = 0, ∀n ∈ N,∀k ∈ Ios,

Lk(∂X1
)U0,k,1 = 0, ∀k ∈ R1,

Lk(∂X1
)Un+1,k,1 + L(∂)Un,k,1 = 0, ∀n ∈ N,∀k ∈ R1,

Lk(∂X2
)U0,k,2 = 0, ∀k ∈ R2,

Lk(∂X2
)Un+1,k,2 + L(∂)Un,k,2 = 0, ∀n ∈ N,∀k ∈ R2,

(26)

where the ”fast” differentiation operators Lk(∂X1
) and Lk(∂X2

) are given by :

Lk(∂X1) := A1

(
∂X1 −A1(τ , ξk2 )

)
, for k ∈ R1,

Lk(∂X2
) := A2

(
∂X2
−A2(τ , ξk1 )

)
, for k ∈ R2.

Then, plugging the ansatz (25) in the boundary conditions on the sides ∂Ω1 and ∂Ω2 gives :

B1

[ ∑
k∈Ios

e
i
εψk,1un,k(t, 0, x2) +

∑
k∈R1

e
i
εψk,1Un,k,1(t, 0, x2, 0) +

∑
k∈R2

e
i
ε τtUn,k,2

(
t, 0, x2,

x2

ε

)]
= δn,0e

i
εψn1,1g, (27)
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and

B2

[ ∑
k∈Ios

e
i
εψk,2un,k(t, x1, 0) +

∑
k∈R2

e
i
εψk,2Un,k,2(t, x1, 0, 0) +

∑
k∈R1

e
i
ε τtUn,k,1

(
t, x1, 0,

x1

ε

)]
= 0. (28)

But, thanks to the definition of the evanescent profiles spaces, the functions Un,k,2
(
t, 0, x2,

x2

ε

)
and Un,k,1

(
t, x1, 0,

x1

ε

)
,

which appear in (27) and (28) respectively, are O(ε∞). So, one can rewrite the boundary conditions (27)
and (28) under the form :

B1

[ ∑
k∈Ios

e
i
εψk,1un,k(t, 0, x2) +

∑
k∈R1

e
i
εψk,1Un,k,1(t, 0, x2, 0)

]
= δn,0e

i
εψn1,1g(t, x2), (29)

and

B2

[ ∑
k∈Ios

e
i
εψk,2(t,x1)un,k(t, x1, 0) +

∑
k∈R2

e
i
εψk,2(t,x1)Un,k,2(t, x1, 0, 0)

]
= 0. (30)

Thanks to the linear independence of the phases, the boundary conditions (29) and (30) can be decomposed
as the following cascade of equations :

B1

[∑
j∈Φ(n1)∩Ios

un,j + Un,n1,1|X1=0

]
|x1=0

= δn,0g, ∀n ∈ N, if n1 ∈ R1,

B1

[∑
j∈Φ(n1) un,j

]
|x1=0

= δn,0g, ∀n ∈ N, if n1 /∈ R1,

B1

[∑
j∈Φ(k)∩Ios

un,j + Un,k,1|X1=0

]
|x1=0

= 0, ∀n ∈ N,∀k ∈ R1 \ {n1},

B1

[∑
j∈Φ(k) un,j

]
|x1=0

= 0, ∀n ∈ N,∀k /∈ R1 \ {n1},

B2

[∑
j∈Ψ(k)∩Ios

un,j + Un,k,2|X2=0

]
|x2=0

= 0, ∀n ∈ N,∀k ∈ R2,

B2

[∑
j∈Ψ(k) un,j

]
|x2=0

= 0, ∀n ∈ N,∀k /∈ R2.

(31)

At last, plugging the ansatz (25) in the initial condition of the corner problem (18) leads us to solve :

∀n ∈ N,


un,k|t=0

= 0, ∀k ∈ Ios,

Un,k,1|t=0
= 0, ∀k ∈ R1,

Un,k,2|t=0
= 0, ∀k ∈ R2.

(32)

The main steps in the construction of the geometric optics expansion are the following. In a first time,
before solving the WKB cascade, we will describe a global structure on the set of indeces I . More precisely,
this structure is based on a partition which takes into account the different relations that an index can have
with the elements of the loop. We will thus be able to express I as a union of non-intersecting ”trees” (or
ordered sets by the relations �

H
and �

V
, see definition 4.3). Then in a second time, we will construct the

amplitudes for the indeces of the loop. To do this, we will need a new invertibility condition, which will be
studied in paragraph 4.4.

Thanks to the knowledge of the amplitudes associated with the loop, we will be able to construct the
amplitudes in a direct neighborhood of the indeces of the loop. In other terms, the new invertibility condition
will be used to start the construction of the geometric optics expansion.

Then, to construct the remaining amplitudes, we will first make a more precise study of the structure of
the ”trees” that form I . Using this more precise analysis, we will see that the construction of the amplitudes
in these ”trees” is rather easy because one can define a partial order on these ”trees”.

The scheme of proof, and more precisely the order of construction of the amplitudes will be exactly the
same for higher order terms.
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4.2.1 Global structure of the set of indeces I .

In this paragraph we will construct a partition of I based upon the position of the indeces compared to
the loop index n1 and no more on the different kinds of elements in I . More precisely, the partition will be
based upon the different kinds of sequence that can link an index i to the loop index n1.

The idea of the construction is the following ; firstly, thanks to Proposition 4.2, we know that every index
i in I is linked by a sequence of type V to one of the indeces of I0 (cf. definition 4.3). Without loss of
generality, one can always assume that for all index i the sequence linking i to the index in I0 does not start
by the subsequence (n4, n2, n3, n1).
The following lemma is also immediate :

Lemma 4.1 For all i ∈ I , there exists at least one sequence of type V linking i to n1. Equivalently, for all
i ∈ I ,

n1 �
V
i,

where the notation �
V

has been introduced in definition 4.3.

Proof : It is sufficient to treat the case of indeces i linked with i0 for i0 ∈ I0 \{n1}. For such indeces, there

exists a sequence, denoted by ˜̀, of type V linking i to i0. By definition, i0 ∈ Φ(n1). So i is linked with n1

by the type V sequence defined by ` = (n4, n3, n2, i0, ˜̀).
�

Now, let i ∈ I \ {n1, n2, n3, n4}, let `i = (`1, `2, ..., `p) be a type V sequence linking i to n1. The way to
construct the sets, denoted Aal , Bbm , Ccq , Ddr , of the sought partition is based on the following algorithm :

Let {1 := #Ψ(n1)− 2, and :

Ψ(n1) \ {n1, n4} :=
{
a1, a2, ..., a{1

}
.

Let l ∈
{

1, ..., {1
}

, we will say that i ∈ Aal if and only if the sequence `i can be chosen such that `1 = al.
At this stage, we have treated all the sequences that do not start by n4. To treat the sequences that

start by n4, let {4 := #Φ(n4)− 2, and

Φ(n4) \ {n3, n4} :=
{
b1, b2, ..., b{4

}
.

Then for m ∈
{

1, ..., {2
}

, we will say that i ∈ Bbm if and only if the sequence `i can be chosen such that
`1 = n4 and `2 = bm.
Consequently we have treated all the sequences `i except those starting by (n4, n3).

Finally let {3 := #Ψ(n3)− 2, {2 := #Φ(n2)− 2 and :

Ψ(n3) \ {n2, n3} :=
{
c1, c2, ..., c{3

}
, Φ(n2) \ {n1, n1} :=

{
d1, d2, ..., d{2

}
.

We define the sets Ccq and Ddr by the relations :
� For q ∈

{
1, ..., {3

}
, i ∈ Ccq if and only if the sequence `i can be chosen such that `1 = n4, `2 = n3 and

`3 = cq.
� For r ∈

{
1, ..., {2

}
, i ∈ Ddr if and only if the sequence `i can be chosen such that `1 = n4, `2 = n3, `3 = n2

and `4 = dr.
This algorithm permits to consider all the possible sequences because no sequence starts by the subse-

quence (n4, n3, n2, n1). Then, we repeat this construction for all the potential sequences linking i to n1.
It is thus clear that

(I \ {n1, n2, n3, n4}) =
(
∪l≤{1

Aal
)⋃(

∪m≤{2
Bbm

)⋃(
∪q≤{3

Ccq
)⋃(

∪r≤{4
Ddr

)
. (33)

The sets Aal and Bbm can be characterized as follows : Aal is the set of indeces i ∈ I such that al �
H
i,

whereas Bbm is the set of indeces i ∈ I such that bm �
V

i. In terms of wave packet reflection, the set

Aal gathers the indeces obtained by reflection of the phase associated with the index al, this phase being
obtained by reflection of the wave packet associated with n1 on the side ∂Ω2. In a similar way, Bbm gathers
the indeces obtained by reflection of the phase associated with the index bj . The phase associated with bj
being obtained by reflection of the phase associated with n4 on the side ∂Ω1. An analogous characterization
stands for the sets Ccq and Ddr .
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Lemma 4.2 The decompostion

(I \ {n1, n2, n3, n4}) =
(
∪l≤{1

Aal
)⋃(

∪m≤{2
Bbm

)⋃(
∪n≤{3

Ccn
)⋃(

∪q≤{4
Ddq

)
,

is a partition of I \ {n1, n2, n3, n4}.

Proof : Let us first define the ”mirror” sequence of a sequence by the following relation :

∀` = (`1, `2, ..., `p) ∈ I p, ` := (`p, `p−1, ..., `1) ∈ I p.

Let l, l′ ∈ {1, ..., {1}, l 6= l′.
� Proof of Aal ∩Aal′ = ∅ :

We argue by contradiction. Let us assume that there exists i ∈ Aal ∩ Aal′ . Then by definition, there exists
a type H sequence ` = (`1, ..., `p) linking i to al and a type H sequence `′ = (`′1, ..., `

′
p′) linking i to al′ . We

now have to consider several cases depending on the oddness/evenness of p and p′.
•p, p′ ∈ 2N.

By definition of H type sequences, we have i ∈ Ψ(`p) and i ∈ Ψ(`′p′). Thanks to point ii) of Proposition 4.1,

`′p′ ∈ Ψ(`p). The sequence (`, `′) is consequently a type H sequence linking al to al′ . But al ∈ Φ(al′), so the

sequence (`, `′, al′) is a loop for the index al with exactly p+ p′ + 1 elements. This contradicts Assumption
4.1.
•p ∈ 2N, p′ ∈ 2N + 1.

Now i ∈ Ψ(`p) and i ∈ Φ(`′p′) or equivalenty `′p′ ∈ Φ(i). The sequence (`, i, `′) is a type H sequence linking

al to al′ . Then (`, i, `′, al′) is a loop for the index al with p + p′ + 2 elements. Once again, it contradicts
Assumption 4.1.
The case p, p′ ∈ 2N + 1 is quite similar to the case p, p′ ∈ 2N, so we omit the proof.

