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a b s t r a c t

We propose a magneto-mechanically coupled multi-scale model for simulating the curing process of
polymers. In the case of magneto-sensitive polymers, micron-size ferromagnetic particles are mixed with
a liquid polymeric matrix in the uncured stage. The polymer curing process is a complex process that
transforms a fluid to a solid with time. To transfer the constituent parameter information from the
micro-scale to the macro-scale for a composite magneto-mechanically coupled polymeric material, an
extended Mori–Tanaka semi-analytic homogenization procedure is utilized. The stiffness gaining phe-
nomenon as in the case of a curing process is realized by time-dependent material parameters appearing
within the composite piezomagnetic material tensors. Moreover, to compute the volume reduction dur-
ing curing, a magnetic induction dependent shrinkage model is proposed. Several numerical examples
show that the model proposed herein can capture major observable phenomena in the curing process
of polymers under magneto-mechanically coupled infinitesimal deformations.

1. Introduction and outline

Recently magnetorheological elastomers (MREs) became a new
class of smart materials. The basic mechanism in MREs is that
under an external magnetic excitation, their mechanical properties
can be altered. They are relatively a new group in the realm of
so-called smart materials. Due to the magnetically controllable
stiffness and damping behavior, they are attractive candidates for
various technical applications, e.g. suspension bushing, brakes,
clutches, smart springs in dynamic vibration absorber to civil engi-
neering devices such as building vibration isolators (Boczkowska
and Awietjan, 2009; Böse et al., 2012; Jolly et al., 1996; Varga
et al., 2006; Danas et al., 2012; Kaleta et al., 2011; Zhou, 2003;
Chen et al., 2007).

In the curing process of polymers, a viscoelastic fluid transforms
into a viscoelastic solid due to a series of chemical reactions. Such
reactions result in polymer chains cross-linking to each other and
formation of chemical bonds allow the chains to come closer. The
packing of chains due to cross-linking will yield a decrease in
specific volume which is denoted as the volume or curing

shrinkage. For an illustrative review on the constitutive modeling
of the curing process of polymers, our previous works, cf.
Hossain et al. (2009a,b) can be considered. In developing a
cure-dependent small strain constitutive model for a thermoset-
ting polymer, Kiasat (2000) assumed that the formation of new
cross-links during curing does not affect the current stress
state caused by previously applied strains, i.e. new cross-links
form unstrained and stress-free. Several researches agree with this
assumption (Hojjati et al., 2004; Gillen, 1988). Lion and co-workers
(Liebl et al., 2012; Lion and Höfer, 2007; Johlitz, 2012; Johlitz and
Lion, 2013) proposed a phenomenologically-inspired viscoelastic
curing model. In order to model the evolution of material
parameters during curing, they introduce the so-called intrinsic
time concept which is then related to the degree of cure, a key
parameter to quantify the state and the completeness of a curing
process. For more models on the curing process, see Mahnken
(2013) and Heinrich et al. (2013) et al.

It is well established nowadays that composite material’s over-
all behavior depends strongly on the properties of the material
constituents and the microscopic geometry, i.e. the volume frac-
tion, shape and orientation of constituents. Homogenization meth-
ods, as pioneered by Hill (1963) and Hill and Rice (1972), allow to
study the overall mechanical behavior of composites with general
and periodic microstructures (Hashin and Shtrikman, 1963;
Bensoussan et al., 1978; Mura, 1987; Murat and Tartar, 1995;
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Kouznetsova et al., 2001; Miehe and Koch, 2002). Homogenization
of composites with linear as well as nonlinear constituents has
been studied extensively (Suquet, 1987; Guedes and Kikuchi,
1990; Terada and Kikuchi, 1995; Aboudi et al., 2003; Ponte
Castañeda, 1996; Smit et al., 1998; Feyel and Chaboche, 2000;
Michel et al., 1999; Terada and Kikuchi, 2001; Asada and Ohno,
2007; Miehe, 2002; Yvonnet J et al., 2009) and thorough reviews
of different multi-scale approaches are available in the literature
(Pindera et al., 2009; Kanouté et al., 2009; Charalambakis, 2010;
Geers et al., 2010). Such averaging approaches have also been con-
sidered for the magneto-mechanical response of magnetorheolog-
ical elastomers (Borcea and Bruno, 2001; Yin et al., 2002; Wang
et al., 2003; Yin et al., 2006; Ponte Castañeda and Galipeau,
2011; Galipeau and Ponte Castañeda, 2013; Javili et al., 2014;
Chatzigeorgiou et al., 2014). In this paper, a modified version of
the Mori–Tanaka method is utilized. The differences between the
classical mean-field theories (Eshelby dilute approach, Mori–
Tanaka and self-consistent) have been extensively discussed in
several books (Qu and Cherkaoui, 2006; Mura, 1987). These three
averaging homogenization techniques are based on the Eshelby’s
equivalent inclusion theory (Mura, 1987). In brief: it is commonly
established that the Eshelby dilute approach provides reliable esti-
mations only for small particles volume fractions, whereas Mori–
Tanaka and self-consistent are acceptable also for moderate parti-
cle volume fractions. However, self-consistent is an iterative
method even in elasticity, and it is generally and extensively used
to describe polycrystalline material structures. Mori–Tanaka does
not require iterations in the elasticity problem and is more efficient
in the case of matrix-particle type of composites, where the parti-
cles can have arbitrary orientation.

