
HAL Id: hal-01196063
https://hal.science/hal-01196063v1

Preprint submitted on 10 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized sorting problems: a symbolic view on
reversible algorithms

Ali Akhavi

To cite this version:
Ali Akhavi. Generalized sorting problems: a symbolic view on reversible algorithms. 2015. �hal-
01196063�

https://hal.science/hal-01196063v1
https://hal.archives-ouvertes.fr

Generalized sorting problems: a symbolic view on reversible
algorithms

Ali Akhavi

GREYC - Université de Caen
Département d’informatique - Campus II - Bd Marchal Juin

F-14032 Caen Cedex - FRANCE
ali.akhavi@unicaen.fr

Abstract

The paper presents a new framework for canonically associating an algorithm with a set of rewrite
systems. We identify an algorithm with the set of all its execution traces. The rewrite systems are
defined on the sequences of elementary transforms of the algorithm and are such that their normal
forms are exactly the execution traces of the algorithm.
The considered algorithms here are those solving a class of problems we define and call the
generalized sorting problems. It consists in finding a representative for generating sequences
of a presented algebra. Under some reasonable hypotheses, the execution traces are a spanning
diagram (colored, directed graph) on the Cayley diagram of the automorphism group of the
presented algebra and thus also normal terms of rewrite systems.
Then we show that any reversible, always halting algorithm is solving a generalized sorting prob-
lem. By a reversible algorithm we mean essentially an algorithm that does not loose information
during the executions.
Our approach provides a view of all algorithms that solve a given problem with a set of fixed
elementary transforms and brings better understanding of the problem: For instance, when any
input of the problem has a unique output and the automorphism group of the presented algebra is
finite, the diameter of its Cayley graph is a lower bound for the complexity of all the algorithms
solving the problem by using the set of fixed elementary transforms.

Keywords: ACM classification: G.4.1. Mathematical software - Algorithm design and analysis
I.6.5. Simulation and modeling - Model development - Modeling methodologies.
Algorithm versus rewrite systems, modeling, symbolic and algebraic algorithms, specification of
problems, abstract state machines.

1. Introduction

Let us consider the following model for a deterministic sequential algorithm: any algorithm A
is given with a set of input data X, a set of output data O ⊂ X, a set of elementary transforms
F ⊂ XX , and a strategy function S : F∗ × X → F as described in the following. At each step, the
algorithm changes a data x ∈ X to f (x) ∈ X for some elementary transform in F. This continues
until the modified data x satisfies some output condition: x ∈ O ⊂ X. An elementary transform is

Preprint submitted to Elsevier July 23, 2015

a mapping from X to X, that can be performed by the algorithm in one step1.
We assume that there is a deterministic strategy S to determine at each step the elementary

transform f to apply to the data. This determination may a priori depend on the history of the
execution. If (f1, f2, . . . , fi−1) are the elementary transforms used by the algorithm before arriving
to the data x, the strategy S decides2 the new elementary transform fi to apply to x:

fi := S(x, (f j)1≤ j≤i−1).

Algorithm A(X,O, F,S) :
Input: x ∈ X.
Output: y ∈ O.

Initialization: i := 1
While x < O do

fi := S(x, (f j)1≤ j≤i−1).
x := fi(x)
i := i + 1

return x

In this paper we are concerned by the case when the algorithm halts, when running on any input.
Let call such an algorithm always halting. Considering F as an alphabet, the set F∗ of finite words
on F is then a monoid containing all finite executions of the algorithm and eventually words
corresponding to no execution. Now fix a sequence of transforms (f1, f2, . . . , fk) ∈ F∗. We address
the following question for the always halting algorithms:
Considering F as an alphabet, the set F∗ of finite words on F is then a monoid containing all
finite executions of the algorithm and eventually words corresponding to no execution. Now fix a
sequence of transforms (f1, f2, . . . , fk) ∈ F∗. We address the following question for the always
halting algorithms:

(Q) Is the sequence (f1, f2, . . . , fk) ∈ F∗ a possible execution for the algorithm?
More precisely, is there (x, y) ∈ X × O such that the algorithm A outputs y when
running on the input x and following the exact sequence of transforms (f1, f2, . . . , fk)?

Main results:
a) The first aim of our paper is modeling algorithms. First, we introduce a class of problems
called the generalized sorting problems (Section 2) (Algorithms that are solving a problem of this
class happen to be well adapted for the question (Q)). Informally, a generalized sorting problem
consists in finding a representative for the different encodings (of a same kind) of a fixed structure.
Here a structure is a universal algebra and an encoding of a fixed kind is a generating sequence
associated with a fixed presentation of the algebra. When running on an arbitrary generating
sequence of an algebra (associated with a fixed presentation), an algorithm of our model outputs
a particular generating sequence associated with the same presentation, after a finite number of

1An elementary transform may be decomposable in terms of other elementary transforms.
2Conventionally if the sequence of elementary transforms (f1, f2, . . . , fi−1) can never happen during some execution

before dealing with the data x as an intermediate data, then the strategy S considers x as an input, i.e. it does not care
about the sequence (the answer of S is the same than the case when i = 1).

2

steps. During an execution, any intermediate data, which is also a possible input, is always an
encoding (of a fixed kind) of the same algebra.
Second we precise how elementary transforms operate on datas. The basic operations available
to build an elementary transform are exclusively the fundamental operations of an algebra. An
elementary transform is given with a sequence of elements of a term algebra. In the very particular
case when the algebra is a set (the simplest possible algebra with no fundamental operation), a
generating sequence is an enumeration of the elements of the set. Any elementary transform
is just a permutation on the members of a generating sequence. Then the (generalized) sorting
problem is to find a representative among the generating sequences of a set, for example one
whose elements are sorted in an increasing order.
We propose a series of hypotheses that precise the definition of a suitable algorithm for solving a
generalized sorting problem. In particular in this paper we deal with algorithms that halt, when
running on any input. Notice that since any elementary transform moves an encoding of an
algebra to another encoding (of the same kind) of the same algebra, any elementary transform is a
permutation on the set of inputs (Fact 4).
b) We associate an algorithm with a set of rewrite systems and characterize (Theorem 1) the set of
all the executions of the algorithm with the set of normal words of the associated rewrite systems3.
The rewrite systems are defined on the sequences of elementary transforms of the algorithm.
Under some reasonable hypotheses, the execution traces are a spanning diagram (colored, directed
graph) on the Cayley diagram of the automorphism group of the algebra associated with the inputs
and thus also normal terms of rewrite systems. If such a sequence is a normal form of one of
these rewrite systems then the answer to the question (Q) is yes. Otherwise the answer is no. We
propose a sufficient condition for the number of rewrite systems associated with an algorithm to
be finite (Fact 17).
c) We use the seminal work of Gurevich modeling sequential algorithms. We introduce a special
class of the so–called Gurevich’s Abstract State Machines (ASM) that we call reversible, always
halting ASM. We show (Theorem 2) that any algorithm that is step–for–step simulated by a
reversible, always halting ASM, is in fact resolving a generalized sorting problem.
d) Our approach provides a view of all the reversible, always halting algorithms sharing a set
of fixed elementary transforms and brings some highlights about the problem they solve: For
instance, when the desired output associated (with any input) is unique and the automorphism
group generated by the elementary transform is finite, then the radius of its Cayley graph is a
lower bound for the complexity of all the algorithms solving the problem by using the set of fixed
elementary transforms. (Corollary 1)
e) Sorting algorithms and Gaussian algorithm (lattice reduction algorithm in two dimensions) as
well as Euclidean algorithm are given in the last section of the paper as examples to illustrate our
approach.

Context, state of art:
Association of an algorithm with a rewrite system. There are already direct well-known
approaches to associate a Turing machine (and so a precised version of an algorithm) with a rewrite
system (6). The association is then used to show the indecidability of the problem of termination
of some particular rewrite system. Here we propose a new different association. Informally, in the

3Considering a rewrite system as an algorithm (once an order is fixed on the set of rewriting rules and also on the place
where one rule is first applied in a word), in this paper, an algorithm is associated with another algorithm.

3

classical approach rewriting is done in the world of datas, while in our framework, rewriting is
done in the world of transformations on datas and our aim is to propose an alternative model for a
class of algorithms. This paper is a beginning work: here, we are concerned by the number of
rewrite systems associated with a fixed algorithm but the rewrite systems are not given explicitly.
(The precise rewrite systems associated with some sorting algorithm and with the Gaussian
algorithm are available in (1).)
The question (Q). First notice that the question (Q) arises naturally and have been answered in a
different context: rather than considering the executions of an algorithm if one considers orbits of
a symbolic dynamical system(10), then there are established relationships between the properties
of the set (language) of factors of the orbits and the properties of the dynamical system.
Second observe that answering the question (Q) in a general context of an arbitrary algorithm is
difficult and the general problem even formulated more precisely seems to be undecidable.
In this paper we decide to answer the question (Q) for the reversible, always halting algorithms.
Relevance of our model of an algorithm.
To evaluate our model let us refer to the seminal work of Gurevich (8) modeling sequential
algorithms. Gurevich defines a sequential algorithm to be an object that satisfies three natural
postulates: the so-called Sequential Time, Abstract State and Bounded Exploration postulates.
The sequenciality of an algorithm is already expressed in our scheme since the data is modified
step by step, according to a discrete time.
Since an algorithm is written down with a fixed finite text, but is applied automatically to
many different (and possibly infinitely many) inputs, it is quite natural to assume that the datas
manipulated by the algorithm do accept the same kind of elementary manipulations at different
steps during different executions. In other words, with respect to the algorithm, the datas at each
step are identically structured. Gurevich’s Abstract State postulate requires this for an algorithm.
This is expressed by our Hypothesis 1: We deal with the algorithms that find a representative for
the generating sequences of a fixed presented algebra. So Hypothesis 1 together with the above
scheme require datas at each step to be a generating sequence of a fixed presented algebra. In
other words, states of an algorithm are the algebras generated by the datas at each step and this
algebra which is also the set of accessible elements remains unchanged during any run.
In our framework, Gurevich’s Bounded Exploration postulate is expressed with Hypothesis 4
(which states the bounded changeness of the data at each step) and Hypothesis 6 (which states the
bounded exploreness of the stratetgy at each step)4.
Outline of our method. We begin by specifying formally (Section 2) a generalized sorting
problem (Definition 5). Many classical definitions about universal algebras are recalled, but
are adapted to our needs. Then Section 3 describes some useful objects and some important
hypotheses about the algorithm. In our framework elementary transforms are permutations on the
set of inputs (or equivalently the set of intermediate datas or the set of states(8))) of an algorithm.
We define the execution graph and the effective execution graph of the algorithm. The former is
the graph of all possible trajectories of elementary transforms among the inputs (which are also the
intermediate datas), while the latter is the graph of the effective trajectories taken by the algorithm,
i.e. the execution traces. The vertices of the execution graph are inputs and there is an edge
from x1 to x2 colored by an elementary transform f iff f (x1) = x2. The vertices of the effective
execution graph are the inputs as well, but there is edge from x1 to x2 colored by an elementary

4The theorem associating an algorithm with a set of rewrite systems (Theorem 1) is expressed without requiring an
algorithm to satisfy bounded exploreness, but requiring it to be bounded-change.

4

transform f iff x1 is moved to x2 by the elementary transformation f , in some run of the algorithm.
The effective execution graph is a spanning graph of the execution graph. We identify vertices of
any connected component of the execution graph with generating sequences of a fixed presented
algebra. In this paper, we work with algorithms that are acting on fixed sized datas. In this context,
we require all the connected components of the execution graph to be isomorphic and we identify
any such connected component with a Cayley graph of the automorphism group of a fixed algebra
(Section 4, Lemma 1). So the automorphisms group is identified with a factor of the monoid of
finite words on the alphabet of elementary transforms.
Section 5 defines a strategy-preserving isomorphism and assemble different connected components
up to strategy-preserving isomorphisms. We define the notion of class of inputs as equivalence
class of connected components up to strategy-preserving isomorphisms. We show that there is a
rewrite system R over the automorphism group of the presented algebra, satisfying the following
property: the executions of the algorithm running on all inputs inside one class (vertices of
connected components inside a class) are exactly normal forms of R. Informally speaking, the
behavior of the algorithm on a class of inputs is governed by one single mechanism.
Then using Gurevich’s ASM framework, we consider in Section 6 an algorithm as an object that is
step by step simulated by a so-called Abstract State Machine (ASM). We define reversible ASM’s
to be those that do not loose information during an execution. We show that any reversible, always
halting algorithm is solving a generalized sorting problem.
Several examples are provided in the last section.

2. A specification of the problem

In this section, we recall basic and classical notions in universal algebras and define the notion
of presented algebra. The advertised reader should skip the first subsection. Then we define the
problem of finding a representative for generating sequences of a presented algebra. For a detailed
introduction to universal algebras see for example (4), (2).

2.1. Preliminaries, universal algebras

A language (or signature or type or vocabulary) of algebras is a finite collection of function
symbols, each of a fixed arity.
An algebra A of type Ψ is a nonempty set A (base set or universe of A) together with interpretations
of the function names in Ψ over A. The elements of the algebra are elements of the universe. A
j-ary function name is interpreted as a function from A j to A , which is a j-ary operation on A and
f ’s are called the fundamental operations of A.
Let A and B be two algebras of the same type. Then a function α : A → B is called a homo-
morphism from A to B if for every j-ary function symbol f ∈ Ψ, for a1, . . . , a j ∈ A, we have
α(f (a1, . . . , a j)) = f (α(a1), . . . , α(a j)). If α is one-to-one and onto, then α is called an isomor-
phism from A to B. Moreover if A = B then an isomorphism is also called an automorphism on
A.
For a sequence X = (xi)i∈I of elements of an algebra A, we will use the classical notion of algebra
generated by X as the intersection of all subalgebras of A containing all the elements of the
sequence X. If the intersection is the whole universe A, then X is a generating sequence for A.
Given a nonempty set A and a positive integer j, a j-ary relation R on A is a subset of A j.
Equivalently a j-ary relation R is identified with its indicator function from A j to {true, flase}.
For a binary relation θ we also denote a1 θ a2 for θ(a1, a2). A binary relation on A is an equivalence

5

relation if it is reflexive, symmetric and transitive. When m relations R1, . . . ,Rm are defined on the
the universe of an algebra A = (A,Ψ), and we want to stress the existence of these relations, then
we denote the algebra A = (A,Ψ,R1, . . . ,Rm). In this case we call the extended vocabulary of the
algebra the union of the set of function symbols Ψ and the set of relation symbols of the algebra5.
Let A be an algebra of type Ψ and let θ be an equivalence relation defined on A. Then θ is a
congruence on A if for each n-ary function symbol f ∈ Ψ and elements ai, bi ∈ A, if ai θ bi holds
for 1 ≤ i ≤ n then f (a1, . . . an) θ f (b1, . . . , bn) holds. Any congruence θ introduces an algebraic
structure on the set of equivalence classes A/θ, which is inherited from the algebra A.
Let S ⊂ A2. Define R as the smallest subset of A2 containing S and such that (i)(s, s) ∈ R,∀s ∈ R,
(ii)(s, t) ∈ R⇔ (t, s) ∈ R, (iii)(s, t) ∈ R and (t, v) ∈ R⇒ (s, v) ∈ R, and (iv) for all n-ary operation
f ∈ Ψ, if (si, ti) ∈ R for 1 ≤ i ≤ n, then (f (s1, . . . sn), f (t1, . . . , tn)) ∈ R. The relation θ defined on
A by (s θ t ⇔ (s, t) ∈ R) is clearly a congruence on A called the congruence generated by S .
Let X be a set of objects called variables. Terms of type Ψ are defined classically by induction:
A variable or a nullary function name is a term. If f is a function name of positive arity j and
t1, . . . , t j are terms, then “the string” f (t1, . . . , t j) is a term. A ground term is a term that contains
no variable. Such a term exists if there is at least one nullary function symbol in the vocabulary,
which is always the case in this paper. The value val(t,A) of a ground term t of type Ψ in an
algebra A of type Ψ is given inductively as usual (A nullary function is identified with its value).
If val(t,A) = val(t′,A), we may say that t = t′ in A.
The term algebra of type Ψ over X, written T(X), has as universe the set T (X), and the fundamental
operations satisfy

val
(

f (t1, . . . , t j) , T(X)
)

= f (t1, . . . , t j) for f ∈ Ψ of arity j and ti ∈ T (X), 1 ≤ i ≤ j.

