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SUMMARY

Breast reduction is one of the most common procedures in breast surgery. The aim of this work is to develop
a computational model allowing one to forecast the final breast geometry according to the incision marking
parameters. This model can be used in surgery simulators that provide preoperative planning and training,
allowing the study of the errors origin in breast reduction. From the mathematical point of view this is
a problem of calculus of variations with unusual boundary conditions, known as knitting conditions. The
breast tissue is considered as a hyperelastic material, discretized with three-dimensional finite elements for
the body whereas the skin is modelled with two-dimensional finite elements on the curved surface. Although
the model is of low precision, we show that it is sufficient for a satisfactory analysis of errors frequently done
during breast reduction surgery and allows to understand how to avoid or correct them.

KEY WORDS: Breast surgery, numerical simulation, knitting conditions

1. INTRODUCTION

Breast reduction surgery is a procedure used to remove excess fat, tissue, and skin from the breasts in
order to achieve a breast size in proportion with the body and to alleviate the discomfort associated
with overly weight breast. The surgeon first makes one or more cuts and then the excess tissue and
skin are removed while the nipple and areola are repositioned. At last, the skin is closed with stitches
to initiate the natural suturing process. To help surgeons to take a better informed decision, medical
numerical simulation enables to carry out virtual surgery operations to visualize the post-operated
breast and to analyse several scenarios. The two main areas of the breast modelling applications are
aesthetic surgery [1, 2] and medical imaging analysis [3].

Although the number of works on the breast soft tissue modelling has increased significantly
during the two last decades [2, 3, 4, 5, 6], the development of an adequate breast model still
continues to be a challenging problem. The use of nonlinear models to simulate the skin, the
muscles, and the tissues is well-developed in the biomechanics context [7, 8, 9] while the finite
element method is a popular technique for the discretization [10, 11, 12] using alternatively the
weak formulation or the minimization framework [13, 14, 15]. The numerical simulation of this
type of surgery gives rise to a very specific problem where one has to prescribe suturing conditions
in order to provide realistic breast shape. Indeed, the junction of the two incision interfaces is
complex: the interfaces are placed in contact while the border (skin) is sewn. From a numerical point
of view, a technical difficulty derives from the non-matching of the left and right surface meshes
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which requires the development of a new numerical suturing algorithm. In [16] it was proposed a
mathematical model and a numerical scheme to simulate the suturing after two typical incisions in
the breast reduction context: a symmetric frontal cut and a rear cut. In this work we generalize the
model in order to consider an asymmetric frontal cut.

From the mathematical point of view, the problem is formulated as a problem of calculus
variations with unusual knitting conditions. The breast tissue is considered as a hyperelastic material
and, although most of soft tissues are incompressible, we consider the breast as a compressible Neo-
Hookean material as proposed in [2, 17]. The breast tissue is modelled using three-dimensional
elements while the skin is modelled using two-dimensional elements since its elastic properties are
very different from those of the breast gland and fat tissue. Moreover, we include in the model the
Chassaignac space since it is of great importance to simulate the breast submitted to the gravitational
force.

The paper is organized as follows. We present in section 2 the mathematical formulation of the
the suturing problem while in Section 3 we detail the numerical algorithms. The breast model in the
gravitational field is given in Section 4 while its respective numerical scheme is designed in Section
5. Numerical tests are given in the sixth section where we present three typical configurations and
in last section we present the conclusions of this work.

2. MODELLING

Suturing process model is based on two main ingredients: a nonlinear elasticity model of the breast
and suturing conditions to perform the junction of the two interfaces. The last point is far from
trivial since, in practice, the surgeon sutures the border of the interfaces between themselves while
the inner parts of the interface only are in contact. Hence the boundary conditions should carefully
be prescribed to correctly model the surgery.

2.1. Geometry

In order to mathematically model the suturing problem, we denote by Ωcut the domain which
corresponds to the incised breast and prescribe the conditions to perform the suturing. Since the
suturing process is very complex from a geometrical point of view, one has to carefully define the
interfaces of the breast and its parametrization. In short, the breast is considered as a spherical cap
where we perform two cuts. We plot in Figure 1 three technical views with the parameters given in
Table I.