We now deal with the proof of the property Aal ∩Bbm = ∅, the other proofs showing that the other kinds
of intersection are empty are analogous and consequently they will not be treated here.
� Proof of Aal ∩Bbm = ∅ :
Once again, we argue by contradiction. Let i ∈ Aal ∩ Bbm . Then by definition of the sets Aal and Bbm ,
al �

H
i and bm �

V
i. That is to say that there exists ` = (`1, ..., `p) a type H sequence linking i to al and a

type V sequence `′ = (`′1, ..., `
′
p′) linking i to bm. We have to consider the following cases :

•p, p′ ∈ 2N.
We have i ∈ Ψ(`p) and i ∈ Φ(`′p′). So it is possible to show exactly as in the proof of one of the above

subcases that the sequence (`, i, `′) links al to bm. It follows from al ∈ Ψ(n2) and n4 ∈ Φ(bm), that the
sequence (`, i, `′, bm, n4) is a loop for the index al with an odd number of elements.
•p ∈ 2N, p′ ∈ 2N + 1.

We show that the sequence (`, `′) links al to bm. So (`, `′, bm, n4) is a loop for al with an odd number of
elements, which is again a contradiction with Assumption 4.1.

�

We have just shown that (
∪i≤{1

Aai
)⋃(

∪i≤{2
Bbi
)⋃(

∪i≤{3
Cci
)⋃(

∪i≤{4
Ddi

)
, (34)

is a partition of I \ {n1, n2, n3, n4}. A consequence is that to determine all the amplitudes in the WKB
expansion, it will be sufficient to construct the amplitude for the indeces on the loop and then the amplitudes
in each set of the partition (34).

Moreover, the construction of the amplitudes in each set of the partition (34) can be made intrinsically
in this set. Indeed, the fact that (34) is a partition implies that an index i in one set of (34) is only linked,
by the boundary conditions (31), with other indeces in the same set.

A last consequence of the fact that (34) is a partition of the frequency set is the following refinement of
Proposition 4.1 :
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Proposition 4.3 Let (18) be complete for the reflections, under Assumption 4.1. Let I be the index set ;
then Φ and Ψ satisfy, in addition to the properties of Proposition 4.1, the two extra properties :

viii)

Φ(n1) \ {n2} ⊂ Iio ∪Iii ∪Iev1 , Ψ(n1) \ {n1} ⊂ Ioi ∪Iii ∪Iev2,

Φ(n4) \ {n4} ⊂ Iio ∪Iii ∪Iev1 , Ψ(n3) \ {n3} ⊂ Ioi ∪Iii ∪Iev2.

ix) Let i ∈ Iii ∪Iev1 and j ∈ Iii ∪Iev2 then

i ∈ Φ(n1) =⇒ Ψ(i) = {i} , j ∈ Ψ(n1) =⇒ Φ(j) = {j} ,
i ∈ Φ(n4) =⇒ Ψ(i) = {i} , j ∈ Ψ(n3) =⇒ Φ(j) = {j} .

Proof : � Proof of viii) :
We will here just show the first assertion that is to say : Φ(n1)\{n2} ⊂ Iio∪Iii∪Iev1. By contradiction,

let i ∈ Φ(n1)∩Ioi, i 6= n2. Then, there exists j ∈ Ψ(i)∩Iio, otherwise the frequency set indexed by I \{i}
is strictly included in F and satisfies i)− iv) of Definition 4.2.

Thanks to Lemma 4.1, we know that there exists a type V sequence, ` = (`1, `2, ..., `p) , with necessarily
p ∈ 2N+1 (because n1, j ∈ Iio, see definition 4.3), such that n1 �

V
j. The sequence (`, j, i) is a selfinteracting

loop for n1 with an odd number of elements, but it is not the same loop as {n1, n2, n3, n4}. This is a
contradiction with Assumption 4.1.
� Proof of ix) :

The proof of ix) uses exactly the same reasoning as for viii) and we will omit it here. The only difference
is that we can not conclude that the loop is a selfinteracting one because it may contain indeces in Iii. Then
we need the uniqueness assumption of a loop and not only the uniqueness assumption of a selfinteracting
loop.

�

Property Φ(n1) \ {n2} ⊂ Iio ∪Iii ∪Iev1 of point viii) in Proposition 4.3 means that even if the charac-
teristic variety contains a loop, all the frequencies (but n2) associated with outgoing-incoming group velocity
are initially discarded. We already justify this observation in the phase generation process described in
section 3. Point ix) means that, thanks to the uniqueness assumption of a loop, an incoming-incoming phase
in the direct neighborhood of the loop can only be generated by reflection on one single side of ∂Ω and not
on both sides.

Thanks to Proposition 4.3, partition (34) can be rewritten under the form :

(I \ {n1, n2, n3, n4}) =
(
∪al∈Ψ(n1)∩IioAal ∪al∈Ψ(n1)∩(Iev1∪Iii) {al}

)
(35)⋃ (

∪bm∈Φ(n4)∩IoiBbm ∪bm∈Φ(n4)∩(Iev2∪Iii) {bm}
)⋃ (

∪cq∈Ψ(n3)∩IioCcq ∪cq∈Ψ(n3)∩(Iev1∪Iii) {cq}
)⋃ (

∪dr∈Φ(n2)∩IioDdr ∪d∈Φ(n2)∩(Iev2∪Iii) {dr}
)
.

Let us conclude this paragraph by the Figure 7 which illustrates the ”tree structure” of the frequency set
F :

4.2.2 Determination of the amplitudes on the loop and invertibility condition.

Now that the global structure of the frequency set is described, and thanks to the new properties of appli-
cations Φ and Ψ, it is time to start the construction of the amplitudes in the WKB expansion. A good (and
natural) choice to initialize this construction is to determine first the amplitudes associated with the loop
indeces. To do that, a new amplitude equation will be derived (see paragraph 3.5).

The cascades of equations (26)-(31) and (32) written for n = 0 and k = n1, tell us that the amplitude
u0,n1

satisfies : {
L (dϕn1)u0,n1 = 0,
iL (dϕn1

)u1,n1
+ L(∂)u0,n1

= 0,
(36)
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Figure 7: ”Tree structure” of the frequency set F .

in the interior, the boundary conditions :
B1

[∑
j∈Φ(n1)∩Ios

u0,j + U0,n1,1|X1=0

]
|x1=0

= g, if n1 ∈ R1,

B1

[∑
j∈Φ(n1) u0,j

]
|x1=0

= g, if n1 ∈ R1 \R1,
(37)

and 
B2

[∑
j∈Ψ(n1)∩Ios

u0,j + U0,n1,1|X1=0

]
|x2=0

= 0, if n1 ∈ R2,

B2

[∑
j∈Ψ(n1) u0,j

]
|x2=0

= 0, if n1 ∈ R2 \R2,
(38)

and finally the initial condition :
u0,n1|t≤0

= 0. (39)

We will now explain the method of resolution of equations (36)-(37)-(38) and (39). The ideas described
below are classical, they explain why the amplitudes associated with oscillating phases satisfy transport
equations in the example of paragraph 3.5 and they will be applied to all the oscillating amplitudes.

Firstly, let us remark that the first equation of (36) tells us that the amplitude u0,n1 ∈ ker L (dϕn1). In
other words, we have the so-called polarization condition :

Pn1
1 u0,n1 = u0,n1 ,

where Pn1
1 is the projector defined in definition 4.6. Now, composing the second equation of (36) by the

projector Qn1
1 defined in Definition 4.6 and using the polarization condition give us :

Qn1
1 L(∂)Pn1

1 u0,n1 = 0.

But Lax lemma [8] tells us that if the corner problem (18) is constantly hyperbolic then we have the following
relation :

Qn1
1 L(∂)Pn1

1 = (∂t + vn1 · ∇x)Qn1
1 Pn1

1 ,
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where vn1 is the group velocity associated with the phase ϕn1 . So, the amplitude u0,n1 satisfies the transport
equation :

(∂t + vn1
· ∇x)Qn1

1 u0,n1
= 0.

We are now interested in the boundary conditions. As mentionned in section 3, the boundary conditions
needed to solve a transport equation in a quarter space are linked with the nature of the transport velocity.
Let us recall the four possible alternatives :
� The transport velocity is outgoing-outgoing, then no boundary condition has to be imposed.
� The transport velocity is incoming-outgoing, then the transport equation needs a boundary condition

on ∂Ω1 only.
� The transport velocity is outgoing-incoming, then the transport equation needs a boundary condition

on ∂Ω2 only.
� The transport velocity is incoming-incoming, then the transport equation needs a boundary condition

on ∂Ω1 and on ∂Ω2.

Here, by assumption we have n1 ∈ Iio, so no boundary condition on ∂Ω2 has to be imposed and we only
keep the boundary condition on ∂Ω2. As a consequence the amplitude u0,n1 satisfies the transport equation
: 

(∂t + vn1
· ∇x)Qn1

1 u0,n1
= 0,

B1

[∑
k∈Φ(n1) u0,k

]
|x1=0

= g,

u0,n1|t≤0
= 0,

if n1 /∈ R1, (40)

and, 
(∂t + vn1

· ∇x)Qn1
1 u0,n1

= 0,

B1

[∑
k∈Φ(n1) u0,k + U0,n1,1|X1=0

]
|x1=0

= g,

u0,n1|t≤0
= 0,

if n1 ∈ R1. (41)

In both cases, using the fact that Φ(n1)∩Ioi = {n2} thanks to vi) of Assumption 4.1 and viii) of Proposition
4.3, the boundary condition of (40) reads :

u0,n1|x1=0
+

∑
k∈(Φ(n1)∩(Iio∪Iii))\{n1}

u0,k|x1=0
= φn1

1

[
g −B1u0,n2|x1=0

]
,

when n1 /∈ R1, and

u0,n1|x1=0
+

∑
k∈(Φ(n1)∩(Iio∪Iii))\{n1}

u0,k|x1=0
+ U0,n1,1|x1=X1=0

= φn1
1

[
g −B1u0,n2|x1=0

]
,

when n1 ∈ R1. Multiplying these conditions by the projector Pn1
1 , using the fact that the u0,k are polarized

on ker L (dϕk), we obtain, in both cases, that the trace u0,n1 on ∂Ω1 is given by :

u0,n1|x1=0
= Sn1

1

[
g −B1u0,n2|x1=0

]
,

where we recall that the matrix Sn1
1 has been introduced in definition 4.6.