If an algebra has an extended vocabulary, then the outermost symbol name of a term may be a
relation symbol. Such a term is then called a relational term and its value is either true or false.
Depending on the context, we may write both val(R(a1, . . . , a j),A) = true (or R(a1, . . . , a j) holds
in A) for (a1, . . . , a j) ∈ R; similarly val(R(a1, . . . , a j),A) = false (or simply (R(a1, . . . , a j)) does
not hlod in A) for (a1, . . . , a j) < R.
Given a term p ∈ T (X) of type Ψ where X = {x1, . . . , xn}, and a algebra A of type Ψ, p defines
(analogously to polynomials) an application from An to A. The image of (a1, . . . , an) is simply
denoted val

(
p(a1, . . . , an),A

)
, and is computed by strait forward induction.

An identity of type Ψ over X = {x1, . . . , xn} is an expression of the form p ≈ q where p, q ∈ T (X).
An algebra A of type Ψ satisfies an identity, if for every choice of (a1, . . . , an) ∈ An, we have
p(a1, . . . , an) = q(a1, . . . , an). A class K of algebras satisfies a set of identities Σ, if each member
of K satisfies each identity of Σ.
Let Σ be a set of identities of type Ψ and M(Σ) be the class of all algebras of type Ψ satisfying Σ.
A class K of algebras of type Ψ is a variety iff there is a set of identities Σ such that K = M(Σ).
In this case the variety K is axiomatized by Σ.
Let us cite two very usual examples. The variety of groups is the class of all algebras with the
vocabulary {. ,−1 , 1} where . is a binary operation, −1 is a unary operation and 1 is a nullary
operation and satisfying the following identities: (i) x.(y.z) ≈ (x.y).z, (ii) x.1 ≈ 1.x ≈ x and

5In the mathematical logic context, a vocabulary contains function symbols as well as relation symbols. Then the
analog of an algebra is a structure. However we find it more convenient to use the vocabulary of the universal algebra
rather than the one of the mathematical logic, since we will extensively manipulate isomorphic algebras, variety of algebras
and the presentation of an algebra.

6

(iii) x.x−1 ≈ x−1.x ≈ 1. The variety of Abelian groups is the class of algebras of the same type
satisfying the previous identities, and also x.y ≈ y.x.
Another example is the variety of sets, where both the vocabulary and the set of identities satisfied
by the variety are empty.

2.2. A presented algebra

Let V be a variety of algebras of type Ψ containing a nontrivial algebra6. Given a set X of
variables, the congruence θV(X) on T(X) is defined by θV(X) =

⋂
φ, where φ is any congruence

on T(X) such that T(X)/φ is isomorphic to an algebra inV. TheV-free algebra over X is then
defined7 by FV(X) = T(X)/θV(X).
The V-free algebra over X is generated by X and has the universal mapping property (for the
varietyV of algebras of type Ψ over X): Let A be an algebra ofV. For every map α : X → A,
there is a homomorphism α̂ : FV(X)→ A which extends α. IfV is the variety of all algebras of a
given type Ψ, then FV(X) is identified with T(X).
Let A be an algebra of a varietyV of type Ψ and X be a set. Let (xi)i∈X be a sequence (or family)
of elements of A. Define the mapping ξ : X → A by ξ(i) = xi, for all i ∈ X. Let φ : FV(X)→ A,
be the unique homomorphism that extends ξ.

• The sequence (xi)i∈X generates A iff φ is onto, which depends only on the type Ψ and not
on the varietyV.

The algebra A is called finitely generated iff there is a finite sequence that generates A. In
this paper we always work with finitely generated algebras.

• The sequence is independant iff φ is one to one.

• The sequence is called a basis iff φ is an isomorphism. If there exists a family (xi)i∈X in A,
which is a basis, then A is a free algebra in the varietyV.

Definition 1. Let V be a variety of algebras. A presentation (relatively to V) is a pair (n, S)
where n is a positive integer and S a binary relation on theV-free algebra FV(X), over a fixed
set8 X = {x1, . . . , xn}. In the sequel a presentation will be denoted by (X, S) and n = |X| is called
the rank of the presentation.

Let A be an algebra ofV. The presentation (X, S) is a presentation of A (relatively toV) or A is
presented by (X, S) or A is an (X, S)-presented algebra of the varietyV iff A is isomorphic to

FV,S (X) = FV(X)/θS , where

θS is the congruence generated by S in FV(X). Let A be an algebra of the variety. Equivalently,
A is (X, S)-presented iff there is a mapping ξ : X → A such that (ξ(i))i∈X is a generating sequence
for A and the unique homomorphism φ : FV(X) → A extending ξ to FV(X) satifises for all
t1, t2 ∈ FV(X), φ(t1) = φ(t2) ⇐⇒ (t1, t2) ∈ θS . The generating sequence (ξ(i))i∈X is then called a

6If a familyK contains only a trivial algebra A and |X| ≥ 2, then two distinct members x, y of X cannot be separated by
any homomorphism α : T(X)→ A . So in the general case, theK-free algebra over X is defined by FK (X̂) = T(X)/θK (X),
where X̂ = X/θK (X). In the sequel a family of algebras contain always a nontrivial algebra. So X̂ is identified with X.

7FV(X) exists iff X , ∅ or Ψ contains nullary function symbols.
8Changing X by another set Y of the same cardinal n is just renaming the variables and does not change the presentation.

7

covering of the algebra A with respect to the presentation (X, S) or an (X, S)-covering or simply
a covering of A when there is no ambiguity.
A presented algebra of a variety is a pair composed by an algebra A of the variety and a fixed
presentation (X, S) such that (X, S) is a presentation of A. The rank of the presented algebra is
the cardinality of X, which is always a fixed integer in this paper. The presentation is then finite
and the presented algebra is finitely presented.

A very common example of presentation and presented algebra concerns the variety of groups.
They have been extensively studied (see (11) for example). Notice that the same algebra with two
different presentations corresponds to two distinct presented algebras. Consider in the variety
of groups, the group Σ3 of permutations of three objects. It is presented by ({x1, x2}, S 1 =

{(x3
1, 1), (x2

2, 1), (xy, yx2)}) but also by ({x1, x2}, S 2 = {(x2
1, 1), (x2

2, 1), ((xy)3, 1)}). (Σ3, (X, S 1)) and
(Σ3, (X, S 2)) are two distinct presented algebras of the variety of groups.
Notice also that there is not a trivial notion of rank for a general algebra, while we defined the
rank of a (X, S)-presented algebra to be n = |X|.
Given a varietyV and a presentation (X, S) relatively toV, the trivial algebra may be the unique
algebra of the variety with the presentation (X, S). On the other hand, the algebra presented by
(X, ∅) is isomorphic to FV(X), theV-free algebra over X.
Two algebras of type Ψ of the same varietyV and with the same presentation (X, S) are obviously
isomorphic, since they are both isomorphic to FV,S (X).

2.3. Automorphism group of the presented algebra

Here we precise the notion of automorphism group of the presented algebra which is central in
our approach. Indeed we will identify elementary transforms of an algorithm with automorphisms
of a presented algebra and require the elementary transforms to generate all this group.

Notation 1. LetV be a variety of type Ψ and (X, S) a presentation. Let I be a presented algebra.
The set of all (X, S)-coverings of I is denoted by Ĩ. Any application φ between two presented
algebras I1 and I2 that conserves (X, S)-coverings (any (X, S)-covering of I1 is associated with
a (X, S)-covering of I2) is extended naturally to an application between Ĩ1 and Ĩ2, denoted by φ̃.

Fact 1. Let (X, S) be a presentation relatively to a variety V of type Ψ. Let I1 and I2 be two
algebras ofV with presentation (X, S). An application φ between I1 and I2 is an isomorphism
iff it is an homomorphism and the image of a (X, S)-covering c1 of I1 is a (X, S)-covering c2 of
I2. Moreover φ is completely defined by a pair (c1, c2) where c1 is a (X, S)-covering of I1, c2
is a (X, S)-covering of I2 and c2 = φ̃(c1). The image of any element x of I1 is obtained by first
expressing x according to c1 and then replacing c1 by c2 in this expression.

Proof. The previous characterization of an isomorphism between two instances I1 and I2 defines
non-ambiguously a mapping between I1 and I2: if two terms constructed with a covering of I1
are equal, then they are equal as well, when the covering of I1 is replaced by a covering of I2,
since c1 and c2 are two coverings relatively to the same presentation (X, S).
A homomorphism φ transforming a covering c1 of I1 into a covering c2 of I2, i.e. a homomor-
phism φ given by the pair (c1, c2) is indeed a bijective application: the reciprocal isomorphism
φ−1 is simply given by the pair (c2, c1).
Let φ be an isomorphism between I1 and I2, c1 a covering of I1 relatively to (X, S) and
c2 = φ̃(c1). Clearly c2 is a generating sequence for I2: Since φ is onto, any element x of I2 has
a preimage in I1 that is expressed as t(c1), a term on the covering c1. Since φ is a morphism

8

x = φ(t(c1)) = t(φ̃(c1)) = t(c2). Now let t(c1) and t′(c1) be two terms on c1. Since φ is a one to
one morphism, t(c1) = t′(c1) iff t(c2) = t′(c2), which shows that c2 is a covering relatively to the
presentation (X, S).

Definition 2. The set of all automorphisms of a presented algebra with the composition of
applications has a group structure. Since any algebra of type Ψ of a variety V and with
the presentation (X, S) is isomorphic to FV,S (X), the automorphism groups of algebras with
the presentation (X, S) are all isomorphic to the automorphism group of FV,S (X), called the
automorphism group of the presented algebra and denoted Aut(FV,S (X)) or Aut(Ψ,V, n, S)
where n = |X| . If one (X, S)-covering of a presented algebra is fixed then this group is naturally
identified with the set of (X, S)-coverings of the presented algebra.

Let I be an algebra of the variety V and let (X, S) be a presentation for I. Another natural
way to see the previous assertion is the following. Aut(FV,S (X)) acts freely and transitively (i.e.
regularly) on the set of coverings Ĩ: Once one (X, S)-covering c∗ of the presented algebra is fixed
then any element f ∈ Aut(FV,S (X)) is naturally identified with the automorphism (c∗, f̃ (c∗)). So
by the classical orbit stabilizer theorem, there is bijective mapping between Aut(FV,S (X)) and Ĩ,
namely the one that associates f to f̃ (c∗).

Remark 1. Let I1 and I2 be two algebras of a variety with the same presentation and φ an
isomorphism between I1 and I2. Then φ defines a group isomorphism between the automorphism
groups of I1 and I2: The application that associates to an automorphism f of I1 defined by two
generating sequences (c1, c2) the automorphism, say φ(f), of I2 defined by the two generating
sequences (φ̃(c1), φ̃(c2)) is clearly a group isomorphism. Moreover for all (c1, c2) ∈ Ĩ2

1, and for
all ω automorphism of I1, c1 = ω̃(c2) =⇒ φ̃(c1) = ˜φ(ω)(φ̃(c2)).
Indeed c1 = ω̃(c2) means that ω may be defined by the pair of generating sequences (c1, c2). So
the remark is just a consequence of the definition of φ(f).
Observe that from any function f (or permutation) on I1, one defines analogously φ(f).

Remark 2. Let (c, c′) and (d, d′) be two pairs of coverings of a presented algebra. They represent
the same automorphism if and only if the terms expressing d′1, . . . , d

′
n according to c′1, . . . , c

′
n are

equivalent to those representing d1, . . . , dn according to c1, . . . , cn.

There are commonly other (somehow more constructive) ways to represent an automorphism:
An automorphism ((c1, . . . , cn), (c′1, . . . , c

′
n)) may be defined by the initial covering c1, . . . , cn and

the way c′1, . . . , c
′
n are expressed in terms of c1, . . . , cn, i.e. each c′i given by an element Wi of

the term algebra T (x), such that c′i = Wi(c1, . . . , cn). For example, if the presented algebra is
a set of cardinality n, presented with an enumeration of its elements, then c′i = cσ(i), where
σ is a permutation of {1, . . . , n}. If there is just one associative fundamental operation in the
presented algebra then c′1, . . . , c

′
n are words W1(c1, . . . , cn), . . . ,Wn(c1, . . . , cn). An automorphism

of the presented algebra is then defined by an initial generating sequence together with the words
W1, . . . ,Wn. Alternatively rather than fixing the initial (preimage) covering9 one may fix the final
(image) covering c′1, . . . , c

′
n. Then an automorphism f is given by c′1, . . . , c

′
n together with the

words W ′1, . . . ,W
′
n such that f ((W ′i (c′1, . . . , c

′
n))) = c′i . Notice once more that when a covering is

fixed (no matter it is the preimage or the image) then any automorphism is given by a sequence of
terms on this covering.

9One may also fixe an initial generating sequence c and a final one c′ and give the words expressing images of the
components of c in c′.

9

Fact 2. Let x = (x1, . . . xn) be a a fixed covering of an (X, S)-presented algebra A. Any auto-
morphism f of the (X, S)-presented algebra is then uniquely labeled by a sequence of terms
(T1, . . . ,Tn) of FV,S (X). The set of labels of all the automorphisms does not depend on the initially
chosen (X, S)-covering x.

Proof. The automorphism f is defined by (x, (Ti(x))) and so labeled by (T1, . . . ,Tn). Obviously
two sequences of terms T1, . . . ,Tn and T ′1, . . . ,T

′
n satisfy Ti = T ′i in FV,S (X) for all i ∈ {1, . . . , n},

if and only if they label the same morphism. We will now prove that for any (X, S)-covering
c = (c1, . . . , cn), (T1(c), . . . ,Tn(c)) is an (X, S)-covering. (So fixing initially another (X, S)-
covering c rather than x does not change the set of labels whereas it does change the label of a
given automorphism). Let z ∈ A. Let y be the preimage of z by the automorphism defined by (x, c).
y is expressed as a term on (Ti(x)). So z is a term on (Ti(c)), i.e. any element of A is expressed as
a term on (Ti(c)). Moreover any equality relation in A is expressed as Ω((Ti(x))) = Ω′((Ti(x))).
Since c is also an (X, S)-covering, one has Ω((Ti(c))) = Ω′((Ti(c))) as well.

Remark 3. Let x = (x1, . . . xn) be a a fixed initial covering. If the automorphisms are labelled by
elements of the term algebra T(X) rather than elements of FV,S (X), then a given automorphism
may have several different labels but of course a given n-tuple of elements of T(X) is the label of
at most one automorphism.

Fact 3 whose proof is straight forward exhibits an advantage of representing an automorphism as
sequence of terms on a covering.

Fact 3. Let ω = ((c∗1, . . . , c
∗
n) , (c1, . . . , cn)) and

f = ((c∗1, . . . , c
∗
n) , (W1(c∗1, . . . , c

∗
n), . . . ,Wn(c∗1, . . . , c

∗
n)))

be two automorphisms of a presented algebra. Then the automorphism ω ◦ f is represented by
((c∗1, . . . , c

∗
n) , (W1(c1, . . . , cn)), . . . ,Wn(c1, . . . , cn))).

Fact 4. Let I be a finitely generated algebra of a varietyV of type Ψ with presentation (X, S)
where n = |X|. Let Ĩ be the set of coverings of I relatively to (X, S). Let W1, . . . ,Wn be n elements
of the term algebra T(X) and (c∗1, . . . , c

∗
n) ∈ Ĩ such that (W1(c∗1, . . . , c

∗
n), . . . ,Wn(c∗1, . . . , c

∗
n)) ∈ Ĩ.