Figure 1. Scheme of breast reduction surgery: the middle panel is the frontal view while the left and right
panels report the parameters for the left and right parts of the breast.

We use the following convention: Γ represents a bi-dimensional surface while γ corresponds to a
generic one-dimensional curve. To describe the suturing problem, we introduce the following set of
boundaries we display in Figure 2 while Table I gives an overview of the notations.
The breast is partially covered with a skin characterized by the boundary surface ΓF. The frontal
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Table I. List of symbols and notations.

ΓB back side of the breast that is fixed to the chest
ΓF surface associated to the skin of the breast
ΓL, ΓR left and right cuts performed during the frontal incision
ΓBL, ΓBR left and right cuts performed during the rear incision
A point on the front of the breast where the first incision starts
γ0 = ΓL ∩ ΓR line between point A and the chest
γL = ΓF ∩ ΓL frontal left suturing line
γR = ΓF ∩ ΓR frontal right suturing line
γBL = ΓF ∩ ΓBL backward left suturing line
γBR = ΓF ∩ ΓBR backward right suturing line
θ angle of the suturing plane
αL, αR left and right angles of the frontal incision

incision is performed between the two interfaces denoted by ΓL and ΓR respectively sharing the line
γ0 = ΓL ∩ ΓR passing at point A, orthogonal to the trunk body. A second rear incision is performed
between the breast and the trunk such that a portion of the breast remains in contact with the body
via the interface ΓB while ΓBL and ΓBR are the left and right surfaces respectively deriving from rear
incisions. Boundary lines γL and γR in red in Figure 2 correspond to the suturing line that the surgeon
will join while γBL and γBR are the rear incision lines. Notice that one has ∂Γα = γα ∪ γBα ∪ γ0,
α ∈ {L,R}.

γ
BR

Figure 2. Full breast (left) and half breast (right) in a 3D frontal view (top row) and rear view (bottom row).

2.2. The functional

To describe the breast, we use a nonlinear hyperelastic neo-Hookean compressible model as in [17]
where we neglect the gravity force assuming that the suturing process is independent of the external
field. The problem turns to be the minimization of the associated energy functional [13, 14, 15]
where we determine the new position vector field f : p→ f(p) which minimizes

Jcut(f) =

∫
Ωcut

Wbr(∇f(p))dp+

∫
ΓF

Wsk(∇||f(p))dSp (1)
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subject to the constraints

f(p) = p, in ΓB, (2)
b(f(p)) = 0, in ΓBL ∪ ΓBR, (3)
Πθ(f(p)) = 0 in ΓR ∪ ΓL, (4)
f(p)− f(g(p)) = 0, in γR, (5)

where Πθ is the equation of the plane where the suture of the left and right cuts will take place.
Indeed, we suppose that for a small asymmetry, i.e. αL ≈ αR, the suturing interface may be
approximated by the medium plane. Of course, for large asymmetries, this assumption is no longer
valid and the problem of the location of the final interface turns to be more complicated.

The expressions for the volume strain-energy and the skin strain-energy densities are respectively
represented by Wbr and Wsk and given by

Wbr(F ) =
µbr

2

(
tr(FF t)− 3− 2 ln (det(F ))

)
+
λbr

2
(det(F )− 1)

2
,

where F = ∇f is the Jacobi matrix of f and (λbr, µbr) are the Lamé parameters for the breast and

Wsk(F||) =
µsk

2

Ä
tr(F||F

t
||)− 2− 2 ln

(
det(F||)

)ä
+
λsk

2

(
det(F||)− 1

)2
,

where F|| = ∇||f is the Jacobi matrix of the superficial (skin) displacement f|| and (λsk, µsk) are
the Lamé parameters for the skin. Notice that f(Ωcut) will be the new breast configuration after the
suturing that one has to determine.

Condition (2) guarantees that the back interface remains in contact with the trunk while condition
(3) states that the rear interfaces belongs to the trunk plane to model the suturing of the breast
with the body. To achieve the suturing process with the frontal cut, two boundary conditions are
prescribed. The first one (4) states that the junction occurs in a plane Πθ characterized by the angle
θ we shall prescribe as the mean value of the left and right angles while the second condition
(5) introduces the mapping g : γR → γL associated to the suturing. It provides the point-to-point
correspondence between the left and right side of the cut, that will be given in section 6 for our
specific application.