It is now easy to integrate the equation (40) along the characteristics. We obtain the expression of u0,n1

according to its trace on ∂Ω1 ; more precisely :

u0,n1(t, x) = Sn1
1

[
g −B1u0,n2|x1=0

]
(tn1
es (t, x1), xn1

es (x1, x2)) ,

where the new variables tn1
io and xn1

io are defined in (21). As a consequence the trace of u0,n1
on ∂Ω2 reads :

u0,n1(t, x1, 0) = Sn1
1

[
g −B1u0,n2|x1=0

](
tn1
io (t, x1),−vn1,2

vn1,1
x1

)
. (42)
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Then we can repeat exactly the same reasoning for the second element n2 of the loop. Indeed, using the
fact that n2 ∈ Ioi, u0,n2 will be determined by integration along the characteristics from its trace on ∂Ω2.
Thanks to Assumption 4.1 and point viii) of Proposition 4.3, the trace u0,n2|x2=0

will depend only of the

trace u0,n3|x2=0
. The trace u0,n2|x1=0

which appears in (42), is consequently given by :

u0,n2(t, 0, x2) = −Sn2
2 B2u0,n3|x2=0

(
tn2
oi (t, x2),−vn2,1

vn2,2
x2

)
. (43)

At last, repeating the same method, we obtain the traces of the two remaining amplitudes for the indeces
of the loop :

u0,n3(t, x1, 0) = −Sn3
1 B1u0,n4|x1=0

(
tn3
io (t, x1),−vn3,2

vn3,1
x1

)
. (44)

and

u0,n4(t, 0, x2) = −Sn4
2 B2u0,n1|x2=0

(
tn4
oi (t, x2),−vn4,1

vn4,2
x2

)
. (45)

An important point in this analysis is that at each step of the computation, there is one and only one
outgoing phase coupled with the incoming phases in the equivalence classes, for the relations ∼

Φ
and ∼

Ψ
, of the

indeces nj . This fact will, a priori, not be true anymore if one considers a frequency set containing several
loops.

Thus, combining equations (42)-(43)-(44)-(45) we obtain, after some computations, the functional equa-
tion determining the trace u0,n1|x2=0

:

(I − T)u0,n1|x2=0
= Sn1

1 g

(
t− 1

vn1,1
x1,−

vn1,2

vn1,1
x1

)
, (46)

where T is the operator defined by :

(Tw)(t, x1) := Sw (t+ αx1, βx1) , (47)

with :

S := Sn1
1 B1S

n2
2 B2S

n3
1 B1S

n4
2 B2, (48)

α :=
1

vn1,1

[
−1 +

vn1,2

vn2,2
− vn1,2vn2,1

vn2,2vn3,1
+
vn1,2vn2,1vn3,2

vn2,2vn3,1vn4,2

]
< 0,

β :=
vn4,1

vn4,2

vn3,2

vn3,1

vn2,1

vn2,2

vn1,2

vn1,1
> 0.

Given equation (46), we make the following assumption :

Assumption 4.2 For all γ > 0, the operator (I − T) defined in (47) is invertible from L2
γ(R × R+) to

L2
γ(R× R+), uniformly with respect with the parameter γ > 0.

However, for T > 0 and for a source term in L2(]−∞, T ] × R+) zero for negative times, this assumption
will only give us amplitudes for indeces of the loop which are L2(ΩT ). This is not sufficient to construct
the amplitudes of high order in the WKB expansion nor to make sure that the amplitudes linked with an
incoming-incoming group velocity are H1(ΩT ). We thus need to reinforce Assumption 4.2 in the following
way :

Assumption 4.3 Let 2 ≤ K ≤ ∞, for all γ > 0, the operator (I−T) defined in (47) is invertible from HK
f,γ

to HK
f,γ uniformly with respect with γ > 0.

Let us stress that Assumption 4.3 is (at this stage of the analysis) purely formal and is introduced to construct
the WKB expansion. We will show in paragraph 4.4 the following proposition :
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Proposition 4.4 If |S| <
√
β (where S and β are defined in (48)), for all γ > 0, the operator (I − T) is

uniformly invertible from L2
γ(R×R+) to L2

γ(R×R+). In particular, for all T > 0, the equation (46) admits
a unique solution u ∈ L2(]−∞, T ] × R+), zero for negative times, if the source term G ∈ L2(∂Ω1,T ) and is
zero for negative times.

If β ≤ 1 and G ∈ H∞f , under the assumption |S| <
√
β, the solution u of the equation (I − T)u = G is

in H∞f .

If β > 1 let K ∈ N and G ∈ HK
f ; then under the assumption |S|βK− 1

2 < 1, the solution u of (I−T)u = G

is in HK
f .

Assumption |S| <
√
β, or |S|βK− 1

2 < 1, gives us a framework in which we can, firstly ensure enough reg-
ularity to construct (at least up to a finite order) the amplitudes in the WKB expansion, secondly construct
the incoming-incoming amplitudes. More details and comments about the condition |S| <

√
β will be given

in paragraph 4.4.

From now on we denote by K ∈ N ∪ {+∞} the largest integer such that the solution u of the equation
(I − T)u = G is HK

f , for G ∈ HK
f . In view of constructing the first corrector term and to ensure that the

WKB expansion is a good approximation to the exact solution, we need K ≥ 3.

From all these considerations about equation (46), it follows that the trace u0,n1|x2=0
is uniquely deter-

mined in HK
f by the formula :

u0,n1(t, x1, 0) = (I − T)−1Sn1
1 g

(
t− 1

vn1,1
x1,−

vn1,2

vn1,1
x1

)
, (49)

an equation which enables to construct the amplitudes u0,nj , j = 1, ..., 4 by using (45), (44) and (43) and
integrating along the corresponding characteristics.

We summarize up this construction of the amplitudes associated with loop indeces by the following
proposition :

Proposition 4.5 Under Assumptions 2.1-2.2 on the complete for reflections corner problem (18), under
Assumptions 4.1 and 4.3, then for j = 1, ...4 and for all T > 0, there exist functions u0,nj ∈ HK(ΩT ), with
traces in HK

f , satisfying the cascades of equations (26)-(31) and (32) written for n = 0 and k = nj.

4.2.3 Determination of the amplitudes in the direct neighborhood of the loop.

In this paragraph we will show that the knowledge of the amplitudes on the loop and the global structure
of the index set I described in paragraph 4.2.1 are sufficient to construct the amplitudes in the direct
neighborhood of the indeces of the loop.

We have chosen to separate this construction from the construction of the amplitudes linked with indeces
in the different sets of the partition (35). This choice is motivated by the following two reasons. Firstly we
think that it is important to make the computations explicitely at least once (mainly because we do not
have described yet the construction for evanescent phases). Secondly, because the construction in the close
neighborhood of the loop remains unchanged, instead of the determination of the amplitudes associated with
indeces in the different sets of the partition (35), under a weaker uniqueness assumption of the loop (i.e. an
assumption imposing the uniqueness of a selfinteraction loop, but which allows other types of loops in the
frequency set).

We will here describe the determination of the amplitudes in Φ(n4), the construction for amplitudes in
Ψ(n4), Φ(n2) or Ψ(n2) is exactly the same. Using point viii) of Proposition 4.3, we know that Φ(n4)∩Ioi =
{n4}. The boundary condition (31) writen for k = n4 reads (if we choose n4 as a class representative of its
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own equivalence class for the relation ∼
Φ

):

B1

 ∑
j∈Φ(n4)∩(Iio∪Iii)

u0,j + U0,n4,1|X1=0


|x1=0

= −B1u0,n4|x1=0
, if n4 ∈ R1, (50)

B1

 ∑
j∈Φ(n4)∩(Iio∪Iii)

u0,j


|x1=0

= −B1u0,n4|x1=0
, if n4 ∈ R1 \R1, (51)

where in both cases, the source term is a known element of HK
f .

Applying the uniform Kreiss-Lopatinskii condition to equations (50) and (51), and composing by the
projectors P j1 for j ∈ Φ(n4) ∩ (Iio ∪ Iii), and/or by Pn4

s,1, leads us to solve the uncoupled boundary
conditions :

∀j ∈ Φ(n4) ∩ (Iio ∪Iii), u0,j|x1=0
= −Sj1B1u0,n4|x1=0

, (52)

if moreover n4 ∈ R1, U0,n4,1|X1=x1=0
= −Sjs,1B1u0,n4|x1=0

. (53)

Thus, the construction of the possible evanescent amplitude for the side Ω1 can be made independently of
the construction of the amplitudes for oscillating phases.

Let us first briefly recall how to determine amplitudes for oscillating phases, we have several cases to take
into account.

� j ∈ Iio

Lax Lemma and the polarization condition enable us to show that the amplitude u0,j satisfies a transport
equation with an incoming-outgoing velocity vj . That is why to construct this amplitude we just need to
know its trace on ∂Ω1. This trace is determined by (52), so integrating along the characteristics, u0,j is
given by :

u0,j(t, x) = Sj1B1u0,n4|x1=0

(
tjio(t, x1), xjio(x1, x2)

)
. (54)

An important point for the end of the proof (more specifically for the construction of incoming-incoming
amplitudes in the set Bbj ) is that u0,j ∈ HK(ΩT ) for all T > 0 and that its trace on the side ∂Ω2 is HK

f .
We can easily see this fact on the formula (54).

In other words, the flatness at the corner of the source term gε is transmitted to the amplitudes close to
the loop.

� j ∈ Iii

In that case u0,j is solution to a transport equation with incoming-incoming velocity, so its determination
needs the traces on both sides ∂Ω1 and ∂Ω2. The boundary condition (52) gives the trace on ∂Ω1. Concerning
the trace on ∂Ω2, point ix) of Proposition 4.3 shows that j is the only element in its equivalence class for
the relation ∼

Ψ
, in particular j /∈ R2. So the boundary condition (31) written for k = j reads :

B2u0,j|x2=0
= 0.

Using the uniform Kreiss-Lopatinskii condition, it follows that u0,j|x2=0
= 0. So the amplitude u0,j

satisfies the transport equation :

u0,j = P j1u0,j = P j2u0,j ,


(∂t + vj · ∇x)Qj1u0,j = 0,

u0,j|x1=0
= −Sj1B1u0,n4|x1=0

,

u0,j|x2=0
= 0,

u0,j|t≤0
= 0.

To solve this transport equation, we use the flatness at the corner of u0,n4|x1=0
to extend the problem in the

half space {x1 ≥ 0} by extending u0,j by zero to {x2 < 0}, we integrate along the characteristics, then we
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restrict the constructed solution to the quarter space. The obtained solution u0,j ∈ HK(ΩT ), thanks to the
fact u0,n4|x1=0

is flat at the corner.
One can also easily check that the obtained solution u0,j satisfies the property : let x1 ≥ 0, u0,j|x1=x1

∈
HK
f . This extra regularity of u0,j will also be needed during the construction of higher order terms.

�n4 ∈ R1

The determination of the amplitude associated with an evanescent index for the side ∂Ω1 (or even ∂Ω2),
follows (in some sense) the same kind of ideas as the determination of amplitudes linked with oscillating
indeces. Indeed, it will be easy to construct the amplitude linked with an evanescent index if we know its
trace (on ∂Ω1 for elements of Iev1 and the trace on ∂Ω2 for indeces of Iev2).

However, we will in this proof treat the evanescent modes in only one block as in [9] ; that is why the
associated amplitudes will not satisfy transport equations as in the oscillating case. Thus in a first time, we
recall the evolution equations and the boundary conditions satisfied by such amplitudes and then we will
give a method to solve these equations.

