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[1] A new analytical solution of the flow equation has been developed to estimate the time
to reach a near-equilibrium state in mixed aquifers, i.e., having unconfined and confined
portions, following a large hydraulic perturbation. Near-equilibrium is defined as the time
for an initial aquifer perturbation to dissipate by an average 95% across the aquifer. The
new solution has been obtained by solving the flow system of a simplified conceptual model
of a mixed aquifer using Laplace transforms. The conceptual model is based on two
assumptions: (1) the groundwater flow can be reduced to a horizontal 1-D problem and
(2) the transmissivity, a function of the saturated thickness, is assumed constant on the
unconfined portion. This new solution depends on the storativity of the unconfined portion,
the lengths of the unconfined and confined portions and the transmissivity, assumed to be
constant and equal in both portions of the mixed aquifer. This solution was then tested and
validated against a numerical flow model, where the variations of the saturated thickness
and therefore variations of the transmissivity were either ignored, or properly modeled. The
agreement between the results from the new solution and those from the numerical model is
good, validating the use of this new solution to estimate the time to reach near-equilibrium
in mixed aquifers. This solution for mixed aquifers, as well as the solutions for a fully
confined or fully unconfined aquifer, has been used to estimate the time to reach near-
equilibrium in 13 large aquifers in the world. For those different aquifers, the time to reach
near-equilibrium ranges between 0.7 kyr to 2.4 � 107 kyr. These results suggest that the
present hydraulic heads in these aquifers are typically a mixture of responses induced from
current and past hydrologic conditions and thus climate conditions. For some aquifers, the
modern hydraulic heads may in fact depend upon hydrologic conditions resulting from
several past climate cycles.

Citation: Rousseau-Gueutin, P., A. J. Love, G. Vasseur, N. I. Robinson, C. T. Simmons, and G. de Marsily (2013), Time to reach
near-steady state in large aquifers, Water Resour. Res., 49, 6893–6908, doi:10.1002/wrcr.20534.

1. Introduction

[2] Estimating the current hydrodynamic state of aqui-
fers is crucial for modeling them accurately. One requires
knowledge of whether an aquifer system is in steady state
with respect to recharge and discharge or if it is in a tran-
sient state where recharge does not equal discharge.

[3] Changes in recharge, discharge, or hydraulic parame-
ters can result in the groundwater system being in disequili-
brium which will initiate some transient groundwater
behavior. Different mechanisms such as geologic processes
[Luo, 1994; Neuzil, 1995; Gonçalvès et al., 2004], or mor-
phologic and climatic variations [Love et al., 1994;
Gonçalvès et al., 2004; Jost et al., 2007] can lead to hydro-
dynamic changes. Transient behaviors of groundwater sys-
tems are related to a balance between the origin of the
perturbation and the resulting flows, which tend to dissipate
it. A major control of this dissipation is the aquifer diffusiv-
ity, the ratio of aquifer transmissivity to storativity.

[4] In aquitards with low permeability, long-term tran-
sient behavior can occur due to their low hydraulic diffu-
sivity [de Marsily, 1986; Neuzil, 1995]. Conversely, in
aquifers with higher hydraulic diffusivity, one would
expect the transient behavior to occur over shorter time
periods as they adjust more rapidly to any hydraulic pertur-
bation [Neuzil, 1995]. However, several studies, based on
numerical models, have examined the effect of past cli-
matic conditions on present-day hydrodynamics [Burdon,
1977; Lloyd and Farag, 1978; Dieng et al., 1990; Love
et al., 1994; de Vries, 1997; Coudrain et al., 2001; Hous-
ton and Hart, 2004; Jost et al., 2007; Sy and Besbes, 2008]
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showing that aquifers may present long-term transient
behaviors due to past-climatic variations.

[5] Transient behavior, such as occurs after any sudden
change of hydraulic conditions, results in a nearly exponen-
tial relaxation toward a new steady state. This exponential
relaxation is characterized by a time constant � , which is a
function of the storativity, transmissivity, and length of the
aquifer, as will be shown later, or as shown by Domenico
and Schwartz [1998]. After a hydraulic perturbation, such
as the cessation of recharge, the time to reach a near-steady
state or near-equilibrium (tNE) can be estimated from the
knowledge of � . The knowledge of tNE is important to
assess the hydrodynamic state of aquifers, i.e., steady state
versus transient, and therefore to model them appropriately.
Solution formulae exist to estimate the time constant for
fully confined [Domenico and Schwartz, 1998] or fully
unconfined aquifers [Reilly and Harbaugh, 2004]. We are
unaware of any solution formula that has been proposed to
estimate this time constant in mixed aquifers, i.e., hydro-
geologic systems which are partly unconfined and partly
confined. Although, the estimation of tNE is crucial to
assess the hydrodynamic state of aquifers, only a few stud-
ies have applied this methodology [York et al., 2002;
Schwartz et al., 2009]. These previous studies have exam-
ined small-size to medium-size aquifers (40–70 km) in
length. This study focuses on the estimation of tNE for large
mixed aquifers, i.e., with a size of several hundreds of
kilometers.

[6] The purpose of this work is to develop and test a new
time constant, �m, for mixed aquifers in order to assess their
hydrodynamic state as a simple first approximation avoid-
ing the use of numerical models, which could be time con-
suming. This new solution has been obtained using a
Laplace transform analysis of the equation describing flow
in a conceptual model of an unconfined-confined aquifer
submitted to an initial disequilibrium with a long-term dis-
turbance. This new formulation has been tested by compar-
ison with a numerical model whose geometry and
hydrogeological characteristics were loosely based on the
western margin of the Great Artesian Basin (GAB, Aus-
tralia). Here we use the western GAB purely as a demon-
stration aquifer to validate the new time constant solution
for mixed aquifers (other similar aquifers could also have
been chosen). Finally, tNE values of 13 worldwide large
aquifers have been estimated by using the solutions for
mixed, fully confined and fully unconfined aquifers,
depending on their characteristics.

2. Transient State

2.1. Transient State and Time Constant

[7] The GAB is one of the largest groundwater basins in
the world. It covers more than 20% of the Australian conti-
nent. It is a multilayer aquifer system, mainly composed of
sandstones, mudstones, and shales. The main aquifer, the
Cadna-owie and equivalents (later called J aquifer), is arte-
sian over a large portion of its extent [Habermehl, 1980;
Keppel et al., 2013; Love et al., 2013a, 2013b]. Two princi-
pal groundwater flow directions have been identified in the
main aquifer, one from northeast to southwest and one
from northwest to southeast, with a convergent area near
the Lake Eyre South (Figure 1). This present study is

loosely based on the western GAB where the groundwater
flow direction is mainly northwest to southeast. On the
western GAB, the main natural discharge processes are
springs and diffuse discharge [Love et al., 2013a] and the
only recharge process occurring today is ephemeral river
recharge [Love et al., 2013b]. These authors showed that
the western GAB is not in balance between recharge and
natural discharge, recharge being no more than 20% of the
natural discharge. The study by Love et al. [2013b] clearly
shows that, under the current climate, the western GAB is
in a transient state.

[8] In such an aquifer, after a hydraulic perturbation, the
hydraulic heads will slowly adjust to the new conditions
until a new equilibrium is approached. This adjustment can
be represented by an exponential function [Schwartz et al.,
2009] characterized by a time constant � which provides an
estimation of the time required to reach a near-equilibrium
[Riley, 1969; Domenico and Schwartz, 1998; Alley et al.,
2002].

[9] Transient states have been studied mainly in cases of
aquitard compaction after modification of the hydraulic
heads in the adjacent aquifers [Neuzil, 1986; Leake, 1990;
Neuzil, 1995]. In this situation, the time constant has been
derived from Terzaghi’s compaction theory and represents
the time required for reaching more than 90% of the final
consolidation [Riley, 1969; Burbey, 2001]. This is particu-
larly important for aquitards submitted to mechanical com-
paction and where overpressuring may eventually occurs
due to incomplete compaction. When such an overpres-
sured aquitard is connected through its top and bottom
boundaries to aquifer beds, its hydraulic pressure relaxes
toward equilibrium through vertical fluid flow, with a time
constant given by [Riley, 1969; Leake, 1990; Burbey,
2001]:

�a ¼
Ss b=2ð Þ2

Kv
ð1Þ

where �a is the time constant for an aquitard (T), Ss is the
specific storage (L�1), b is the thickness of the aquitard (L),
and Kv is the vertical permeability (L T�1). In such low per-
meability aquitards, the time constant may be very large
(on the order of 106 years) [Neuzil, 1986] and remnant
abnormal pressures may persist for a long time after the
end of the initial perturbation.

[10] On the contrary, aquifers characterized by a perme-
ability much larger than that of aquitards are unlikely to
present very long-term transient behaviors [Neuzil, 1986].
Nevertheless, some long-term transient behaviors (on the
order of tens of thousands of years) have been identified in
several aquifers [e.g., Burdon, 1977; Lloyd and Farag,
1978; Houston and Hart, 2004; Jost et al., 2007].