Several experimental works demonstrate the formation of iso-
tropic and anisotropic magneto-sensitive polymeric composites
during the curing process with or without the application of a mag-
netic induction (Jolly et al., 1996; Varga et al., 2006; Danas et al.,
2012; Kaleta et al., 2011; Zhou, 2003; Chen et al., 2007).
However, there is a lack of constitutive modeling that can capture
the curing process in the presence of a magneto-mechanically cou-
pled load. Several multi-scale approaches are developed for
magneto-sensitive polymers with coupled loads where the consti-
tutive material parameters appearing in a model are non-evolving
(Schröder and Keip, 2012; Javili et al., 2014). Moreover, a
multi-scale approach is proposed during the curing process in
which parameters are considered to be evolving with time
(Klinge et al., 2012,). However, in the latter works, only a mechan-
ical load is considered during the curing process. To the authors
best knowledge, there is currently no multi-scale approach that
can capture homogenized behavior as well as can predict the stiff-
ness gaining process in the presence of a magneto-mechanically
coupled load. The simulation of microheterogeneous polymers,
especially particle-filled magneto-sensitive composites during the
curing process, can be studied using various homogenization tech-
niques. The numerical homogenization approach is especially suit-
able for the simulation of heterogeneous materials with a highly
oscillatory microstructure, cf. Klinge et al. (2012,).

The main framework of the proposed model is within the
hypoelastic concept of our previously proposed purely mechanical
curing model (Hossain et al., 2009a) which is recently extended to
the case of particle-filled magneto-sensitive polymers at finite
strains (Hossain et al., 2015a). The earlier works that appeared in
Hossain et al. (2009a, 2014), on the one hand, are only for
phenomenologically-motivated curing modeling under a purely
mechanical load. This is for the case of unfilled polymers. On the
other hand, the recent works published in Hossain et al.
(2015a,b) consider the magneto-mechanically coupled load.
Thereby, the main contribution of Hossain et al. (2015a,b) is a
phenomenologically-motivated modeling framework for the

curing modeling for magnetizable particle-filled polymers. The
constitutive model proposed in the current manuscript transfers
the constituent parameter information from the micro-scale to
the macro-scale for a magneto-mechanically coupled composite
at each time step of the curing evolution. The effective parameters
of magnetic particle-filled polymers are coming from composite
micromechanics rather than taking a continuum parameter set as
in the previous two contributions. As a first step in the
multi-scale modeling during the curing process, we herein propose
a micromechanical approach for small magneto-mechanically cou-
pled deformations where a time-dependence of the mechanical
parameters appearing in the constitutive relation is considered.
The curing phenomenon is a highly temperature-sensitive and
exothermic reaction process. However, for simplicity, we develop
the cure-dependent magneto-mechanical coupled model for the
case of isothermal processes.

Section 2 discusses the main mathematical foundation that
leads to a hypoelastic type constitutive relation for the polymer
curing process in the presence of a magneto-mechanically coupled
load. In Section 3, a magnetic load dependent curing shrinkage
model is proposed where the duration and magnitude of the load
is taken into account while the evolution of relevant material
parameters is expressed in Section 4. The main mathematical
framework to transfer the micro-scale information to the
macro-scale is described in Section 5 while the corresponding
numerical discretization procedures are elaborated in Section 6.
Several numerical examples by pure mechanical, pure magnetic
as well as magneto-mechanically coupled loads are presented in
Section 7 along with a few illustrative examples for the
shrinkage-induced stress generation for a magnetic load depen-
dent curing process.

2. Modeling curing in nonlinear magneto-elasticity

In polymer curing processes, successive chemical reactions
yield a cross-linked structure from an initial solution of monomers.
This phase transition is analogous to the addition of more and
more springs to the already-formed network. According to the lit-
erature (Kiasat, 2000; Gillen, 1988), the formation of a new
cross-link is unstrained and stress-free. It means that a curing
material does not change its state of stress as resulted from previ-
ous deformations – even though its material properties continue to
evolve. Keeping the above mentioned physical fact in mind, a
magneto-elastic coupled energy potential for the case of isother-
mal curing processes is proposed in the form of a convolution inte-
gral as

Uðe; b; tÞ ¼ 1
2

Z t

0
A 0ðsÞ : ½eðtÞ � eðsÞ�
� �

: ½eðtÞ � eðsÞ�dsþ 1
2

Z t

0
K0ðsÞ � ½bðtÞ � bðsÞ�½ �

� bðtÞ � bðsÞ½ �dsþ
Z t

0
C0ðsÞ � ½bðtÞ � bðsÞ�½ �

: ½eðtÞ � eðsÞ�ds ð1Þ

where A 0ðsÞ ¼ dA sð Þ=ds; K0ðsÞ ¼ dK sð Þ=ds and C0ðsÞ ¼ dC sð Þ=ds.
In Eq. (1) e is the infinitesimal strain, b is the magnetic induction
vector and t is the curing time. A finite strain version of the poten-
tial function proposed in Eq. (1) and its corresponding derivations
are given in Hossain et al. (2015a). Note that A is the fourth order
mechanical stiffness tensor, K is the second order magnetic perme-
ability tensor, and C is the third order coupled magnetomechanical
tensor, where the material parameters appearing within the tensors
are generally time-dependent. Specific forms of these tensors are
given in Section 7. The second law of thermodynamics in the form