Plugging the ansatz (25) in the evolution equation of the corner problem (18) we have seen that the
amplitude Un,n4,1 has to satisfy the cascade of equation :{

Ln4(∂X1)U0,n4,1 = 0,
Ln4

(∂X1
)Un,n4,1 + L(∂)Un−1,n4,1 = 0, ∀n ≥ 1,

(55)

where
Ln4

(∂X1
) := A1 (∂X1

−A1(τ , ξn4
2 )) .

The boundary conditions have also already been studied in the case n4 ∈ R1 and is given by equation (50).
So U0,n4,1 has to satisfy the system :

Ln4(∂X1)U0,n4,1 = 0,

B1

[∑
j∈Φ(n4)∩(Iio∪Iii)

u0,j + U0,n4,1|X1=0

]
|x1=0

= −B1u0,n4|x1=0
,

U0,n4,1|t≤0
= 0,

(56)

Let us recall the following lemma from [9], which permits to solve (55) in the profile space Pev,1.

Lemma 4.3 For i = 1, 2, and k ∈ Ri, let

Pkev,iU(Xi) := eXiAi(τ,ξ
k
3−i)P

k
s,iU(0), (57)

Qkev,iF (Xi) :=

∫ Xi

0

e(Xi−s)Ai(τ,ξ
k
3−i)P

k
s,iA

−1
i F (s)ds−

∫ +∞

Xi

e(Xi−s)Ai(τ,ξ
k
3−i)P

k
u,iA

−1
i F (s)ds. (58)

Then, for all F ∈ Pev,i the equation :
Lk(∂Xi)U = F,

admits a solution in Pev,i. Moreover, this solution reads :

U = Pkev,iU + Qkev,iF.

This lemma tells us that the evanescent amplitude of leading order U0,n4,1 satisfies Pn4
ev,1U0,n4,1 = U0,n4,1.

This relation is analogous of the polarization condition for oscillating phases and thanks to the definition of
Pn4
ev,1, enables us to determine U0,n4,1 if we know its trace on {X1 = 0}.

Unfortunately the system (56) does not give any information about this trace but only on the ”double”
trace on {x1 = X1 = 0}. This is determined by :

U0,n4,1|X1=x1=0
= −Sjs,1B1u0,n4|x1=0

.
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It is then sufficient to lift the ”double” trace in a ”single” one. As in [9], let, for example, choose :

U0,n4,1(t, x, 0) := −χ(x1)Sjs,1B1u0,n4|x1=0
,

where χ ∈ C∞c (R) satisfies χ(0) = 1.

Now that the trace of U0,n4,1 on {X1 = 0} is determined, we can apply the operator Pn4
ev,1. Thus by

construction, the amplitude

U0,n4,1(t, x,X1) = −χ(x1)eX1A1(τ,ξ
n4
2 )Sn4

s,1B1u0,n4|x1=0
(t, x2), (59)

is a solution to the system of equations (56).

The determination of evanescent amplitudes for the side ∂Ω2 that can appear when we construct the
amplitudes associated with indeces in Ψ(n3) or Ψ(n1), is totally similar. For example, for the indeces in
Ψ(n3), we will start by determining U0,n3,2 on {x2 = X2 = 0} by using the boundary condition, then we lift
this ”double” trace in a ”single” one on {X2 = 0}. This trace is finally propagated in the interior of Ω by
the operator Pn3

ev,2 defined in (57).

Then we repeat this construction for all the indeces in the direct neighorhood of the loop, so the indeces
whose amplitudes have still to be determined in partition (35) are :

(∪alAal \ {al})
⋃

(∪bmBbm \ {bm})
⋃(
∪cqCcq \ {cq}

)⋃
(∪drDdr \ {dr}) ,

that is to say, it only remains to determine the amplitudes linked with indeces in the trees of the partition
(35). Before constructing these amplitudes, we will need to have a more precise description of the structure
of those trees. It is the subject of the following paragraph.

4.2.4 Local structure of the trees.

Let us concentrate ourselves on the internal structure of the trees Aal appearing in the partition (35) of I .
The description for the ”trees” Bbm , Ccq and Ddr is, up to a few modifications, analogous and will not be
given in details here. Let us recall that a tree Aal has for root an index al ∈ (Ψ(n1)∩Ioi) \ {n4} and is the
set of indeces j linked with al by a sequence of type H (cf. Definition 4.3). To make the future notations
more confortable we will denote Aal := Aa.

The following proposition has already been mentionned in paragraph 4.2.1, and is the main proposition
needed to understand the structure of Aa.

Proposition 4.6 Let j ∈ Aa, then there exists a unique sequence ` of type H linking j to a.

Proof : By contradiction, let ` = (`1, `2, ..., `p) and `′ = (`′1, `
′
2, ..., `

′
p′), ` 6= `′, be two sequences of type H

which link j to a. We will separate several cases depending on the oddness/evenness of the lengths p and p′,
and without loss of generality we assume that p ≤ p′.

� p, p′ ∈ 2N.
We have to distinguish two differents subcases :
• If `′ = (`, `′p+1, ..., `p′), then `′p+1 ∈ Φ(`′p′). This allows us to show that the sequence (`′p+2, ..., `p′) is a

loop for the index `′p+1 of length p′ − p− 1. Thanks to Assumption 4.1, it is impossible.
• If `′ 6= (`, `′p+1, ..., `

′
p′).

Let m be the first integer such that `m 6= `′m. From the preceding subcase, we can assume that 1 ≤ m < p.
We will here deal with the case m ∈ 2N + 1 (the case m ∈ 2N can be treated in a similar way , up to
modification of the type of sequence). We have, `m ∈ Φ(`′m).

We have, once again two different possibilities :
• There exists l, m + 1 < l ≤ p such that kl = k′l. Then let l be the first integer l, m + 1 < l ≤ p

such that kl = k′l. Then if l ∈ 2N (resp. l ∈ 2N + 1), we have `l−1 ∈ Ψ(`′l−1) (resp. `l−1 ∈ Φ(`′l−1)).

Consequently the sequence (`′m, ..., `
′
l−1) is a sequence of type H linking `l−1 to `m, and the sequence
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(`m+1, ..., `l−2) is a sequence of type V linking `l−1 to `m. From this observation, we decude that the sequence
(`′m, ..., `

′
l−1, `l−1, `l−2, ..., `m+1) is a loop for the index `m. Once again, this fact contradicts Assumption 4.1.

• If for all q ∈ {m+ 2, ..., p} the indeces `q and `′q are distinct, we can easily that (`′m, ..., `
′
p, `p, ..., `m−1)

is a loop for `m.
We now consider the second subcase, that is to say :
� p ∈ 2N, p′ ∈ 2N + 1.

If `′ = (`, `′p+1, ..., `
′
p′), we can show that (`′p+1, ..., `

′
p′) is a loop for j.

Whereas, if `′ 6= (`, `′p+1, ..., `
′
p′), we can repeat the analysis made in the subcase p, p′ ∈ 2N to treat the

subcase, ”There exists l, m+ 1 < l ≤ p such that `l = `′l”. If for all q ∈ {m+ 2, ..., p} `q and `′q are distinct,
we can easily show that (`′m, ..., `

′
p, j, `p, ..., `m−1) is a loop for `m.

The other case on the oddness of p, p′ ∈ 2N + 1 is analogous, up to the inversion of the role played by
the applications Φ and Ψ, to the case p, p′ ∈ 2N. This case, is left to the reader.

�

Remark As indicated in paragraph 4.2.1, the uniqueness of the sequence linking j ∈ Aa to the root a
depends, in a non trivial way, on Assumption 4.1.

Thanks to Proposition 4.6 it is now possible to give a more precise (and final) version of the properties
satisfied by applications Φ and Ψ :

Proposition 4.7 Let j ∈ Aa \ {a}, we denote by ` = (`1, ...`p) the sequence of type H linking j to a. Then,
according to the parity of p, we have :

x′) If p ∈ 2N, then j /∈ Ioi. Moreover, if j ∈ Iev1 ∪Iii then Ψ(j) =
{
j
}

.

x′′) If p ∈ 2N + 1, then j /∈ Iio. Moreover, if j ∈ Iev2 ∪Iii then Φ(j) =
{
j
}

.

Proof : We will consider the case p ∈ 2N. Let us first show that j /∈ Ioi. By contradiction, we assume that
j ∈ Ioi, but using the fact that the frequency set F is minimal we can assume that Ψ(j) ∩Iio 6= ∅.

Let i ∈ Ψ(j)∩Iio, according to the analysis made in paragraph 4.2.1, we have i ∈ Aa. Let `′ = (`′1, ..., `
′
p′)

be the sequence linking i to the root a. Reiterating the arguments used in the proof of Proposition 4.6, it is
sufficient to study the case `i 6= `′i for all i.

If p′ ∈ 2N, we can then show that (`′, i, j, `p, ..., `2) is a loop with an odd number of elements for the index
`1, whereas if p′ ∈ 2N+ 1, the sequence (`′, i, `p, ...`2) is a loop for `1. Both cases contradict Assumption 4.1.

The proof of the assertion ”If j ∈ Iii ∪Iev1, then Ψ(j) = {j}” follows the same reasoning.

�

The same proposition, up to some adaptations on the oddness/evenness according to the considered tree, is
true for all trees in partition (35).

In terms of wave packet reflection, Proposition 4.7 states that, on one hand, during a reflection on
the side ∂Ω1 (resp. ∂Ω2), an outgoing-incoming phase (resp. incoming-outgoing) can not generate (resp.
incoming-outgoing) outgoing-incoming phases. This ”natural” idea used in [17] is now rigorously justified.

4.2.5 Determination of the amplitudes for indeces in the trees.

Thanks to the precise description of the internal structure of the differents trees in the partition (35), it is
easy to determine all the remaining amplitudes in the WKB expansion, and to conclude the construction of
the leading order terms. Once again, we will here only deal with a tree Aa. The construction is analogous
for the other trees.

Let j be any index of Aa, we will show that it is always possible to determine the amplitude u0,j . Thanks

to Proposition 4.6, there exists a unique sequence of type H, denoted by `j = ` = (`1, ..., `p), linking j to
the root a. The first step in the construction of the amplitude u0,j is to remark that independently of the
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determination of u0,j , we can always first determine the amplitudes u0,`i , i = 1, ...p.

Indeed, by definition of sequences of type H (see Definition 4.3), `1 ∈ Φ(a)∩Iio. So, the amplitude u0,`1

satisfies a transport equation reading :
(∂t + v`1 · ∇x)Q`11 u0,`1 = 0,

B1

[∑
i∈Φ(`1)∩(Iio∪Iii)

u0,i|x1=0

]
= −B1u0,a|x1=0

,

u0,`1|t≤0
= 0,

if `1 ∈ R1 \R1, (60)


(∂t + v`1 · ∇x)Q`11 u0,`1 = 0,

B1

[∑
i∈Φ(`1)∩(Iio∪Iii)

u0,i + U0,`1,1|X1=0

]
|x1=0

= −B1u0,a|x1=0
,

u0,`1|t≤0
= 0,

if `1 ∈ R1,

because all the elements of Φ(`1) are linked with a by a sequence of length zero. Thanks to point x′) of
Proposition 4.7, it follows that Φ(`1) ∩ Ioi = {a}. Consequenlty, multiplying (60) by S`11 (see Definition
4.6), we can write :

u0,`1|x1=0
= −S`11 B1u0,a|x1=0

.

