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Abstract. Road safety applications are one of the main incentives to
deploy vehicular networks. These applications rely on periodic message
exchange among vehicles (known as beaconing). The beacon messages
contain information about the environment which is used to perceive
dangerous situations and alert the drivers. The inter-beacon delay is
the time between two consecutive beacons received from a car. It is an
essential parameter because, if this delay exceeds the application require-
ment, the application cannot accurately predict dangerous situations and
alert the drivers on time. The worst case inter-beacon delay has thus to
be bounded according to the application requirements. Unfortunately, a
tight and strict bound is in fact very difficult to obtain for a real network
because of the randomness of the collisions among beacons coming from:
the unpredictable mobility patterns, random interferences, randomness
of the MAC layer backoff, etc.
In this paper, we propose to provide a probabilistic worst-case of the
inter-beacon delay under realistic mobility using Extreme Value Theory
(EVT). EVT provides statistical tools which allow to make predictions
on extreme deviations from the average of a parameter. These statistical
predictions can be made based on data gathered from simulation or ex-
perimentation. We first introduce the EVT technique. Then we discuss
its application to the study of inter-beacon delays. Finally, we apply EVT
on the results of extensive vehicular network simulation using a realistic
mobility trace: the Cologne trace.

1 Introduction

The road safety applications are seen as an essential motivation for the deploy-
ment of Vehicular Ad hoc NETworks (VANETs) [9]. The main goal of these
applications is to avoid car crashes and thus reduce the number of road traffic
deaths and injuries. We can cite as examples of safety applications [5]:

– traffic signal violation: alert neighbor cars when a user does not stop at a
red traffic light;

– electronic brake: alert neighbor vehicles when a car performs an emergency
braking;
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– on-coming traffic warning: notify the driver of on-coming traffic during over-
taking maneuvers.

The main building block for safety applications is the exchange of periodical
one-hop broadcast messages among neighbor vehicles [9]. These messages are
called beacons or heartbeat messages and contain, at least, information on the car
positions, directions and speeds. In the rest of this paper, as in [19] [17] we refer
to these messages as beacons. Each safety application uses these beacons to build
a representation of its environment, analyze the current situation and predict
dangerous situations. The period, latency and scope (or range) of the beacons
depend on the requirements of the application. For example, according to [9]
the electronic brake application needs a beacon frequency of 10Hz, a maximum
latency of 100ms and a range of 200m to be effective. In this paper, we focus on
the period of these messages: the inter-beacon delay. We are thus interested in
the capacity of the MAC layer to broadcast these beacons on a periodical basis
which complies with the application requirements. We consider the MAC from
the IEEE 802.11p standard, since it is regarded as the standard of choice for
VANETs [9].

In order to be effective, critical road safety applications need strong tim-
ing guaranties on the delivery of beacons. It is thus of paramount importance
that the MAC layer is able to provide worst case inter-beacon delays which are
bounded. But more importantly, the bound has to be known and has to corre-
spond to the target application. Nevertheless, most of the performance evaluation
techniques of the literature such as stochastic models, simulation and experimen-
tation focus on parameter averages [10] and give very few insights on extreme
cases. This is the case, in particular, concerning many performance studies of
beaconing in vehicular networks [9] [19] [17]. On the other hand, a strict bound
on the inter-beacon delay is difficult, if not impossible, to obtain because of the
random nature of the beacon collisions which comes from the mobility patterns,
interferences, pathloss, randomness of the MAC layer backoff, etc.

In this paper, we propose to estimate a probabilistic bound on the inter-
beacon delay using statistical tools. The probabilistic worst case delay can be
viewed as the probability that the maximum delay is less than a given value.
This quantity is very useful for the system designer which must ensure that
the system can handle the timing requirements of the application with a high
probability. An advantage of the statistical approach is that it allows to evaluate
directly the real studied system (or a highly detailed simulation model) instead
of working on an abstract theoretical model.

The statistical tools we use come from Extreme Value Theory (EVT) which
is presented in sections 3. The method can be summed up in the three following
steps: (1) produce/Gather data (by simulation or experimentation); (2) extract
extreme values from the data; (3) fit extracted values to a probability distribution
predicted by the theory.

The main contribution of this paper is to use EVT to characterize the dis-
tribution of high inter-beacon delays when using the IEEE 802.11p standard
under realistic mobility conditions. We first discuss EVT applicability to study



inter-beacon delays and then use it on simulation results. The simulations are
performed in ns2 [1] using a highly realistic mobility trace developed by Uppor
and Fiore [21]. Up to our knowledge, this study represents the first application
of EVT to the study of extreme delays in VANETs and is the first characteriza-
tion of extreme inter-beacon delays under realistic mobility conditions using the
IEEE 802.11p standard.