of the Clausius–Duhem inequality for an isothermal process can be
written in the case of a magneto-elastic problem as

r : _eþ h � _b� _U P 0; ð2Þ

where r; h and U are the stress tensor, the magnetic field vector

and the potential function from Eq. (1), respectively. In Eq. (2), _ð�Þ
is a time derivative. To evaluate the above dissipation inequality,
the time derivative of the energy potential U follows from adopting
the Leibniz integral rule. The standard Coleman–Noll procedure
provides the following functional for the stress r and the magnetic
field h:

rðe;b;tÞ¼
Z t

0
A 0ðsÞ : ½eðtÞ�eðsÞ�dsþ

Z t

0
C0ðsÞ � ½bðtÞ�bðsÞ�ds;

hðe;b;tÞ¼
Z t

0
Ct0 ðsÞ : ½eðtÞ�eðsÞ�dsþ

Z t

0
K0ðsÞ � ½bðtÞ�bðsÞ�½ �ds: ð3Þ

In deriving the above expressions, permutability of the double and
single contractions are required which are given since A and K pos-
sess symmetries, cf. Hossain et al. (2015a). To obtain more precise
relations among stress, strain, magnetic field and magnetic induc-
tion, the Leibniz integral rule has to be applied once more to yield

_rðe;b; tÞ ¼ AðtÞ : _eðtÞ þ CðtÞ � _bðtÞ;
_hðe; b; tÞ ¼ CtðtÞ : _eðtÞ þKðtÞ � _bðtÞ:

ð4Þ

In micromechanics it is more convenient to write the last expres-
sions in terms of the rates of strain and magnetic field instead of
strain and magnetic induction (Chatzigeorgiou et al., 2014). Thus,
rearranging them and accounting for the symmetry of K yields

_rðe;h; tÞ ¼ AhðtÞ : _eðtÞ þ ChðtÞ � ½� _hðtÞ�;
_bðe; h; tÞ ¼ Ct

hðtÞ : _eðtÞ �KhðtÞ � ½� _hðtÞ�;
ð5Þ

where

AhðtÞ ¼ AðtÞ þ ChðtÞ � CtðtÞ;
ChðtÞ ¼ �CðtÞ �K�1ðtÞ; KhðtÞ ¼ K�1ðtÞ:

ð6Þ

Note that in general for nonlinear magnetoelastic continua, the
magnetomechanical moduli Ah, Ch and Kh have a complicated
dependence on time as well as on the current loading status, i.e.

AhðtÞ � Ah eðtÞ;hðtÞ; tð Þ; ChðtÞ � Ch eðtÞ;hðtÞ; tð Þ;
KhðtÞ � Kh eðtÞ; hðtÞ; tð Þ:

ð7Þ

3. Shrinkage modeling

In the case of modeling curing-induced shrinkage, an additive
decomposition of the total strain into a mechanical part and a
shrinkage-induced part is proposed in our previous purely
mechanical curing modeling approach for an isotropic unfilled
polymer, cf. Hossain et al. (2009a), i.e.

e ¼ em þ es ¼ em þ sðtÞI; ½I�ij ¼ dij ð8Þ

where

sðtÞ ¼ s1 1� expð�bstÞ½ � ð9Þ

and s1; bs is the total volume shrinkage and a curvature parameter,
respectively. Note that Eq. (9) is one of the simplest forms of expo-
nential saturation functions to assess the evolution of the
curing-induced volume reduction. Other forms of expressions can
be incorporated easily. The curing shrinkage can be included, fol-
lowing the arguments in the case of a purely mechanical loading,
cf. Hossain et al. (2009a), to the constitutive relation as

_rðe;b; tÞ ¼ A : ½ _eðtÞ � _esðtÞ� þ C � _bðtÞ: ð10Þ

This implies that in the absence of any external loading, either a
mechanical or a magnetic or both, there will be an internal strain
due to the packing of polymer molecules during a curing process
which will generate stresses if a sample is held fixed. Under the
influence of a magneto-mechanical load, in contrast to the curing
process under a pure mechanical load as formulated in Hossain
et al. (2009a), we assume here that there is a coupled relation
between the total amount of curing shrinkage and the applied mag-
netic induction, i.e.

sðt;bÞ ¼ s1ðt;bÞ 1� expð�bstÞ½ �: ð11Þ

Now, we define a new parameter ‘degree of exposure’ e that
accounts for the overall influence of a magnetic load on the curing
process. It is formulated as

e ¼
Z t

0
f aðsÞð ÞjbðsÞjds; with; f ðaÞ ¼ 1� Hða� 1Þ; ð12Þ

where H is the Heaviside function and jbðsÞj is the magnitude of the
applied magnetic induction. The parameter e determines how long
a curing sample is exposed to the applied magnetic load. The func-
tion f ðaÞ inculcates the fluctuating influence of a magnetic load to
the model, i.e. if the sample is fully cured, it has no impact in the
degree of exposure. Two extreme values of exposure are defined
as 0 < e1 < e2. These simply imply that when the lower value of
the degree of exposure e crosses the threshold e1 it starts increasing
the value of the shrinkage parameter s from an initial value of s1.
When it reaches the upper threshold value e2, the maximum possi-
ble value of shrinkage s ¼ s2 is reached and the evolution of s
remains unchanged. All these information can be incorporated once
the evolution of s can be expressed by the following functional form

s1ðt;bÞ ¼
s1 þ s2

2
þ s2 � s1

2
tanh n e� 1

2
½e1 þ e2�

� �� �
; ð13Þ

where n is a scaling constant.