This equation determines the trace of u0,`1 on the side ∂Ω1 because the amplitude u0,a and its trace
have already been determined in paragraph 4.2.3. Integrating (60) along the characteristics, we deter-
mine u0,`1 ∈ HK(ΩT ) and the trace u0,`1|x2=0

∈ HK
f .

Then we are interested in the construction of the amplitude u0,`2 , by definition of type H sequences,
`2 ∈ Ψ(`1)∩Ioi. Once again, we can apply Proposition 4.7 to show that Ψ(`2)∩Iio = {`1}. This allows us
to rewrite the transport equation on u0,`2 under the form :

(∂t + v`2 · ∇x)Q`22 u0,`2 = 0,

u0,`2|x2=0
= −S`22 B2u0,`1|x2=0

,

u0,`2|t≤0
= 0,

(61)

and we solve this equation by integration along the characteristics.

We can reiterate the same kind of resolutions of transport equations for all the indeces of the sequence
`. This operation permits us to construct all the amplitudes u0,`l , l = 1, ..., p. The important point in these
recursive resolutions is that since the first amplitude u0,a has its trace on ∂Ω1 in HK

f , this flatness at the
corner is transmitted to all the amplitudes indexed by the sequence `.

Indeed, integration along the characteristics gives an explicit formula and it is easy to see on this formula
that the traces of the u0,`l are in HK

f , for all 1 ≤ l ≤ p.
Once we have constructed all the amplitudes associated by the indeces of `, it is easy to determine the

amplitude u0,j . We distinguish the following cases depending of the nature of the index j.

� j ∈ Iio (resp. j ∈ Ioi).
Proposition 4.7 tells us that an index in Iio ∩ Aa (resp. Ioi) can appear only after an even (resp. odd)
number of reflections, in other terms the lenght of the sequence `, p ∈ 2N (resp. p ∈ 2N + 1). Using the
fact that j ∈ Iio (resp. j ∈ Iio), to construct the amplitude u0,j it is sufficient to know u0,j

|x1=0
(resp.

u0,j
|x2=0

). But, Proposition 4.7 implies that `p is the only element of Ioi (resp. Iio) in Φ(j) (resp. Ψ(j)),

multiplying by S
j

1 (resp. S
j

2), we can determine the trace u0,j
|x1=0

(resp. u0,j
|x2=0

) as a function of the trace

u0,`p|x1=0
(resp. u0,`p|x2=0

). Consequently the amplitude u0,j is constructed.

Moreover, we can show that u0,j ∈ HK(Ω), and that its traces on the sides ∂Ω1 and ∂Ω2 are in HK
f .

� j ∈ Iii.
An incoming-incoming index may appear after an even number of reflections as well as after an odd number
of reflections. We will here deal with the case p ∈ 2N, the case p ∈ 2N + 1 is totally similar. Proposition 4.7
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implies, on the one hand that `p is the only index in Φ(j)∩Ioi and on the other hand that Ψ(j) =
{
j
}

. So
the boundary conditions for the amplitude u0,j can be writen under the form :

u0,j
|x1=0

= −Sj1B1u0,`p|x1
,

u0,j
|x2=0

= 0.

It follows that the amplitude u0,j satisfies the incoming-incoming transport equation :
(∂t + vj · ∇x)Q

j

1u0,j = 0,

u0,j
|x1=0

= −Sj1B1u0,`p|x1=0
,

u0,j
|x2=0

= 0,

u0,j
|t≤0

= 0.

(62)

To solve this equation, we extend the source term −Sj1B1u0,`p|x1=0
by zero on {x2 < 0} (this extension gives a

regular function because u0,`p|x1=0
∈ HK

f ) then we restrict to {x2 ≥ 0} the solution to the transport equation

in the half space {x1 ≥ 0, x2 ∈ R}.
Consequently we have constructed u0,j ∈ HK(ΩT ), such that for all x1 ≥ 0, u0,j

|x1=x1

∈ HK
f .

� j ∈ R1 (resp. j ∈ R2).
As in the case j ∈ Iio (resp. j ∈ Ioi), Proposition 4.7 tells us that an evanescent index for the side ∂Ω1

(resp. ∂Ω2) can only appear after an even (resp. odd) number of reflections. Moreover, Proposition 4.7 also
implies that the only index of Ioi (resp. Iio) and Φ(j) (resp. Ψ(j)) is `p. We are now interested in the
construction of the evanescent amplitude U0,j,1 (resp. U0,j,2).

Repeating the construction described in paragraph 4.2.3, to determine the amplitude U0,j,1 (resp. U0,j,2),

it is sufficient to start by determining the ”double trace” on {X1 = x1 = 0} (resp. {X2 = x2 = 0}). Using
the fact that `p is the only element of Ioi (resp. Iio) in Φ(j) (resp. Ψ(j)), allows us to show that this
”double trace” is given by :

U0,j,1(t, 0, x′, 0) = −Sjs,1B1u0,`p|x1=0
,
(

resp. U0,j,2(t, x′, 0, 0) = −Sjs,2B2u0,`p|x2=0

)
.

We then lift this double trace in a ”single” one by setting :

U0,j,1(t, x, 0) := −χ(x1)S
j

s,1B1u0,`p|x1=0
,
(

resp. U0,j,2(t, x, 0) := −χ(x2)S
j

s,2B2u0,`p|x2=0

)
,

where χ ∈ C∞c (R) is such that χ(0) = 1. Finally, lemma 4.3 shows that the function U0,j,1 (resp. U0,j,2)
defined by :

U0,j,1(t, x,X1) = −χ(x1)eX1A1S
j

s,1B1u0,`p|x1=0
, (63)(

resp. U0,j,2(t, x,X2) = −χ(x2)eX2A2S
j

s,2B2u0,`p|x2=0

)
,

is a solution to the cascades of equations (26)-(31) and (32) written for n = 0 and k = j.

In this paragraph we have shown that an arbitrary amplitude in the tree Aa could always be constructed.
As a consequence, all the amplitudes in the tree Aa can be determined. Then it is sufficient to repeat
the method of construction for each tree in the partition (35). So we have constructed all the amplitudes
associated with indeces in I \ {n1, n2, n3, n4}, and we have thus finished the construction of the leading
term in the WKB expansion. We summarize the analysis with the following proposition :

Proposition 4.8 Under Assumptions 2.1-2.2 on the complete for reflexions corner problem (18), under As-
sumptions 4.1 and 4.3, there exist functions (u0,i)i∈Ios , (U0,i,1)i∈R1

and (U0,i,2)i∈R2
satisfying the cascades
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of equations (26)-(31) and (32) written for n = 0.

Moreover, the functions (u0,i)i∈Ios admit the following regularity : for all T > 0,
� if i ∈ Iio ∪Ioi, u0,i ∈ HK(ΩT ) and the traces u0,i|x1=0

and u0,i|x2=0
are in HK

f .

� If i ∈ Iii then u0,i ∈ HK(ΩT ). Moreover, if Ψ(i) = {i} (resp. Φ(i) = {i}) then for all x1 > 0 (resp.
x2 > 0), the trace u0,i|x1=x1

(resp. u0,i|x2=x2
) is HK

f .

The functions (U0,i,1)i∈R1
(resp. (U0,i,2)i∈R2

) are in Pev1 (resp. Pev2).

4.2.6 Construction of the higher order terms in the WKB expansion.

The construction for the higher order terms in the WKB expansion looks like the construction of the leading
order term. In particular, the order of resolution will be the same : we start with the amplitudes on the
loop, then we show that the knowledge of these amplitudes is sufficient to construct any amplitude in the
trees of the partition (35). In this paragraph we only give the main steps of the construction of the term of
order ε, without all details. Let us begin with the oscillating amplitudes.

For k ∈ Ios, the amplitude u1,k satisfies the equations :{
iL (dϕk)u1,k + L(∂)u0,k = 0,
u1,k|t≤0

= 0,
(64)

with the two boundary conditions :

B1

 ∑
k∈Φ(k)∩Ios

u1,k


|x1=0

= 0, if k /∈ R1, (65)

B1

 ∑
k∈Φ(k)∩Ios

u1,k + U1,k,1|X1=0


|x1=0

= 0, if k ∈ R1,

and

B2

 ∑
k∈Ψ(k)∩Ios

u1,k


|x2=0

= 0, if k /∈ R2 (66)

B2

 ∑
k∈Ψ(k)∩Ios

u1,k + U1,k,2|X2=0


|x2=0

= 0, if k ∈ R2.

In a classical way, we compose the first equation of (64) by the partial inverse R
k
1 if k ∈ Iio, R

k
2 if k ∈ Ioi

and by R
k
1 or R

k
2 if k ∈ Iii. Let us recall that this partial inverse satisfies : for i = 1, 2,

R
k
i L (dϕk) = I − P ki , P

k
i R

k
i = R

k
iQ

k
i = 0.

The first equation of (64), after this composition, reads :(
I − P ki

)
u1,k = iR

k
i L(∂)u0,k, (67)

and determines in a unique way the unpolarized part of u1,k. Indeed, at this stage of the analysis the term of
the right hand side of (67) has already been constructed. As u0,k ∈ HK(ΩT ) and its traces on the sides ∂Ω1

and ∂Ω2 are in HK
f , the unpolarized part of u1,k belongs to HK−1(ΩT ) with traces in HK−1

f . To complete
the construction of the oscillating amplitude u1,k, we just have to construct its polarized part ; that is to

say P
k
1 u1,k (or equivalently P

k
2 u1,k).
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To determine the polarized part, we will repeat with some modifications, the method described for the
leading order. First, we remark that the evolution equation for the amplitude u2,k is :

iL (dϕk)u2,k + L(∂)u1,k = 0,

and reads, after composition by Q
k
1 for k ∈ Iio, by Q

k
2 for k ∈ Ioi and by Q

k
1 or Q

k
2 for k ∈ Iii :

Q
k
i L(∂)P

k
i u1,k = −Qki L(∂)(I − P ki )u1,k = −iQki L(∂)R

k
i L(∂)u0,k.

Thanks to Lax lemma [8], this equation is a transport equation with speed vk on the polarized part P
k
i u1,k.

As a consequence, Q
k
i P

k
i u1,k satisfies the same transport equation (with a non-zero source term in the inte-

rior of Ω) as the transport equation satisfied by u0,k. This observation leads us to apply the same method
of construction as in paragraphs 4.2.3 and 4.2.5.