The remainder of the paper is organized as follows. In section 2 the related
work about safety beaconing performance and EVT is presented and commented.
In section 3, we introduce EVT main theorems and discuss the application of
EVT to the study of large inter-beacon delays. In section 4, we present the
simulation setup and the produced data sets. In section 5 we describe the results
of the application of EVT to inter-beacon delay simulation data and provide
discussion about the method and the obtained probabilistic worst-case inter-
beacon delays. Section 6 gives the conclusion remarks and lists future works.

2 Related work

In this section we present the related work regarding the study of beaconing
in VANETs with 802.11p, and on the application of EVT in general and more
specifically in computer science.

Many studies concerning the performance of beaconing using 802.11p exist in
the literature [9] [19] [11] [3] [17] [16]. In [9], the authors study the performance
of beaconing in VANETs through simulation. They use the ns2 simulator. In
their scenarios, the vehicles are positioned on parallel lines (straight highway sce-
nario) and are not moving. The authors provide the probability of a successful
beacon reception for different beaconing frequencies. The results show that the
probability of reception decreases rapidly after few hundred meters between the
emitter and receiver. In [19], Stanica et al. propose an analytical model of the
probability of collision and the reception probability of beacons. They highlight
the low reliability of beaconing with 802.11p as with their model, the recep-
tion probability is never greater than 0.7. They confirm their findings through
simulation. The authors also show that the performance depends on the 802.11
contention window and derive its optimal value. In [16], the repartition of the
nodes of the VANET is modeled as a Poisson Point Process. The authors show
that above a critical density of nodes, the CSMA scheme of 802.11p behaves
like an ALOHA protocol and its performance is thus highly deteriorated. The
authors study the reception probability for simple highway scenarios under var-
ious traffic conditions and transmission power hypotheses. Again the reliability
of beaconing is very low. The authors of [17] simulate beaconing using ns2 and
the realistic Cologne mobility trace [21]. They study the probability of beacon
delivery in different areas of the city. They confirm the bad reliability of 802.11p
in a realistic mobility scenario. Despite the fact that many studies evaluate the
reliability of beaconing with 802.11p, none of the presented study provide insight
on the worst case inter-beacon delay under realistic mobility conditions (we can
note that [11] is concerned about the inter-beacon delay distribution, but not



the worst case). Yet, this parameter is of paramount importance to evaluate the
achievable timeliness of safety applications.

In the literature, EVT has been extensively used in various contexts: extreme
rainfalls [18], forest fires [2], wind speed [4], financial crashes [8] studies. EVT has
also been used in the context of computer networks for the estimation of traffic
peaks or bursts [13] [20] [6]. In [20], the author proposes to study the traffic on
an Ethernet network in order to predict traffic peaks. The author shows that the
gathered extreme deviations fit very well to a Generalized Pareto distribution
as predicted by the theory. In another study [13], the authors apply EVT to the
study of traffic throughput in wireless networks and show that the generalized
EVT distribution is a better match for large deviation prediction than exponen-
tial, gamma or log-normal distributions. In [6] the authors fit Ethernet traffic
throughput data to a Weibull distribution (also predicted by EVT). Neverthe-
less, these applications of EVT focus on network traffic throughput. Here we are
more interested in the possibility to use such technique to study large delays in
computer networks.

In order to find applications of EVT to the study of large delays in computer
science, we have to look to the field of worst case execution times. Works such as
[7] [14] make use of EVT to derive probabilistic worst case execution times. In
our work, we explore the case of inter-beacon delays instead of task executions.
We comment, in section 3 and 5, the issues which may arise when applying EVT
to this specific case.

The novelty of our work is twofold: we are interested in characterizing large
inter-beacon delays behavior instead of their probability of reception in realistic
mobility conditions, and we use the EVT method which up to our knowledge
have never been apply to the study of delays in networks.

3 Extreme Value Theory applied to delays in networks

3.1 A brief introduction to EVT

Extreme Value Theory has been developed during the 20th century and is now
a well established tool to study extreme deviations from the average of a mea-
sured phenomenon [4]. EVT is built around two main theorems: the Fisher-
Tippett-Gnedenko theorem and the Pickands-Balkema-de Haan theorem. As we
will detail below, the former is interested in the maximum value of a sequence of
variables, whereas the latter focuses on the values of a sequence which are above
a given threshold.