The application

f :
{

Ĩ → Ĩ

(x1, . . . , xn) 7→ (W1(x1, . . . , xn)), . . . ,Wn(x1, . . . , xn))
(1)

is a permutation on Ĩ.

Proof. Assume there are three coverings (a1, . . . , an), (b1, . . . , bn) and (c1, . . . , cn) such that

f (a1, . . . , an) = f (b1, . . . , bn) = (c1, . . . , cn).

So Wi(a1, . . . , an) = Wi(b1, . . . , bn), for all i ∈ {1, . . . n}. Since (c1, . . . , cn) is a covering of I
any element of the covering (a1, . . . , an) is expressed as terms on (ci): for all i ∈ {1, . . . n},
ai := Φi(c1, . . . , cn). So

ai = Φi(W1(a1, . . . , an), . . . ,Wn(a1, . . . , an)).

10

But f transforms a covering of a presented algebra into another covering of the presented algebra
and any equality relation on a covering is also an equality relation on any other covering sequence.
In particular,

bi = Φi(W1(b1, . . . , bn), . . . ,Wn(b1, . . . , bn)).

So ai = Φi(c1, . . . cn) and bi = Φi(c1, . . . cn), ∀i ∈ {1, . . . n}, which leads to ai = bi.
Moreover from the definition of the terms (Φ1, . . . ,Φn) one deduces that ci := Wi(a1, . . . an) =

Wi(Φ1(c1, . . . cn), . . . ,Φn(c1, . . . cn)). Once more notice than any equality relation satisfied by
one covering of the instance is satisfied by all the coverings of the instance since we deal with
presented algebras. So any covering (x1, . . . xn) satisfies :

xi = Wi(Φ1(x1, . . . , xn), . . .Φn(x1, . . . , xn)), ∀i ∈ {1, . . . n},

which means that (Φ1(x1, . . . , xn), . . . ,Φn(x1, . . . , xn)) is the preimage of the generating sequence
(x1, . . . , xn).

Remark 4. (i) Let (c∗1, . . . , c
∗
n) be a fixed (X, S)-covering in Ĩ. Then any other (X, S)-covering

(x1, . . . , xn) is expressed as terms in (c∗1, . . . , c
∗
n). When the algebra is a group and (X, S) = (X, ∅),

the transformation f defined in (1) is called a Nielsen transformation10 in (11). There is a bijective
association between Nielsen transformations and automorphisms of a free group, once a covering
(c∗1, . . . , c

∗
n) is fixed. So when the algebra is a group and (X, S) = (X, ∅), the previous fact just

claims that any Nielsen transformation defines a permutation on the set of generating sequences
of a free group.
(ii)The restriction of f to any closed subset of Ĩ under f is obviously a permutation on this subset.
(iii) The previous fact is true even if if there are additional equalities in the presented algebra
between terms that are not consequences of the identities of the variety nor consequences of
equalities in S . Indeed, the last proof does not use these additional equalities.

2.4. A domain, an instance, the problem
LetV be a variety of algebras of type Ψ, (X, S) be a fixed presentation relatively to the varietyV
of rank n = |X|. Let D = (D,Ψ) be a fixed algebra of the varietyV that we call the domain. We
call indifferently domain the algebra D and its universe D.
Finally let us assume that there are m ≥ 0 additional relations R1, . . .Rm of finite arities defined
on D. For example, m = 1, R1 is a binary relation and the domain D is ordered or preordered. We
recall that Ψ ∪ {R1, . . .Rm} is then called the extended vocabulary of D.

Definition 3. A valid input (or an input) is an n-tuple x = (x1, . . . , xn) ∈ Dn, satisfying all equality
relations in S . The set of all valid inputs is called the input set.

As precised by Fact 2 when a (X, S)-covering x = (x1, . . . , xn) of FV,S (X) is fixed then any
element of the automorphism group of FV,S (X) is identified with a sequence of terms (T1, . . . ,Tn)
in FV,S (X). Any such sequence of terms is not only associated with an automorphism but also
with a transformation of n-tuples of elements of FV,S (X).
For example, if the algebra is a group, and |X| = n = 2, and S = ∅, then (x1, x2) → (x1x2, x2)
defines an automorphism of the free group on two generators. It also defines a transformation

10It is associated with a free substitution.
11

on pairs of words on (x1, x2): The pair (W1(x1, x2),W2(x1, x2)) is transformed into the pair
(W1(x1, x2)W2(x1, x2),W2(x1, x2)).
Hence the automorphism group Aut(Ψ,V, n, S) of the (X, S)-presented algebra, acts naturally on
the input set: Once an arbitrary initial covering in FV,S (X) is fixed, any automorphism is identified
with a sequence of terms which is identified with a transformation on the input set. We call this
action the natural action on the input set.

Definition 4. Orbits of the the natural action of Aut(Ψ,V, n, S) on the input set are called
instances of the problem.

Fact 5. Two elements inside one instance of the problem generate the same subalgebra of the
domain D.

Proof. As described by Fact 2, any automorphism φ of FV,S (X) can be expressed by a sequence of
terms (T1, . . . ,Tn) of FV,S (X) that fixes how φ acts on a sequence x = (x1, . . . , xn) of n elements of
the domain. (Fact 2 shows that if x generates an (X, S)-presented algebra, then any other element
in the orbit of x is an (X, S)-covering of the same algebra similarly to x.) The image of x by φ
is y := (T1(x), . . . ,Tn(x)). So y generates obviously a subalgebra of the algebra generated by x.
Now since φ is an automorphism of FV,S (X), there are terms (T ′1, . . . ,T

′
n) of FV,S (X) such that

x1 := T ′1(y), . . . , xn := T ′n(y). Thus the algebra generated by x is a subalgebra of the one generated
by y.

Consider a valid input x ∈ Dn. Consider the subalgebra A generated by x. The equality between
pairs of terms in A may be just consequences of the identities of the variety or the equalities in S .
But it may also exist additional equalities between terms in A. In all cases, the input x is formally
considered by the action as an (X, S)-covering by identifying x with X. Any element in A is
accessed as an element of the term algebra FV,S (X). Even if additional equalities are satisfied in
A, they are not used by the action. For example if in a valid input x = (x1, . . . , xn) two elements x1
and x2 are the same element of D (without x1 = x2 being implied by S) then the action formally
considers x1 and x2 as two a priori different elements of D.
So the natural action is a free action on the inputs, since an (X, S)-covering is a fixed point for a
transformation associated with an automorphism of FV,S (X), if and only if the automorphism is
the identity. Equivalently the algebra generated by a valid input x ∈ Dn is always isomorphic to a
factor of an (X, S)-presented algebra. It is either an (X, S)-presented algebra, which is the generic
case or a proper factor of an (X, S)-presented algebra, when it satisfies additional equalities that are
not consequences of the identities of the variety nor the equalities in S . These are the degenerate
cases.
In the sequel, even in the degenerate cases, the additional equalities that are not consequences of
the identities of the variety nor the equalities in S , are never used by the action. So the algebra
generated by a valid input x ∈ Dn will always be formally indentified with FV,S (X) and called
an instance of the presented algebra. Depending on the context, the word “instance” will be
either an instance of the problem or an instance of the presented algebra (i.e. an algebra that is
identified with FV,S (X)). When an instance of the presented algebra is presented by (X, S) then
the associated instance of the problem is the set of all its (X, S)-coverings. Usually an instance of
the presented algebra is noted I and the associated instance of the problem is denoted Ĩ.

Remark 5. Whenever the input set contains an n-tuple x, it contains all the instance containing
x. The input set is then called complete.

12

Definition 5. Let V be a variety of algebras of type Ψ, (X, S) a presentation relatively to V
with |X| = n and D a domain, i.e. (D,Ψ) is an algebra of the variety, where m finitary relations
R1, . . .Rm are defined. A generalized sorting problem consists in finding a representative for the
generating sequences of a presented algebra as precised in the following:
Input: a sequence of n elements of D satisfying the equality relations of S .
Output: a sequence of n elements of D in the same orbit than the input under the action of
Aut(Ψ,V, n, S) (i.e. in the same instance than the input) and satisfying an additional property
that is expressed with the extended vocabulary Ψ ∪ {R1, . . .Rm}, i.e. with the fundamental
operations and relations (including the equality) existing on the domain D, and usual logical
connectors.

One important particular case is when S = ∅. In this case, the algebra presented by (X, S) is the
free algebra of the variety. Any sequence of |X| = n elements of the domain is then a valid input
and the input set is Dn. An instance is an orbit of the action of the automorphism group of the free
group of the variety on the input set. With an input sequence x ∈ Dn on hand, our problem is to
find one particular element of the instance containing x.
All examples considered in the paper are in this particular case.
As a first example, consider the variety of (multiplicative) groups, n = 3, and S = ∅. Let D be the
set of unimodular 2 × 2 matrices. We may define a preorder on D. The input is a family of three
2 × 2 unimodular matrices and the output a family of three matrices generating the same group
than the input and satisfying some additional property that is expressed with the preorder among
matrices.
As a second example, consider the variety of additive abelian groups n = 2, and S = ∅, and
D = Z2. Define the preorder on D that compares two vectors according to their Euclidean norm.
The input is a family of two vectors of Z2. The output is a family of two vectors (a1, a2) generating
the same additive abelian group and satisfying a1 ≤ a2 and a2 ≤ a2 + a1 and a2 ≤ a2 + a1.
As a third example, consider the variety of sets and S = ∅. Choose D = Q with the usual order.
An input is a list of n rationals and the output the same rationals sorted in increasing order. The
last two examples are detailed in the appendix.
A generic case is when there is binary relation defined on the domain which is an order (or a
preorder). Then the coverings are lexicographically ordered and the desired output may be the
minimal one with respect to this lexicographic order.
Usually the natural length of an input (the space needed to store an input in a computer) is defined
by the domain. The elementary manipulations on datas are the elementary operations on the
domain. So the cost of elementary manipulations on datas depends on the domain as well. For
example when sorting n items, the domain might be R or N. The length of inputs and the cost of
elementary manipulations will not be the same in these two different cases.

3. An algorithm

Now let A be a deterministic algorithm for a generalized sorting problem. The algorithm
A is modeled as in the beginning of the introduction: Its input is chosen in X which is a set of
coverings of presented algebras taken in a domain. The algorithm has a set F ⊂ XX of elementary
transformations and a non ambiguous strategy S for determining the adequate elementary trans-
formation f during any execution. This determination depends on the current data manipulated by
the algorithm and eventually on the past history of the execution. For convenience we will always
suppose that F contains the identity application id.

13

As said in the previous section, with the operations of the type Ψ, the input of the algorithm
generates a subalgebra of the domain. During the execution, at each step, the strategy determines
the elementary transform to apply to the data and the determined elementary transform is then
applied to the data. We will require the algorithm to preserve the subalgebra of the domain
generated by the input sequence. The elementary transforms are expressed with the operations of
the type Ψ. So they can be applied indifferently to any instance of the problem.
Now let us define and briefly discuss some hypotheses for our main theorem.

Hypothesis 1. The algorithm A is solving a generalized sorting problem (introduced by Definition
5).

Hypothesis 2. Running on any input, the algorithm A halts and outputs an element ofX satisfying
the required property.

Definition 6. Let A be an algorithm and S the strategy used for determining the adequate
elementary transformation f (x ← f (x) with f ∈ F) at any moment during any execution. If
S does not depend on the time during the execution, i.e. determining the adequate elementary
transformation to apply to x depends only on data (x) manipulated and not on the past history of
the algorithm, then the strategy (and the algorithm) is a memory-less, i.e. iff

∀(w,w′) ∈ F2,∀x ∈ X,S(x,w) = S(x,w′).

Remark 6. Let us give two examples of strategies. Assume that F = { f0, f1, . . . , fn−1} is finite
and there is preorder on X. For all x ∈ X,let F(x) be defined by F(x) := {g(x) : g ∈ F}. There is
always a minimal element in F(x) which may be not unique. Both the following strategies are
greedy since the chosen transformation f is such that f (x) is the minimal element of F(x) (with
respect to the preorder on X). When F(x) has a unique minimal element both strategies choose
the same elementary transformation. Now assume that F(x) has several minima.
(1) The first strategy is memory-less. The chosen elementary transform is fi, with i defined by:
i = min {0 ≤ r ≤ n − 1 : fr(x) is a minimum of F(x)}. This is the strategy associated with the well
known the insertion sort.
(2) The second strategy determines the elementary transform f by a computation that de-
pends on the most recent elementary transform used. If the most recent elementary trans-
form used is fk, then the chosen elementary transform is f(k+i) mod n with i defined by: i =

min
{
0 ≤ r ≤ n : f(k+r) mod n(x) is a minimum of F(x)

}
. This is the strategy associated to the well

known the bubble sort.

We have to distinguish the output of a generalized sorting problem (Definition 5) and the output
of an algorithm solving the problem. Running on a fixed input, an algorithm (sequential and
deterministic in this paper) outputs always the same output, even if the problem may accept
several outputs for the fixed input. Let us precise the notion of output for an algorithm. Observe
that if the algorithm is not memory-less then some data may be an output for the algorithm in
some context and not an output in another context.

Definition 7. A data x∗ in the input set X is an output of the algorithm (or an output) if it is at
least once returned by the algorithm, i.e. if there is x ∈ X such that the algorithm returns x∗ when
running on x.

14

A fixed point of the algorithm is an input which is returned by the algorithm without any modi-
fication, i.e. x ∈ X such that A(x) = x. Obviously any fixed point of the algorithm is an output.
Now consider an output. The elementary transform determined by the algorithm to deal with any
output is the identity during at least one execution (during the last iteration). If the algorithm is
memory-less then the action of the algorithm on the data does not depend on the history of the
execution. So,

Fact 6. If an algorithm is memory-less then the outputs are exactly those inputs that are fixed
points under the action of the algorithm.

The following directed and colored graph visualizes all the possible trajectories of elementary
transforms among datas. Any execution of the algorithm is a path in this graph but of course there
are paths that do not correspond to any execution.

Definition 8. The following directed and colored graph G = (V, E) is called the execution graph
of the algorithm (respectively the execution graph of an instance I).
The set of vertices V is the set of all inputs (respectively the set of all inputs inside an instance I).
For any two vertices c1 and c2, (c1, c2) ∈ E ⇔ there is an elementary transform f ∈ F such that
c2 = f (c1). If (c1, c2) is an edge, it is always labelled or colored by the name of the elementary
transform f it represents.

Remark 7. Consider an edge of the execution graph. By definition it is labelled by an elementary
transform that is used at least once during an execution. This makes it impossible to add artificial
and useless elementary transforms to the set F of elementary transforms.

Now let us recall the definition of a weakly connected (or connected) component of a directed
graph.

Definition 9. Let G be a directed multi-graph and H be a subgraph of G. Let G′ and H′ be
obtained from G and H by preserving the same vertices and replacing the directed edges of G
and H with undirected edges. H is a connected component of G if and only if H′ is a connected
component of G′.

Hypothesis 3. The execution graphs of instances are the connected components of the execution
graph of the algorithm.

Hypothesis 3 defines a partition of the input set X into sets that are stable under the action of
the set of elementary transforms F and identifies any such set with an instance of the problem.
It express the whole compatibility of the set of elementary transforms of the algorithm with the
partitioning of the input set into the sets of coverings of instances of the presented structure.

Definition 10. Let A(X,O, F,S) be an algorithm. The set of all directed and colored11 paths
corresponding to executions of the algorithm running on all inputs (respectively all inputs inside
an instance) is called the effective execution graph of the algorithm (respectively the effective
execution graph of the instance).
Two algorithms are equivalent if and only if there is an isomorphism (of directed, colored graphs)
between their effective execution graphs.