3. DISCRETIZATION OF THE SUTURING PROBLEM

We introduce a discrete version of problem (1)-(5) based on a mesh with tetrahedrons of the breast
and a piecewise continuous representation of the new position f .

3.1. Mesh and notations

We denote by T a mesh of Ωcut constituted of I non-overlapping tetrahedron cells τi, i =
1, . . . , I , and N vertices Pn = (Pnx, Pny, Pnz) ∈ R3, n = 1, . . . , N . Moreover, Tk, k = 1, . . . ,K,
represents the faces of the tetrahedrons of the mesh that belong to ΓF. Quantities |τi| and |Tk|
represent the volume and the area of the cell and the triangle respectively. We also use a local
indexation. We denote by Pij = (Pijx, Pijy, Pijz) ∈ R3, j = 1, 2, 3, 4, the vertices of τi and by
Pkj = (Pkjx, Pkjy, Pkjz) ∈ R3, j = 1, 2, 3, the vertices of Tk. To discretize function f , we associate
to each node Pn an approximation fn ≈ f(Pn) and denote by fh the usual continuous piecewise
linear function while vector Φh = (fnx, fny, fnz)p collects the 3N components of the new positions.
Vector Φh corresponds to the new configuration but the entries are not the unknowns of the problem
since some of them are characterized by the boundary or the suturing conditions. Therefore, we
extract a sub-vector Xh of Φh which only contains the unknown values we shall use in the
minimisation process while the boundary conditions define an operator

Xh → Φh = B(Xh)

which provides the other entries to complete vector Φh.
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3.2. Boundary and suturing conditions

Condition (2) yields that fn = Pn for any Pn on ΓB while relation (3) implies that for any Pn on
ΓBL ∪ ΓBR we set fky = 0 to enforce the suturing of the rear cut on the trunk plane y = 0. To apply
Constraint (4), for any Pn ∈ ΓR ∪ ΓL, we use fny and fnz as unknowns, i.e. fny and fnz are entries
of Xh. Therefore, we compute the last component with the relation fnx = tan(θ)fnz .

Constraint (5) is the main condition since it describes the surgical procedure. For a node Pn ∈ γL,
fny and fnz are entries of Xh and we compute the last component with fnx = tan(θ)fnz thanks
to condition (4). Assume now that function g : γR → γL is given (defined in section 6), we
proceed in the following way at the discrete level. For a node Pn ∈ γR, we determine the edge
e = [PαPβ ] ∈ γL such that g(Pn) ∈ e. We then define the unique barycentric coordinates such that
λnαPα + λnβPβ = g(Pn) (see Figure 3).

Pα

Pβ

Pnfn

fβ

fα

g(Pn)

b

b

b

b

Figure 3. Discretization of function g. For any point Pn ∈ γR, we determine an approximation g(Pn) ∈ γL
between two nodes Pα, Pβ of an edge belonging to γL. Barycentric coordinates then derive from the relative

position of g(Pn).

To preserve the relative position of fn with respect to fα and fβ in the final configuration, we set

fn = λnαfα + λnβfβ .

Note that the barycentric coordinates will be computed once as a preprocessing step and none of
the coordinates of Pn is an entry of Xh. For any Pn, the choice of the associated edge e and the
barycentric coordinate is equivalent, at the discrete level, to completely define function g.

3.3. Discretization of the functional

We now introduce a discrete version of the energy functional setting

Jh(Xh) = Ĵh(B(Xh)) = Ĵh(Φh) = J1
h + J2

h

constituted of the volume energy J1
h and the surface energy J2

h we detail hereafter.

3.3.1. Triple integrals of the functional For a new configuration characterized by the approximation
p ∈ Ωcut → fh(p) ∈ R3 and stored in vector Φh, the internal energy on tetrahedron τi is given by

Wτi = |τi|
Å
µ

2

[
tr(FiF ti )− 3− 2 ln(det(Fi))

]
+
λ

2

[
det(Fi)− 1

]2ã
,

where Fi is the 3× 3 matrix solution of the linear system

fi2 − fi1 = Fi(Pi2 − Pi1), fi3 − fi1 = Fi(Pi3 − Pi1), fi4 − fi1 = Fi(Pi4 − Pi1).