The Fisher-Tippett-Gnedenko theorem states that given {X1, ..., Xn} a se-
quence of independent and identically distributed (i.i.d.) variables, the distri-
bution of Mn = max{X1, ..., Xn} the variable representing the maximum value
of the sequence converges (for large n) toward one of these three distribution
families characterized by their CDF (Cumulative Distribution Function):

– Fréchet:
G(x) = e−( x−m

s )−α

, for x > m (1)



if the distribution has a heavy tail;
– Gumbel:

G(x) = e−e−
x−m

s (2)

if the distribution has an exponential tail;
– Weibull

G(x) = e−(−( x−m
s ))α , for x < m (3)

if the distribution has a finite maximum;

with m, s and α the distribution parameters and α > 0 in all cases.
The second theorem of EVT is the Pickands-Balkema-de Haan theorem. It

states that given {X1, ..., Xn} a sequence of i.i.d. variables, their conditional
distribution Fu(y) = P (X − u < y|X > u) converges toward a generalized
Pareto distribution for large u:

�
G(y) = 1− (1 + (y−m)γ

s )−
1
γ , if γ �= 0

G(y) = 1− e−
y−m

s , if γ = 0
(4)

To each theorem corresponds a method which can be applied to characterize
the distributions of extreme variation of a phenomenon. For the first theorem the
method is the Block Maxima (BM) method in which the sequence of measured
data is divided into blocks and the maximum of each block is computed. The
maxima are then fitted to one of the three previously mentioned distributions.
The second theorem of EVT corresponds to the Peak Over Threshold (POT)
method. In this method, a threshold value is chosen and the data points which are
above the threshold are collected and fitted to a generalized Pareto distribution.

3.2 Application to the study of inter-beacon delays

According to Fisher-Tippett-Gnedenko and the Pickands-Balkema-de Haan the-
orems, to apply EVT, the sequence of variables must be independent and identi-
cally distributed. The question then is: can it be the case for inter-beacon delays
in VANETs ?

Let’s first consider two nodes A and B. Can we assume that their inter-
beacon delays are identically distributed ? We would tend to answer yes if the
network environment and measure conditions are the same for both A and B:
same channel conditions, same node density, fair access to the medium, etc.
Because in this case the packet collisions and packet loss inducing inter-beacon
delays would be identically distributed. This leads us to believe that to apply
EVT on inter-beacon delays we have to be careful not to have great disparities in
the studied network like very dense and very sparse areas in the same network.
This statement will be verified in section 5.

Concerning the independence hypothesis, we can argue that it will not always
be true in the case of inter-beacon delays. If we consider the successive inter-
beacon delays between two nodes with bad channel conditions, they will tend
to be correlated (if the channel conditions are stable between two beacons).



Nevertheless, in the literature, we find many EVT application cases on data
sequences which seem correlated in time. For instance, in [4] it is mentioned that
it is possible to fit very accurately maximum wind speeds to an extreme value
distribution. Nevertheless, wind speed measures may appear to be temporally
correlated as studied in [12]. This shows that EVT may accurately model the
large values of a phenomenon even if the measures are partially correlated.

It is not clear from the literature, what are the cases where EVT can or
cannot be applied. In section 5, we will consider the i.i.d hypothesis true, try to
apply EVT and evaluate how the data fits the model (the fit can be assessed by
a statistical test as explained in section 3.4). We will then discuss in which cases
EVT is meaningful.

Due to the lack of space, in this paper, we consider only the application of
the Fisher-Tippett-Gnedenko theorem. The second theorem of EVT is left as a
future work.

3.3 Gathering and arranging data for EVT

The first element needed in order to apply EVT is a set of data which is a
realization of the sequence of random variables {X1, ..., Xn} mentioned in the
previous section. In our case it will be measures of inter-beacon delays obtained
from simulation. In this paper, we consider technique associated with the Fisher-
Tippett-Gnedenko theorem to process the data. This technique is known as
Block Maxima (BM). The principle of the BM technique is to divide the data
sequence into blocks and to take the maximum of each block. In the literature,
a block is often defined as a time interval [4]. According to the Fisher-Tippett-
Gnedenko theorem the sequence of block maxima must converge to an extreme
value distribution. The observed sequence of block maxima can thus be fitted
to one of the Gumbel, Weibull or Fréchet distributions. The type of distribution
the data will converge to is difficult to predict from the raw data. In section 5
we thus try to fit the data to the three considered distribution and discuss which
is the most accurate model for the worst-case inter-beacon delay.