11The colors are naturally the names of the elementary transforms.

15

Fact 7. Let A(X,O, F,S) be an algorithm. Suppose Hypothesis 2 and 3 are satisfied. Let I be
an instance of size n. Let GI be the execution graph of the instance I and TI be the effective
execution graph of the instance.

(i) TI is a spanning sub-diagram of GI.

(ii) If the algorithm is memory-less then TI is a spanning directed and colored forest of GI.

(iii) If the instance I has a unique output x, then TI is a connected spanning sub-diagram of
GI.

(iv) If the instance I has a unique output x and the algorithm is memory-less then TI is a
spanning directed and colored tree of GI.

Proof. (i) is trivial since the algorithm is running on any input. So TI is containing all the vertices
of GI. (ii) Under Hypthesis 2, no directed path corresponding to one single execution contains
a circuit. Moreover TI has no circuit, i.e. there is no circuit whose edges belong to different
executions, otherwise running on a vertex of the circuit, since the algorithm is memory-less, it
would loop and never end. More generally TI has even no cycles, otherwise there would be a
vertex on the cycle with two different outgoing edges which is impossible since the algorithm is
deterministic and memory-less: there is only one path followed by the algorithm from any vertex
to the corresponding output. (iii) is trivial since then TI contains a path from any vertex to the
vertex corresponding to the output. (iv) is just (ii) and (iii) together.

Remark 8. For the same reasons, the effective execution graph T of the algorithm is always
a spanning sub-diagram of the execution graph G. In the same vain under Hypothesis 2 if the
algorithm is memory-less then T is a spanning directed and colourd forest of G.

Definition 11. Assume that there is no circuit in the effective execution graph of the algorithm12

(Definition 10). Consider the relation on X defined by “c is related to c′” if and only if there is a
directed path in the effective execution graph from c to c′. The reflexive closure of this relation is
an order relation on X called the algorithm order.

Fact 8. Any element of X that is minimal for the algorithm order is an output. Moreover if the
algorithm is memory-less, then any element in X which is not an output has a unique successor
and any output is a minimal element.

Proof. A minimal element for the algorithm order is by definition an output. Now consider a
data in X. It may be an output during an execution and an intermediate non terminal data during
another execution. Such an output is not minimal for the algorithm order as defined above, but this
cannot happen if the algorithm is memory-less. Moreover since the elementary transformation
applied to a data is then the same in all executions, any data has a unique successor that is the
modified data under the action of the elementary transform.

Since the algorithm has to work correctly with all (often infinitely many) instances taken in a
domain, it is quite reasonable to require that the elementary transforms operate on any data (an

12Observe that if the algorithm is memory-less and no execution is containing a loop then the execution graph has no
circuit. Otherwise the execution graph may contain circuits while no execution is containing a loop.

16

1234

1243

1324

1342

1423 1432

2134

2143

2314

2341

2413

2431

3124

3142

3214

3241

3412

3421

4123 4132

4213

4231

4312

4321

t1

t2

t3t1

t2

t1

t3 t1

t2

t1

t3

t1

t2

t3

t2

t1

t3

t1t2

t1

t3

t1

t2

t3

t2

t3

t2

t1

t3

t1

t2

t3

t2

t3

t2

t3

Figure 1: The insertion sort algorithm running on the instance I = {1, 2, 3, 4}. There are three elementary transforms:
for 1 ≤ i ≤ 3, ti is the swap of the ith and (i + 1)th elements of the covering. The agorithm is memory-less and there is a
unique ouput. So the effective execution graph of the instance I is a spanning tree of the execution graph of I.

17

n-tuple of the domain) independently of the instance, i.e. automatically: They act in the same
way on different instances. It is also reasonable to assume that the elementary transforms on datas
can be performed by using only the fundamental operations of the algebra. The next hypothesis
proposes one way to achieve this.

Hypothesis 4. Let Ψ be a vocabulary,V a variety of type Ψ and (X, S) a presentation relatively
toV. For all f in F, f is given by a sequence of n = |X| terms T1, . . .Tn of type Ψ over X, i.e. a
sequence of n elements of the term algebra T(X). If c = (c1, . . . , cn) is an input of the elementary
transform f , the output f (c) is defined by

f (c) = (T1(c1, . . . , cn), . . . ,Tn(c1, . . . , cn)) .

Remark 9. (i) If the presented algebra has no fundamental operation (the variety of sets, i.e.
when Ψ = ∅) then the only possible terms are the the variables x1, . . . , xn.

(ii) In this paper we always work with presented algebras of a fixed rank. This remark is
an exception: If an algorithm works automatically on presented algebras of arbitrary rank,
then it is reasonable to require a compatibility condition with the rank. For example, the n
terms corresponding to the n first (or last or consecutive) elements of the output covering of any
elementary transform for presented algebras of rank n + 1, are the terms associated with an
elementary transform f ′ ∈ F that is used when working with presented algebras of rank n.

(iii) By Hypothesis 4 the algebra generated by the output sequence is a subalgebra of the
algebra generated by the input sequence. Hypothesis 3 ensures that both input and output
sequences are coverings of the same algebra and the set of automorphisms labelled by the
elementary transforms (see Fact 2) generates the automorphism group of the algebra.

(iv) Hypotheses 3 and 4 could be replaced by one unique hypothesis asserting that any
elementary transform is an n-tuple of terms that labels an automorphism of the presented algebra
as detailed in Fact 2. Moreover the set of automorphisms so labelled generates the automorphism
group of the presented algebra. If the presented algebra is the free group of rank n, then the
elementary transforms are a set of Nielsen transformations generating the group of all Nielsen
transformations. It can be for example, the set of elementary Nielsen transformations (see (11)).

Fact 9. Let Ĩ be an instance. Let f be an elementary transform satisfying Hypothesis 4 and c∗ be
an element of Ĩ. Under Hypothesis 3, f̂ := (c∗, f (c∗)) is an automorphism of I, that is naturally
asociated to the pair (c∗, f).

Proof. Recall we work on presented algebras with fixed presentation (X, S). The sequence f (c∗)
generates a subalgebra of the algebra generated by c∗. Moreover it is in the same instance Ĩ
since Hypothesis 3 is satisfied and an edge labelled by f makes c∗ and f (c∗) being in the same
connected component of the execution graph.

Fact 10. Suppose that Hypotheses 1, 3 and 4 are satisfied. Let Ĩ be an instance. The restriction
of any element of F to Ĩ is a permutation on this set.

Proof. Under Hyptheses 3 and 4, f associates an element of Ĩ to another element of Ĩ and it is
defined by the terms expressing the output covering in the input covering. So the fact praphrases
Fact 4.

Fact 11. Let I1 and I2 be two instances and φ be any isomorphism between I1 and I2. Let φ̃ be
the extension of φ to the sets of coverings of I1 and I2.

∀ω ∈ F∗, ∀c ∈ Ĩ, φ̃(ω(c)) = ω(φ̃(c)).
18

Proof. We show the fact with ω = f ∈ FI (Then an obvious induction on the length of ω lead
to the fact with ω ∈ F∗

I
). The isomorphism φ is defined with the pair of coverings (c, φ̃(c)). The

elementary transform f moves the covering c to another covering c′ by mean of terms (W1, . . . ,Wn).
So c′ = (W1(c), . . . ,Wn(c)). By the definition of the isomorphism φ, φ(Wi(c)) = Wi(φ̃(c)), for all i
and so φ̃(f (c)) = f ((φ̃(c)).

4. Identifying inputs, automorphisms and class of terms on elementary transforms

Lemma 1. Under Hypothesis 1, 3 and 4, the execution graph of any instance (i.e. all connected
components of the execution graph of the algorithm with vertices labelled by a list of n element of
the algebra) is isomorphic to the Cayley diagram of the automorphism group of the presented
algebra.

Proof. Let us construct one Cayley diagram for the automorphism group of the presented algebra.
Consider an instance I of the (X, S)-presented algebra. Hypothesis 1 together with Definition
8 assert that the vertices of the execution graph of an instance are labelled by all the (X, S)-
coverings of the instance. But we have already noticed that when one arbitrary generating
sequence c∗ is fixed, then any generating sequence c is identified with an automorphism, say
with the automorphism (c∗, c) and {(c∗, c) : c generating sequence of I} is exactly the set of all
automorphisms of the instance I. Hence vertices of the execution graph of the instance are
labelled by automorphisms of the instance and of course c∗ is the only vertex identified with the
trivial automporphism.
Once more from Definition 8, for any two vertices c1 and c2, (c1, c2) is a directed edge if and only if
there is an elementary transform f ∈ F such that c2 = f (c1). Moreover by Hypothesis 4 the elemen-
tary transform f is given by terms W1, . . .Wn that relate the components of the output covering to
the components of the input covering. Now to any elementary transform f (that is in XX) we asso-
ciate an automorphism f̂ defined by f̂ = ((c∗1, . . . , c

∗
n) , (W1(c∗), . . . ,Wn(c∗))). Then thanks to Fact

3, (c1, c2) is an edge if and only if (c∗, c1)◦ f̂ is represented by ((c∗1, . . . , c
∗
n) , (W1(c1), . . . ,Wn(cn))).

Hence following a directed edge labelled by f corresponds to the right multiplication in the auto-
morphism group by f̂ .
Now by Fact 10, any elementary transform (restricted to an instance) is a permutation on the
instance. So for any vertex of the execution graph of I and for any elementary transform f ∈ F,
there is exactly one incoming and exactly one outgoing edges labelled by f .
Finally Hypothesis 3 states that the execution graph of any instance is connected. So any vertex is
connected to the one labelled by c∗ by means of at least one path labelled by f

εi1
i1
. . . f εir

ir
where εi

is ±1. So the vertex represents f̂
εi1

i1
◦ . . . ◦ f̂ εir

ir
and F is a set of generators for the automorphism

group of I. Moreover any other path from this vertex to c∗ represents the same automorphism, i.e.
is an equivalent member of the automorphism group.

Remark 10. (i) The previous lemma does not depend on the fixed generating sequence c∗ used in
Fact 9 to identify elementary transforms with automorphisms.
(ii) Lemma 1 is also a direct corollary of the well–known orbit-stabilizer theorem applied to the
natural action of the automorphism group of the (X, S)–presented algebra on an orbit. As we
already noticed this action is free, so it is regular on an orbit. Hence there is a natural bijection
between the automorphism group of the presented algebra and any orbit. All the orbits are
isomorphic G-sets (Any orbit is a principal homogeneous space or a torsor for the automorphism
group of the presented algebra)

19

Corollary 1. Consider an algorithm that is solving a generalized problem. Assume that the
automorphism group of the presented algebra is finite and for any input, the problem accepts
e unique output . Let F = (fi)1≤i≤n be a set of elementary transform such that Hypotheses 2, 3
and 4 are satisfied and let F̂ be the set of automorphisms, obtained from F by fixing an arbitrary
covering c∗ as in Fact 9. The diameter of the Cayley graph of the automorphism group of the
presented algebra, with F̂ as a set of generators is a lower bound for the complexity of any
algorithm that solves the problem, with the elementary transforms f1, . . . , fn.

Proof. An execution trace of the algorithm is a path on the finite Cayley graph of the automorphism
group of the presented algebra and from any input there is a path to the output. Consider an
instance. Any vertex of the Cayley graph is an input of the instance and there is a unique vertex
which is also an output. The distance between a vertex (an input) and the output, i.e. the minimal
number of edges separating this input from the output is also a lower bound for number of
elementary transforms used by the algorithm when running on this input. The eccentricity of the
output is (by definition) the maximum of the distances from an arbitrary vertex (an arbitrary input
of the instance) to the output, i.e. a lower bound for the number of elementary transforms used
by any algorithm with the elementary transforms f1, . . . , fn, when running on any input of the
instance. If the output is in the center of the graph, its eccentricity is minimal. The minimum
which is then by definition the radius of the execution graph is a lower bound for the number
of iterations used by any algorithm with the elementary transforms f1, . . . , fn, when running on
any input of the instance. Finally, since the execution graph of the instance is a Cayley graph, it
is vertex transitive. So all the vertices have the same eccentricity. The minimal eccentricity of
different vertices of the graph (the radius) is then also the maximal eccentricity (the diameter of
the graph).

Let us illustrate the previous result with an easy consequence: Let c be a generating sequence of a
set of cardinal n. Consider the Cayley graph of the permutation group on n elements generated the
transpositions that swap two consecutive elements. This graph is well known and usually called
Bubble sort graph (see (9)): Its diameter is n(n − 1)/2. From the previous corollary one deduces
immediately,

Fact 12. Consider a sorting algorithm: when running on all sequences of n elements without
repetition taken in a linearly ordered set, it outputs the ordered sequence after a finite number of
steps. Any such algorithm whose elementary transforms are the n−1 transpositions corresponding
to swapping the i-th element and the (i + 1)-th element, is requiring in the worst case, at least
n(n − 1)/2 steps.

Different sorting algorithms, including bubble sort and insertion sort are satisfying the conditions
of the previous fact.

5. Input classes, rewrite systems

Definition 12. Two instances I1 and I2 of the presented algebra taken in a domain are called
compatible with respect to an algorithm A(X,O, F,S), if and only if there is an isomorphism of
the presented algebra Φ : I1 → I2, called a strategy–preserving isomorphism, such that the
extension Φ̃ to the sets Ĩ1 and Ĩ2 of coverings of I1 and I2 satisfies the following property: the
strategy S is invariant under the action of Φ̃, i.e. for all x covering of I1 and for all sequence

20

of elementary transforms (f j)1≤ j≤i ∈ (FI)i, corresponding to a possible history of the algorithm
before dealing with the data13 x,

S(Φ̃(x), (f j)1≤ j≤i) = S(x, (f j)1≤ j≤i). (2)

The compatibility relation is clearly an equivalence relation on the set of instances of the problem.
An equivalence class for the compatibility relation is called an input class.

Let us define a useful notation and state two facts.

Notation 2. Consider an execution trace in m steps: Running on the input c0 the algorithm
is using successively the elementary transforms f0, . . . , fm−1 and is obtaining successively the
intermediate datas c1, . . . , cm−1 and finally outputs cm. This execution trace is denoted by

c0
f0
−→ c1 . . . cm−1

fm−1
−→ cm. (3)

Fact 13. Let I1 and I2 be two compatible instances and Φ : I1 → I2 be an isomorphism such
that the strategy S is invariant under the action of Φ̃. Then there is a bijection between the set
of execution traces of the instance I1 and the set of execution traces of the instance I2. More
precisely the bijection Φ̂ extending Φ from Ĩ1 × (F × Ĩ1)∗ to Ĩ2 × (F × Ĩ2)∗ defined by:

Φ̂(c0, f0, c1, f1, . . . , cm−1, fm−1, cm) :=
(
Φ̃(c0), f0, Φ̃(c1), f1, . . . Φ̃(cm−1), fm−1, Φ̃(cm)

)
(4)

is a bijection between the set of execution traces of the instance I1 and the set of execution traces
of the instance I2.

Proof. By construction Φ̂ is a bijection from from Ĩ1 × (F × Ĩ1)∗ to Ĩ2 × (F × Ĩ2)∗. So to prove
the fact, since I1 and I2 (respectively Φ and Φ−1) play a symmetric role, we have just to show
that whenener an element of Ĩ1 × (F × Ĩ1)∗ is an execution trace in I1, its image by Φ̂ is an
execution trace in I2. Let m be a positive integer. Consider any execution trace in m steps,

c0
f0
−→ c1 . . . cm−1

fm−1
−→ cm

in I1. We will show by induction on the number k of steps (1 ≤ k ≤ m) that

Φ̃(c0)
f0
−→ Φ̃(c1) . . . Φ̃(ck−1)

fk−1
−→ Φ̃(ck)

is a piece of an execution trace in I2. Running on the input Φ̃(c0) since Φ is strategy–preserving,
the elementary transform used by the algorithm is f0 as well. Moreover by Fact 11, Φ̃(c1) =

Φ̃(f0(c0)) = f0(Φ̃(c0)). Suppose that this is true after k < m steps, i.e. when dealing with the input
Φ̃(c0), during k steps the algorithm has used the same elementary transforms than the ones used

when dealing with the input c0. So Φ̃(c0)
f0
−→ Φ̃(c1) . . . Φ̃(ck−1)

fk−1
−→ Φ̃(ck) is a beginning piece

of an execution trace of the algorithm in the instance I2. Now consider Φ̃(ck) as an intermediate
data during the execution running on Φ̃(c0). Once more, since Φ is strategy–preserving, there is in
I2 an execution using fk to deal with Φ̃(ck).