4. Time-dependent parameters during curing

One physically sound assumption in the case of polymer curing
is considered in developing the constitutive model, i.e. all relevant
material parameters in a model will be time-dependent. Some
parameters are related to pure mechanical phenomena while
others are for coupled processes. Following the analogy of the
purely mechanical curing, we make reasonable choices for model-
ing the temporal evolution of the material parameters due to the
present lack of sufficient experimental data. One of the easiest for-
mats for the evolving parameters can be an exponential saturation
function as

qðtÞ ¼ q0 þ q1 � q0½ � 1� expð�jqtÞ
� �

; ð14Þ

which is being governed by the initial and the final values q0 and
q1, respectively, as well as the curvature parameter jq. In the case
of the shear modulus evolution, the initial and final cut-off values,
i.e. q0 and q1, respectively, are replaced by l0 and l1, while the
curvature parameter jq is substituted by jl. According to several
papers (Chen et al., 2007; Xu et al., 2011), the coupled
magneto-mechanical parameters also evolve following the format
of an exponential saturation function. The exponential form for
the evolution of the curing parameter qðtÞ (similar to the degree
of cure) is one of the simplest forms that can take into account
the time-dependence of the process. It replicates the most com-
monly obtained shape, i.e. exponentially increasing saturation func-
tion, of the curing kinetics of any polymer vastly documented in the
literature (Lion and Höfer, 2007; Kiasat, 2000; Hojjati et al., 2004).
As it will be shown later by the multi-scale analysis, such a behavior



appears in the composite magnetomechanical materials even if the
matrix (here an epoxy) is magnetically inactive.

5. Multi-scale approach in curing magneto-elasticity

5.1. Without shrinkage effects

When considering a composite material, Eq. (5) apply to each
constituent whose material properties are known. The identifica-
tion of the composite properties and response can be achieved
through micromechanics methodologies. Here the Mori–Tanaka
approach is employed, extended to magnetomechanical materials.
The main theory has been developed in Dunn and Taya (1993) and
in this section a brief description of the extended Mori–Tanaka
approach is provided.

Using indicial notation along with Einstein summation conven-
tion, Eq. (5) can be represented in a more general way,

_Rij ¼ LijmnðE; tÞ _Emn; ð15Þ

with

Rij ¼
rij; i ¼ 1;2;3;
bj; i ¼ 4;

�
Emn ¼

emn; m ¼ 1;2;3;
�hn; m ¼ 4;

�

LijmnðE; tÞ ¼

Ahijmn
ðE; tÞ; i; m ¼ 1;2;3;

Chnij
ðE; tÞ; i ¼ 1;2;3; m ¼ 4;

Chjmn
ðE; tÞ; i ¼ 4; m ¼ 1;2;3;

�Khjn
ðE; tÞ; i; m ¼ 4:

8>>><
>>>:

ð16Þ

Assuming a composite of N þ 1 phases, the magnetomechanical
properties of both the polymeric matrix (index 0) and the different
types of particles (index 1 to N) are considered to obey a constitu-
tive law of the above form (15). For nonlinear magnetoelastic con-
tinua, L is a known function of E and time. The scope of
micromechanics is to identify the overall properties of the compos-
ite that satisfy a similar constitutive law, i.e.
_�R ¼ �L : _�E; ð17Þ
where the bar above a symbol indicates macroscopic variable or
property. According to the usual assumptions in micromechanics,
the particles are considered randomly dispersed inside the matrix
and the overall tensors �R and �E are equal to the volume integrals
of the respective tensors Rr and Er of the material constituents
(r ¼ 0; . . . ;N),

�R ¼
XN

r¼0

crRr; �E ¼
XN

r¼0

crEr; ð18Þ

with cr being the volume fraction of the rth phase (0 for the matrix
and 1; . . . ;N for the particles). Although, for this particular problem
at hand we consider only one type of filler particle, we keep N for
the sake of generality of the proposed modeling framework.

Eq. (15) provides a time dependent magnetomechanical (rate
form) type constitutive law. Since L in nonlinear magnetoelastic
continua depends on E, the direct connection between the tensors
Rr and Er is very difficult, if possible, to be obtained. In order to be
able to proceed, one can assume that the relations (15) hold in the
same spirit for average quantities, i.e.
_Rr ¼ LrðEr ; tÞ : _Er : ð19Þ

Such a simplification has been shown to work quite well in the case
of elastoplastic composites (Lagoudas et al., 1991).