3.4 Fitting technique and statistical test

In the previous subsection, we have described how to retrieve extreme value
data from the original data set. We then have to fit this extreme value data
to one of the extreme value distributions predicted by EVT and assess that
the fitted distribution is an acceptable representation of the data thanks to a
goodness-of-fit statistical test. In this paper we use the Maximum Likelihood
Estimation (MLE) technique to estimate the parameters of the distribution,
and the Pearson’s chi-squared test to assess the goodness-of-fit.

The MLE technique is based on the likelihood function, which is defined as
follows:

L(x, θ) =

n�

i=1

f(xi, θ) (5)



with x a vector of observed values, f the pdf we want to fit to the values and θ
the vector of parameters for the pdf.

The MLE method consists in finding a vector of parameters θ such that
L(x, θ) is maximized. In practice, for the problem to be tractable, it is actually
the logarithm of the likelihood which is maximized (the logarithm function pre-
serves the optimum). In this paper, in order to solve this optimization problem
we use the Nelder-Mead method [15].

Once the optimal distribution parameters are obtained, we have to verify
that the fitted distribution is actually a convincing representation for the data.
For that purpose, we use two tools: the Pearson chi-squared test and quantile-
quantile plots [10]. The former is a statistical test which assesses if there is a
statistical difference between an observed data frequency distribution and a the-
oretical distribution. We can note that this test statistic offers a quality indicator
for the fit which can be used in the case several distributions pass the chi-squared
test as in [18].

The quantile-quantile plot [10] (or Q-Q plot) is a tool which allows to graph-
ically compare two distributions. In our case, it consists in plotting the quantiles
of the collected data against the quantiles of the fitted distribution. If the two
distributions match, we should obtain the relation x = y. As described in [4] and
[10], the plot consists in a set of points (x, y) where x ∈ x1, ..., xn with x1...xn

the ordered set of data points (in increasing order) and y = F−1( i
n+1 ) with n

the number of data points, i = 1, ..., n and F−1 the inverse CDF of the fitted
distribution (the inverse CDF corresponds to the quantile function).

4 Simulation

In this section we present the simulation parameters and the obtained data sets
on which we apply EVT.

4.1 Simulation setup

We use the discrete-event simulator ns2 [1] to perform the simulations, the
main parameters are described in Table 1. The simulation setup is actually quite
classic, we thus focus on the description of the realistic mobility trace and how
we use it in the simulator.

The mobility trace we use in the simulations is a realistic micro-mobility trace
of the city of Cologne generated by Uppoor and Fiore [21]. The trace covers a 400
km2 area and a period of 24 hours and contains about 700000 vehicle travels. In
this paper we use the part of the trace available online which covers the 6am-8am
period. In Figure 1, we plot the instantaneous positions of the nodes at 8am. Each
point corresponds to a vehicle position in the coordinate system provided by the
trace (the coordinates are expressed in meters). The trace from 6am to 8am
contains more than 300000 different vehicles, it is thus not possible to simulate
the whole scenario in ns2. As we are interested in local communications (one-
hop broadcasts), we decide to divide the network and restrict the simulations to



Fig. 1: Snapshot of the Cologne data set

1000x1000m squares. The considered squares are highlighted in Figure 1. They
contain different types of road traffic (fluid traffic, traffic jams, etc) and different
vehicle densities. Even with this space division of the trace, the number of cars
in one square can reach several hundreds and, in some cases, the simulations are
either very long (dozens of hours) or not possible (the memory of the machine
used for the simulation is not sufficient). We thus divide again the trace, but this
time into time intervals. Instead of having 2 hours of simulated time we produce
subset traces of 200 seconds. Each of the time blocks also contains different
traffic conditions, since the traffic changes over time in the trace.

In each simulation, we monitor the inter-beacon delay as well as the emitter-
receiver distance. A simulation typically provides around 2.5 millions measure-
ments of inter-beacon delays (it varies depending on the number of cars present
during the simulation).

Parameter Value

Bitrate 6 Mbps
Transmission power 10 dBm
Simulation area 1000x1000 m
Beacon size 400 bytes
MAC and Phy 802.11p
Propagation model Nakagami m=1
Beacon frequency 10Hz

Table 1: Simulation parameters.