Hence the execution trace Φ̃(c0)
f0
−→ Φ̃(c1) . . . Φ̃(cm−1)

fm−1
−→ Φ̃(cm) does exist in I2.

13i.e. there is y ∈ I such that running on y the algorithm A follows the sequence (f j)1≤ j≤i of elementary transforms and
then continues with x as intermediate data.

21

Fact 14. Assume that the algorithm is memory-less and Hyptheses 1 and 2 are satisfied. Then two
instances I1 and I2 are in the same input class if and only if there is an isomorphism Φ between
I1 and I2 such that the extension Φ̃ to the sets of coverings Ĩ1 and Ĩ2 is an increasing bijection
for the algorithm order.

Proof. The algorithm order is well defined provided that the execution graph has not circuit,
which is clearly the case here: when an algorithm is memory-less a circuit in the execution graph
would be exactly a non-terminating execution. First assume that I1 and I2 are in the same input
class. Let Φ be any strategy–preserving isomorphism between I1 and I2. By the previous fact,
Φ can be extended as in relation (4) to a bijection Φ̂ between the execution traces of I1 and

I2. Then for c, c′ elements of Ĩ1, c ≤ c′ iff c
f1
−→ c1 . . . ck

fk
−→ c′ is part of an execution in Ĩ1,

iff Φ̃(c)
f1
−→ Φ̃(c1) . . . Φ̃(ck)

fk
−→ Φ̃(c′) is an an execution Ĩ2, that is Φ̃(c) ≤ Φ̃(c′). Hence the

extension of any strategy–preserving isomorphism between I1 and I2 to the sets of coverings is
an increasing bijection for the algorithm order.
Now assume there is an isomorphism Φ between I1 and I2 such that the extension Φ̃ to the sets
of coverings Ĩ1 and Ĩ2 is an increasing bijection for the algorithm order. As Φ is an isomorphism,

Fact 11 asserts that if c
f
−→ c′ is part of an execution in Ĩ1, then Φ̃(c) = f (Φ̃(c′)). Let us show

that Φ̃(c)
f
−→ Φ̃(c′).

From c
f
−→ c′, one deduces that there is an execution in Ĩ2 where Φ(c) and Φ(c′) are two

intermediate datas and Φ(c′) is obtained from Φ(c) within k steps:

Φ̃(c)
f1
−→ Φ̃(c1) . . . ck−1

fk
−→ Φ̃(c′).

Otherwise one would have c ≤ c′, but without Φ̃(c) ≤ Φ̃(c′). Now from Φ̃(c)
f0
−→ Φ̃(c1) being

part of an execution in Ĩ2 one deduces that there is an execution in Ĩ1 where Φ(c1) and Φ(c) are
two intermediate datas and c1 is obtained from c within k′ steps:

c
f ′1
−→ c′1 . . . c

′
k′

f ′k′
−→ c1.

Otherwise one would have Φ̃(c) ≤ Φ̃(c1), without c ≤ c1. But since the algorithm is deterministic

and memory-less, c
f ′1
−→ c′1 and c

f
−→ c′ being parts of executions in Ĩ1 leads to c′ = c′1 . Then

one has c ≤ c′ ≤ c1, but Φ̃(c) ≤ Φ̃(c1) ≤ Φ̃(c′), which contradicts the fact that Φ̃ is increasing. So
k′ = 1 and c1 = c′. Since there are no loop in any execution trace (otherwise the algorithm would
not sop), k = 1. Finally since the action of the elementary transforms on the input set is free, one
has also f = f1. So for any element c of Ĩ1, when dealing with Φ(c) the strategy will apply the
same elementary transform than when dealing with c. That is I1 and I2 are in the same input
class.

Next corollary exhibits some invariants for an input class, the number of acceptable outputs, and
the way the outputs are related.

Corollary 2. Let A(X,O, F,S) be an algorithm and I1 and I2 be two compatible instances.
(i) I1 and I2 have the same number k of acceptable outputs.
(ii) If x1, . . . , xk and x′1, . . . , x

′
k are the acceptable outputs of I1 and I2, then there are at most k

strategy–preserving isomorphisms between I1 and I2 defined by pairs of coverings (x1, x′i) for
i ∈ {1, . . . k}.

22

(iii)Assume that two outputs x1 and x2 in I1 are related with a sequence ω of elementary transfor-
mations: x2 = ω(x1) and let Φ be a strategy preserving isomorphism between I1 and I2. Then
Φ̃(x1) and Φ̃(x2) are two outputs related with the same same sequence of elementary transforms:
Φ̃(x2) = ω(Φ̃(x1)).

Proof. Let Φ be a strategy–preserving isomorphism between I1 and I2 (see Definition 12) and Φ̃

be the bijection that extending Φ̃ to the sets of coverings Ĩ1 and Ĩ2. From Fact 13, x is an output
in I1 if and only if Φ̃(x) is an output in I2. This shows (i) and (ii). In particular, if I1 and I2
have unique outputs then there is a unique strategy–preserving isomorphism between them.
Now let Ψ : I1 → I2 be any isomorphism between I1 and I2. Ψ defines naturally a bijection
Ψ̃ between the sets of coverings of I1 and I2. Then Fact 11 states that for any sequence of
elementary transforms w, Ψ̃(w(c)) = w(Ψ̃(c)).

Now let us point out the theorem. It shows that in order to characterize executions of the algorithm,
one has to study just the executions on one instance inside each input class. Then inside one such
instance (representing one input class), one has a priori to characterize separately executions of
the algorithm, for any set of inputs associated with an output (the sets of preimages of the outputs).
In fact this depends on the number of strategy–preserving automorphisms inside an instance of
the class: For an input class with k outputs, if there are k isomorphisms satisfying Definition 12,
then all the outputs play the same role and one has to characterize the executions of the set of
preimages of only one output inside the class14.

Hypothesis 5. In any input class with k outputs, i.e. where all instances have exactly k outputs,
there are exactly k strategy–preserving isomorphisms between any pair of instances of the class.

Corollary 3. Let (x∗, y∗) be two outputs of an input class. Under the previous hypothesis, the
isomorphism (x∗, y∗) is strategy-preserving.

Proof. Let x∗ and y∗ be in two instances I1 and I2 of the input class. Let (x∗1, . . . , x
∗
k) be all

the outputs of I1 and (y∗1, . . . , y
∗
k) all the outputs of I2. Let us fixe r ∈ {1, . . . , k}. Clearly (and

Fact 13 shows it) the image of an output by any strategy–preserving isomorphism Φ is an output.
So, there is j ∈ {1, . . . , k} such that Φ̃(x∗r) = y∗j . Since there is no other strategy-preserving
isomorphism between I1 and I2 than those associating x∗r to one of the y∗i ’s, the k strategy–
preserving isomorphisms of Hypothesis 5 are exactly (x∗r , y

∗
i), 1 ≤ i ≤ k. The argumentation holds

for any r ∈ {1, . . . , k}. So the k2 isomorphisms (x∗r , y
∗
i), 1 ≤ r, i ≤ k are all strategy–preserving and

are precisely k distinct isomorphisms.

Theorem 1. Let A(X,O, F,S) be an algorithm as specified precisely in the introduction: X is the
set of inputs, O ⊂ X is the set of outputs, F ⊂ XX is a set of elementary transforms and S is a non
ambiguous strategy for determining the adequate elementary transform f ∈ F at any moment
during any execution. So running on an input in X, the algorithm outputs an element in O, after a
sequence of elementary transforms. Assume that Hypothesis 1, 2, 3, 4 and 5 are satisfied. Then X
is partitioned into input classes such that for any input class C there is a rewrite system over F∗

such that executions of A running on any input inside C are exactly normal forms of the rewrite
system.

14If the number of isomorphisms satisfying Definition 12 is strictly less than k, then the outputs of the class are
partitioned into 1 < k′ < k sets and for each one, the set of preimages of one output has to be considered (k′ sets of
preimages to consider)

23

Moreover whenever an element of F∗ is not a possible execution of the input class the associated
normal form provides a new sequence of elementary transform close to the initial sequence (as a
global transformation) that is a possible execution of the input class.

Proof. Consider an input class C. All instances inside C have the same size n and so an execution
graph isomorphic to the Cayley diagram of the automorphism group of the inputs of size n. Thanks
to the first assertion of Corollary 2, they have also all the same set of elementary transforms, say
FC .
Now consider an input class C. To find how the word ω ∈ F∗C is rewritten, first choose any
output, say x∗, of the class. Since ω is a permutation on the set of coverings of any instance of
the class, there is a unique input x (a generating sequence in the same instance than x∗) such that
ω(x) = x∗. Running on x the algorithm outputs x′∗ which is an (eventually other) output of the
same instance, after a finite sequence of elementary transforms ω′ ∈ F∗C . Let the word ω′ be the
result of rewriting ω. If ω′ = ω then ω is a normal form of this rewrite system and this happens if
and only if ω corresponds to an execution trace. Moreover this does not depend on the output
inside the input class: Let y∗ be another output of the class. By Corollary 3 of Hypothesis 5, the
isomorphism Φ = (x∗, y∗) is strategy–preserving (in other words the outputs of the class play all
a symetric rôle). Then by Fact 11, y∗ = Φ̃(x∗) = Φ̃(ω(x)) = ω(Φ̃(x)). Finally Fact 13 asserts
that running on Φ̃(x) the algorithm outputs Φ̃(x′∗) after the previously considered sequence of
elementary transforms ω′ ∈ F∗C . So the word ω′ does not depend on the instance used during the
rewriting method.

Remark 11. Usually a rewrite system consists in some local rewriting rules. They are applied
as soon as possible. Then one asks two typical questions about the rewrite system: termination
and confluence. Here any term is rewritten globally with the algorithm. Since we require the
considered algorithm to always terminate, our rewrite system is always terminating. There is a
unique rewrite algorithm. Alternatively one can consider that we have one rewrite rule per term.
Now let us focus the question of the confluence, i.e. whether the order of applying different rules
matters. First observe that any term here has a unique normal form. This is a direct consequence
of normal forms being exactly execution traces of the algorithm inside an input class and the fact
that our algorithms are always deterministic.

Fact 15. Suppose we are rewriting inside an input class with one unique output. Let w = w1w2 be
a word in F∗. Let w′,w′1,w

′
2 be the results of rewriting w,w1,w2. Let w′′ be the result of rewriting

w′1w′2. Then w′ = w′′.

Proof. Let I be an instance in an input class with one unique output. Let x∗ be the output of
I. Consider a word u and call u′ the result of rewriting u. We adopt the same notation as in
Fact 9: to the pair (x∗, u) we associate the automorphism û := (x∗, u(x∗)). By construction u
and u′ are the words labelling two directed paths in the execution graph of the instance, from
the same starting vertex to the same ending vertex (the unique output). So the automorphisms
û = (x∗, u(x∗)) and û′ = (x∗, u′(x∗)) are the same. Finally ŵ′1 = ŵ1, ŵ′2 = ŵ2 and ŵ = (x∗,w(x∗))
and ˆw′1w′2 = (x∗,w′1w′2(x∗)) are the same automorphism. The preimage of x∗ by this automorphism
is a unique input x satisfying w(x) = w′1w′2(x) = x∗. So w′ = w′′ and as explained in the proof of
the previous theorem it is provided by the execution trace of the algorithm running on x.

24

The next hypothesis proposes a reasonable way to model the strategy. It is essentially the same
than the third hypothesis in Gurevich’s model(8) of a sequential algorithm by the so-called abstract
state machines, namely the bounded exploreness15.

Hypothesis 6. There is a finite number of relations R1, . . . ,Rm of respective arities a1, . . . , am on
the domain and a finite number of terms t1, . . . , tp in the vocabulary, such that the decision of the
strategy is based on (and exclusively on) the boolean values of the following k relational terms:

Ri1 (ti1,1, . . . , ti1,ai1
),Ri2 (ti2,1, . . . , ti2,ai2

), . . . ,Rik (tik ,1, . . . , tik ,aik
),

where j ∈ {1, . . . , k}, i j ∈ {1, . . . ,m} and ti j,h ∈ {t1, . . . , tp}.

Equivalently Hypothesis 6 asserts that two coverings (a) = (a1, . . . , an) and (b) = (b1, . . . , bn)
coincide on Ri j (ti j,1, . . . , ti1,ai j

) for all j ∈ {1, . . . , k} if and only if the elementary transform
determined for the next step of the algorithm by the strategy running on (a) = (a1, . . . , an) and on
(b) = (b1, . . . , bn) are the same.
For example, assume that we are working with Abelian free groups of rank 2, presented by two
elements, the domain is R3 and there is only one binary relation R on the domain which is the
classical preorder related to the Euclidean norm of vectors: For x and y two vectors of R3,

R(x, y)⇔ ‖x‖ ≤ ‖y‖.

The input set is (R3)2. Assume there are four elementary transforms, namely Id := (b1, b2) →
(b1, b2), S := (b1, b2) → (b2, b1), T := (b1, b2) → (b1, b2 + b1) and T−1 := (b1, b2) → (b1, b2 +

(−b1)). Now let us consider the following strategy:
If R(b2, b1) and not(R(b1, b2)) then return S
else if R(b2 + b1, b2) and not(R(b2, b2 + b1)) return T

else if R(b2 − b1, b2) and not(R(b2, b2 − b1)) return T−1

else return Id.

Fact 16. Let I1 and I2 be two instances of the presented algebra. Under Hypothesis 6, the
following assertions are equivalent:

(i) I1 and I2 are in the same input class.

(ii) There are two coverings (a) = (a1, . . . , an) of I1 and (b) = (b1, . . . , bn) of I2 such that for
all n-tuple of terms T = (T1, . . . ,Tn), with (T1(a), . . . ,Tn(a)) a covering of I1, and for all
j ∈ {1, . . . , k},

Ri j (ti j,1((T (a))), . . . , ti1,ai j
(T (a))) = Ri j (ti j,1(T (b)), . . . , ti1,ai j

(T (b)))

(iii) There are two coverings (a) = (a1, . . . , an) of I1 and (b) = (b1, . . . , bn) of I2 such that for
all ω ∈ F∗, and for all j ∈ {1, . . . , k},

Ri j (ti j,1(ω(a)), . . . , ti1,ai j
(ω(a))) = Ri j (ti j,1(ω(b)), . . . , ti1,ai j

(ω(b)))

15Bounded changeness is already required by our Hypothesis 4

25

Proof. First notice that (ii) and (iii) are equivalent since elementary transforms are precisely given
by terms and they generate the automorphism group of the presented algebra. Now assume that (i)
is true. Then by Definition 12, there is a strategy–preserving isomorphism between I1 and I2.
This isomorphism can be given by two coverings (a) = (a1, . . . , an) of I1 and (b) = (b1, . . . , bn) of
I2. Definition 12 requires that for any covering of I1, i.e. for all n-tuple of terms T = (T1, . . . ,Tn),
with (T1(a), . . . ,Tn(a)) a covering of I1, the elementary transform output by the strategy is the
same for (T1(a), . . . ,Tn(a)) and its image by the extension of the strategy–preserving isomorphism
to coverings, which is (T1(b), . . . ,Tn(b)). For the reciprocal, just notice that (a, b) is a strategy
preserving isomorphism.