[11] Analytical expressions of these time constants for
confined and unconfined aquifers have been proposed by
Domenico and Schwartz [1998] and Reilly and Harbaugh
[2004], respectively. Domenico and Schwartz [1998]
defined the time constant for a homogeneous, isotropic and
fully confined aquifer with a purely horizontal flow:

�c ¼
SsL2

Kh
¼ SL2

T
ð2Þ
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where �c is the time constant for a confined aquifer (T), L
is the aquifer length (L), Kh is the horizontal hydraulic con-
ductivity (L T�1), and Ss is the specific storage (L�1). Mul-
tiplying these two quantities by the thickness of the
(completely saturated) aquifer layer, one obtains the second
equality of equation (2), where S is the storativity and T is
the transmissivity (L2 T�1).

[12] For a homogeneous, isotropic and fully unconfined aq-
uifer with a horizontal flow, a quite similar formula has been
proposed [Reilly and Harbaugh, 2004; Urbano et al., 2004]:

�u ¼
SyL2

T
ð3Þ

where �u is the time constant for an unconfined aquifer (T),
T is an average transmissivity (see below), and Sy is the
specific yield.

[13] Although equations (2) and (3) for the time con-
stants of both confined and unconfined aquifers look quite
similar, major differences in the hydraulic characteristics
must be pointed out. In the case of an unconfined aquifer,
the storage corresponds mainly to a variation on the level
of the water table and the storage capacity is characterized
by the specific yield. In the case of the confined aquifer,
the storage capacity is mainly supplied by the possibility
of porosity variation and water compressibility by some
quasielastic deformation phenomena, the amplitude of
which is very limited. Therefore, the specific yield Sy of
an unconfined aquifer is generally much larger than the

storativity S of a confined aquifer. Another important dif-
ference is that for unconfined aquifers, the transmissivity
is a function of the saturated thickness of the aquifer
whereas for confined aquifers, the transmissivity can be
assumed independent of the pressure (or hydraulic head).
As a consequence, in the latter case, the fluid pressure (or
hydraulic head) satisfies a diffusion-type linear partial dif-
ference equation. Conversely, in the unconfined case, the
partial equation becomes highly nonlinear [de Marsily,
1986].

[14] A common feature of equations (2) and (3) is that
the length of the aquifer comes with a power of two. Thus
for very large aquifers (hundreds of kilometers), long-term
transient behaviors are likely to exist. However, this is less
likely for confined aquifers than unconfined aquifers, due
to the difference of several orders of magnitude in storativity
between those two types of aquifers. As a result � c � �u for
aquifers of the same length L and characteristics.

[15] In the following, we will show how an aquifer
(belonging to three types: either confined, unconfined, or
mixed), once submitted to a sudden change of its recharge
conditions, returns to a new equilibrium. A model of a sub-
horizontal aquifer layer of length L, which applies to the
three cases (Figure 2), is defined in section 2.2. The relaxa-
tion toward equilibrium is characterized by tNE, defined
here as the time required for the initial hydraulic heads to
be dissipated by 95% on average across the aquifer. For
phenomena decreasing exponentially with a decay factor as
exp �t=�ð Þ; tNE ¼ 3� since exp �3ð Þ � 0:05.

Figure 1. Hydrogeologic characteristics (unconfined-confined extent, potentiometric levels, general-
ized groundwater flow) of the western Great Artesian Basin used as an example for the study of large
mixed aquifers.
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[16] Although an average dissipation across the aquifer
and a time of exp (�3) have been used as equivalents, in
general this is an approximation. This is in part due to the
consideration of real aquifers, initial perturbations are vari-
able and different effects of variations in ratios of confined
to unconfined aquifer lengths. Even with the 1-D model
and analytical results proposed below for the complete
range of mixed aquifer lengths from confined through to
unconfined, this equivalence is not exact, but generally to
within 95 6 1.5%. Of course by modifying the time such
that 3 is now 3 6 �, the 95% target can be achieved, but
this makes the criteria problem specific and defeats the aim
of a time constant, �m, in terms of aquifer properties and a
simple exponential, exp (�3).

2.2. Time Constant �c and tNE for a Confined Aquifer

[17] The case of a confined aquifer is a classical one
[Palciauskas and Domenico, 1989]. For an homogeneous
layer such as illustrated in Figure 2, it is convenient to use
the Dupuit assumption [Bear, 1972; de Marsily, 1986]
which states that for long aquifers the vertical component
of the velocity can be neglected and the problem reduces to
a 1-D one, along the horizontal distance x, where the hy-
draulic potential satisfies the diffusion equation:

D
@2�

@x2
¼ @�
@t

ð4Þ

[18] Here D is the hydraulic diffusivity defined by
D ¼ K=Ss ¼ T=S. The boundary conditions are �¼ h0 at
x¼ 0 and @�=@x ¼ 0 at x¼L. In the absence of recharge, the
equilibrium state is one where the potential is constant and equal
to h0 for any x value. The assumed initial state is that, at t¼ 0, a

large-scale disturbance occupies the whole aquifer space and
may be described by a linear variation of the potential with x:

� x; t ¼ 0ð Þ ¼ h0 1þ � x

L

� �
ð5Þ

[19] Note that, since the boundary condition at x¼L is
one of zero flow, the problem is exactly similar to that of an
aquifer of length 2 L, with imposed potential at both ends,
and with a triangular-shaped initial value (� x; t ¼ 0ð Þ ¼
h0 1þ �x=Lð Þ for x� L and � x; t ¼ 0ð Þ ¼ h0 1þð
� 2L� xð Þ=LÞ for x� L). The relaxation of � from this initial
state toward equilibrium � x; t ¼ 1ð Þ can be expressed
mathematically as [Carslaw and Jaeger, 1959, p. 97]:

�c x; tð Þ ¼ h0 þ 8� h0

X1
n¼1

�1ð Þn�1

2n� 1ð Þ2�2
sin

2n� 1ð Þ�x

2L

� �

exp
� 2n� 1ð Þ2�2tD

4L2

 !
ð6Þ

[20] This relaxation is expressed as a series of terms
decreasing exponentially as a function of time. Each term
of this series corresponds to the relaxation of a specific
mode n n ¼ 1; 2; . . .ð Þ each one of them corresponding to
a Fourier component (as a function of x) of the initial dis-
turbance. Since the initial disturbance has a dominating
large wavelength (i.e., its first harmonic for n¼ 1 is the
largest), the first term of this series account for more than
80% even at the initial disturbance. The contribution of the
next terms n ¼ 2; 3 . . .ð Þ of the series vanishes very quickly
as a function of time and harmonic rank (n). It is therefore
justified to focus on the first term of the series, that is to say
to neglect those for n� 2 and to write:

�c x; tð Þ ¼ h0 þ
8�h0

�2
exp

��2tD

4L2

� �
sin

�x

2L

� �
ð7Þ

[21] This is the justification of the time constant �c given in
equation (2), to within a factor 4/�2. Since exp �3ð Þ � 0:05,
the time for returning to steady state (equilibrium) at 95% is,
for any x, given by:

tNE ¼ 3� 4L2

D�2
¼ 3� 4

�2
�c ð8Þ

[22] In summary, it appears that, for a confined aquifer
submitted to the initial and boundary conditions used in our
model, tNE � 1:22� c. When examining the overall dissipa-
tion percentages, they are 96% at x¼L, 93.7% at x¼ 0,
95% at x¼ 0.7 L, and with an average of 94.5%. These per-
centages show that although the 95% average and exp (�3)
do not produce equivalence, nevertheless they are a good
approximation to each other.

2.3. Time Constant �u and tNE for an Unconfined
Aquifer

[23] Modeling of an unconfined aquifer becomes highly
nonlinear due to handling of its free, top surface. A stand-
ard analytical model is the Boussinesq equation [Bear,
1972]. A 1-D linearization of this equation is identical to

Figure 2. Conceptual model with initial and boundary
conditions used in the analytical and numerical approaches.
The initial condition varies between h¼ 200 m at x¼L and
h¼ 20 m at x¼ 0. For the unconfined case, h¼ 0 corre-
sponds to the bottom of the aquifer, therefore the saturated
thickness varies from 200 to 20 m at t¼ 0 and equals 20 m
at equilibrium (t¼1) so that the transmissivity varies in
space and time. Whereas for the confined case (represented
here) h¼ 0 m coincides with the top of the aquifer, there-
fore the saturated thickness is constant as is the transmis-
sivity. For the mixed aquifer analysis, L is divided in Lc

and Lu, and the two conditions at the interface are continu-
ous potential and flux.
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equation (4) with � representing the height to the free sur-
face from a fixed base and Dc being replaced by Du. The
solution equation (6) for the same perturbation and bound-
ary conditions is then a solution for the unconfined aquifer
as well. However, in order to handle the nonlinear situation,
numerical estimations are necessary. We therefore made
groundwater flow calculations using the numerical code
MODFLOW96 [McDonald and Harbaugh, 1988; Har-
baugh and McDonald, 1996] and the software Processing
MODFLOW [Chiang and Kinzelbach, 1998]. This code is
a three-dimensional finite difference code capable of simu-
lating transient flow in porous media. The relevant govern-
ing equations and the mathematical basis for MODFLOW96
are discussed in McDonald and Harbaugh [1988] and
Harbaugh and McDonald [1996].