4.2 Obtained data sets

For the BM technique, we need to divide the data into blocks and retrieve the
maximum of each block. We choose to use three different ways of producing the
data which is then fitted to EVT distributions:

1. The first one consists in taking the maximum of each block of 200 seconds
(corresponding to one run of the simulator) for the whole trace duration and
all the highlighted squares in Figure 1.

2. In the second one we take only one square and one portion of time and re-run
the simulation for that particular square and block several times.

3. The third case is the same as the second but we change the order of the
beacon start of the nodes at each run (in the second case, the order of beacon
start dates is generated randomly once and the same order is repeated in
every simulation).

These different setups allow us to understand how disparities in the simula-
tion data affects the applicability of the BM method. Indeed, in the first case,
the data collected comes from various situations in terms of car traffic amount,
network density, etc. Whereas in the two last cases the blocks are more similar
to one another (in the second case there are more correlations between the runs
because the beacon start dates are the same).

For setup 1, we run simulations for 13 successive blocks of 200 seconds for
each of the 12 considered squares. We take the maximum inter-beacon delay for
each run and thus obtain 156 values. For setup 2 and 3 we run 300 simulation of
the considered block, so we obtain 300 maximum values. In the results presented
in the following sections, we first consider the receivers in a 500 meters range
from the sender, and we then observe the impact of the range on the maximum
delay distribution.

5 Results and discussion

In this section we present the results of the application of the EVT method
presented in section 3 to the data sets presented in section 4.2.

Figure 2a is a histogram representation of the maximum delays for the first
data set. First, we have to note that the measured maximum inter-beacon delays
are very large compared to the inter-beacon emission period (0.1 seconds). This
is due to two main reasons: the mobility and the broadcast scheme used. When
a node broadcasts its beacon using 802.11p, it cannot detect collisions. Indeed,
collisions happen at the level of the receivers and the sender does not know
which of its neighbors will actually receive the packet and does not wait for
acknowledgments in the case of broadcasting. Moreover, broadcast messages are
subject to the hidden terminal problem since the RTS/CTS messages are not
used for broadcast. These problems have been highlighted several times in the
literature [9] [19] [16]. In order to better comprehend the observed long delays,
let’s consider the following scenario: first, a node A periodically receives a beacon



(a) Histogram of the maximum inter-beacon
delays

(b) QQ-plot: data against Fréchet distribu-
tion

(c) QQ-plot: data against Gumbel distribu-
tion

(d) QQ-plot: data against Weibull distribu-
tion

Fig. 2: Results for all the squares and blocks and 500m range

from one of its neighbors B, then another node C moves in the neighborhood
of A and the beacons from C collide with those of B (in the case of the hidden
terminal problem the beacons may constantly collide), then C moves out of range
of A again. In this scenario, when C at last get out of the range of A, it puts
an end to the collisions with beacons from B. When A receives the first beacon
from B after C went out, the inter-beacon delay is approximately equal to the
duration of the presence of C in the range of A. In the cologne trace case, this
delay can be of the order of tens of seconds as we observe in the simulations
results.

Let’s now focus on the fitting of the data of the first data set to the different
extreme value distribution families. Figures 2b, 2c and 2d respectively represent
the QQ-plots of the fitted Fréchet, Gumbel and Weibull distributions (fitting has
been realized using the MLE method described in section 3). First we observe
that none of the distribution fits well to the data. Indeed, none of the graphs



show a x = y curve. Nevertheless, we remark that in the Fréchet case the curve
is piecewise linear which seems to indicate that there are linear relations between
the data quantiles and the fitted Fréchet distribution quantiles. In the case of
the fitted Weibull distribution, we observe that for x and y lesser than 60, the
points are approximately on the x = y curve.

(a) Histogram of the maximum inter-beacon
delays

(b) QQ-plot: data against Fréchet distribu-
tion

Fig. 3: Results for one square during 200 seconds

The fact that the QQ-plots are piecewise, seems to indicate that the actual
maximum inter-delay distribution is multi-modal. In fact, from the simulation
data, we observe that the different modes correspond to different areas (squares)
of the network and different time periods. We conclude that the EVT hypothesis
which states that the set of inter-beacon delays are identically distributed does
not hold for this data set and thus it is not possible to apply EVT. As a matter
of fact, the results of the chi-squared tests for all three EVT distributions for
this data set are negative (the tests are performed with a p = 0.05 significance
level).