Definition 13. Let R1, . . . ,Rm be m relations of respective arities a1, . . . , am defined on the
domain. Let t1, . . . , tp be p terms of the vocabulary and let consider the k′ relational terms,

Ri1 (ti1,1, . . . , ti1,ai1
),Ri2 (ti2,1, . . . , ti2,ai2

), . . . ,Rik′ (tik′ ,1, . . . , tik ,aik′
)

For any k ∈ {1, . . . k′}, the equivalence relation ≡k,R on the set of outputs is defined as following.
Two output coverings c and c′ satisfy c ≡k,R c′ if and only if for all j ∈ {1, . . . k},

Ri j (ti1,1(c), . . . , ti1,ai j
(c)) = Ri j (ti1,1(c′), . . . , ti1,ai j

(c′)).

So to the k relational term defined by Hypothesis 6, one associates the equivalence relation ≡k,R

that defines a partition on the set of outputs. The next corollary is an alternative statement of
Theorem 1, under Hypothesis 6. Indeed in the statement of the previous fact, the coverings a and
b can be taken as outputs.

Corollary 4. There is a partition in the set of outputs such that if c∗1 and c∗2 are two outputs
in the same class, then the isomorphism (eventually the automorphism) defined by (c∗1, c

∗
2) is

strategy–preserving, i.e. for all ω ∈ F∗ and for all j ∈ {1, . . . k},

Ri j (ti j,1(ω(c∗1)), . . . , ti1,ai j
(ω(c∗1)) = Ri j (ti j,1(ω(c∗2)), . . . , ti1,ai j

(ω(c∗2)).

Usually the input set X is infinite and the number of input classes is finite. The next hypothesis
proposes a reasonable way to insure the finiteness of the number of input classes.

Hypothesis 7. There is a finite number k′ of relational terms

Ri1 (ti1,1, . . . , ti1,ai1
),Ri2 (ti2,1, . . . , ti2,ai2

), . . . ,Rik′ (tik′ ,1, . . . , tik ,aik′
),

containing the relationnal terms in Hypothesis 6 (k′ ≥ k and the k first relational terms are those
defined by Hypothesis 6) such that the equivalence relations ≡k,R and ≡k′,R defined on the set of
outputs satisfy the following property. For all pairs of outputs c and c′,

c ≡k′,R c′ ⇐⇒ ∀ω ∈ F∗, ω(c) ≡k,R ω(c′)

Fact 17. Under Hyptheses 1, . . . , 7 the number of input classes and the number of rewrite systems
associated with an algorithm by Theorem 1 are finite.

Proof.

26

Let us finish this section by two classical particular cases (the two following corollaries) when
the domain is ordered and the “algorithm order” is deduced from the order on the domain, i.e.
there is a known (pre-)order on the coverings, which comes from a preorder on the domain and
the strategy is based only on the (pre)order relation among the elements of the instance. In the
following cases the isomorphism Φ is clearly strategy preserving. Then the input classes are set of
instances that are equivalent modulo an increasing isomorphism.

Fact 18. Assume that Hypothesis 6 is satisfied and there is an isomorphism Φ between two
instances I1 and I2 of the presented algebra satisfying: For all i ∈ {1, . . . ,m} and for all
x1, . . . , xai elements of I1,

Ri(x1, . . . , xai) = Ri(Φ(x1), . . . ,Φ(xai)).

Then I1 and I2 are in the same input class.

Corollary 5. Suppose there is a (pre)order ≤ on the domain such that the strategy of the algorithm
is based only on the (pre)order among the elements of the instance. More precisely the strategy
involves computations in the structure, equality tests and comparing elements. Assume that there
is an isomorphism Φ between I1 and I2 such that both Φ and Φ−1 are increasing with respect to
the (pre)order i.e. such that for all dinstinct elements (x, y) ∈ I2

1, with x , y, x ≤ y⇔ Φ(x) ≤ Φ(y).
Then I1 and I2 are in the same input class.

Fact 19. Assume that Hypothesis 6 is satisfied and there is an isomorphism Φ between two
instances I1 and I2 such that the extentions Φ̃ and Φ̃−1 to the sets Ĩ1 and Ĩ2 of coverings satisfy
the following property. For all j ∈ {1, . . . , k} and for all covering c ∈ Ĩ1,

Ri j (ti j,1(c), . . . , ti j,ai j
(c)) = Ri j (ti j,1(Φ̃(c), . . . , ti j,ai j

Φ̃(c)).

Then I1 and I2 are in the same input class.

Corollary 6. Suppose there is a (pre)order on the input set such that the strategy of the algorithm
is based only on it. More precisely the strategy involves computation of coverings by means of
elementary transforms, equality tests and comparing coverings of one instance. Assume that there
is an isomorphism Φ between I1 and I2 such that the extentions Φ̃ and Φ̃−1 to the sets Ĩ1 and
Ĩ2 of coverings are both increasing with respect to the (pre)order i.e. such that for all distinct
elements (x, y) ∈ ♥I2

1, with x , y, x ≤ y ⇔ Φ̃(x) ≤ Φ̃(y). Then I1 and I2 are in the same input
class.

6. Comparing with Gurevich’s ASM

For a nice introduction to Abstract State Machines (ASMs), see for example (8; 7).
In (8), Gurevich defines a sequential algorithm to be an object that satisfies three natural postulates:
the so-called Sequential Time, Abstract State and Bounded Exploration postulates.
The Sequential Time Postulate associates any algorithm A with a set of states S (A) (some of them
I(A) ⊂ S (A) are initial) and a mapping τA : S (A) → S (A) which modifies a state to another at
each step during an execution.
The Abstract State Postulate defines states to be (first order) structures (the vocabulary of a
structure may contain function names and relation names) with the same vocabulary and with

27

the same base set during any execution. Moreover it requires S (A) (and I(A)) to be closed under
isomorphisms.
The Bounded Exploration Postulate requires the existence of a finite set T of terms (in the common
vocabulary of the states) called the bounded exploration witness such that if values of two states
are the same for t ∈ T (i.e. if two states coincide over T), then the two states are updated (modified)
in the same manner. The elements of T are called critical terms.
An Abstract Sate Machine (ASM) of vocabulary Ψ is a state transition system in which at any
step a finite number of values of functions is modified. Modifications of a state at each step is
done with a set of updates rules associated with the state. This consists in finitely many guarded
assignment:

if p then t := u

where t and u are terms over Ψ and p is a conjunction of equalities and disequalities between
terms (here a term may be also relational).
In (8), Gurevich showed that for every sequential algorithm (i.e. every process satisfying the three
above postulates), there is ASM that step-for-step simulates it. (i.e. there is an ASM with exactly
the same runs).
Basic functions whose values are the same in all the states of an ASM are called static; the other
basic functions are called dynamic. Observe that if a basic function is static, it never appears in
the left side of an update rule (unless with a trivial update that can be avoided). But the reciprocal
is false since the values of a basic function may be different in two different initial states.
In Section 3 we defined two equivalent algorithms to have isomorphic effective execution graphs
(Definition 10). Here we will define two equivalent ASM in the same manner: Roughly speaking
two ASMs equivalent iff they have the ”same” runs. More precisely we associate with any ASM,
a directed colored graph, called the effective execution graph, where the vertices are the states
of the ASM and there is a directed edge from a state A to a sate A′, iff the state A is updated to
the state A′, in some run of the ASM. Moreover one color is associated with any set of parallel
update rules used for updating a state of an ASM. We know that the number of colors associate to
an ASM is finite (This is a consequence of the Gurevich’s bounded exploreness postulate (see
(8)). Any edge of the effective execution graph is then colored with the color of the set of parallel
update rules it represents. Two ASMs are equivalent if and only if there is an isomorphism of
directed colored graphs between their effective execution graphs.
There is interesting discussion in (3) about the equality between two algorithms and the difficulty
of defining such notion. In (8) two ASMs are called behaviourly equivalent iff they have the
same set of states, the same sets of initial states and the same transition function. Our definition
of equivalence between ASMs is slightly weaker, since it requires only bijective sets of states,
bijective sets of initial states, and the same transition function modulo the bijection between states.
In particular, two ASM with different vocabulary may be equivalent.
We call an ASM always halting iff all its runs are finite. We call an ASM standard if in all its
update rules, the left side is a nullary function name of the vocabulary, i.e. any update rule is of
the form ci = Ti where each ci is a nullary function name of the vocabulary and Ti is any term
constructed inductively as usual with the vocabulary of the ASM. Moreover we require all states
of a standard ASM to be input states.
By modifying slightly the vocabulary of an ASM, one can easily make it standard16:

16Most of examples of ASM in (8) are already standard. When an ASM is not standard, the modified equivalent standard
ASM is essentially the same. The modification corresponds to introducing some additional redundant variable names in
the algorithm simulated by the ASM.

28

Fact 20. Any ASM is equivalent to a standard ASM.

Proof. Consider an ASM A and the bounded exploration witness T for A. We will define a slightly
modified equivalent ASM A′, i.e. having exactly the same runs. Define a new nullary function
name to the vocabulary, for any update rule where the left side is not already a nullary function
name: If f (a1, . . . , ar) = a0 is an update rule of A, define a new nullary function name ci to the
vocabulary, for f (a1, . . . , ar). The vocabulary of A′ is the union of the vocabulary of A and the new
redundant names. The base set of A′, (i.e. the base set of all its states) is the same than the base
set of the states of A. Any state of A′ is a slight modification of a state of A: The interpretation of
a term which is also a term in the vocabulary of A, other than a term which is the left side of an
assignment and is not an nullary function name, remains unchanged in a state of A′. For any new
nullary function symbol ci introduced as a left side of an update rule f (a1, . . . , ar) = a0, set for
ci the same interpretation than for f (a1, . . . , ar) in the associate state of A. We do not care about
the interpretation of f (a1, . . . , ar) in the states of A′, since they become useless (For example,
the interpretation f (a1, . . . , ar) is undef.) Finally update rules of A′ are those of A, where newly
introduced nullary function names replace all occurences of the terms they are associated with (in
the left sides of the assignments, but also in the guards and in the right sides if they are present).
Clearly the new witness remains finite.

Remark 12. The set of update rules of a state (i.e. a set of parallel atomic update rules of the
state) of a standard ASM is of the form:

cnew
1 = T1(cold

1 , . . . , cold
n), . . . , cnew

n = Tn(cold
1 , . . . , cold

n), (5)

where c1, . . . , cn are the sequence of dynamic nullary function names of the vocabulary of the ASM
(an arbitrary fixed order on the nullary function names is fixed), and T1, . . . ,Tn are n elements of
the term algebra T(X) (with |X| = n variables) constructed with the vocabulary of the ASM.

Let call D the (inalterable) base set of an ASM A. Now we will deal with ASMs such that there is
no loss of information during any run: the elements of D that are accessible in a state Σ, (i.e. those
that are value of a term in Σ) are exactly those that are accessible in an initial state Σ0 associated
with the state Σ (i.e. those that are value of a term in Σ0). We will call such an ASM reversible:

Definition 14. Let A be a standard ASM of type Ψ and let n be the number of dynamic nullary
function names of A and c1, . . . , cn be a fixed sequence of dynamic nullary functions names of Ψ.
Concider the following two conditions.

(i) For any set of update rules associated with a state of A, defined by (5), there are n elements
T ′1, . . . ,T

′
n of the term algebra T(X) such that in any state Γ of A, for all i ∈ {1, . . . , n},

val(T ′i
(
T j

(
(ck)1≤k≤n

)
1≤ j≤n

)
,Γ) = val(Ti

(
T ′j

(
(ck)1≤k≤n

)
1≤ j≤n

)
,Γ) = val(ci,Γ).

(ii) Any set of update rules defined by (5) (not only those used by the ASM) and satisfying (i)
can be decomposed in terms of the updates rules of the ASM A.

A is called standard reversible if and only if it satisfies (i). It is called standard reversible fully
acting if and only if it satisfies (i) and (ii).
An ASM is called reversible (respectively reversible fully acting) if and only if it is equivalent to a
standard reversible (respectively to a standard reversible fully acting) ASM.
A sequential algorithm is reversible if there is a reversible ASM that simulates it step–for–step.

29

Now let us a give an equivalent definition of a standard reversible fully acting ASM.

Lemma 2. Let A be a standard ASM of type Ψ. It is reversible fully acting if and only if there
exits a variety V of algebra of type Ψ and a presentation (X, S) relatively to V such that the
following assertions are satisfied.

(i) |X| = n is the number of dynamic nullary function names of Ψ.

(ii) Any state of A satisfies all the identities of the varietyV.

(iii) Let X = (x1, . . . , xn) be a sequence of variables. There is a fixed sequence (c1, . . . , cn) of
nullary functions names such that in any state of A, when for all i ∈ {1, . . . , n}, xi takes the
value of ci, then all the equalities in S are satisfied by the state.

(iv) For any state of A, the set of update rules defines an automorphism of FV,S (X).

(v) The set of automorphisms defined by the update rules of A is a generating set of the
automorphisms group of FV,S (X).

Proof. Let us deduce Definition 2 from Definition 14. The vocabulary Ψ is the vocabulary of the
standard ASM A. The variety is defined by the set (eventually empty) of identities satisfied in all
the states of A.
Assertion (i) of Definition 14 introduces equalities between values of terms that are not necessarily
consequences of the identities of the variety. (Any side of such an equality is a term inductively
defined from the nullary function names). Any set of equalities between terms that generates the
closure (for equality) of all these additional equality relations can be taken as the set S of equality
relations of the presentation (X, S). From (i) of Definition 14, the equalities in S are satisfied in
any state of A. Now complete any set of update rule of a state to a set of rules that updates all the
nullary dynamic functions (by eventually adding trivial updating for some of the dynamic nullary
functions). Then by fixing a set of variables (x1, . . . , xn), (an (X, S)-covering) any set of update
rules moves it to another (X, S)-covering and so defines an automorphism of the presented algebra
FV,S (X), i.e. an automorphism of the variety.
Moreover, any automorphism of the presented algebra FV,S (X), can be written as the n-uplet of
terms expressing images of dynamic nullary functions. It defines then a set of update rules (not
necessarily used in any run of the ASM) satisfying Assertion (i) of Definition 14. From Assertion
(ii) of Definition 14, it can be decomposed in terms of update rules of the ASM, which shows
Assertion (v) above.
Reciprocally, Definition 14 is a trivial consequence of Definition 2.

Remark 13. Any set of update rules associated with a state of A defines a bijection on Dn. All
the sets of update rules associated with all states of the ASM generates a group G that is acting
on Dn. Whenever the elements of Dn are considered as (X, S)-coverings17, this is a regular action.
So by the orbit-stabilizer theorem different orbits are isomorphic G-sets. Inside an orbit , when
one initial (X, S)-covering is fixed, then any set of update rules is uniquely identified with an
automorphism of the presented algebra. Of course changing the initial (X, S)-covering, provides
a new identification of updates rules with the automorphisms of the presented algebra.

17This means that in the algebra generated by (a1, . . . , an) ∈ Dn, the ASM considers only equality relations that are
consequences of either the identities of the variety or the equality relations of the presentation (X, S), i.e. additional
equalities are ignored by the ASM.

30

Lemma 3. Any standard reversible ASM is a standard reversible fully acting ASM.

Proof. As mentioned in the proof of the previous lemma, any set of update rules of a standard
ASM A (defined by (5)) satisfying Assertion (i) of Definition 14 defines an automorphism of the
presented algebra FV,S (X), i.e. an automorphism of the presented algebra defined by the ASM A.
All the states of an ASM share algebras of a same type and with a same base set. Fixe an (X, S)
covering of the new presented algebra in each orbite to associate the sets of update rules with
automorphisms. Now let call G the subgroup of automorphisms generated by all the sets of update
rules associated with all the states of A18.
For any initial state Σ0, where (c0

1, . . . , c
0
n) are the values of dynamic nullary functions, define an

n-ary relation R on the presented algebra by:

R(c1, . . . , cn) = true ⇔

(c1, . . . , cn) is in the same orbite than (c0
1, . . . , c

0
n) under the action of G.