The total internal energy is then approximated by Jh1 =
∑
τi∈Ωcut

Wτi .
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3.3.2. Surface integrals of the functional The discrete piecewise linear function fh transforms a
triangle Tk with vertices OAB into a triangle T ′k with vertices O′A′B′. Since the translation and the
rotation do not change the stress due to the deformation, we assume that O′B′ is collinear to OB
and A′ belongs to the same plane than triangle OAB. Function f|| is a two-dimensional function
locally given by f||(O) = O, f||(A) = A′, f||(B) = B′. The Jacobian matrix of f|| is the constant
matrix

Jf|| = A =

ï
a b
c d

ò
.

To determine the matrix, one writesï
a b
c d

ò ï
‖OB‖

0

ò
=

ï
‖O′B′‖

0

ò
,

ï
a b
c d

ò ï
‖OA‖ cos(α)
‖OA‖ sin(α)

ò
=

ï
‖O′A′‖ cos(α′)
‖O′A′‖ sin(α′)

ò
,

where α = ∠(OA,OB) and α′ = ∠(O′A′, O′B′). The first linear system gives c = 0 and a =
‖O′B′‖
‖OB‖ . Substituting these expressions in the second linear system we obtain

d =
‖O′A′‖ sin(α′)

‖OA‖ sin(α)
, c =

‖O′A′‖ cos(α′)− a‖OA‖ cos(α)

‖OA‖ sin(α)
.

The superficial energy on triangle T for the skin is then given by

WT = |T |
Å
µsk

2

[
tr(Jf||Jf t||)− 3− 2 ln(det(Jf||))

]
+
λsk

2

[
det(Jf||)− 1

]2ã
and the whole superficial energy is approximated by

J2
h =

∑
T∈ΓF

WT .

3.4. Minimization algorithm

For a given vector Xh and the boundary conditions, we deduce vector Φh = B(Xh), hence the
continuous linear piecewise function fh we use to compute the discretize energy functional. In order
to determine the minimizer X̄h of the discrete functional Jh(Xh), we employ the conjugate gradients
method. To this end, one has to compute an approximation of the derivative of the discrete functional
in directions ` = 1, . . . ,#Xh. Since the function is nonlinear and has complex structure, numerical
derivatives are computed in a very simple way. For example, an approximation of derivative with
respect to direction ` at point X is given by

∂`Jh(X) ≈ Jh(X + ε`)− Jh(X)

ε
,

where ε` is a vector of zeros except value ε for the `−th entry.

4. BREAST UNDER GRAVITATIONAL FIELD

After the suturing, the two faces ΓL and ΓR are in contact and the question arises of the breast shape
in the gravitational field in function of the trunk position. Two new contributions are now considered
for the energy function: the gravity force and the introduction of the Chassaignac space. The last
item corresponds to a mobile zone located between the breast and the trunk which acts as a spring to
maintain the breast close to the trunk. The initial geometry Ωgra we shall deal with is the breast after
the suturing process where the two interfaces ΓL and ΓRare in contact. To determine the new shape,
we assume that surfaces are stick together in such a way that the relative position of the nodes of
ΓR (resp. γR) with respect to the nodes of ΓL (resp. γL) will be preserved when the gravity field is
presented. Notice that no new meshing have been performed hence the two areas are still considered
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Figure 4. 3D rear views for the gravity problem: full breast (left) and half breast (right).

as distinct parts of the boundary with a non-matching mesh. Therefore a specific condition, named
the stick condition, is added to maintain the two faces in contact.

Figure 4 displays the breast geometry domain Ωgrav deriving from the suturing process and we
introduce two new ingredients for the modelling. A new curve γD on the infra-mammary fold is
defined where the breast is fixed. We also merge the interfaces ΓB , ΓBL and ΓBR into a unique
interface ΓC where the Chassaignac condition is prescribed. The problem turns to the minimization
of the associated energy functional where we determine the new position vector field f : p→ f(p)
which minimizes

Jgra(f) =

∫
Ωgra

Wbr(∇f(p))dp+

∫
ΓF

Wsk(∇||f(p))dSp−∫
Ωgra

ρ ag · f(p)dp+

∫
ΓC

c‖f(p)− p‖dSp (6)

subject to the constraints

f(p) = p, in γD, (7)
h(f(p)) = 0, in ΓC, (8)
f(p)− f(G(p)) = 0, in ΓR ∪ γR, (9)

where ag is the gravity acceleration, c the Chassaignac coefficient and ρ the density.
Condition (7) corresponds to fix the breast displacement on curve γD while condition (8)

maintains the breast on the trunk. Condition (9) is the stick condition that preserves the junction
between the left and right interfaces previously joined in the suturing process. Function G results
from the suturing process which defined the mapping from ΓL (resp. γL) onto ΓR (resp. γR) and
will be given in section 5.1.