Figures 3a and 3b respectively depict the frequency plot of the inter-beacon
delays with the expected frequencies from the fitted Fréchet distribution and
the QQ-plot of the data against the fitted distribution for the second data set.
As stated in section 4.2, this set consists of one square and one portion of 200
seconds run 300 times. The chosen square is defined as x ∈ [11000, 12000] and
y ∈ [11000, 12000] (cf. Figure 1) and the considered time block is from 1200 to
1400 seconds of the original trace. In this case, only the fitted Fréchet distribution
successfully passes the Pearson chi-squared test. The QQ-plot (Figure 3b) shows
that the fit is good for the lowest values and of a lower quality for the highest
values. We can also still discern at least two modes in the frequency distribution
in Figure 3a (also visible in Figure 3b, because the points lie over the x = y
curve for x < 15 and then under until approximately x = 18).



(a) Histogram of the maximum inter-beacon
delays

(b) QQ-plot: data against Fréchet distribu-
tion

Fig. 4: Results for one square during 200 seconds with random beacon start at
each run

Figures 4a and 4b present the results for the third simulation setup (the third
data set): it is the same as the previous (one square for one 200 second interval
run multiple times) but the nodes are starting their beacon emission at different
dates in each simulation. The starting dates are in fact uniformly distributed
in the first second of the simulation. For this data set, all three fitted EVT
distributions pass the chi-squared test. Figure 4a depicts the frequency plot
of the inter-beacon delays with the expected frequencies from the three EVT
distribution. In Figure 4b, we present only the QQ-plot for the fitted Fréchet
distribution because, even if all the distributions pass the chi-squared test, the
Fréchet distribution is the best fit (the one with the lowest test statistic). In this
QQ-plot, we observe, as in the last, that the fit is good for the lower values and
less good for higher values. Nevertheless, for this data set, we do not observe
multimodal tendency which seems to indicate that the identically distributed
hypothesis holds. We can add that for larger blocks (more than 200 seconds)
the fit is even better. Unfortunately we cannot present the results here due to
the lack of space. The discussion on the choice of the size of the block for the
BM method will thus be presented in future works. We can also note that the
provided probabilistic bound (corresponding to the fitted Fréchet distribution)
is more pessimistic in third data set case than in the second as can be seen
by comparing the distributions of Figures 3a and 4a. In the last case, larger
inter-beacon delays are more probable.

These results show that the Fréchet distribution is an adequate model for
the distribution of large inter-beacon delays in VANETs with realistic mobility.
Nevertheless, the distribution models accurately model the data only if the net-
work conditions are coherent in every locations of the network where measures
are taken (as shown by the failure of EVT for data set 1). It means for example,
that for different network densities different fitted Fréchet distributions apply.



Fig. 5: CDF for different beacon ranges

All the results we have presented so far are for a 500 meters range: we compute
the inter-beacon delays for receivers within 500 meters of the sender. Neverthe-
less, for most of critical safety applications, the range of beacon emission can
be much lower [5]. In Figure 5, we plot the CDFs of fitted Fréchet distribution
for different ranges. The CDF of the maximum delay expresses the probability
that the maximum delay is under a given value. It corresponds to the probabilis-
tic worst case delay. Thanks to this probabilistic worst case delay, the system
designer can state that, for example, “the probability that the maximum inter-
beacon delay in a 100 meters range from the sender is less than 5 seconds is close
to one”. Whether this probabilistic delay bound is sufficient or not depends on
the considered application. In Figure 5, we can notice that the CDF for higher
ranges is lower. This means that the probability that the maximum delay is over
a given value is higher for higher ranges. This can be explained by two phe-
nomena: the higher probability of packet loss at longer distances and the hidden
terminal problem as explained above in this section.

6 Conclusion and future works

In this paper, we study large inter-beacon delays in VANETs under realistic
mobility with IEEE 802.11p. Understanding such delays is useful to assert if
safety application requirements will be met. We show that large inter-beacon
delays are Fréchet distributed. This result can be used in order to evaluate
the performance of vehicular safety applications. We also show that the EVT
method used to reach that conclusion is applicable for the study of delays in
large scale wireless networks such as VANETs. Finally we confirm, in realistic
mobility conditions, the results [19] [16] which predict the bad performance of
IEEE 802.11 broadcast. In future works we plan to: apply the second theorem
of EVT to the study of delays in VANETs, evaluate the impact of the choice of
the block size (in the BM method) on the quality of the obtained distribution
(the goodness of fit), and compare the distribution obtained from various data
sets (mobility traces), to evaluate how general the EVT results are.
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