Now consider the presented algebra associated with the standard ASM by the previous lemma with
the new n-ary relation R. We claim that by construction G is exactly the group of automorphisms
of the presented algebra conserving R, i.e. h ∈ G iff h is an automorphism of the presented algebra
and if for all (a1, . . . , an) in the algebra,

R(a1, . . . , an) = true ⇔ R(h(a1), . . . , h(an)) = true. (6)

Clearly if h ∈ G then (6) holds.
Let g be an automorphism of the presented algebra (not necessarily in G) that is compatible
with the relation R. We will show that g ∈ G. Consider an n-uplet (a1, . . . , an) in the same orbit
than (c0

1, . . . , c
0
n). This means that there is f ∈ G, such that (a1, . . . , an) = (f (c0

1), . . . , f (c0
n). Then

(g(a1), . . . , g(an)) is in the same orbit than (c0
1, . . . , c

0
n) iff there is ` ∈ G such that (g(a1), . . . , g(an)) =

(`(c0
1), . . . , `(c0

n), i.e. (g(f (c0
1)), . . . , g(f (c0

n))) = (`(c0
1), . . . , `(c0

n). Since (c0
1, . . . , c

0
n) is an (X, S)-

covering, g f = ` and g = ` f −1 ∈ G.
At this point, to continue manipulating algebras, it is convenient to view relations as special
functions, marked as relational (as it is done in the work of Gurevich). One requires any algebra
type to contain the equality sign, and nullary names true, false and undef and unary name
Boole, and the names of the usual Boolean operations. With the exception of undef , all these
logic names are relational. So the relation R defined above can be seen as a basic function.

Remark 14. • If a standard ASM A is reversible, then the subalgebra generated by the values
of nullary function names remains inalterable during any run of A. Now let A be an ASM
with a set of critical terms that is closed under subterms (this can always be assumed
without loss of generality). If the ASM A is reversible then the subalgebra generated by the
values of critical terms remains inalterable during any run of A.

• The variety and the presentation are not uniquely defined in the previous definition. For
example one may always consider the variety of all algebras of type Ψ and give the
presentation (X, S) relatively to this algebra. Doing so, the set of equalities S may often be
infinite.

18in the case when Assertion (ii) of Definition 14 is satisfied, G is the group of all automorphisms of the variety.
31

• A usual important particular case is when S = ∅. In this case, the point (iii) in the previous
definition is of course obsolete.

Theorem 2. Any reversible, always halting ASM A solves a generalized sorting problem. Any
reversible algorithm that halts on all its inputs is solving a generalized sorting problem.

Proof. Consider a standard ASM A and let us define the associated problem. There is a standard
ASM A′ equivalent to A. The vocabulary or the type of the problem is the vocabulary of A′. From
Definition 2, there is a varietyV and a presentation (X, S) such that the claims (i),. . . , (v) of the
definition are satisfied. In particular, the number of dynamic nullary function names is the rank of
the presented algebra i.e. the cardinal of the set of variables X in the presentation (X, S).
Each set of update rules associated with a state of A′ defines an automorphism of FV,S (X) and the
set of update rules generates the group of automorphisms FV,S (X).
The desired representatives are those who are fixed points of the transition function ASM. From
the definition of an ASM, being a fixed point of the transition function is expressed with relational
terms in the the finite witness of the ASM.

Remark 15. Consider D the base set of an ASM A and the familyK of the states of A, all of them
of the same type Ψ. One defines then FK (X) the K-free algebra over X as it is classically done19

(and recalled in the preliminairies).
If a standard ASM is reversible then the variety V and the presentation (X, S) defined by the
definition of reversibility are such that FK (X) is a factor of FV,S (X).

We showed in this section that any sequential algorithm that is step–for–step simulated by a
reversible, always halting ASM is solving a generalized sorting problem. Now consider any
algorithm in the model defined in the introduction of the paper. Assume moreover that is solving a
generalized sorting problem, i.e. satisfying Hyptheses 1 , 2 and 3. If it satisfies Hypothesis 4, then
it is “bounded change” but not necessarily “bounded explore”. In particular it may be not bounded
memory: the strategy to decide which elementary transform to use at a moment may depend on
an unbounded history of the algorithm. If one restricts our model to bounded explore algorithms
(Hypothesis 6), then one has exactly sequential algorithms that are step–for–step simulated by
a reversible, always halting ASM. When Hypothesis 6 is satisfied, our motivation to maintain
the strategy depend on a bounded history as expressed in the introduction is to make the algebra
related to the algorithm simpler (Otherwise the algebra is often multisort). This is particluarly
useful when studying algorithms associated with classical algebras as sets or groups as in the next
section.

7. Examples

In the sequel we will illustrate our purpose with examples. We do not give explicitly the rewrite
systems in this paper. Most of these rewrite systems are available in (1). Sorting ordered finite
sets or multisets by algorithms based on comparing items are here a first example to illustrate our
purpose. It is not surprising that when sorting n (totally ordered) items using an algorithm based

19At each state X of A, the equality relation between terms induces an equivalence relation on the term algebra, called
RX . We define R to be the intersection of all RX’s, with X a state of A. So states of A satisfy all equality relations of R.
The free algebra FV,S (X) is defined by T(X)/R.

32

on comparing items, the number of input classes is the number of the underlying order types of
the outputs, that is 2n−1. One of these classes concerns inputs that are lists of n items chosen in
a linearly ordered domain and such that in a list, no item is chosen more than once. This is the
generic case (sorting sets) i.e. when the underlying order type of the output is a linear order. It is
of course well–known that when sorting n distinct (totally ordered) items, one considers as inputs
the permutations on n elements. But as far as we know there is no result (unless (1)) identifying a
sorting algorithm with a rewrite system on the group of permutations. The cases when some items
are present more than once in an input (sorting multisets) are the degenerate cases (see Section
2.4). There are 2n−1 − 1 degenerate cases corresponding to the 2n−1 − 1 underlying order types of
the outputs.
One other example is the Euclidean algorithm and its generalization to reduce two-dimensional
Euclidean lattice bases: The so–called Gaussian algorithm that finds shortest vectors in a two–
dimensional lattice. Here the number of input classes is 5. We show that there are four types of
lattice with respect to the Gaussian algorithms. When the Gaussian algorithm is running on the
basis of a two dimensional lattice of one given type, there is a rewrite system over GL2(Z) such
that the executions are exactly normal forms of this rewrite system. This is the generic case. The
Euclidean algorithm is the degenerate case of the Gaussian algorithm. Further development of our
method and its applications to other structures will follow soon.

7.1. Sorting sets and multisets

In this section we deal with “the generic case” (any equality in the associated presented algebra
is either a consequence of identities of the variety or the equalities of the presentation; here
the variety has no identity and there is no equality in the presentation): we consider sorting
algorithms running on sequences without repetition. We deal with those algorithms having a
strategy exclusively based on comparing elements of the sequence. All the executions of such an
algorithm is characterized as normal forms of one rewriting system on the group of permutations
of n items.

1. The vocabulary (or type) Ψ = ∅. The variety of algebra is the variety of sets. The fixed
presentation is (X, S) where X is a set of n variables and S = ∅. So a presented algebra is
here a set of cardinality n given with is a sequence of the n elements.

2. An isomorphism between two sets of the same cardinal is just a bijection between the sets.
An automorphism is a permutation on a set and the automorphism group of the inputs is
just the group of permutations on a set.

3. A covering is an enumeration of the elements. For a set of cardinal n, there are n! coverings.
4. The domain where the sets are chosen is a known and possibly infinite set like R or Q or Z.

There is a known linear total order in the domain.
5. The problem is : Given a sequence of elements, obtain the generating sequence whose

elements are in an increasing order20.
6. We deal with sorting algorithms whose elementary transforms are a set of permutations

and whose strategy for determining the right elementary transform is exclusively based on
comparing elements of the instance and eventually on the previously determined elementary
transforms. For example, in the bubble sort or the insertion sort, an elementary transform

20When working with sequences with no repetition of element, for any input the expected output is unique. Otherwise,
i.e. when sorting multisets, the desired output is not unique.

33

is a swap of two consecutive elements of a sequence. For the selection sort an elementary
transform is any swap of two elements of a sequence. Insertion sort is memory-less whereas
bubble sort and selection sort are not.

7.2. Sorting sets.

Here the inputs are sequences with no repetition of element and for any input the expected output
is unique. Now we notice that Hypothesis 1, 2, 3 and 4 are satisfied. Hypothesis 5 is not relevant
here since any instance has a unique output. We also observe that there is an isomorphism between
any two instances that is increasing and whose reciprocal isomorphism is also increasing: The
unique isomorphism defined by the outputs of two instances. So,

Fact 21. Consider a sorting algorithm. Assume that elementary transforms of the algorithm are a
set of permutations and the strategy for determining the right elementary transform at one step is
exclusively based on comparing elements and eventually on the previously determined elementary
transforms. Assume that the algorithm is correct, i.e. when running on all sequences of n elements
without repetition taken in a linearly ordered set, it outputs the ordered sequence after a finite
number of steps. Then the elementary transforms form a generating set of the permutation group
on n elements and all the executions of the algorithm are exactly normal forms of one rewrite
system on the group of permutations.

Now let us explicit some examples of algorithm orders. There is one order associated with each
sorting algorithm. All these orders have the same minimal element. Notice that there may be
different ways to express the order related to an algorithm. The algorithm order may be enriched
by additional relations, such that the strategy becomes a greedy strategy: the strategy is to choose
at each step the elementary transform that modifies the current generating sequence into the
minimal one. If there is several such optimal choice, then one has to add additionnal criterions to
determine the elementary transform, for instance dependance to the past of the algorithm.
Let c be a generating sequence of a set of cardinal n. The element of index i in c is denoted c[i].
The elementary transform that swaps the elements c[i] and c[j] is denoted by ti, j and ti denotes
the swap of ith elment c[i] and (i + 1)th element c[i + 1] of the generating sequence.

7.3. Insertion sort and bubble sort

First let us define a relation R among generating sequences:

c1Rc0 ⇔ ∃i ∈ N such that c1 = ti(c0) such that c1[i] ≤ c1[i + 1] (7)

Let c be a generating sequence. By considering the total number n(c) of pairs (i, j), i < j such that
c[i] > c[j] and observing that if c1Rc0 then n(c1) ≤ n(c0) − 1, one knows that there is no cycle in
the graph of the relation R. So the reflexive and transitive closure of R is an order and this is the
order among generating sequences that we consider.

Moreover since the family (ti)1≤i≤n−1 generates the group Sn of permutations on n elements,
any two elements of Sn have an upper and a lower bound. This order is an enrichment of both
insertion sort order and bubble sort order (the two orders are closed to each other).
In the case of the insertion sort, at any moment during an execution the algorithm determines
the elementary transform to apply to its current data c by just computing the length, say i, of the
longest increasing prefix of c. While i is less than the cardinal the input list, the current data c is
transformed by ti(c). The algorithm is clearly memory-less.

34

In the case of the bubble sort, let k be the index of tk the most recent elementary transform used
by the algorithm at a moment during the execution (k := 0, if none has been used, i.e. in the
beginning). The adequate swap t j is determined such that j := k + i and i := min{r ∈ N, r > 0 :
tk+rmod n−1(c) < c}. To compute the elementary transform to use at a moment, the bubble sort
strategy needs the index k of the last elementary transform used. Contrarily to the insertion sort,
the bubble sort is not memory-less. (The insertion sort strategy is to take always k = 0 in the
previous bubble sort strategy, i.e. by removing the memory)

Remark 16. (1) Both previous strategies are greedy. At each step, they compute inside the set F
of elementary transforms, the elementary transform f ∈ F such that f (c) is a minimum of the set
F(c) := {g(c) : g ∈ F}.
(2)There are other generalizations of insertion and bubble sort. Indeed rather than determining t j

as in the previous strategy such that

j := k + i and i := min{r ∈ N∗ : t(k+r)mod n(c) < c},

the index i can be determined to be the second minimum (the third minimum, etc.) of the same set.

7.4. Sorting multisets
In the case of multisets, one has to consider the set structure where some of the elements of

the set are ”indistinguishable” with respect to the order. For example the multiset (1, 2, 2, 3) may
be considered as the set of four elements {1, 21, 22, 3} where 21 and 22 are two different elements
that are indistinguishable with respect to the order : 1 ≤ 21 ≤ 22 ≤ 3 and 1 ≤ 22 ≤ 21 ≤ 3.
Since antisymmetry is no more fulfilled, the new set is then preorderd. The accepted output is not
unique: Exactly two datas (1, 21, 22, 3) and (1, 22, 21, 3) are acceptable as outputs.
Clearly Hypothesis 1, 2, 3 and 4 are still satisfied. Hypothesis 5 is also satisfied here since
all accepted outputs play a symmetric role. There are exactly as many strategy-preserving
isomorphisms as the number of outputs. In our example, between the multisets {1, 21, 22, 3}
and {10, 201, 202, 30}, there are exactly two strategy-preserving isomorphisms φ1 and φ2, with
φ1(1) = φ2(1) = 10, φ1(3) = φ2(3) = 30, φ1(21) = 201 and φ1(22) = 202 whereas φ1(21) = 201
and φ2(22) = 201. The isomorphisms φ1 and φ2 are the only ones to be increasing and whose
reciprocal isomorphism are also increasing.

Fact 22. Consider a sorting algorithm. Assume that elementary transforms of the algorithm are
a set of permutations and the strategy for determining the right elementary transform at one step
is exclusively based on comparing elements of the coverings and eventually on the previously
determined elementary transforms. Assume that the algorithm is correct, i.e. when running on all
sequences taken in a linearly ordered set, the algorithm outputs one ordered sequence after a finite
number of steps. Then the elementary transforms form a generating set of the permutation group
and all the executions of the algorithm are exactly normal forms of rewriting systems on the group
of permutations. Two multisets are in the same input class if and only if there is an increasing
bijection that relates one multiset to the other. The input class are exactly the equivalence class
for being related with an increasing bijection.

8. The Gaussian and Euclidean algorithms

Gaussian algorithm is clearly memory-less but it is much less trivial to exhibit the number of
input classes. We will show that in the generic case (reducing a two doimensionnal lattice whose

35

vectors are in Rn)) there are 4 input classes and there is one additional class for the degenerate
case (The Euclidean algorithm).
As mentioned in the last introductory section,

1. we consider here the Abelian free group structure presented by an (ordered) enumeration
(without any repetition) of n generators. Such a group is called a lattice, the number n is
the dimension or the rank of the lattice and the sequence of generators is called a basis.

2. For a given lattice a generating sequence is then simply a basis of the lattice and it is
well-known that there are are infinitely many generating sequences.
An isomorphism between two such groups is just a bijection transforming a system of
generators (basis) of the first lattice into a basis of the second. An automorphism is just
changing of a basis of a lattice. The automorphism group of the input is then the linear
group GLn(Z).

3. The domain where lattices are chosen are Rp or Qp or Zp, with the classical Euclidean
structure.

4. The problem is : Given a lattice with an arbitrary basis, obtain a minimal basis, i.e. such
that the first vector is a vector of the lattice whose Euclidean norm is minimal, the second
is such that its norm is minimal among all vectors of the lattice that can complete the first
vector into a basis, etc.