[24] A homogeneous and isotropic aquifer is simulated
as a 2-D cross section. For the unconfined case of interest
here, the saturated thickness varies in the range from 200 m
to 20 m (Figure 2). The same boundary conditions as for
the confined case have been used: on the right side of the
model (Figure 2), a head of 20 m is prescribed and a zero
flux is prescribed on the left side. The initial conditions are
those presented above and illustrated in Figure 2. The hy-
draulic perturbation simulated here is a cessation of the
recharge producing a decay of the hydraulic heads with
time. The final equilibrium state results in an homogeneous
20 m saturated thickness imposed by the right-hand side
Dirichlet condition (h0). Generic hydraulic conductivity
and specific yield values for sandstones used in this model
are, respectively, 1 � 10�6 m s�1 and 0.25 [Domenico and
Schwartz, 1998].

[25] As previously mentioned, tNE is defined as the time
required for 95% of the perturbation to be dissipated, and
more particularly when the whole aquifer is in near-equilib-
rium, then for all x; hx;t � h0 � 0:05x hx;0 � h0

� �
. As

expected, results from the numerical models show that tNE

is not the same everywhere in the aquifer, the portion near
the constant head boundary condition reaches near-equilib-
rium slightly more slowly. The variation of tNE as function
of x depends on the initial conditions, as well as on the
boundary conditions of the model.

[26] In �u ¼ SyL2=T (equation (3)), the transmissivity is
assumed constant whereas this is not the case in our numer-
ical model, i.e., the transmissivity varies linearly with the
aquifer saturated thickness (i.e., the hydraulic head) in
space and time. It is then important to assess the relation
between tNE and �u for different transmissivities [see e.g.,
de Marsily, 1986]:

[27] 1. Tmax is defined as the mean transmissivity for the

initial conditions, Tmax ¼
T

t0
x0
þT

t0
xL

2
[28] 2. Tmin is defined as the mean transmissivity for the

final conditions, Tmin ¼
T

tf
x0
þT

tf
xL

2
[29] 3. Tav is defined as the arithmetic average transmis-

sivity, Tav ¼
T

t0
x0
þT

t0
xL
þT

tf
x0
þT

tf
xL

4
[30] 4. Tgeo is defined as the geometric average transmis-

sivity, Tgeo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tt0

x0 � Tt0
xL � T

tf
x0 � T

tf
xL

4

q
[31] 5. Thar is defined as the harmonic average transmis-

sivity, Thar ¼ 4
1

T
t0
x0

þ 1

T
t0
xL

þ 1

T
tf
x0

þ 1

T
tf
xL

where Tt0
x0

is the transmissivity at

x¼ 0 and t ¼ 0; Tt0
xL

is the transmissivity at x¼L and t ¼ 0;

T
tf
x0 is the transmissivity at x¼ 0 and t¼ final, and T

tf
xL is the

transmissivity at x¼ L and t¼ final. Note that in our case
since �c¼ h0 at x¼ 0 the transmissivity at x¼ 0 is constant
over time, therefore Tt0

x0
¼ T

tf
x0 .

[32] The comparison of tNE and �u for different transmis-
sivities shows that depending on what transmissivity is used,
tNE can be estimated from �u using a correction factor varying
between 0.7 and 3.6 (Table 1). Although, the order of magni-
tude given by tNE� �u is quite correct, the range of corrective
factors highlights the difficulty in prescribing transmissivity
values in unconfined aquifers. Moreover, often in case studies
only a few transmissivity values are available and then the
calculated average may be different from what has been pre-
sented here. Therefore, the analytically determined time con-
stants in such systems are best viewed as indicative or
relative values rather than absolute or precise values.

3. Time Constant for a Mixed Aquifer

[33] In the previous section, the time constants applica-
ble to homogeneous aquifers with a single hydrodynamical
behavior (i.e., confined or unconfined) have been consid-
ered. It remains to study the case of a mixed aquifer, i.e.,
unconfined in one part (and possibly fed by rainfall) which
becomes confined by an upper aquitard in the other part.
This mixed aquifer juxtaposition and the situation where
recharge of the unconfined part stops suddenly are typical
of many hydrogeological situations. This occurs, for exam-
ple, in the GAB.

[34] As previously stated, major differences between the
confined part of the aquifer and its unconfined part lie in their
different storage capacities and also in the fact that, for an
unconfined aquifer, the diffusion of hydraulic head is submit-
ted to nonlinear effects because the transmissivity strongly
depends on the head itself. However, in order to obtain an an-
alytical solution, a linearized approach is required.

[35] Therefore, two modeling approaches, analytical and
numerical, have been developed for estimating the time con-
stant in a mixed aquifer. The analytical approach provides
two new formulae for the time constant of a mixed aquifer.
In this approach, the differences between the confined and
the unconfined parts of the aquifer are simplified and re-
stricted to only differences in storage coefficients. The sec-
ond approach is a numerical one, which fully takes into
account the nonlinearities occurring in the problem, and is
then applied in order to validate the new analytical formulae.

3.1. Analytical Approach

[36] In the conceptual model, illustrated in Figure 2, an
aquifer with two continuous parts is considered, one

Table 1. Comparison of �u for Five Different Transmissivities
(Maximal, Minimal, Arithmetic Average, Geometric Average, and
Harmonic Average) and tNE

Transmissivity tNE/�u

Tmax 3.6
Tmin 0.7
Tav 2.1
Tgeo 1.2
Thar 0.8
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confined of length Lc and the other unconfined of length Lu.
Both portions are assumed to satisfy a linear diffusion equa-
tion, the saturated thickness and transmissivity are thus con-
stant in the unconfined part as well as in the confined part.
The important feature characterizing the unconfined part is
that its storage coefficient (Su) is normally much larger by a
factor of some 103 than that of the confined part (Sc). A fur-
ther assumption must be made in order to develop the analyt-
ical solution. It is assumed that the variation in hydraulic
heads only depends on the horizontal distance x. The lateral
dimension perpendicular to the x-z plane of Figure 2 has
been neglected by performing the analysis in cross section.
The z-dimension may be neglected based on the Dupuit
assumption [de Marsily, 1986], which states that for a long
and relatively thin aquifer, the vertical component of the ve-
locity can be neglected. These simplifications allow us to
reduce the groundwater flow problem to 1D.

[37] With these two assumptions, the following two dif-
fusion equations are obtained, where subscript u indicates
the parameters for the unconfined portion and c for the con-
fined one:

unconfined portion; Lc < x < L : Du
@2�u

@x2
¼ @�u

@t
; where Du ¼

Tu

Su

ð9Þ

confined portion; 0 < x < Lc : Dc
@2�c

@x2
¼ @�c

@t
; where Dc ¼

Tc

Sc

ð10Þ

where, in the confined and unconfined portion, Du,c are
the diffusivity coefficients (L2 T�1), �u,c are the hydraulic
heads (L), x is the distance in the x direction from the con-
fined end (L), and t is the time (T). The parameter f
defined as f ¼ Sc=Su is used to characterize the ratio
between the specific storage of both aquifer portions. The
specific storage of the unconfined aquifer (roughly the
drainage porosity, or specific yield) is much larger than
that of the confined one (depending on the volumetric
compressibility). Therefore Su 	 Sc and f � 1 (typically
10�3).

[38] The aquifers are assumed to be homogeneous and
isotropic. Then, as the saturated thickness of the unconfined
portion is assumed constant, i.e., groundwater flow
described by a linear diffusion equation, the transmissivity
of the aquifer is constant in space and time. Therefore, Tu

equals Tc and Du=Dc ¼ f .
[39] As in sections 2.2 and 2.3, the initial conditions for

the hydraulic heads are:

� x; t ¼ 0ð Þ ¼ h0 1þ � x

L

� �
ð11Þ

where h0 is the prescribed hydraulic head at x¼ 0 (Figure
2). The boundary conditions are a prescribed head
�c 0; tð Þ ¼ h0ð Þ on the right side and a zero flux (i.e.,
@�u

@x L; tð Þ ¼ 0) on the left one. At the interface between the
unconfined and confined part, the hydraulic potential and
flux are continuous.