5. DISCRETIZATION OF THE BREAST UNDER THE GRAVITATIONAL FIELD

We introduce a discrete version of problem (6)-(9) based on a mesh of tetrahedrons of the breast
and a continuous piecewise representation of the displacement f . Due to the new boundary and
constraint conditions, we have to deal with a new subset of unknowns Yh from Φh and a new
operator C such that Yh → Φh = C(Yh) models all the constraints (7)-(9).

5.1. Boundary, Chassaignac and sticking conditions

Condition (7) yields that fn = Pn for any Pn ∈ γD while relation (8) implies that for any Pn ∈ ΓC ,
we set fny = 0 to maintain interface ΓC on the trunk plane y = 0. Constraint (9) means that the two
interfaces previously joined and stick will preserve their relative position and we define function
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G in the following way. At the initial stage, after reading the mesh, we compute the barycentric
coordinates for points Pn on γR and ΓR corresponding to the suturing process:

• If Pn ∈ γR, we determine the edge e = [Pα, Pβ ] ⊂ γL such that Pn also belongs to e since
the two curves are joined. We then define the unique barycentric coordinates such that
G(Pn) = λnaPα + λnβPβ = Pn. Hence the constraint on the new location fn associated to
point Pn writes fn = λnafα + λnβfβ where fα and fβ are the new positions of Pα and Pβ ,
respectively. Notice that fn does not belongs to the entries of Yh since we deduce it from the
linear combination of Pα, Pβ .

• If Pn ∈ ΓR, we determine the triangle f = [PiPjPk] ⊂ ΓL such that Pn also belongs to f
since the two surfaces are sutured. We then define the unique barycentric coordinates such
that G(Pn) = λniPi + λnjPj + λnkPk = Pn. Hence the constraint on the new location fn
associated to point Pn writes fn = λnifi + λnjfj + λnkfk where fi, fj and fk are the new
positions of Pi, Pj and Pk, respectively. Notice once that fn does not belongs to the entries of
Yh since we deduce it from the linear combination of Pi, Pj , Pk.

5.2. Discretisation of the functional

We introduce a discrete version of the energy functional setting

Jh(Yh) = J̃h(C(Yh)) = J̃h(Φh) = J1
h + J2

h + J3
h + J4

h

with

J3
h = −

∑
τi

|τi|
4
ρag (f(Pi1) + f(Pi2) + f(Pi3) + f(Pi4))

and

J4
h =

∑
Tj⊂ΓC

|Tj |
3
c (‖f(Pi1)− Pi1‖+ ‖f(Pi2)− Pi2‖+ ‖f(Pi3−)Pi3‖)) .

Minimization of functional Jh is performed in the similar way as presented in section 3.4.

6. NUMERICAL SIMULATIONS

The original breast is modelled as a truncated sphere characterized by the its principal radius and the
length of the truncated portion. Figure 5 displays the initial configuration of the breast, i.e. before
the incisions. We would like to highlight that more complex geometries can easily be considered
and the suturing method is not limited to that particular configuration.

Figure 5. Mesh of the pre-operative breast: frontal view (left) and lateral view (right).
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6.1. The suturing mapping g

Function g is the fundamental information to describe the suturing process by defining the mapping
from γR onto γL which physically represents the skin junction performed by the surgeon. To this
end, we propose a method to provide such a mapping based on the principle of equivalent relative
distance. More precisely, since A is a fixed point, for any P ∈ γR, we compute the distance of arc
ÃP denoted by |ÃP | and define the relative distance

r(P ) =
|ÃP |
|γR|

where |γR| is the length of the curve γR. We then take the associated g(P ) such that |Ȧg(P )| =
r(P )|γL|. At the numerical level, for a node Pn ∈ γR, we seek the edge e = [v`1, v`2] ⊂ γL such that
g(Pn) ∈ e and compute the barycentric coordinates by solving equation

g(Pn) = λ1v`1 + λ2v`2, λ1 + λ2 = 1.