More precisely, we start with the indeces on the loop, to fix the ideas, we will describe the construction
of u1,n4 . We have already seen that its unpolarized part is known. To construct the polarized part of
u1,n4 , since it travels with an outgoing-incoming velocity, we need to know its trace on ∂Ω2. Repeating the
computation made in paragraph 4.2.2 we obtain an invertiblity condition which reads :

(I − T)Pn1
1 u1,n1|x2=0

= G1,

where G1 ∈ HK−1
f only depends on the unpolarized traces of the amplitudes associated with the elements

of the loop. Assumption 4.2 implies that Pn4u1,n4
is solution to the transport equation :

(∂t + vn4 · ∇x)Qn4
2 Pn4

2 u1,n4 = −iQn4
2 L(∂)Rn4

2 L(∂)u0,n4 ,

Pn4
2 u1,n4|x2=0

= −Sn4
2 B2

[
(I − T)−1G1 + (I − Pn4

2 )u1,n4|x2=0
+ (I − Pn1

1 )u1,n1|x2=0

]
,

Pn4
2 u1,n4|t≤0

= 0.

All the source terms in this equation are known, so we can integrate along the characteristics to determine
Pn4

2 u1,n4
. The source term in the interior is HK−2(ΩT ) and the source term on the boundary is HK−1

f , so

the solution Pn4
2 u1,n4

∈ HK−2(ΩT ) with traces on ∂Ω1 and ∂Ω2 in HK−2
f . The fact that the construction

of the term of order one in ε needs two derivatives is classical, and more generally, the construction of the
term of order N0 needs 2N0 derivatives on the u0,j ’s.

When the amplitudes associated with indeces on the loop are determined, the construction of the polar-
ized parts of the other oscillating amplitudes follows exactly the same method. In particular the ”order” of
resolution is the same order as the ”order” described in paragraph 4.2.5. That is why we will not give more
details about this construction.

We are now interested in the construction of the evanescent amplitudes of order ε. Although these
amplitudes do not satisfy transport equations, the method of construction is based on the same ideas as the
method for oscillating amplitudes. Indeed, we remark that the amplitudes U1,k,i can be decomposed in a
polarized part (whose construction will use the technics of the construction of U0,k,i) and an unpolarized
part only depending of the known amplitude U0,k,i.

In this paragraph we will only consider evanescent amplitudes for the side ∂Ω1, so let k ∈ R1. The
amplitude U1,k,1 satisfies the system of equations :

Lk(∂X1
)U1,k,1 + L(∂)U0,k,1 = 0,

B1

[∑
k∈Φ(k)∩Ios

u1,k + U1,k,1|X1=0

]
|x1=0

= 0,

U1,k,1|t≤0
= 0,

but thanks to lemma 4.3, we know that the first equation of this system has a solution reading :

U1,k,1 = Pkev1U1,k,1 + Qkev1L(∂)U0,k,1,
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where we recall that the projectors Pkev1 and Qkev1 are defined in (57) and (58). Using the fact that the

amplitude U0,k,1 has already been constructed, the unpolarized part of U1,k,1, namely Qkev1L(∂)U0,k,1, is

known. It is thus sufficient to construct the polarized part of U1,k,1, namely Pkev1U1,k,1. To do that, we

repeat the construction used for U0,k,1. By definition of Pkev1, Pkev1U1,k,1 will be determined if we can
construct the trace of U1,k,1 on {X1 = 0}.

Firstly, the boundary condition (68) and Proposition 4.7 give the ”double trace” on {x1 = X1 = 0}. More
precisely, this ”double trace” is given by :

U1,k,1|X1=x1=0
= −Sks,1B1u1,k|x1=0

,

where the source term is known because we have already constructed the oscillating amplitudes of order ε.
To conclude we lift this ”double trace” on {x1 = X1 = 0} in a ”single” trace {X1 = 0} exactly as it has been

done for U0,k,1, and then we apply the operator Pkev1.

So the construction of the WKB expansion for the corner problem (18) is complete. To summarize we
give the following Theorem :

Theorem 4.1 Under Assumptions 2.1-2.2 on the complete for the reflections corner problem (18), under
Assumptions 4.1 and 4.3, if [·] denotes the integer part function, then there exist functions (un,k)n≤[K2 ], k∈Ios

,

(Un,k,1)≤[K2 ], k∈R1
and (Un,k,2)≤[K2 ], k∈R2

satisfying the cascades of equations (26)-(31) and (32).

Moreover, the functions un,k admit the following regularity : for all T > 0,
� if k ∈ Iio ∪Ioi then un,k ∈ HK−2n(ΩT ) and the traces un,k|x1=0

and un,k|x2=0
are in HK−2n

f .

� If n ∈ Iii, then un,k ∈ HK−2n(ΩT ). Moreover, if Ψ(k) = {k} (resp. Φ(k) = {k}) then for all x1 > 0
(resp. x2 > 0), the trace un,k|x1=x1

(resp. un,k|x2=x2
) is HK−2n

f .

The Un,k,1 (resp. Un,k,2) are in Pev1 (resp. Pev2).

4.3 Justification of the WKB expansion.

In this paragraph we show that, if the corner problem (18) is strongly well-posed, the truncated WKB
expansion constructed in the preceding paragraph is a good approximation to the exact solution uε of the
corner problem (18). Let us recall what we mean strong well-posedness :

Definition 4.8 The corner problem is said to be strongly well-posed if for all f ∈ L2(ΩT ), g1 ∈ L2(∂Ω1,T )
and g2 ∈ L2(∂Ω2,T ) zero for negative times, the system :

∂tu+A1∂1u+A2∂2u = f,
B1u|x1=0 = g1,
B2u|x2=0 = g2,
u|t≤0 = 0,

admits a unique solution u ∈ L2(ΩT ), with traces in L2(∂Ω1,T ) and L2(∂Ω2,T ), satisfying the energy estimate
:

‖u‖2L2(ΩT ) + ‖u|x1=0‖2L2(∂Ω1,T ) + ‖u|x2=0‖2L2(∂Ω2,T ) ≤ CT
(
‖f‖2L2(ΩT ) + ‖g1‖2L2(∂Ω1,T ) + ‖g2‖2L2(∂Ω2,T )

)
. (68)

Let us recall that the strong well-posedness of the corner problem is demonstrated for the particular class
of symmetric corner problems with strictly dissipative boundary conditions.

To justify the convergence of the WKB expansion, we need to be sure that the amplitudes are regular
enough. The regularity has already been studied for the oscillating amplitudes. Concerning the evanescents
amplitudes, the following Proposition shows that they are regular and also gives their size according to the
small parameter ε.
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Proposition 4.9 Let U be an element of Pev,1 (resp. Pev,2). Then the functions U
(
t, x, x1

ε

)
and (L(∂)U(t, x,X1))|X1=

x1
ε

(resp. U
(
t, x, x2

ε

)
and (L(∂)U(t, x,X2))|X2=

x2
ε

) are O(ε
1
2 ) in L2(ΩT ).

We refer to [1] for a proof of this result.

Before showing that the truncated WKB expansion is a good approximation to the exact solution to the
corner problem (18), we have to make sure that the truncated WKB expansion makes sense. Indeed, we have
seen in paragraph 3.4 that when there was an infinite number of phases generated by successive reflections,
it was not clear that the sum of all amplitudes defining the WKB expansion converges. That is why, to avoid
this difficulty we will restrict ourselves to a finite number of phases :

Assumption 4.4 We assume that the number of phases generated by successive reflections on the sides ∂Ω1

and ∂Ω2 is finite. That is to say, #F < +∞.

With this extra assumption, it is clear that the truncated WKB expansion makes sense. The main
Theorem of this article is :

Theorem 4.2 Under Assumptions 2.1-2.2 for the complete for reflexion corner problem (18) and under
Assumptions 4.1 and 4.4, 4.3, then

For N0 ∈ N, with N0 ≤
[
K
2 −

3
2

]
, we denote by uεapp,N0

the geometric optics expansion truncated at order
N0 defined by :

uεapp,N0
:=

∑
k∈Ios

e
i
εϕk(t,x)

N0∑
n=0

εnun,k(t, x)

+
∑
k∈R1

e
i
εψk,1(t,x2)

N0∑
n=0

εnUn,k,1

(
t, x,

x1

ε

)
+
∑
k∈R2

e
i
εψk,2(t,x1)

N0∑
n=0

εnUn,k,2

(
t, x,

x2

ε

)
,

where functions un,k, Un,k,1 and Un,k,2 are given by Theorem 4.8. Then, if the corner problem (18) is strongly
well-posed, let uε be its exact solution, the error uε − uεapp,N0

is O(εN0+1) in L2(ΩT ).

Proof : Since we assumed that N0 ≤
[
K
2 −

3
2

]
, the term of order εN0+1 of the WKB expansion makes sense

and is at least in H1(ΩT ). By construction of the un,k, Un,k,1 and Un,k,2, for n ≤ N0 + 1, the remainder
uε − uεapp,N0+1 satisfies the corner problem :

L(∂)(uε − uεapp,N0+1) = fεN0+1,

B1(uε − uεapp,N0+1)|x1=0 = 0,

B2(uε − uεapp,N0+1)|x2=0 = 0,

(uε − uεapp,N0+1)|t≤0 = 0.

(69)

with

fεN0+1 := εN0+1

[ ∑
k∈Ios

e
i
εϕk L(∂)uN0+1,k +

∑
k∈R1

e
i
εψk,1 (L(∂)UN0+1,k,1)|X1=

x1
ε

+
∑
k∈R2

e
i
εψk,2 (L(∂)UN0+1,k,2)|X2=

x2
ε

]
.

But the corner problem (18) is supposed to be strongly well-posed, so we can use the energy estimate (68),
to obtain :

‖uε − uεapp,N0+1‖L2(ΩT ) ≤ CT ‖fεN0+1‖L2(ΩT ).
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The right hand side can be estimated by :

‖fεN0+1‖L2(ΩT ) ≤ εN0+1

[ ∑
k∈Ios

‖L(∂)uN0+1,k‖L2(ΩT ) +
∑

k∈Iev1

‖L(∂)UN0+1,k,1 (·, ·, X1)|X1=
x1
ε
‖L2(ΩT )

+
∑

k∈Iev2

‖L(∂)UN0+1,k,2 (·, ·, X2)|X2=
x2
ε
‖L2(ΩT )

]
,

≤ CεN0+1,

because, according to Proposition 4.9, (L(∂)UN0,k,1)|X1=
x1
ε

and (L(∂)UN0+1,k,2)|X2=
x2
ε

are O(ε
1
2 ) in L2(ΩT )

whereas L(∂)uN0+1,k are O(1) in L2(ΩT ), because uN0+1,k is at least in H1(ΩT ).
We thus have shown that :

‖uε − uεapp,N0+1‖L2(ΩT ) ≤ CT εN0+1,

and we conclude by triangle inequality.

�

4.4 Study of the invertibility condition (46).

In this paragraph we will give a sufficient (and also necessary in several relevant cases) condition ensuring
that the invertibility condition (46) is satisfied. Let us recall that this condition reads :

u0,n1|x2=0
(t, x1)− Su0,n1|x2=0

(t− αx1, βx1) = Sn1
1 g(t+ δx1, κx1), (70)

with α, β > 0, and δ < 0, κ > 0. The exact expressions of this parameters are given by :

S := Sn1
1 B1S

n2
2 B2S

n3
1 B1S

n4
2 B2,

α := − 1

vn1,1

[
−1 +

vn1,2

vn2,2
− vn1,2vn2,1

vn2,2vn3,1
+
vn1,2vn2,1vn3,2

vn2,2vn3,1vn4,2

]
,

β :=
vn4,1

vn4,2

vn3,2

vn3,1

vn2,1

vn2,2

vn1,2

vn1,1
.