[40] An analytical solution to this problem has been
obtained by using the Laplace transform of the diffusion

equations. The solution of the problem is developed in
Appendix A: � is defined in both compartment as:

�c ¼ h0

þ 2�h0

ffiffiffi
f

p X1
n¼1

exp �L2�2
nt

Dc

� �
sin �n

x
L

� �
sin �nffiffi

f
p Lu

L

� �	 


�2
n 1� Lc

L 1� fð Þcos 2 �nffiffi
f
p Lu

L

� �	 

cos �n

Lc

L

� �
ð12Þ

�u ¼ h0 þ 2�h0f
X1
n¼1

exp �L2�2
nt

Dc

� �
cos �nffiffi

f
p 1� x

L

� �� �

�2
n 1� Lc

L 1� fð Þcos 2 �nffiffi
f
p Lc

L

� �	 
 ð13Þ

where �n are the positive solutions of the equation in � :

D �ð Þ ¼
ffiffiffi
f

p
cos

Lu�

L
ffiffiffi
f
p

� �
cos

Lc�

L

� �
� sin

Lu�

L
ffiffiffi
f
p

� �
sin

Lc�

L

� �
¼ 0

ð14Þ

[41] The successive root values �1;2; ... can be found
numerically using Newton’s method. Different approxima-
tions to the dominant, first and also smallest root can be
found as discussed in Appendix A. One approximation that
is based on the fact that f is small will be used because it
covers the values of f and Lc/L for the aquifers considered
in this paper. Another that is based on a small � expansion
of D (�) will be presented for completeness to cover other
possible values of f and Lc/L.

[42] In Appendix A, it is shown that, for small values of
f—the ratio of Sc/Su—the first and smallest root �1 is very
well approximated by �10:

�10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fL2

Lu Lc þ Lu

2

� �
s

ð15Þ

so that the time variation of the potential can be approxi-
mated by exp �t=�mð Þ with �m given by:

�m ¼
DcL2

�2
10

¼ DcL2

fL2

Lu LcþLu
2ð Þ
¼ SuLu

T
Lc þ

Lu

2

� �
ð16Þ

[43] Therefore in the case of a mixed aquifer using our
definition of tNE, we can evaluate tNE, the time for returning
to steady state at 95% by:

tNE �
3SuLu

T
Lc þ

Lu

2

� �
ð17Þ

[44] This is our basic formula applied in this paper for a
mixed aquifer. Its singular aspect is that the storativity of
the confined aquifer Sc disappears, whereas the effective
length (by comparison with equations (2) and (3) for single
aquifers) is something like a harmonic average of the
lengths of the unconfined portion (Lu) and the confined por-
tion (Lc), this latter length being ‘‘corrected’’ by half Lu.
However, it is clear that this relation breaks down for
Lu¼ 0: the time constant derived from equation (16) is
then 0. In fact for Lu¼ 0, the aquifer becomes
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homogeneous and the relevant time constant is therefore
given by equation (8).

[45] As developed in Appendix A, the expressions (15)
and (16) are derived from an approximation which is valid
for small f values and nonvanishing Lu values (ratio
f =�u � 0:3, where �u ¼ Lu=L). This is the case for situa-
tions studied in the present work but for extension of the
work toward more flexible conditions on f and Lu, it is nec-
essary to obtain better approximations of the root �1. These
improved solutions are developed in Appendix A, where
solutions displaying no singularity near Lu¼ 0 and remain-
ing very precise with respect to the definition of �1 are pro-
posed. One of these solutions of sufficient accuracy is :

�12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � 4a4

p� �
a4

vuut
ð18Þ

where a2 and a4 are given by

a2 ¼
L2

u þ 2LuLc þ fL2
c

L2
ð19Þ

a4 ¼
L4

u þ 4L3
uLc þ 6fL2

uL2
c þ 4fLuL3

c þ f 2L4
c

L4
ð20Þ

[46] The scaling time constant associated with �12 is:

�m2 ¼
L2

Dc�
2
12

¼ a4L2

a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � 4a4

p� �
Du

ð21Þ

[47] Besides the mathematical approximation of equa-
tion (17), many physical assumptions—such as the confu-
sion between an unconfined aquifer and a confined one
with large storativity—have been used to derive this for-
mula. It is thus important to assess its robustness using
comparisons with numerical computations.

[48] The effect of extra dimensionality (i.e., 2-D or 3-D
flow) on the time constant is complex and depends on the
flow regime, which is controlled by factors including aqui-
fer geometry and boundary conditions, and also heteroge-
neity and anisotropy, etc. Indeed, it appears that when
flows are convergent, then the time constant is expected to
be larger than that given by the 1-D case. Conversely,
when the flows are divergent, the time constant is
expected to be smaller than that given by the 1-D case.
These conclusions have been drawn from preliminary 2-D
calculations in Cartesian coordinates following the analy-
sis of Carslaw and Jaeger [1959, pp. 173–175]. They
have also been verified with further calculations using cy-
lindrical coordinates where the flow is either directed to-
ward the center (convergent) or outward (divergent).
Therefore, the effect of spatial dimensionality on the value
of the time constant depends on both the geometry of the
aquifer and more importantly on the position and type of
the boundary conditions. 2-D or 3-D effects may therefore
result in either an increase of the time constant for conver-
gent flow or a decrease of the time constant for divergent
flow. In the case of a complex aquifer, the time constant
can be seen as an integrative property which characterizes
its transient behavior. The proposed 1-D approximation is

only a simple and preliminary guide to the description of
transient aquifer behavior. More detailed analyses and
modeling will usually be required for a rigorous assess-
ment of the transient behavior of aquifer systems, espe-
cially those with complex flows, geometries, boundary
conditions, and heterogeneity.

3.2. Numerical Approach

[49] The purpose of the numerical approach was to ver-
ify the validity of the assumptions used for obtaining the
time constant formula (equation (16)) by comparison with
the results of a numerical model taking into account or not
the nonlinearities, i.e., variations of the saturated thickness
in the unconfined portion. The conceptual model is a homo-
geneous single layer with both unconfined and confined
portions and a discharge area (Figure 3).

[50] This numerical model is loosely based on the geo-
metrical and hydrogeological characteristics of the western
GAB. The geology and hydrogeology of the J aquifer are
however very complex (faults, leakages, etc.)[Keppel et al.,
2013]. The purpose of this numerical model is not to repre-
sent the exact geology or hydrogeology of the J aquifer nor
is it to simulate water fluxes. Here we use its broad charac-
teristics in a general way to give some reality to the numer-
ical model used, such as the size of the groundwater
system. To do this we use the approximate geometry
(length and thickness) of the groundwater flow system
along the western GAB with the average hydraulic charac-
teristics of the J aquifer [Keppel et al., 2013; Love et al.,
2013a, 2013b].

[51] On the western GAB, the J aquifer has a mean thick-
ness of 200 m. It is partly confined by a clay layer. The
water flows over a distance of 500 km, from the outcrops
(�75 km long) of the J aquifer on the western margin to a
discharge area near the Lake Eyre (Figure 1). The grid
spacing across the model domain was Dx¼ 1 km, the y
dimension is neglected by performing a cross-section
analysis. A grid convergence test was performed with a
spatial discretization of Dx¼ 0.5 km. The results obtained
were the same, validating the accuracy of the coarse mesh,
which has been used for all the simulations. The recharge
area (75 km on the western part of the model) was modeled
as an unconfined portion of the aquifer. The discharge area
was modeled by a constant hydraulic head condition

Figure 3. Two-dimensional cross section of the concep-
tual model of a mixed aquifer studied by the numerical
approach. The initial and boundary conditions are the same
as those used in the analytical approach. In this model, T
varies on the unconfined portion as a function of h (x,t).
The unconfined portion at the initial state is 75 km long
and the discharge area covers a distance of 50 km.
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prescribed at the right side of the model. A constant head
of 20 m above the top of the layer, similar to measurements
near Lake Eyre (discharge area, Figure 1), was used. The
top and bottom of the model were assigned no flow bound-
ary conditions (Figure 3), representing impermeable confin-
ing layers above and below the J aquifer. Hydraulic
parameters for the GAB are available [Welsh, 2007], the
range and the mean values, which were used in the numeri-
cal model, are given in Table 2.

[52] In this study, the transient state is caused by a
change in the boundary condition of the unconfined portion
(left side of the model), assumed to be related to a variation
of recharge due to climate change. Indeed, the late Quater-
nary period has undergone several large glacial-interglacial
changes with 100 kyr cycles [Imbrie et al., 1992]. The pres-
ent interglacial period started at the Pleistocene-Holocene
transition (10 kyr ago). It is assumed that the Pleistocene in
Australia was wetter than present [Kershaw and Nanson,
1993]. The climate scenario used in this study assumes that
before the Pleistocene-Holocene transition, the recharge
was sufficiently important to maintain a high water level in
the unconfined part of the conceptual model (Figure 3). At
the end of the Pleistocene, the groundwater system is
assumed to be in steady state, with a water level close to
the ground surface on the unconfined portion of the model.
During the whole Holocene, it is assumed that no recharge
occurs at all. As a result, the change in boundary conditions
is represented by a cessation of recharge at the Pleistocene-
Holocene transition, i.e., from 10 kyr BP. Thus, an initial
steady state with a high water level in the unconfined part
was used as initial hydraulic heads for the transient simula-
tions. Transient simulations were run with 3760 time steps
to cover a simulation time over 1.9 � 106 years. The time-
step size is not the same throughout the simulation. At the
beginning of the simulation, the time step equals 1 year and
increases nonregularly (different stress periods) to time
steps of 1.0 � 105 years at the end of the simulation. The
groundwater flow equations have been solved with the
code MODFLOW using an implicit scheme (Strongly
Implicit Procedure solver) [Stone, 1968; McDonald and
Harbaugh, 1988].