We store in a vector the correspondence between vertices and edges and the associated barycentric
coefficients.

6.2. Symmetric suturing

In the first numerical test, we performed a symmetric frontal incision with αL = αR = 30◦ with
no rear cut. Figure 6 gives two views of the configuration before the suturing while we display in
Figure 7 the final configuration after the suturing. We have chosen θ = 0◦ to preserve the symmetry
of the junction.

Figure 6. Mesh of the breast after a symmetric incision: frontal view (left) and lateral view (right).

We notice that the symmetry of the shape is preserved and we have check the convergence to a
limit configuration using finer meshes.

We then evaluate the breast shape subject to the gravity field for a person in stand up position.
Figure 8 displays the frontal and side view of the breast under the gravity field and we notice that
the symmetry is also preserved and the junction obtained is a straight line. Computations have been
carried out with finer meshes to check that the solution converges to a limit one. The presented
solution involves a mesh of 1246 tetrahedra and is very closed to the one obtain with finer meshes
(less that 1% of relative errors).

6.3. Asymmetric suturing

In some situations, the surgeon has to perform asymmetric incisions and we experiment other code
to assess the its capacity to handle such a more complex case. Figure 9 presents the initial breast
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Figure 7. Shape of the breast after the suturing without gravity field: frontal view (left) and lateral view
(right).

Figure 8. The breast under the gravity field: frontal view (left) and lateral view (right).

before the suturing where we have choose αL = 15◦ and αR = 45◦. Clearly the breast volume of the
right side is strongly reduced in comparison with the left side and the junction plane is characterized
with θ = 0◦.

Computations are carried out with a 1376 tetrahedra mesh taking the angle θ0 = (−15 + 45)/2
of the suturing plan as the (algebraic) mean values of the two angles. Figure 10 plots the shape of
the breast after the suturing process and the asymmetry is noticeable. As in the former case, we
obtained shape convergence using finer meshes which guarantee the stability of the method.

We perform the computation of the suturing breast under the gravity field and we report that
the suture location is no longer a straight line as displayed in Figure 11. Convergence to a limit
configuration has been checked using finer meshes.

6.4. Frontal and rear suturing

As a final test, we consider a more complex case where we perform both a front and a rear incision
of the breast. Figure 12 shows the mesh corresponding to two incisions while Figure 13 prints the
configuration after the numerical suturing process.
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Figure 9. Mesh of the breast after an asymmetric incision: frontal view (left) and lateral view (right)..

Figure 10. Mesh of the breast after suturing: frontal view (left) and lateral view (right).

Figure 11. The breast under the gravity field: frontal view (left) and lateral view (right).
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Figure 12. Mesh of the breast after a symmetric front incision and a rear incision: frontal view (left) and
lateral view (right).

We use a 1539 tetrahedra mesh presented in Figure 13 but have experimented several finer meshes
to check the convergence. No significance differences (lower than 1%) have been reported with
respect to the solution.

Figure 13. Breast shape after the suturing process: frontal view (left) and lateral view (right).

We also present in Figure 14 the picture corresponding to the deformation of the breast when
applying the gravity field. Such a final snapshot will represent the expected shape of the breast after
the operation.

7. CONCLUSION

The software developed for breast reduction modelling allows one to forecast the final breast
geometry according to the incision marking parameters. The main point is to perform symmetric
or non-symmetric suturing between two interfaces with non-matching meshes while preserving the
final junction when we apply the gravitational field. Accuracy of the approximation with rough
meshes is sufficient for a satisfactory analysis of errors frequently done during breast reduction
surgery and allows to understand how to avoid or correct them. The next step will be the comparison
of the simulations with real surgery cases to validate our approach from a practical point of view.



NUMERICAL SIMULATION OF BREAST REDUCTION WITH A NEW KNITTING CONDITION 13

Figure 14. The suturing breast in the gravity field: frontal view (left) and lateral view (right).
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