Using the extended version (19) for the material constitutive
laws, the generalized Mori–Tanaka strain concentration tensors
of the constituents are given by1 (Dunn and Taya, 1993; Qu and
Cherkaoui, 2006)

TMT
r ¼ Tdil

r :
XN

r¼0

crT
dil
r

" #�1

: ð20Þ

In the above expression Tdil
r is the dilute strain concentration tensor

of each phase, computed by the relation

Tdil
r ¼ I þ Sr : L�1

0 : ½Lr �L0�
� ��1

; ð21Þ

where I is the fourth order symmetric identity tensor. Obviously,

for the matrix it holds Tdil
0 ¼ I . The Eshelby tensors Sr of the parti-

cles are provided by the fundamental solution of the Eshelby prob-
lem and depend on the shapes of the particles as well as the
polymeric matrix properties (Dunn and Taya, 1993). For general
ellipsoidal shapes of the particles and non-isotropic matrix, the
Eshelby tensor can be obtained numerically through the procedure
described in Gavazzi and Lagoudas (1990), extended to the case of
magnetomechanical materials. The Eshelby tensor for an ellipsoidal
inclusion with main axes a1; a2; a3 (Fig. 1) is given in indicial nota-
tion by the formula

Sijkl ¼
1

8pL0mnkl

R 1
�1

R 2p
0 f̂jf̂nZ�1

im þ f̂if̂nZ�1
jm

h i
dxdf3; i ¼ 1;2;3;

1
4pL0mnkl

R 1
�1

R 2p
0 f̂jf̂nZ�1

4mdxdf3; i ¼ 4;

8<
:

ð22Þ

with

f̂1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f3

p cos x
a1

; f̂2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f3

p sin x
a2

; f̂3 ¼
f3

a3
; Zik

¼ L0ijkl
f̂jf̂l: ð23Þ

Eq. (22) can be solved numerically using a Gaussian quadrature for-
mula (Gavazzi and Lagoudas, 1990).

With the help of the generalized Mori–Tanaka strain concentra-
tion tensor (20) the effective magnetomechanical tangent modulus
is computed by the equation

�L ¼
XN

r¼0

crLr : TMT
r : ð24Þ

As a remark, the dilute and Mori–Tanaka stress concentration ten-
sors of each phase are given by

Hdil
r ¼ Lr : Tdil

r : L�1
0 ð25Þ

and

HMT
r ¼ Hdil

r :
XN

r¼0

crH
dil
r

" #�1

; ð26Þ

respectively. For purely linear, transversely isotropic, magnetoelas-
tic materials with one type of spherical particles, lengthy analytical
expressions can be obtained (see Levin et al. (2000)).

5.2. With shrinkage effects

The shrinkage of the polymeric matrix during curing introduces
additional strains, as indicated by Eq. (8). These internally gener-
ated strains are mainly dependent on time as the curing process
proceeds. Their dependence on the magnetic induction practically
appears only in a short range of b, as Eqs. (11) and (13) indicate.
One way to account for these additional strains in the Mori–
Tanaka scheme is to treat them as an inhomogeneous inhomo-
geneity (Qu and Cherkaoui, 2006), i.e. the material constituents
of the composite possess their own strains.

The constitutive relations in the case of curing with shrinkage
can be written in a general form as

1 The inverse of a fourth order tensor B with minor symmetries is defined as the
fourth order tensor B�1 whose components are identified from the relation
BijklB�1

klmn ¼ I ijmn ¼ 1
2 ½dimdjn þ dindjm� with dij being the Kronecker delta.



_Rij ¼ Lijmn
_Emn � _Esmn

h i
; ð27Þ

with the generalized shrinkage tensor Es given by

Esmn ¼
esmn ; m ¼ 1;2;3;
0; m ¼ 4;

�
ð28Þ

where esmn ¼ sðtÞImnand sðtÞ is given by Eq. (9). The rest of the ten-
sors are given by (16).

Following the same approach as Lester et al. (2011), extended to
magnetomechanical materials, the macroscopic generalized
shrinkage tensor is provided by the relation

�Es ¼
XN

r¼0

crEs;r þ
XN

r¼1

cr I � �L�1 : Lr
� �

: Rr : ½Es;r � Es;0�; ð29Þ

where Es;r is the generalized shrinkage tensor for each material
(r ¼ 0 for the matrix and r ¼ 1; . . . ;N for the particles), �L is given
by Eq. (24) and

Rr ¼ Sr : ½Lr �L0� : Sr þL0½ ��1 : Lr � I : ð30Þ

Obviously, the metallic particles do not undergo curing and shrink-
age, thus Es;r ¼ 0 for r – 0. Eq. (29) indicates that the composite
generalized shrinkage strain tensor is not necessarily isotropic, even
if the matrix displays an isotropic response (Eq. (8)). The final
shrinkage behavior of the composite depends also on the particles
material properties, their shape and the way they are distributed
inside the matrix.

For a given macroscopic strain-type tensor �E, the stress-type
macroscopic tensor �R is computed from the macroscopic constitu-
tive law

_�R ¼ �L : ½ _�E � _�Es�: ð31Þ

With this information one can compute the stress-type tensors for
each material constituent through the formulas

Rr ¼ HMT
r : �R�

XN

n¼1

cnLn : Rn : ½Es;n � Es;0�
" #

þLr : Rr

: ½Es;r � Es;0�; ð32Þ

for r ¼ 1; . . . ;N and

R0 ¼ HMT
0 : �R�

XN

n¼1

cnLn : Rn : ½Es;n � Es;0�
" #

; ð33Þ

where the HMT
r is given by Eq. (26). The strain-type tensors for each

constituent thus can be computed from the materials constitutive
laws, i.e.