3.3. Comparison Between Analytical and Numerical
Approaches

[53] A first test was to compare the results of the analyti-
cal mixed aquifer solution with the mixed numerical model
(MODFLOW) run with the assumption that the transmis-
sivity is constant and does not depend on the saturated
thickness of the aquifer, i.e., the hydraulic head. The results
(not shown) give almost identical results, thus showing that
the exact analytical solution is valid.

[54] We then ran MODFLOW with the transmissivity as
a linear function of the saturated thickness, to represent a

real unconfined aquifer. The analytical mixed aquifer solu-
tion is of course used with a constant transmissivity assump-
tion. We thus measure the error made with the analytical
solution when neglecting the transmissivity variation. The
results obtained from the numerical model and from the
new time constant for mixed aquifer for different hydraulic
parameters are compared in Figure 4. For the calculations
of the time constant, 87 and 363 km were used, respectively,
for the lengths of the unconfined and confined parts (Lu, Lc).
Those lengths correspond to the extent of the unconfined
and confined parts of the near-equilibrium state, i.e., at tNE.
Moreover, for the calculation of the time constant, only one
value of transmissivity was available and this was used.

[55] This comparison between tNE and 3�m (Figure 4)
shows good agreement (mean error less than 10%) for dif-
ferent values of hydraulic conductivity, specific yield and
specific storage. This agreement demonstrates the validity
of using the analytical time constant for mixed aquifers
(equation (16)) to estimate the time to reach a near-equilib-
rium in such aquifers, i.e., tNE¼ 3�m.

[56] For the mixed model, the results are not intended to
simulate actual conditions of the western portion of the
GAB but to provide evidence that at present this kind of
system is expected to be unsteady and displays a transient
behavior since 3�m (52 kyr for the reference parameters) is
larger than the time since the last hydrodynamic perturba-
tion occurred (10 kyr). Moreover, these results suggest that
high modern hydraulic heads can be explained by recharge
events that occurred 10 kyr ago and possibly even older cli-
mate conditions since the perturbation is dissipated in more
than 50 kyr. This result suggests that large aquifers with an

Table 2. Hydrodynamic Parameter Values Used in the
Calculations (From Welsh [2007])

Parameters Ref Min Max

K (m s�1) 8.1 � 10�5 8.1 � 10�8 8.1 � 10�2

Ss (m�1) 5.5 � 10�6 5.5 � 10�8 5.5 � 10�4

Sy 0.25 0.05 0.25

Figure 4. Comparison between tNE obtained from the nu-
merical approach and �m tNE ¼ 3�mð Þ obtained with equa-
tion (17). The reference calculation has been done using
the GAB hydrodynamic parameters [Welsh, 2007]. Differ-
ent values of hydraulic conductivity, specific storage and
specific yield have been used to validate the solution for-
mula of �m for a broad range of parameters.
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unconfined part are likely not in equilibrium with the mod-
ern climate and that at least a part of the present hydraulic
heads are resulting from a long-term transient behavior
inherited from wetter palaeoclimates. The time to reach
near-steady state for this kind of aquifer suggests that the
current hydraulic heads are the result of both current and
past hydrodynamic conditions.

[57] In this present study, only the effect of a recharge
cessation was investigated as perturbation of the hydrody-
namic boundary conditions. Of course, other processes
such as erosion, sedimentation, coastline modification, or
eustatic-level change lead to a change of the discharge
level [Custodio, 2002] and can also lead to and contribute
to long-term transient effects. Moreover, only the case of a

one-side hydraulic perturbation has been investigated.
Although a particular perturbation (linear) has been exem-
plified, it is not expected that other types of large wave-
length initial conditions would produce significantly
different large time analytical behavior (see Appendix A).

4. Estimation of tNE for Several Large Aquifers
in the World

[58] Some theoretical calculations of � were performed
for different length (L, in m) and hydraulic diffusivity (Dh,
m2 s�1) values (Figure 5). The following equation was
used:

Figure 5. Time constant in years (logarithmic scale) as a function of the log of the hydraulic diffusivity
(m2 s�1) and the log of the aquifer length (m). The last climate transition refers to the Pleistocene-
Holocene transition, 10 kyr ago. The climate cyclicity refers to the mean time period of the climate cycle,
i.e., 100 kyr since 0.9 Ma. The subscript u means that the aquifer is a fully unconfined aquifer and then
equation (3) has been used to estimate the time constant. The subscript c means confined and equation (8)
has been used to calculate the time constant. Finally, the subscript m means mixed and then the new solu-
tion (equation (17)) has been used to estimate the time constant. Aquifer abbreviations are: HA: Hungarian
Aquifer, NCP: North China Plain, OA: Ogallala Aquifer, WSB: Western Siberia Basin, AB: Aquitaine
Basin, GAB-e: Great Artesian Basin east, GAB-w: Great Artesian Basin west, GA: Guarani Aquifer,
NSA: Nubian Sandstone Aquifer, PB-A: Albian in Paris Basin, and PB-D: Dogger in Paris Basin.
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� ¼ L2

Dh
ð22Þ

[59] Depending on whether the aquifer is confined or
unconfined, Dh is defined as T/S or T/Sy, respectively. The
purpose of Figure 5 is to give some guidelines about the
large values of the time to near-equilibrium. In Figure 5,
four aquifer behaviors can be characterized as a function of
the value of their times to near-equilibrium:

[60] 1. short response time aquifers with a � < 1 yr, with
a possible transient behavior resulting from seasonal cli-
mate variations;

[61] 2. aquifers with a � ranging between 1 yr and 10
kyr, with a possible transient behavior resulting from de-
cennial climate changes as e.g., the Pacific Decadal Oscil-
lation [Alley et al., 2002];

[62] 3. aquifers with a � > 10 kyr, in which the hydraulic
heads result at least from the present and Pleistocene
hydrodynamic boundary conditions;

[63] 4. aquifers with a � > 100 kyr, which is the length of
a Milankovitch’s cycle since the last 1 Ma [Tiedemann
et al., 1994; Naish et al., 1998]. For this group, these
results suggest that aquifers are rarely expected to be in
steady state with respect to their hydraulic behavior.

[64] The tNE for 13 large aquifers in the world have been
estimated. From those aquifers, the Great Artesian Basin
east and west (Australia), the Dogger and Albian aquifers in

the Paris Basin (France), the Nubian Sandstone System
(Egypt-Libya-Chad-Sudan), the Aquitaine Basin (France),
and the Guarani Aquifer (Brazil-Paraguay-Uruguay-Argen-
tina) are characterized by unconfined parts of the aquifers on
the borders of their basins. The Hungarian Aquifer and the
Western Siberia Basin (Russia) have shallow unconfined
aquifers and deep totally confined aquifers. The North China
Plain has unconfined and confined aquifers. The Ogallala
Aquifer in the Southern High Plains (USA) is a large uncon-
fined aquifer.

[65] For all these aquifers, tNE values were calculated
from equations (8), (3), or (17) according to the confined,
unconfined, or mixed characteristics of the aquifers. The
parameter values used for these calculations are summar-
ized in Table 3 and the minimum and maximum value of
tNE for each aquifer is shown in Figure 5. For the mixed
aquifers, an equivalent hydraulic diffusivity had to be used
to accurately represent the tNE obtained from equation (17).
For example, for the GAB-e with the L and Dh given in Ta-
ble 3 and plotted in Figure 5, 3�m will range between 5 and
3 � 104 kyr, instead of 70 and 1 � 103 kyr obtained from
the solution formula (equation (17)). So an equivalent Dh

allowing to reproduce the 3�m values obtained from equa-
tion (17) was used.