If we assume that dim ker L (iτ , ξn1
1 , ξn1

2 ) = 1 (Assumption which is automatically satisfy in the stricly
hyperbolic framework), then (70) is in fact a scalar equation :

u(t, x1)− S̃u(t− αx1, βx1) = G(t, x1), (71)

where thanks to the polarization condition we write u0,n1|x2=0
(t, x1) = u(t, x1)en1

, with en1
chosen such that

ker(L (iτ , ξn1
1 , ξn1

2 )) = Span en1
. The scalar S̃ is defined by the equality

Sen1 = S̃en1 ,

and without loss of generality we can assume that S̃ 6= 0.
In all what follows

It will be more convenient to rewrite (71) under the following form :

(I − T)u = G, (72)

where :

(Tu) (t, x1) := S̃u(t− αx1, βx1). (73)

A sufficient condition for (70) (and thus also (71)) to have a unique solution in the profiles space
L2(]−∞, T ]× R+) is given by the following Theorem :
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Theorem 4.3 If
|S| <

√
β,

then for all γ > 0, for all G ∈ L2
γ(R × R+), the functional equation (70) admits a unique solution u ∈

L2
γ(R× R+), polarized on ker L (iτ , ξn1

1 , ξn1
2 ) satisfying :

‖u‖L2
γ(R×R+) ≤ C‖G‖L2

γ(R×R+),

where C does not depend on the parameter γ.

In particular, for all T > 0, if G ∈ L2(∂Ω2,T ) and is zero for negative times, then (70) has a unique
solution u ∈ L2(∂Ω2,T ), polarized on ker(L (iτ , ξn1

1 , ξn1
2 ), and satisfying :

‖u‖L2(∂Ω2,T ) ≤ CT ‖G‖L2(∂Ω2,T ).

Proof : To solve (72) in a unique way, it is sufficient that T is a contraction on L2
γ(R×R+) (or equivalently

on L2(]−∞, T ] × R+). A simple computation shows that is it effectively the case under the assumption
|S| <

√
β.

�

Remark The fact that we are interested in uniform bounds (compared with the parameter γ) of the operator
T is motivated by the following fact. In the analysis of the initial boundary value problem in the half space,
one starts to deal with global problems in time. Then from the uniformity of the energy estimate compared
to γ follows a principle of causality which allows to restrict to problems where the time variable lies in
]−∞, T ]. We refer to [3] and [4] for more details about this proof.

To fully understand the condition |S| <
√
β it is important to remark the following fact : if one considers

a point (0, L) ∈ ∂Ω1 and follows the characteristic curves associated with the indeces on the loop, then
after three reflections, this traveling point goes back to ∂Ω1 in a new position (0, L′) ∈ ∂Ω1. Some basic
computations show that :

β =
L

L′
. (74)

So, we have three possible behaviours depending of the value of β :
� If β > 1, then traveling along the bicharacteristics the information approaches the corner.
� If β < 1, then traveling along the bicharacteristics the information goes away from the corner.
� If β = 1, then the travel along the bicharacteristics is periodic.
The condition |S| <

√
β imposes that after one turn along the bicaracteristics associated with the loop

the L2-norm of the trace has descreased.

In the scalar case, that is when the matrix S can be replaced by the scalar S̃,4, that is to say when
the rank of the projector Pn1

1 is one, we can show that the condition |S̃| <
√
β is also necessary for the

well-posedness of (71). The idea of the proof is to use Laplace transformation in the time variable to reduce
to a situation already studied by Osher in [16].

Theorem 4.4 Let α, β > 0 and S̃ ∈ R \ {0} be such that S̃ >
√
β. Then the equation :

u(t, x)− S̃u(t− αx, βx) = G, (75)

satisfies one of the alternatives : i) if β < 1, then equation (75) written for G = 0 admits a non-zero solution
in L2

γ(R× R+), for all γ > 0.
ii) If β > 1, then there exists g ∈ L2

γ(R× R+) such that equation (75) does not have any solution.

4When S is a matrix and not a number, it seems more diffiult to show the analog of Theorem 4.4. That is why the restriction
to stricly hyperbolic operators is a easy way to obtain sharp results.
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Proof : We begin with the proof of i). We are looking for a non-zero solution u written under the form
u(t, x) = H(t)v(t, x), where H is the Heaviside function. Applying Laplace transform in the time variable
to equation (75), lead us to solve :

v̂(σ, x)− S̃e−ασxv̂(σ, βx) = 0, (76)

where σ ∈ C, Re σ > 0, is the dual variable of t. Following [16], let

ˆ̃v(σ, x) = e
ασx
1−β x−

ln S̃
ln β .

It easy to check that this function is a solution to (76). But Re
(
ασ

1−β

)
< 0, so using the assumption S̃ >

√
β,

it follows that ˆ̃v ∈ L2
x(R+).

However, in view to come back to the time variable, we want to apply the Paley-Wiener Theorem to ˆ̃v.
That is why we denote by v̂(σ, x) the following modification of ˆ̃v :

v̂(σ, x) =
1

(1 + σ)
ˆ̃v(σ, x).

It is easy to see that v̂ is still a solution to (76). Moreover

sup
γ>0

∫
R

∫
R+

|v(γ + iη, x)|2dxdη ≤ sup
γ>0

(∫
R+

x−2 ln S̃
ln β e

2xαγ
1−β dx

)∫
R

1

1 + η2
dη ≤ C.

We can thus apply Paley-Wiener Theorem, so there exists v ∈
⋂
γ>0 L

2
γ(R×R+) such that v̂ is the Laplace

transform. As a consequence we have constructed a non-zero solution to (75).

To show ii), using the same proof as in [16], it is sufficient to remark that the adjoint of T is given by :

T∗v = − S̃
β
v

(
t− α

β
x,

1

β
x

)
.

So if β11, the operator T∗ is in the situation i), so S̃
β > 1√

β
⇔ S̃ >

√
β, and T∗ is not injective. As a

consequence, T∗ is not surjective.

�

During the construction of the geometric optics expansion we have seen that the invertibility of the operator
I−T on the weighted space L2

γ(R×R+) was not sufficient to construct the term of order ε which is however
necessary if we want to show that the truncated expansion approximates the exact solution. More precisely
to construct the first corrector term it is necessary that I − T is (at least) invertible from H3

f to H3
f , and

more generally if one wants that the remainder uε−uεapp,N0
be O(εN0+1), it is needed that I−T is invertible

from HN0+3
f in HN0+3

f (to ensure that the term of order N0 + 1 is at least in H1(ΩT ). The following
Theorem shows that the solution to the functional equation (71) given by Theorem 4.3 inherits (under some
restrictions) the regularity HK

f of the source term. There are two different cases to handle with :

Theorem 4.5 i) If 0 < β ≤ 1 and if |S| <
√
β, then I − T is invertible from H∞f to H∞f .

ii) Let K ∈ N, if β > 1 and if |S|βK− 1
2 < 1, then I − T is invertible from HK

f to HK
f .

Proof : Let

u(t, x1) = G(t, x1) +

+∞∑
j=1

SjG
(
t+Xj

α,βx1, β
jx1

)
, (77)

where

Xj
α,β :=

j−1∑
k=0

αβk + βjα.
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It is easy to check that, under assumption |S| <
√
β, u is a solution to (71) which belongs to L2(∂Ω2,T ).

According to Theorem 4.3, it is unique.

Then, we show that the solution u defined by (77) inherits the regularity of G. Firstly, according to the
particular form of equation (71), it is clear that independently of β, for all n ∈ N :

‖∂nt u‖L2(∂Ω2,T ) ≤ C‖∂nt g‖L2(∂Ω2,T ), (78)

so we only have to deal with the derivatives in the spatial variable, because it will also permit to deal with
the cross-derivatives by using (78). For n ∈ N, a simple computation gives :

∂nx1
u = ∂nx1

G+

+∞∑
j=1

Sj

[
n∑
l=0

(
n
l

)(
Xj
α,β

)l (
βjκ

)n−l
∂n−lt ∂lx1

G

](
t+Xj

α,βx1, β
jx1

)
, (79)

and lead us to a distinction depending on the value of β.

If β ≤ 1, then all the constants appearing during the derivation can be abruptly bounded from above
and we obtain :

‖∂nx1
u‖L2(∂Ω2,T ) ≤ ‖∂nx1

G‖L2(∂Ω2,T ) + Cn,α

+∞∑
j=1

(
|S|√
β

)j n∑
l=0

‖∂n−lt ∂lx1
G‖L2(∂Ω2,T ),

where we used the change of variable [
s
y

]
=

[
1 Xj

α,β

0 βj

] [
t
x1

]
,

to force the appearance of the factor
√
β. As a consequence, under assumption |S| <

√
β, the solution u

given by (77) is H∞(∂Ω2,T ) and we can check on the equation (79) that its trace is also in H∞f .

If β > 1, we have :

‖∂nx1
u‖L2(∂Ω2,T ) ≤ ‖∂nx1

G‖L2(∂Ω2,T ) + Cn,α

+∞∑
j=1

(
|S|βn− 1

2

)j n∑
l=0

‖∂n−lt ∂lx1
G‖L2(∂Ω2,T ),

for 0 ≤ n ≤ K, this sum is finite thanks to assumption |S|βK− 1
2 < 1. We have thus shown that u ∈

HK(∂Ω2,T ). Once again, the flatness at the corner is given by computing the trace in (79), so we have
u ∈ HK

f .

�

Remark As in the situation where an infinite number of phases was present in the WKB expansion (see
example in paragraph 3.4), we can remark that when the source term g ∈ C∞c with its support away from
the corner, if we restrict ourselves to the construction of the WKB expansion for a finite time T < +∞,
then the number of non-zero terms in the sum (77) is finite. Thus, in this framework the operator (I − T)
is automatically invertible (independently of the parameters β and S). Its inverse is given by (77).

Theorem 4.5 seems to indicate that a corner concentration phenomenon is more difficult to handle with
than a separation from the corner phenomenon. Indeed, if β < 1, the error between the exact solution
and the truncated WKB expansion is O(εN ) with N arbitrarily large, whereas if β > 1, the norms of the
derivatives of the solution to (71) seem to get larger and larger. To prevent this ”blow up”, we have made

the assumption |S|βK− 1
2 < 1 which ”implies” that there exists a maximal N0 such that the error is O(εN0).

We do not claim that, for β > 1, Theorem 4.5 is sharp. But it is sufficient to treat the example of paragraph
3.5.
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4.5 Examples for which the invertibility condition (71) is satisfied.

4.5.1 The example of paragraph 3.5.

We come back to the corner problem (16) and more precisely on the resolution of the amplitude equation
(71) for this problem.