_Er ¼ L�1
r : _Rr þ _Es;r ; ð34Þ

for r ¼ 0;1; . . . ;N. Detailed derivation of Eqs. (29) and (32) is pro-
vided in Lester et al. (2011).

6. Numerical implementation of constitutive laws

Discretizing the relations (19) with an Euler-backward type
implicit integrator, we obtain

Rnþ1
r ¼ Rn

r þLnþ1
r : ½Enþ1

r � En
r �; ð35Þ

where ½��n ¼ ½��ðtnÞ, tnþ1 ¼ tn þ Dt and Dt is a time step.
When considering shrinkage, the above expression needs to

account for the shrinkage strains, i.e.

Rnþ1
r ¼ Rn

r þLnþ1
r : ½Enþ1

r � En
r � Enþ1

s;r þ En
s;r �: ð36Þ

Eqs. (35) and (36) are nonlinear sets of equations, due to (a) the
dependence of the magnetoelastic moduli Lr on the tensor Er and
(b) the strong nonlinear relation between es and the magnetic
induction b. The second dependence though is only for a very short
time period (more like a strain jump), while before and after this
period the value of b remains constant, as Eqs. (11) and (13) indi-
cate. One way to overcome the numerical difficulties of solving such
a strongly nonlinear system iteratively, is to ‘‘relax’’ the
backward-Euler scheme by considering (a) the magnetomechanical
moduli are computed at time tnþ1 and En

r

Lnþ1
r ¼ Lnþ1

r ðEn
r ; t

nþ1Þ ð37Þ

and (b) the shrinkage strains at each material constituent are given
by

enþ1
s;r ¼ en

s;r þ ½srðtnþ1;bn
r Þ � srðtn; bn

r Þ�I: ð38Þ

With regard to the composite problem when the shrinkage takes
place, the macroscopic Eq. (31) can be discretized in a similar man-
ner to (36). Table 1 presents the computational scheme for homog-
enization which is followed in this work.

7. Numerical examples

7.1. Magnetoelastic particulate composite response during curing,
without shrinkage effect

In order to check the validity of the designed framework, a
numerical example on a magnetoelastic particulate composite is
performed. In the examined composite, cobalt iron oxide
(CoFe2O4) particles are embedded in an epoxy matrix. The particles
are assumed to have spherical shape (a1 ¼ a2 ¼ a3) and they are
randomly distributed inside the matrix.2

The material properties of CoFe2O4 are taken from Huang and
Kuo (1997)

Fig. 1. Ellipsoidal inclusion.

2 Of course the proposed framework allows different type of particle shapes (long
or short fibers, general ellipsoids etc). The random distribution of the particles inside
the polymer, as Mori–Tanaka considers, is perhaps an inaccurate assumption, since it
is well known that, during the curing process, the particles tend to align along the axis
of the applied magnetic field. A possible way to overcome such an issue is to assume
that the particles due to the magnetic field become ellipsoids with long axis along the
direction of the field. For perfectly aligned spherical particles, the periodic homog-
enization method would be more accurate, but exceeds the scope of this work. The
interested reader is referred to Bensoussan et al. (1978), Suquet (1987), Kalamkarov
and Kolpakov (1997), Murat and Tartar (1997), Chung et al. (2001), Chung and
Kikuchi (2001), Tsalis et al. (2013), Chatzigeorgiou et al. (2015).



Ah1 ¼

286 173 170 0 0 0
173 286 170 0 0 0
170 170 269:5 0 0 0
0 0 0 45:3 0 0
0 0 0 0 45:3 0
0 0 0 0 0 56:5

2
666666664

3
777777775
� 109 Pa;

Ch1 ¼

0 0 580:3
0 0 580:3
0 0 699:7
0 550 0
550 0 0
0 0 0

2
666666664

3
777777775

N=½Am�;

Kh1 ¼
�590 0 0
0 �590 0
0 0 157

2
64

3
75 � 10�6 N=A2;

while for the epoxy the corresponding tensors are similar to the val-
ues given in Pakam and Arockiarajan (2014)

Ah0 ¼

5:53 2:97 2:97 0 0 0
2:97 5:53 2:97 0 0 0
2:97 2:97 5:53 0 0 0
0 0 0 1:28 0 0
0 0 0 0 1:28 0
0 0 0 0 0 1:28

2
666666664

3
777777775
� 109qðtÞ Pa;

Ch0 ¼ 0; Kh0 ¼
1:257 0 0
0 1:257 0
0 0 1:257

2
64

3
75 � 10�6 N=A2

:

To account for the curing effect, the matrix tensors Ah0 has been
multiplied by the time dependent, non-dimensional function qðtÞ,
qðtÞ ¼ 0:0001þ ½1� 0:0001�½1� e�0:0925t�

where q0 ¼ 0:0001; q1 ¼ 1:0; jq ¼ 0:0925 s�1. Note that here the
value of the rate parameter jq is 0:0925 s�1 for a 50 s curing time.
However, it can be scaled to incorporate any time-span of the curing
process by simply changing the value of jq. In all the following test
cases, two composites with 20% and 60% CoFe2O4 particles are
considered.