[66] The tNE values obtained for all the aquifers range
between 0.7 kyr and 2.4 � 107 kyr. Therefore, all these
aquifers may present a long transient behavior after a

Table 3. Hydrodynamic Parameter Values for Different Large Aquifers in the World: The Eastern and Western Part of the GAB
(GAB-e and GAB-w, Respectively), the Guarani Aquifer (GA), the Nubian System Aquifer (NSA), the Aquitaine Basin (AB), the
Albian and Dogger in the Paris Basin (PB-A and PB-D, Respectively), the Hungarian Aquifer (Unconfined and Confined Aquifers, HA-
u and HA-c, Respectively), the Western Siberia Basin (WSB), the North China Plain (Unconfined and Confined Aquifers, NCP-u and
NCP-c), and the Ogallala Aquifer (OA)

Aquifers Type Lc (km) Lu (km) b (m)

T (m2 s�1) S Sy 3� (years)

Min Max Min Max Min Max Min Max

GAB-ea m 1450 50 1.5 � 10�3 1.0 � 10�2 2.5 � 10�4 5.0 � 10�4 0.10 0.23 7.7 � 104 1.2 � 106

GAB-wa m 325 75 1.5 � 10�3 1.0 � 10�2 2.5 � 10�4 5.0 � 10�4 0.10 0.15 2.9 � 104 4.4 � 105

GAb,c m 320 80 1.0 � 10�5 1.0 � 10�4 1.0 � 10�6 1.0 � 10�3 0.10 0.20 8.7 � 103 1.8 � 105

NSAd m 530 220 3.0 � 10�3 1.0 � 10�1 2.0 � 10�4 3.3 � 10�3 0.10 0.27m 1.6 � 104 1.5 � 106

ABe m 180 20 1.0 � 10�4 3.2 � 10�2 6.0 � 10�5 4.0 � 10�4 0.07 0.34 8.9 � 102 1.3 � 106

Lc (km) Lu (km) b (m) K (m s�1) Ss (m�1) Sy 3� (years)
PB-Af,g m 300 20 100 1.0 � 10�6 1.0 � 10�3 1.0 � 10�4 5.0 � 10�4 0.12 0.30 1.7 � 103 2.7 � 106

PB-Df,g m 390 30 250 1.0 � 10�8 1.0 � 10�5 5.0 � 10�5 5.0 � 10�4 0.15 0.20 1.5 � 105 1.7 � 108

HAh u 140 750 1.0 � 10�5 0.18 0.30 4.5 � 104 7.5 � 104

HAh c 140 1.0 � 10�6 1.0 � 10�6 1.0 � 10�4 1.9 � 103 1.9 � 105

WSBi c 1750 5.0 � 10�9 4.5 � 10�5 1.0 � 10�6 1.0 � 10�3 6.5 � 103 5.9 � 1010

NCPj,k u 770 60 2.1 � 10�5 8.0 � 10�4 0.15 1.8 � 105 6.8 � 106

NCPj,k c 770 2.3 � 10�5 1.0 � 10�4 1.0 � 10�4 1.0 � 10�3 5.6 � 104 2.4 � 106

OAl u 320 200 1.0 � 10�5 7.0 � 10�4 0.04 0.22 2.7 � 103 1.1 � 106

aWelsh [2007].
bBonotto [2006].
cKimmelmann e Silva et al. [1989].
dSefelnasr [2007].
eDouez [2007].
fJost [2005].
gMarty et al. [1993].
hT�oth and Alm�asi [2001].
iCramer et al. [1999].
jChen et al. [2004].
kHan [2008].
lNativ and Smith [1987].
mAnderson and Woessner [1992].
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hydraulic perturbation. The results shown n Figure 5 sug-
gest that probably all these large aquifers are not in equilib-
rium with their current boundary conditions. Moreover, for
all these aquifers having their upper tNE > 100kyr , they are
likely to have never been in steady state and their current
transient behaviors could be the result of several climate
cycles.

[67] The tNE values obtained for the Aquitaine Basin
(200 km long, circles in Figure 5) or for the Hungarian
Aquifer (140 km, white stars—unconfined—and triangles—
confined—in Figure 5) range between 0.8 kyr and 1.3 � 103

kyr. These results suggest that aquifers smaller than 100 km
may also have long-term transient behaviors, on the order of
10 kyr. In these systems, transient flows will be remnant
from the last climate transition. This conclusion is in agree-
ment with the time constant of 8 kyr found by Schwartz
et al. [2009] for a 39 km long aquifer in USA.

[68] Long-term transient behavior may exist in fully con-
fined aquifers. Indeed, tNE values for the fully confined aqui-
fers studied here (Western Siberia Basin, North China Plain,
Hungarian Aquifer) vary between 0.8 kyr and 2.4� 107 kyr.
These values suggest that these confined aquifers are in dis-
equilibrium with their current boundary conditions.

[69] Some large aquifers are not in arid or semiarid
regions (Paris Basin, Aquitaine Basin, Western Siberia Ba-
sin, and Hungarian Aquifer). In the current temperate
regions, the glacial periods were characterized by possible
permafrost, which stopped the recharge mechanism
[Beyerle et al., 1998; Heathcote and Michie, 2004; Jost
et al., 2007]. At the Pleistocene-Holocene transition, the
disappearance of this permafrost caused the recharge mech-
anism to restart and a transient flow started until reaching a
new steady state with higher hydraulic heads.

5. Conclusions

[70] In this paper, a new solution to estimate the time to
reach a near-equilibrium state in mixed aquifers has been
proposed and validated. This new solution was obtained
using Laplace transforms to solve the flow equation of a
conceptual model of mixed aquifers, i.e., having adjacent
unconfined and confined portions. The validation of this
solution was performed by comparison with numerical
results. The numerical model used in this study was based
on a generic representation of the western portion of the
Great Artesian Basin in Australia. It should be remem-
bered here that the purpose of the model was not to repro-
duce exactly the groundwater flow of the GAB, but to
estimate values of the time to reach a near-equilibrium tNE

and to validate the new solution formula. After validation,
the new solution formula for mixed aquifers and the solu-
tions for fully confined and fully unconfined aquifers were
used to assess the tNE of several large aquifers in the
world.

[71] The analyzes performed in this paper show that
large aquifers may present long-term transient behaviors,
which is an important result since it is usually assumed that
aquifers quickly adjust to any hydraulic perturbation.
Therefore, the estimation of tNE, based on the proposed an-
alytical expressions for �c, �u, or �m, should be more sys-
tematically and routinely applied in the study of large

aquifers in order to properly understand their hydrody-
namic state.

Appendix A: Solution by Laplace Transforms of a
Problem of Contiguous Aquifers

A1. Assumptions and Definitions

[72] Consider an aquifer (along the horizontal direc-
tion x, infinitely wide in the orthogonal horizontal direc-
tion y) composed of two contiguous compartments
indexed by c and u (confined and unconfined) (Figure 2).
Assume that the slope and thickness are sufficiently
small in both compartments so that, in both sections, the
hydraulic potential satisfies the 1-D diffusion equation.
In the compartment c, with length Lc, the hydraulic
potential �¼�c follows the standard diffusion equation
with a homogeneous transmissivity T, a storage coeffi-
cient Sc, and, therefore, a diffusivity Dc¼ T/Sc. In the
neighboring compartment u, with length Lu, the trans-
missivity T is assumed to be the same, but the storage
coefficient Su is different (much larger than Sc) as is the
diffusivity Du¼ T/Su. In the latter compartment, the hy-
draulic potential �¼�c also follows the diffusion equa-
tion with diffusivity Du � Dc.

[73] Mathematically, the potential � obeys the equation:

D
@2�

@x2
¼ @�
@t

ðA1Þ

with D¼Dc in the confined compartment 0 < x < Lcð Þ and
D¼Du in the unconfined one Lc < x < L ¼ Lc þ Luð Þ
whereas, at the interface x¼ Lc, the potential � is continu-
ous, as well as the hydraulic flow T@�=@x, so that:

at x ¼ Lc; �u ¼ �c; and T@�u=@x ¼ T@�c=@x

[74] The other boundary conditions are that

at x ¼ 0; the potential is prescribed :�c ¼ h0

at x ¼ L ¼ Lu þ Lc; the flow is null; so that
@�u

@x
¼ 0

:

[75] Since it is assumed that there is no producing source
in the system, the boundary conditions impose that the
steady-state potential equals h0 for any x. Now let us
impose an initial condition, for time t¼ 0, corresponding to
a large-scale disturbance of the system: at t¼ 0, the poten-
tial in both compartments is assumed to vary linearly with
x : � x; t ¼ 0ð Þ ¼ h0 1þ �x=Lð Þ.

[76] When t increases, the potential �(x,t) relaxes toward
the steady state � x; t ¼ 1ð Þ ¼ h0. For large times, by anal-
ogy with the solution of the confined aquifer presented in
section 2.2, the relaxation behavior is expected to be char-
acterized by an exponential decay. The problem is to define
the coefficient attached to the time variable.

[77] Nondimensional variables are defined by:

� ¼ x=L; �u ¼ Lu=L; therefore �c þ �u ¼ 1; t
 ¼ Dct=L2:

[78] The difference between the two compartments is
characterized by a fraction f : f ¼ Du=Dc ¼ Sc=Su. Since
Sc � Su; f is very small.

