Conservation Laws and Invariant Measures in Surjective Cellular Automata - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2011

Conservation Laws and Invariant Measures in Surjective Cellular Automata

Jarkko Kari
Siamak Taati
  • Fonction : Auteur
  • PersonId : 848526

Résumé

We discuss a close link between two seemingly different topics studied in the cellular automata literature: additive conservation laws and invariant probability measures. We provide an elementary proof of a simple correspondence between invariant full-support Bernoulli measures and interaction-free conserved quantities in the case of one-dimensional surjective cellular automata. We also discuss a generalization of this fact to Markov measures and higher-range conservation laws in arbitrary dimension. As a corollary, we show that the uniform Bernoulli measure is the only shift-invariant, full-support Markov measure that is invariant under a strongly transitive cellular automaton.
Fichier principal
Vignette du fichier
dmAP0108.pdf (281.16 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01196135 , version 1 (09-09-2015)

Identifiants

Citer

Jarkko Kari, Siamak Taati. Conservation Laws and Invariant Measures in Surjective Cellular Automata. 17th International Workshop on Celular Automata and Discrete Complex Systems, 2011, Santiago, Chile. pp.113-122, ⟨10.46298/dmtcs.2968⟩. ⟨hal-01196135⟩

Collections

TDS-MACS
98 Consultations
842 Téléchargements

Altmetric

Partager

More