Table 1
Computational algorithm for multi-scale approach in curing magneto-elasticity with shrinkage effects.

At time step n everything is known. At time step nþ 1:
1. The magnetomechanical moduli Lr at each material constituent are computed from Eq. (37)
2. (a) The generalized shrinkage tensor Es for each material constituent (particles and/or matrix) is evaluated from Eqs. (28) and (38), (b) the effective

magnetomechanical tangent modulus �L is computed from Eq. (24)
3. The generalized macroscopic shrinkage tensor �Es is evaluated from Eq. (29)
4. According to the type of macroscopic loading that is imposed (generalized strain �E or generalized stress �R or mixed conditions), the knowledge of �L and �Es allows to

compute the rest of the macroscopic quantities through Eq. (31)
5. The generalized stress-type tensors R for the particles and the matrix are computed from Eqs. (32) and (33) respectively
6. The generalized strain-type tensors E for each material constituent is evaluated from Eq. (34)

Fig. 2. Evolution with time of macroscopic (a) shear modulus in the 2–3 direction, (b) magnetic permeability in the 1 direction and (c) coupled term �C13.



We note that such simple constitutive laws for the matrix and
the particles, without accounting for the curing term qt , has been
proposed in the literature for magnetomechanical composites
(see for instance Huang and Kuo (1997)). More realistic material
responses can be proposed by transforming the constitutive laws
available in the literature for large deformation magnetomechani-
cal continua to the small deformation framework. Nevertheless, for
the scope of the current manuscript the material laws utilized here
are sufficient.

7.1.1. Macroscopic magnetomechanical properties
Using these material properties and the micromechanics

approach presented in subSection 5.1, the magnetomechanical
macroscopic material parameters of the composite can be

obtained. Fig. 2 illustrates the evolution with time of three repre-
sentative macroscopic properties, the shear modulus �A44, the mag-
netic permeability �K11 and the coupled term �C13. These results are
compared with the corresponding ones of the pure epoxy. The
macroscopic shear modulus of the composite follows a similar
trend as the shear modulus of the epoxy, since it evolves exponen-
tially with time (Fig. 2a). The magnetic permeability increases
more than five times with the presence of 60% particles, but still
remains independent of time (Fig. 2b). The most interesting obser-
vation appears with the coupled terms: while the pure epoxy is
considered to have no piezomagnetic response, the composite cou-
pled terms not only exist, but they also evolve with time in an
exponential way, as Fig. 2c shows. Similar conclusions are obtained
for the rest of the composite magnetomechanical coefficients.

Fig. 3. (a) Linear and (b) stepwise evolution with time of macroscopic magnetic fieldin the 3 direction.

Fig. 4. Evolution with time of macroscopic stress in the 3 direction when the evolution of the macroscopic field is (a) linear and (b) stepwise. No macroscopic strain is applied.

Fig. 5. Evolution with time of macroscopic magnetic induction in the 3 direction when the evolution of the macroscopic field is (a) linear and (b) stepwise. No macroscopic
strain is applied.



7.1.2. Case 1: no applied strain
Here it is considered that there is zero macroscopic strain in the

3 direction (plane strain macroscopic conditions), the directions 1
and 2 are traction free, and two different cases of macroscopic
magnetic field are examined: (a) linearly increasing (Fig. 3a) with
time in the 3 direction until it reaches the value of 100,000 A/m,
(b) stepwise increasing (Fig. 3b) with time in the 3 direction: two
linear increases with time for 5 s, separated by a period of 40 s in
which the magnetic field is constant. The maximum magnetic field
reaches the value of 100,000 A/m. As it is illustrated in Fig. 4, the
macroscopically applied magnetic field influences the stress in
the 3 direction only when CoFe2O4 particles are present, causing
compressive conditions inside the composite. Note that the stress,
though very small in magnitude, in the third load step (45–50 s) is
higher than the first step (0–5 s) since there is a minor evolution of
the coupled parameters, cf. Fig. 2c. The macroscopic magnetic
induction on the other hand shows a similar trend with the applied

magnetic field (Fig. 5). For the case of step-wise magnetic load, the
increase of the stress in the last load phase is higher than the incre-
ment in the first phase. This is due to an evolution, though very
small in magnitude, of the coupled parameters.

7.1.3. Case 2: stepwise applied strain
Here it is considered that there is an applied macroscopic strain

in the 3 direction which follows three steps with time: a linear
increase for 5 s, a constant value for 40 s and again a linear increase
for 5 s, until it reaches the value 0.01 (Fig. 6). The directions 1 and 2
are considered traction free. For the macroscopic magnetic field
three cases are examined: (a) no field, (b) linear increasing and
(c) stepwise.

7.1.3.1. No macroscopic magnetic field. If we do not apply any mag-
netic field, the magnetic induction of the composite is almost zero,
due to the small value of the coupled terms. The evolution of the
macroscopic stress appears in Fig. 7 and follows a stepwise relation
with time similar to the one of the strain. For 60% particles, it is
observed a sharp increase in stress between 0–5 s and 45–50 s,
and moreover the final value of stress (�r33) is almost four times lar-
ger than that of the pure epoxy. Due to the successive chain
cross-linking during the holding phase (5–45 s), the stress incre-
ment in the third phase is much higher than in the first phase
(0–5 s).