[79] In the two compartments u and c, the diffusion
equations become:
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@2�c

@�2 ¼
@�c

@t

ðA2Þ

@2�u

@�2 ¼
Dc

Du

@�u

@t

¼ 1

f

@�u

@t

ðA3Þ

[80] The boundary conditions are that

at � ¼ 0; �c ¼ h0

at � ¼ 1; @�u=@� ¼ 0
at � ¼ �c; the potential is continuous �c ¼ �uð Þ
as well as the flux T@�c=@� ¼ T@�u=@�ð Þ

A2. Solution by Laplace Transforms

[81] Laplace transforms of the previous equations are
performed. Let  (index u or c) be the Laplace transform of
� (index u or c) defined by:

 ¼
Z 1

0
�e�pt
dt
 ðA4Þ

[82] The Laplace transform of @�u=@t
 (respectively,
@�c=@t
) is: p u � �0 (respectively, p c � �0) and the dif-
fusion equations (A2) and (A3) become simply:

@2 c

@�2 � p c ¼ � 1þ ��ð Þh0 ðA5Þ

f
@2 u

@�2 � p u ¼ � 1þ ��ð Þh0 ðA6Þ

[83] The general solutions of these differential equations
are easily found as:

 c ¼ Accosh qc�ð Þ þ Bcsinh qc�ð Þ þ 1þ ��ð Þh0

p
ðA7Þ

 u ¼ Aucosh qu�ð Þ þ Businh qu�ð Þ þ 1þ ��ð Þh0

p
ðA8Þ

where qc and qu are defined by qc ¼
ffiffiffi
p
p

and qu ¼
ffiffiffiffiffiffiffiffi
p=f

p
.

[84] The four constants Au;Bu;Ac;Bc are computed by
satisfying the previous boundary conditions:

[85] 1. at � ¼ 0;  c ¼ 0 imposes Ac¼ 0;
[86] 2. at � ¼ 1; @ u=@� ¼ 0 imposes Bu ¼ �h0= pquð Þ ;
[87] 3. at �¼ �c, the conditions of potential continuity
 c ¼  uð Þ and flux continuity @ c=@x ¼ @ u=@xð Þ can be

written as two linear equations for the two remaining
unknowns Au and Bc, the determinant of which is :

D ¼
ffiffiffi
f

p
cosh qc�cð Þcosh qu�uð Þ þ sinh qc�cð Þsinh qu�uð Þ ðA9Þ

[88] The Laplace transforms  c and  u are easily computed as:

 c ¼ �
�h0

Dpqu
sinh qc�ð Þ þ 1þ ��ð Þh0

p
ðA10Þ

 u ¼ �
�h0

Dpqu

ffiffiffi
f

p
sinh qu�uð Þcosh qc�cð Þ þ cosh qu�uð Þsinh qc�cð Þ

h i
cosh qu 1� �ð Þð Þ þ �h0

pqu
sinh qu 1� �ð Þð Þ þ 1þ ��ð Þh0

p

ðA11Þ

where D is defined above in equation (A9).
[89] The Laplace transform (LT) are now obtained. The

problem is to obtain the inverse Laplace transforms
(LT�1).

A3. The Inverse Laplace Transform

[90] The exact LT�1 of equations (A10) and (A11) is
based on the inversion theorem [Carslaw and Jaeger,
1959] which requires the evaluation of the integral of  
along a contour in the complex p-plane:

� t
ð Þ ¼ 1

2�i

Z
c
 pð Þept
dp ðA12Þ

[91] The contour c of the integral
R

c is parallel to the
imaginary axis p, running from 	 � i1 to 	 þ i1; 	 being a
real value such that all singularities of the function  (p) of
the complex variable p are located in the left part of the com-
plex p-plane. It can be verified by limited development that
the function  (p) is single valued and has no branch point
associated with the dependence in qu or qc (it can be shown
that functions such as sinh qu�uð Þcosh qc�cð Þ; sinh qc�cð Þ=qu,
and sinh 1� �ð Þquð Þ=qu are regular). The only singularities
of  (p) are poles which make the denominator of equations
(A10) and (A11) null, namely two type of poles:

[92] 1. the pole p¼ 0, called p0

[93] 2. an infinite series of poles corresponding to the
zeros of D, i.e., solutions of:

D ¼
ffiffiffi
f

p
cosh qu�uð Þcosh qc�cð Þ þ sinh qu�uð Þsinh qc�cð Þ ¼ 0

ðA13Þ

[94] The function D(p) becomes null when qc ¼
ffiffiffi
p
p

is
pure imaginary as, i.e., qc ¼ i�, (therefore, qu ¼ i�=

ffiffiffi
f
p

).
The zeros in p are then real negative or null and it can be
shown [Carslaw and Jaeger, 1959, p. 325] that these are
the only zeros of equation (A13).

[95] Hyperbolic trigonometry allows replacing equation
(A13) by:

D �ð Þ ¼
ffiffiffi
f

p
cos

�u�ffiffiffi
f
p

� �
cos �c�ð Þ � sin

�u�ffiffiffi
f
p

� �
sin �c�ð Þ ¼ 0

ðA14Þ

[96] The poles in p are real : p0¼ 0 on the one hand and
pn ¼ ��2

n on the other hand.
[97] The contour of the integral equation (A12) can be

closed on a large circle in the left part of the p-plane
(Real (p)< 0); the contribution to the integral of this latter
part of the contour vanishes when the circle radius tends
to 1. Since the integral contour includes all the poles of
the function  , the application of the theorem of residues
(Cauchy’s theorem) provides the final result. The LT�1 is
written as

� t
ð Þ ¼
X1
n¼0

Rnepnt
 ðA15Þ

where the summation
P

is taken on all indices n¼ 0,
1, . . . , 1 of  poles and where the Rn are the residues of
these poles (i.e., the behavior of the  (p) in the vicinity of
p¼ pn). One obtains
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� t
ð Þ ¼ R0 þ
X

Rne��
2
nt
 ; for n ¼ 1; 2; :::1 ðA16Þ[98] The potential is the sum of a constant (in fact h0)

and a series of exponential terms with negative time argu-
ments, i.e., decreasing with reduced time t



according to a

reduced time constant ��2
n . Returning to actual variables,

the time constant associated with index n is :

�n ¼
L2

Dc�
2
n

ðA17Þ

[99] The calculation of the residues R0;R1; . . . is
straightforward:

R0 ¼ h0 ðA18Þ

Rnc ¼ 2�h0

ffiffiffi
f

p sin �n�ð Þsin �n�u=
ffiffiffi
f
p

ð Þ
�2

n 1� �c 1� fð Þcos 2 �n�u=
ffiffiffi
f
p

ð Þ½ �cos �n�cð Þ
ðA19Þ

Rnu ¼ 2�h0 f
cos �n 1� �ð Þ=

ffiffiffi
f
p

ð Þ
�2

n 1� �c 1� fð Þcos 2 �n�u=
ffiffiffi
f
p

ð Þ½ �
ðA20Þ

[100] The final solution is a sum
P

for n ¼ 1; 2; . . .1 :

�c ¼ h0 þ 2�h0

ffiffiffi
f

p
X1
n¼1

sin �n�ð Þsin �n�u=
ffiffiffi
f
p

ð Þ
�2

n 1� �c 1� fð Þcos 2 �n�u=
ffiffiffi
f
p

ð Þ½ �cos �n�cð Þ
e��

2
nt
 ðA21Þ

�u ¼ h0 þ 2�h0 f
X1
n¼1

cos �n 1� �ð Þ=
ffiffiffi
f
p

ð Þ
�2

n 1� �c 1� fð Þcos 2 �n�u=
ffiffiffi
f
p

ð Þ½ �
e��

2
nt


ðA22Þ

[101] It may be verified that for �¼ �c, the two expres-
sions �c and �u and their space derivatives become identi-
cal (and therefore continuous) when taking into account
equation (A13).

A4. Practical Use of the Series Development

[102] In the previous development, the time variation is
ruled by the �’s, the values of which require the solution of
equation (A14). The only case where equation (A14) has
an obvious solution is when f¼ 1; equation (A14) reduces
to cos (�)¼ 0 the solutions of which are �n ¼ �=2þ
n� 1ð Þ� for n¼ 1, 2, . . .

[103] In the general case, � is a positive root of equation
(A14). Let us call �1 the smallest positive root of equation
(A14), also written as:

tan �1�cð Þtan �1�u=
ffiffiffi
f

p� �
¼

ffiffiffi
f

p
ðA23Þ

[104] It is convenient to begin with the case where
ffiffiffi
f
p

is
small which enables approximation of �1. For small values
of the argument �1, the tangent function may be
approached by its argument and equation (A23) is replaced
by �c�u�

2
1 � f , so that

�1 �
ffiffiffiffiffiffiffiffiffi

f

�c�u

s
ðA24Þ

[105] Starting from this initial guess, the numerical so-
lution of equation (A23) is easily obtained by Newton’s

tangent method. In a few iterations, the algorithm con-
verges to the final value of �1. The value of the next
roots of equation (A14), i.e., �n for n ¼ 2; 3; . . . can
also be computed numerically using another algorithm
based on the change of sign of D(�) while increasing �.
These roots are of increasing magnitude and provide
decreasing contributions to the series equations (A21)
and (A22) as t increases, leaving the first exponential of
the series development, exp ��2

1t

� �

, as the rapidly dom-
inant term. Therefore, the first term of the series devel-
opment gives a convenient approximation of the full
solution.