First of all we have to specify the chosen boundary conditions. We set for B1 and B2 in (16) :

B1 :=

[
0 4

√
7√

7 −4 0

]
, B2 :=

[
−δ 1 0

]
, (80)

where δ ∈ R, δ 6= 0 is a fixed parameter.
It is easy to see that the boundary condition defined by B1 on the side ∂Ω1 is strictly dissipative, in

particular it satisfies the uniform Kreiss-Lopatinskii condition (see [3, Proposition 4.4]). The real parameter
δ 6= 0 encodes the dissipativity on the side ∂Ω2 in the following way :
� If |δ| > 1, the boundary condition defined by B2 is strictly dissipative.
� If |δ| = 1, the boundary condition defined by B2 is maximal dissipative.
� If 0 < |δ| < 1, the boundary condition defined by B2 is not dissipative but it satisfies the uniform

Kreiss-Lopatinskii condition.

Reiterating the same kind of computations as those described in paragraph 4.2.2, using the fact that
dimL (dϕ1) = 1, show that the amplitude equation for the amplitude associated with the phase ϕ1 is scalar
and reads :

u(t, 0, x2) = −
√

5

64
√

7δ

[
1− 3

√
5
] [7

3
−
√

5

]
u

(
t− 27x2, 0,

35

2
x2

)
+G(t, x2), (81)

where, u is a real-valued function and for an explicitely computable, but non-relevant, source term G.

According to Theorem 4.3, if

|δ| > 1

32 ·
√

5 · 73/2
(−1 + 3

√
5)

(
7

3
−
√

5

)
:= δ0 ≈ 4.10−4

then the functional equation (81) admits a unique solution. We are thus able to construct the leading
order term of the geometric optics expansion for more parameters than those leading to strictly dissipative
boundary conditions.

A contrario, if
0 < |δ| < δ0,

we are in a non-dissipative framework, and according to Theorem 4.4, equation (81) admits a non-zero so-
lution for G = 0, so the leading order term in the WKB expansion is not determined in a unique way. This
example shows that imposing the uniform Kreiss-Lopatinskii condition on each side of the boundary is not
sufficient to construct the geometric optics expansion in a unique way. It seems to be a good argument in
favour of the fact that the same situation is true for the strong well-posedness of the corner problem (18).

We know that the corner problem (16) is strongly well-posed for |δ| > 1 since the boundary conditions
are strictly dissipative. To show that the truncated WKB expansion is a good approximation to the exact
solution, as β > 1, we have to study the condition |S|βK− 1

2 < 1. A simple computation shows that this
condition is satisfied as long as |δ| > 1 and K ≤ 4. Thus, we can construct the geometric optics expansion
up to the order ε2 and Theorem 4.2 says that the truncated geometric optics expansion approximates the
exact solution to (16), with an error in O(ε), for all parameters δ making the boundary conditions of (16)
strictly dissipative.

4.5.2 The example of Sarason-Smoller [17].

In [17], the authors construct an example of 4×4 a strictly hyperbolic operator whose section of the character-
istic variety contains a loop. This example, with the example of paragraph 3.5 constitute, to our knowledge,
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the only two examples of corner problems with a loop in the literature.

The main idea of the construction is a perturbation argument : we first choose a centered ellipse and

we fix three points P2, P3, P4 on this ellipse such that angle P̂2P3P4 be a perpendicular angle and the group
velocities are incoming-outgoing in P3 and outgoing-incoming in P2 and P4. This choice determines in a
unique way a point P1, such that P1P2P3P4 is a rectangle. Then we construct a second ellipse meeting P1

with an incoming-outgoing group velocity at this point (see figure 8). The variety constructed can be written

Figure 8: The construction of Sarason and Smoller for p1 := 5ξ2
1 + 2ξ2

2 − 6ξ1ξ2 − 1 and p2 := 25
49ξ

2
1 + 14

5 ξ
2
2 −

2ξ1ξ2 − 1.

under the form :
p1(τ, ξ1, ξ2)p2(τ, ξ1, ξ2) = 0,

where the polynomials p1 and p2 are homogeneous of degree two. This variety contains the loop (P1, P2, P3, P4),
but it can not represent the section at τ = 1 of the characteristic variety of a strictly hyperbolic operator.
Indeed, the two ellipses constructed previously intersect in four points, namely Q1, Q2, Q3 and Q4. How-
ever, it can be shown that it is the section at τ = 1 of the characteristic variety of a geometrically regular
hyperbolic operator with A1 and A2 of block diagonal form :

A1 :=


−a1 a2 0 0
a2 a1 0 0
0 0 −ã1 ã2

0 0 ã2 ã1

 , and A2 :=


−b 0 0 0
0 b 0 0

0 0 −b̃ 0

0 0 0 b̃

 ,
for suitable real parameters a1, a2, ã1, ã2, b and b̃ (we refer to [2, paragraph 6.9.6] or [17] for more details
about the construction of A1 and A2).

Once the operator L(∂) is constructed, we add the following boundary conditions :

B1u|x1=0 := gε, B2u|x2=0 := 0,

where B1 and B2 are defined by :

B1 :=

[
1 0 0 −δ
0 0 1 0

]
, B2 :=

[
0 1 0 0
−δ 0 0 1

]
. (82)
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It is easy to check, using the particular form of A1 and A2 and the fact that the boundary conditions (82)
written for δ = 0 are strictly dissipative, that B1 and B2 satisfy the uniform Kreiss-Lopatinskii condition
for all δ. It is also easy to check that the boundary conditions B1 and B2 are strictly dissipative if δ is
sufficiently small.

Now that boundary conditions are fixed, we want to study the invertibility condition |S| <
√
β, which

appears when we construct the WKB expansion of the corner problem 5 :
L(∂)uε = 0,
B1u

ε
|x1=0 = gε,

B2u
ε
|x2=0 = 0,

uε|t≤0 = 0,

(83)

where the source term gε reads :

gε = e
i
ε (t+P1,2x2)g,

with g ∈ H∞f , zero for negative times, and where P1 := (P1,1, P1,2).

The factor β only depends of the coefficients of the operator L(∂). In particular, it does not depend of
δ and can be explicitely computed. The term S can be considered as a scalar (see paragraph 4.4) and it is
given by :

S := SP1
1 B1S

P2
2 B2S

P3
1 B1S

P4
2 B2,

where we have made the amalgam between the indeces of the loop and the associated frequencies.
Once again, using the fact that the operator L(∂) defined two 2×2 uncoupled systems, the stable subspace

Es2(i, P4,1) reads Es2(i, P4,1) = vect {(0, 0, p4, q4), (p̃, q̃, 0, 0)}. Thus, we can easily compute :

SP4
2 B2


p1

q1

0
0

 = PP4



p̃
q̃ q1

q1

0
0

+ δ


0
0

p4
q4

(
q1
p̃
q̃ − p1

)
q1
p̃
q̃ − p1


 := c̃δ


0
0
p4

q4

 ,
where c̃ is not zero and only depends of the projector PP4 on ker(L (τ , P4)) and where we set ker(L (τ , P1)) =
vect {(p1, q1, 0, 0)}. Repeating exactly the same arguments for the other terms composing S, it is easy to
show that the invertibility condition (71) it equivalent to :

cδ2 <
√
β, c > 0.

This condition is not satisfied for large values of δ. Let us remark the following points : firstly, the blow up
phenomeon is δ2 and not in δ4 as predicted in [17]. Secondly, for |δ| small enough, the invertibility condition
is satisfied and we are in the strictly dissipative framework.
Moreover, the condition cδ2 <

√
β is more precise than the analogous condition of [17]. Indeed it says that

since we are working with L2-norms, to prevent the signal to increase in strenght after a complete circuit it
had to be asked that the amplification caused by the boundary condition is less than the contraction of the
support of the source term after a complete circuit.

Finally, since we have β > 1 and S ”scalar”, Theorem 4.4 tell us that if the condition cδ2 <
√
β is

not satisfied then the WKB expansion can not be constrcuted for ant source term on the boundary. This
conclusion is, in fact, worst than the conclusion of Sarason and Smoller which says that in this case the
corner problem is poorly-posed (see [17] Definition 4.3).

To construct a strictly hyperbolic corner problem whose characteristic variety contains a loop, Sarason
and Smoller use a perturbation argument. More precisely, they introduce a small coupling between the two

5We do not try here to determine all the phases in the WKB expansion because, due to a concentration of the phases in the
neighborhood of the intersection points of the ellipses (see paragraph 3.5), the number of expected phases in the expansion will
be infinite.
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2×2 uncoupled systems defining L(∂) constructed in such a way to ”pull apart” the two intersecting ellipses
of the characteristic variety see sections 7 and 9 of [17]. They show that if the perturbation is small enough
then the obtained corner problem is strictly hyperbolic and the boundary conditions defined by B1 and B2

satisfy the uniform Kreiss-Lopatinskii condition, and finally that the perturbed system admits a loop in the
section of its characteristic variety.

5 Conclusion.

In this article we have shown a Theorem which gives a rigorous geometric optics expansion for an hyperbolic
corner problem when the number of phases generated by reflections is finite, but our Theorem is general
enough to apply to problems involving selfinteracting phases. For such problems, a sequence of propagation
of, at least, four fixed group velocities is repeated ad vitam æternam. The construction of the geometric
optics expansion then needs the solvability of a new amplitude equation, which is an invertibility condition
in the spirit of Osher’s condition [14](cf. Assumption 4.2).

Of course, the construction given in this article can also be made if the section of characteristic variety
does not contain any loop. Without any surprise, in that framework the construction is much more simpler,
because the results in paragraphs 4.2.1 and 4.2.4 are more or less immediate and we can construct the ex-
pansion as it has been done in [2, Paragraphs 6.4-6.6]. Moreover, the construction can also be adapted if the
source term on the boundary does not turn on a selfinteracting phase but if this phase appears after several
reflections.

We also think that is should be possible to show a version of Theorem 4.2 without the assumption of
non-appearance of glancing modes during the phase generation process. Indeed, if one starts with a hyper-
bolic frequency then nothing ensures that after several reflections a glancing mode will not appear in the
phase generation process. However, thanks to [19]-[20], we think that, after the suitable modifications of the
oscillating scales in the ansatz, glancing modes will, more or less, behave like evanescent modes in the sense
that they will create boundary layers in the expansion and that they will not be reflected from one side to
the other.

At last, the proof of Theorem 4.2 should also work when there are several loops. There are two cases
to distinguish, first if there is still a unique loop of interaction but others loops that are not interaction
loops and, secondly, the case where there are more than one interaction loops. In the first case, the proof of
Theorem 4.2 has just to be a bit adaptated in a more technical way. In the second case, we think that the
proof of Theorem 4.2 can also be adapted as long as the interaction loops do not intersect themselves but
this is left for future work.
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Nantes, https://hal.archives-ouvertes.fr/tel-01180449v1,

[3] Benzoni-Gavage, S., Serre, D. (2007) Multidimensional hyperbolic partial differential equations., Oxford
Mathematical Monographs. Oxford University Press.
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