7.1.3.2. Linear and stepwise evolution of macroscopic magnetic field
with time. When the evolutions of magnetic field of Fig. 3 are con-
sidered, the stress evolution with time does not present noticeable
difference from that displayed in Fig. 7, and the macroscopic mag-
netic induction shows to follow the same trend as the macroscopic

Fig. 6. Stepwise evolution with time of macroscopic strain in the 3 direction.

Fig. 7. Evolution with time of the macroscopic stress in the 3 direction when a
stepwise strain with time is considered. No macroscopic magnetic field.

Fig. 8. Evolution with time of macroscopic magnetic induction in the 3 direction when a stepwise strain with time is considered and the evolution of the macroscopic field is
(a) linear and (b) stepwise.

Fig. 9. Evolution with time of macroscopic normal stress in the 3 direction under a
zero macroscopic strain and magnetic field. Shrinkage effects are taken into
account.



magnetic field, independently of the strain path (Fig. 8). This is due
to the small macroscopic coupled coefficients, which cause the
mechanical and the magnetic phenomena to appear almost decou-
pled when a considerable strain and a magnetic field are applied.

7.2. Magnetoelastic particulate composite response during curing, with
shrinkage effect

In the next examples, the influence of the shrinkage effect will
be studied. The epoxy is assumed to have a total shrinkage of the
form

sðtÞ ¼ s1 1� expð�0:0925tÞ½ �;
s1 ¼ 0:0025þ 0:0005 tanhð5½e� 0:055�Þ:

We examine two cases: (a) zero macroscopic strain and magnetic field
and (b) zero macroscopic strain and linearly increasing magnetic field.

(a) Zero macroscopic strain and magnetic field
It is considered that a zero macroscopic strain is enforced in the

3 direction, while the directions 1 and 2 are traction free.
Moreover, a zero macroscopic magnetic field is applied. The evolu-
tion of macroscopic stress with the curing time is illustrated in
Fig. 9. As is illustrated in Fig. 9, without the application of any
external load (mechanical or magnetic), there is a significant stress
generation due to the curing process. Moreover, as it is observed
with the application of an external load (mechanical or magnetic),
at approximately 5 s, the effect of shrinkage causes a change in the
slope of the curves for both the pure epoxy and the composite.

(b) Zero macroscopic strain and linearly increasing magnetic field
Here the difference with the previous case is that the macro-

scopic magnetic field increases linearly with time, following the
path of Fig. 3a. The corresponding results are illustrated in

Fig. 10. We observe that the stress has been increased substantially
due to the presence of the magnetic field by almost 50% with
regard to the previous case (Fig. 11). It is due to the fact that the
presence of a magnetic load during the curing makes the material
stiffer and handicaps a sample to shrink. However, the shrinkage
does not effect the magnetic induction (i.e. compared with
Fig. 8a). This example is analogous with the first case of 7.1.2 (zero
strain, linearly increasing magnetic field). As it is observed from
Figs. 4a and 10a, the shrinkage effects provide a tremendous
increase in the stress levels of the composite at the end of the cur-
ing process (6 MPa compared to 0.08 MPa for 60% particles volume
fraction).

8. Conclusion and outlook

In this paper, we propose a multi-scale approach for the simu-
lation of polymeric materials during curing processes in the case
of a magneto-mechanical coupled load. Starting from the idea of
continuous chain crosslinking, a convolution integral type poten-
tial function is proposed which is then evaluated with the help of
the second law of thermodynamics to develop a hypoelastic type
constitutive relation for a magneto-mechanical coupled process
in the small strain setting. The curing-induced shrinkage phe-
nomenon is a major pathological event in the process. A novel cou-
pled framework is also proposed to capture the shrinkage behavior
where the total amount of shrinkage is not only dependent on the
curing time but also on the duration and the magnitude of the
application of magnetic loads. Based on a set of reasonable mate-
rial parameters from the literature, several relevant examples are
presented by using a Mori–Tanaka type semi-analytical homoge-
nization method which is extended by Dunn and Taya (1993) for
the case of magneto-mechanical composite materials. All numeri-
cal examples show that the proposed models can capture major
phenomena observable in the curing process under a
magneto-mechanically coupled load. In a forthcoming contribu-
tion, we will extend the idea to a computational homogenization
realm so that real boundary value problems can be simulated.
There are also plans to extend the ideas to a finite strain setting
since mostly polymeric materials can undergo large deformations.
The curing phenomenon is an exothermic reaction process.
Therefore, the proposed model needs to be extended to take into
account for temperature evolution during the process. In this case,
a magneto-thermo-mechanical problem has to be considered.
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Fig. 10. Evolution with time of (a) macroscopic normal stress in the 3 direction and (b) macroscopic magnetic induction in the 3 direction, when the macroscopic magnetic
field increases linearly and the macroscopic strain is zero. Shrinkage effects are taken into account.

Fig. 11. Effect of the magnetic field on the evolution of the macroscopic normal
stress with time. Shrinkage effects are taken into account.
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