[106] An illustration of this last statement is shown in Fig-
ure 6, using f¼ 0.01 and �c¼ 0.7, which compares the result
of a computation based on the full solution, either when
retaining the first term (black curves), or using the first five
(gray curves). As soon as t
> 0, the solution when only the
first term is retained is not discernible from the more com-
plete one, which justifies the fact that only the first exponen-
tial term of the series is retained. In supporting information,
it is shown that this justification holds for a wide range of
values of f and �c.

[107] The relaxation of the initial disturbance toward the
steady state is therefore characterized by an exponential
decay according to exp ��2

nt

� �

, or in actual variables,
exp �t=�mð Þ with �m ¼ L2= Dc�

2
1

� �
.

A5. Practical Estimate of �1: Limits and Further
Development

[108] It remains to propose a practical approximation of
�1. For low f values, the first development of D(p) for small
p values yields a convenient approximation of the root �1,
defined by the label �10:

�10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f

�u �c þ �u=2ð Þ

s
ðA25Þ

and the corresponding time constant is evaluated by:

�m0 ¼
Lu

Du
Lc þ Lu=2ð Þ ðA26Þ

[109] Formula equation (A26) is interesting because of
its simplicity and because it depends only on the diffusivity
of the unconfined aquifer. However, it is clear that it breaks
down when the length of the unconfined aquifer Lu tends
to 0.

[110] More refined approximations can be obtained
through a series expansion of D(�) about �¼ 0 through
polynomial expansion of D(�) as a third degree polynomial
in �2= 2fð Þ2 :

1ffiffiffi
f
p D �ð Þ � 1� a2

�

2f

� �2

þ a4
�

2f

� �4

� a6
�

2f

� �6

ðA27Þ

where

a2 ¼ �2
u þ 2�u�c þ f �2

c ðA28Þ

a4 ¼
1

6
�4

u þ 4�3
u�c þ 6f �2

u�
2
c þ 4f �u�

3
c þ f 2�4

c

� �
ðA29Þ
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a6 ¼
1

90
�6

u þ 6�5
u�c þ 15f �4

u�
2
c þ 20�3

u�
3
c þ 15f 2�2

u�
4
c þ 6f 2�u�

5
c þ f 3�6

u

� �
ðA30Þ

[111] By truncating the polynomial of equation (A27)
sequentially at orders 1, 2, 3, and equating the reduced pol-
ynomials to zero, respective �11, �12, �13 approximations
�1 of the true �1 can be found by analytical solution
formulae.

[112] The estimates of � and �m corresponding to the
first-order approximation are given by

�2
11 ¼

2f

a2
¼ 2f

�2
u þ 2�u�c þ f �2

c

ðA31Þ

with the corresponding time constant:

�m1 ¼
Lu Lu þ 2Lcð Þ

2Du
þ L2

u

2Dc
ðA32Þ

[113] The estimates corresponding to the second-order
approximation are

�2
12 ¼

f a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � 4a4

ph i
a4

ðA33Þ

�m2 ¼
a4L2

Du a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � 4a4

ph i ðA34Þ

[114] Contrary to equation (A25), these last estimates of
�1 are defined for any value of the unconfined aquifer

length, even for �u¼ 0. However, taking into account the
value of f corresponding to actual situations (on the order
of 10�3), it is possible to compare the accuracy of these
various estimates of �1 as �10, �11, �12, and �13 for a large
range of the �u and f parameters. This is illustrated in Table
4, where values are given for the three approximations as
well as the accurate value for f¼ 0.01, 0.001, and 0.0001.
The �c parameter varies from 0.5 to 0.995 in order to focus
on the vicinity of �u¼ 0. As expected, there is an improve-
ment in accuracy with increasing order: �11 is closer to �1

than �10, �12 is even closer, and �13 is the closest.
[115] The discrepancy in the vicinity of �u¼ 0 is larger

for the smaller values of f. However it appears that, to
within about 5%, the simpler formula equation (A26) gives
acceptable results for values as small as 0.05 (the uncon-
fined aquifer then represents 5% of the total length) for
f¼ 0.01; for f¼ 0.001, the approximation is correct when
�u is down to 0.005 and even smaller for f¼ 0.0001.

[116] Errors in the approximations of �1 translate into
errors in the series equations (A21) and (A22). These will
affect not only the target value of a 95% reduction of the
initial perturbation at t¼ 3�m in the exponential term
exp ��2

1t

� �

but also the coefficients of this term in the two
series. These coefficients cause nonlinear behavior in �
across the aquifer as soon as t is greater than 0, as evi-
denced in Figure 6. This implies that the 95% reduction, or
5% residual, relative to the initial linear perturbation cannot
be uniform across the aquifer. Consequently, an averaged
target value is used. Typically, the range of residuals across
the aquifer is between 4% and 7% with an average just
over 5% when using �1. In supporting information, aver-
aged residuals are calculated for a range of values of f and
�u for the two approximate roots �10 and �12 to determine
the constraints on their usage. Setting an allowable average
residual target value of 6.5% it is found that �10 can be
used when the ratio f/�u is smaller than 0.3. Returning to

Table 4. Values of �1 and Their Approximations as a Function
Lc/L¼ �c (i.e., �u¼ 1��c)

a

�c �u �10 �11 �12 �13 �1

f¼ 0.01
0.5 0.5 0.163299 0.163028 0.172307 0.171905 0.171912
0.8 0.2 0.235702 0.233635 0.238779 0.238695 0.238695
0.9 0.1 0.324443 0.317741 0.322855 0.322787 0.322787
0.95 0.05 0.452911 0.433301 0.441498 0.441379 0.441379
0.98 0.02 0.710669 0.637551 0.659813 0.659253 0.659259
0.99 0.01 1.002509 0.820596 0.867007 0.865012 0.865046
0.995 0.005 1.415985 1.003133 1.086066 1.080331 1.080475
f¼ 0.001
0.5 0.5 0.051640 0.051631 0.054527 0.054405 0.054407
0.8 0.2 0.074536 0.074469 0.075884 0.075867 0.075867
0.9 0.1 0.102598 0.102380 0.103359 0.103352 0.103352
0.95 0.05 0.143223 0.142565 0.143400 0.143396 0.143396
0.98 0.02 0.224733 0.222057 0.223319 0.223314 0.223314
0.99 0.01 0.317021 0.309492 0.312195 0.312179 0.312179
0.995 0.005 0.447774 0.427081 0.433746 0.433677 0.433678
f¼ 0.0001
0.5 0.5 0.016330 0.016330 0.017244 0.017206 0.017207
0.8 0.2 0.023570 0.023568 0.024009 0.024003 0.024003
0.9 0.1 0.032444 0.032437 0.032726 0.032724 0.032724
0.95 0.05 0.045291 0.045270 0.045471 0.045471 0.045471
0.98 0.02 0.071067 0.070981 0.071129 0.071129 0.071129
0.99 0.01 0.100251 0.100005 0.100171 0.100171 0.100171
0.995 0.005 0.141598 0.140901 0.141191 0.141191 0.141191

aThe results are given for three values of f : 0.01, 0.001, and 0.0001.

Figure 6. Reduced hydraulic potential as a function of
x/L for various values of reduced time t
 ¼ Dct=L2 (0, 10,
20). The computed time constant is ��2

1 ¼ 24:2. Aquifer
parameters are f ¼ Su=Sc ¼ 0:01; Lc=L ¼ 0:7. The com-
puted solutions are obtained either retaining the first term
(h1) or the five first ones (h12345).
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original physical quantities, this ratio has a specific mean-
ing since, for �u near 0, f =�u � ScLc= SuLuð Þ. Quantity as
ScLc can be interpreted as the horizontally integrated stora-
tivity in the confined aquifer. Therefore, since f/�u can be
seen as the ratio of the integrated storativity of the confined
aquifer to that of the unconfined one, only when the ratio is
larger than 0.3, i.e., for a very small integrated storativity
of the unconfined aquifer, would it be necessary to use
other approximations such as �11 or �12 (which can be used
for all f and �u). Since the possibility that the unconfined
aquifer is reduced to such a small relative length has no
practical importance, it is clear that the approximation
given by formula equation (A26) is relevant to the problem
under study. With the range of f and �u values for actual
aquifers investigated in this paper formula (A26) can be
used in all cases.

[117] A further question is that of initial and boundary
conditions. If initial conditions are different from those
used here, the effect is to change the right-hand sides of the
Laplace transformed differential equations. But this will
not change the determinant, D, given by equation (A13),
and consequently the same �m prevails. The spatial varia-
tions of � will be altered along with point wise values of
percentage residuals at t¼ 3�m. Although not validated, the
changes in percentage residuals are expected to be slight.
In Carslaw and Jaeger [1959, chap. 3], there are worked
examples for the single type of aquifer, which show that
the �m values are unchanged for different initial conditions.
The most likely variation in end boundary conditions is to
assume that at the unconfined end, gradient conditions are
no longer zero, i.e., @�=@x 6¼ 0 at x¼L. Again, this will
not change D and �m.
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