The Gaussian and Euclidean algorithms solve the problem when the dimension equals 2, i.e. when
the inputs are two vectors of Rp. In the case of the Gaussian algorithm the two vectors are linearly
independent, i.e. any generating family has at least two elements, while in the case of Euclidean
algorithm there exists a generating family of cardinal one, i.e. there is an integer relation between
the two vectors of the input. The automorphism group is GL2(Z) that is the 2 by 2 matrices with
integer entries and with a determinant equal to 1 or −1. Now let us define two such matrices S
and T and I(the identity matrix) by

S :=
(

0 1
1 0

)
, T :=

(
1 0
1 1

)
, I :=

(
1 0
0 1

)
In the general exposition of our approach the set of elementary transforms of an algorithm is finite.
Here we will make an exception and apply our approach in the case when the set F of elementary
transforms that is not finite21 of the Gaussian and Euclidean algorithms is defined by

F := {T rS ,T r : r ∈ Z}. (8)

Now we have to show that the algorithms are satisfying our hypothesis and to determine the
number of input class (4 in the case of the Gaussian algorithm, 1 in the case of the Euclidean
algorithm).
First let us exhibit one possible order among the bases.

Definition 15. Let b = (b1, b2) and b′ = (b′1, b
′
2) be two sequences of vectors of Rp and the

relation R isdefined by

(b1, b2)R(b′1, b
′
2)⇔

(
b′ ∈ F(b)

)
and

((
‖b1‖ < ‖b′1‖

)
or

(
‖b1‖ = ‖b′1‖ and ‖b2‖ ≤ ‖b′2‖

))
.

21One can also consider the easier case of the substractive version of the Gaussian and Euclidean algorithm. Then
F := {T, S ,T−1} is finite; Corollary 7 is no more needed and the strategy is straightforward: It is given in Section 5, after
Hypothesis 6, as an example.

36

The transitive closure of the relation R is a partial preorder denoted < among the set of sequences
of two elements of Rp. In the sequel, we call it lexicographic Euclidean order.

We will show that between two instances (two lattices) L and L′ of one input class any isomorphism
given by a pair of minimal bases of L and L′ is strategy–preserving, i.e. all outputs inside a class
play a symmetric role and Hypothesis 5 is statisfied. Let b∗ = (b∗1, b

∗
2) be a minimal basis of L and

c∗ = (c∗1, c
∗
2) a minimal basis of L′. In the sequel we call Φ the isomorphism defined by (b∗, c∗),

i.e.
Φ(b∗1) = c∗1 and Φ(b∗2) = c∗2. (9)

So to an element u of L, u := xb∗1 + yb∗2, with x, y integers, the isomorphism Φ associates an
element Φ(u) defined by Φ(u) = xc∗1 + yc∗2.

8.1. The Gaussian algorithm
It is well-known and easy to show that a minimal basis b∗ for the previous order is a basis

satisfying the two following conditions:

‖b∗1‖ ≤ ‖b
∗
2‖ (10)

−1/2 ≤ (b∗1, b
∗
2)/‖b∗1‖

2 ≤ 1/2. (11)

Observe that if (10) is not fulfilled swapping b∗1 and b∗2 gives a new basis that is smaller fot the
lexicographic Euclidean order than the original one. If (11) is not fulfilled then there is an integer
translation of b∗2 in the direction of b∗1 such that the obtained basis is smaller than the original one.
According to the strictness or not of the two previous inequalities, there are different number of
acceptable outputs (and/or different relations between them) for the instances of the problem:

1. If both inequalities are strict, then there are 4 possible outputs: (ε1b∗1, ε2b∗2) with (ε1, ε2) ∈
{−1, 1}2

2. If the first inequality is strict and the second is an equality then there are 8 possible outputs:
(ε1b∗1, ε2b∗2) and (ε1b∗1, ε2(b∗2 + b∗1)) with (ε1, ε2) ∈ {−1, 1}2.

3. If the first inequality is an equality and the second one is strict then there are 8 possible
outputs: (ε1b∗1, ε2b∗2) and (ε1b∗2, ε2b∗1) with (ε1, ε2) ∈ {−1, 1}2.

4. If both inequalities are equalities then there are 24 possible outputs: (ε1b∗1, ε2b∗2), (ε1b∗2, ε2b∗1),
(ε1b∗1, ε2(b∗2 + b∗1)), (ε2(b∗2 + b∗1), ε1b∗1),(ε1b∗2, ε2(b∗2 + b∗1)), (ε2(b∗2 + b∗1), ε1b∗2) with (ε1, ε2) ∈
{−1, 1}2.

The previous remark shows that there are a priori 4 class of inputs for the Gaussian algorithm. It
remains to show that these candidates are indeed input class, i.e. for any two instances inside one
of these 4 class, the isomorphism Φ is strategy–preserving. More precisely, we have to prove that
whenever two lattices L and L′ have minimal bases b∗ and c∗ both satisfying in the same manner
inequalities (10) and (11) (i.e. whether they are equalities or not), then the isomorphism Φ defined
by (9) satisfies Definition (12).
Let us define b = (b1, b2) and c := Φ(b) = (Φ(b1),Φ(b2)) = (c1, c2) as arbitrary bases of the
lattices L and L′. So there are integers x, y, z and t satisfying

|xt − zy| = 1,
{

b1 = x b∗1 + y b∗2
b2 = z b∗1 + t b∗2

and
{

c1 = x c∗1 + y c∗2
c2 = z c∗1 + t c∗2

(12)

It is easy to see that if |xt − zy| , 1 then b∗ and b do not generate the same lattice. We first give a
useful Lemma whose prof is available in appendix.

37

Lemma 4. Let b∗ = (b∗1, b
∗
2) and c∗ = (c∗1, c

∗
2) be two families of linearly independent vectors

of Rp, satisfying (10(and (11). Let (x, y, z, t) ∈ Z4 be four integers satisfying |xt − zy| =

1 and let b = (b1, b2) and c = (c1, c2) be defined from b∗ and c∗ by Relation (12). Then
(‖b2‖ − ‖b1‖)(‖c2‖ − ‖c1‖) ≥ 0. Moreover,

(‖b2‖ = ‖b1‖ ⇔ ‖c2‖ = ‖c1‖)

if and only if

(‖b∗2‖ = ‖b∗1‖ ⇔ ‖c
∗
2‖ = ‖c∗1‖) and

(
|(b∗1, b

∗
2)|/‖b∗1‖

2| = 1/2⇔ |(c∗1, c
∗
2)/‖c∗1‖

2| = 1/2
)
.

The previous lemma asserts that the sign (non negative, non positive) of the quantity (‖b2‖ − ‖b1‖)
depends only on the integers (x, y, z, t) and not on the basis b∗. Moreover for all bases b∗, satisfying
(10(and (11) in the same manner, i.e. whether (10) and (11) are equalities or inequalities, the
”precise” sign (zero, negative, positive) of the quantity (‖b2‖ − ‖b1‖) depends only on the integers
(x, y, z, t) and not on the basis b∗ and this is no more true if one of two bases do not satisfy
Relations (10) and (11) in the same manner, i.e. (10) and (11) is an equality for one basis, while it
is not for the other.

Corollary 7. Let b∗ and c∗ be two linearly independent system of Rp both satisfying in the same
manner inequalities (10) and (11) (i.e. with respect to the fact that the inequalities are strict or
they are equalities). For all (x, y, z, t) ∈ Z4, such that |xt − zy| = 1, let b = (b1, b2) and c = (c1, c2)
be defined from b∗ and c∗ by Relation (12). Then

c < b⇔ Φ̃(c) < Φ̃(b). (13)

Proof. The lexicographic Euclidean order is defined by (15) as the transitive closure of the relation
R. So, by transitivity, one has just to show (13) when c ∈ F(b), i.e. we have to show that

∀(r, ε) ∈ Z2 × {0, 1}2, T rS ε(b) < b⇔ Φ̃(T rS ε(b)) < Φ̃(b). (14)

Clearly ∀(r, ε) ∈ Z × {0, 1}, Φ̃(T rS ε(b)) = T rS ε(Φ̃(b)).
Consider the case ε = 1. The basis b′ := T rS ε(b) is defined by b′1 = b2 and b′2 = b1 + rb2. It is
expressed in the basis b∗ by{

b′1 = x′ b∗1 + y′ b∗2
b′2 = z′ b∗1 + t′ b∗2

with
{

x′ = z , y′ = t,
z′ = x + rz , t′ = y + rt. (15)

Clearly |x′t′ − z′y′| = |xt − zy| = 1. Since T rS ε(b) < b, one has ‖b2‖ < ‖b1‖ or together
‖b2‖ = ‖b1‖ and ‖b1 + rb2‖ ≤ ‖b2‖. Lemma 4 asserts that ‖b2‖ < ‖b1‖ ⇔ ‖Φ(b2)‖ < ‖Φ(b1)‖.
Similarly ‖b2‖ = ‖b1‖ and ‖b′2‖ ≤ ‖b

′
1‖ ⇔ ‖Φ(b2)‖ = ‖Φ(b1)‖ and ‖Φ(b′2)‖ ≤ ‖Φ(b′1)‖, provided

that b∗ and c∗ = Φ̃(b∗) are both satisfying in the same manner inequalities (10(and (11).
Assume now that ε = 0. Then if r = 1 or −1, Relation (14) is deduced from Lemma 4 by changing
in Relation (12), the variables x, y, z, t by x′ := z, y′ := t, z′ := x ± z, t′ := y ± t and observing that
|x′t′ − z′y′| = |xt − zy| = 1. If r > 1 (the case when r < −1 is similar) then from (14), one gets

T i+1(b) < T i(b), ∀i ∈ {1, . . . r − 1},

and clearly,
T i+1(b) < T i(b)⇔ T (b̂) < (b̂), where b̂ := T i(b).

Finally by Lemma 4, since b∗ and c∗ are satisfying (10) and (11) in the same manner, ‖Φ(b̂2 +

b̂1)‖ − ‖Φ(b̂2)‖ and ‖b̂2 + b̂1‖ − ‖b̂2‖ have the same sign (positive, negartive, zero).

38

The strategy used by the Gaussian algorithm is the following. If ‖b2‖ < ‖b1‖ then swap b1 and
b2. Once ‖b1‖ ≤ ‖b2‖, compute the integer r nearest to (b1, b2)/‖b1‖

2 and replace b2 by b2 − rb1.
So the determined elementary transform is T−r or T−rS . It can be easily shown that the obtained
b2 is the smallest (for the Euclidean order) one among {b2 − kb1 : k ∈ Z}. Clearly the Gaussian
algorithm has a greedy strategy : the adequate elementary transform f is the one such that f (b)
is a minimal element (for the lexicographic Euclidean order) of the set F(b) := {g(b) : g ∈ F}
where F is the set of elementary transforms of the algorithm. In case of several minimal elements
in F(b) the algorithm has a “lazy” strategy: it prefers T k to T kS , T kS to T k′S if |k| < |k′| and it
prefers I to any other elementary transform.
Since the Gaussian algorithm’s strategy is exclusively based on the lexicographic Euclidean order,
the last corollary and Corollary 6 show that whenever two instances of lattices I and I′ have two
minimal bases b∗ and c∗ satisfying (10) and (11) in the same manner, i.e. (10) (respectively (11))
is an equality for b∗ if and only if it is an equality for c∗, then I and I′ are in the same input class.
So the Gaussian algorithm has no more than 4 input classes.
In addition, observe that the strategy of the Gaussian algorithm is memory-less and can be
simulated in the following way:

Strategy S :
Input: (b1, b2).
Output: r ∈ Z and ε ∈ {0, 1} (the elementary transform will be T rS ε)

Initialization: r := 0; ε := 0
If ‖b1‖ > ‖b2‖ then swap b1 and b2; ε := 1;
While ‖b2 + b1‖ < ‖b2‖ do b2 := b1 + b2 ; r := r + 1;
While ‖b2 − b1‖ < ‖b2‖ do b2 := b2 − b1 ; r := r − 1;

By Lemma 4, (‖Φ(b1)‖ − ‖Φ(b2)‖)(‖b1‖ − ‖b2‖) ≥ 0. Moreover Φ(b1 ± b2) = Φ(b1) ±Φ(b2) and
the quantities (‖Φ(b2) ± Φ(b1)‖ − ‖Φ(b2)‖)(‖b2 ± b1‖ − ‖b2‖) ≥ 0.
Lemma 4 shows also that if two minimal bases b∗ and c∗ satisfy (10) and (11) but not in the
same manner inequalities (i.e. (10) or (11) is a strict inequality for b∗ whereas it is an equality
for c∗) then there integers x, y, z, t satisfying |xt − yz| = 1 and there are bases b and c = Φ(b)
defined with (12), such that ‖b1‖ = ‖b2‖ but ‖Φ(b1)‖ , ‖Φ(b2)‖. In this case clearly the strategy
will not be the same running on b and on c = Φ(b), i.e. the isomorphism Φ defined by (9) is not
strategy–preserving.

Corollary 8. The Gaussian algorithm, running on linearly independent pairs of vectors of Rp

(p ≥ 2), has exactly 4 input class. For any two instances inside one input class the isomorphisms
Φ defined by (9) is strategy–preserving.

So the executions of the Gaussian algorithm running on linearly independent pairs of vectors of
Rp (p ≥ 2) are normal forms of four rewrite systems over GL2(Z). These rewrite systems are
given in (1).

8.2. The Euclidean algorithm

In the case of the Euclidean algorithm, since the lattice generated by the two input vectors
(or more usually by the two input integers) is one dimensional, a minimal basis is always
such that the first element is zero. So when the input is a pair of integers (a, b), the only
minimal outputs are always (0, gcd(a, b)) and (0,− gcd(a, b)). The order compatible isomorphism
between two instances generated by (a, b) and by (a′, b′) is the one that associates (0, gcd(a, b)) to

39

(0,± gcd(a′, b′)). It can be easily shown that the Euclidean algorithm is instance independent and
there is only one input class.
It is important to notice that everything is here exactly as in the case of the Gaussian algorithm.
The Euclidean algorithm does never use the fact that the input integers a and b are Z-linearly
dependent. Moreover the executions of the Euclidean algorithm are, as the executions of the
Gaussian algorithm, a set of paths on the Cayley diagram of GL2(Z), since the generators used by
both algorithm are the same (defined by (8))
Finally the executions of the Euclidean algorithm running on pairs of integers are normal forms of
only one rewrite system over GL2(Z).

9. Conclusion

In this paper we propose a new approach to canonically associate a set of rewrite systems to an
algorithm, where the executions of the algorithms are normal forms of some rewrite systems. This
is a beginning step. Several developments of our approach are works in progress:

• Providing the rewrite rules. They are of course associated with circuits in the Cayley graph
of the automorphism group of the presented algebra.

• Considering the case of an algorithm solving the problem of finding a representative for
coverings of a fixed presented algebras of any rank (In this paper we dealt with the case of
a presented algebra of a fixed rank.)

• Exhibiting relationships between usual properties of an algorithm and classical properties
of the associated rewrite systems.

• Generalizing the approach to a wider class of algorithms.

• Dealing with more examples.

Our approach considers an algorithm as a symbolic dynamical system. Observe that the analysis
of arithmetic algorithms and string algorithms by using dynamical systems in a random context
have already been achieved in the work of Vallée (see for example (5; 12)).

Appendix A. Proof of Lemma 4

Let b∗ = (b∗1, b
∗
2) and c∗ = (c∗1, c

∗
2) be two families of linearly independent vectors of Rp,

satisfying (10) and (11). Let (x, y, z, t) ∈ Z4 be four integers satisfying |xt − zy| = 1 and let
b = (b1, b2) and c = (c1, c2) be defined from b∗ and c∗ by Relation (12). Then (‖b2‖ − ‖b1‖)(‖c2‖ −

‖c1‖) ≥ 0. Moreover,

(‖b2‖ = ‖b1‖ ⇔ ‖c2‖ = ‖c1‖)

if and only if

(‖b∗2‖ = ‖b∗1‖ ⇔ ‖c
∗
2‖ = ‖c∗1‖) and

(
|(b∗1, b

∗
2)|/‖b∗1‖

2| = 1/2⇔ |(c∗1, c
∗
2)/‖c∗1‖

2| = 1/2
)
.

40

Proof. From the definition of he basis b (Definition (12)),

‖b2‖
2 − ‖b1‖

2 = (z2 − x2)‖b∗1‖
2 + (t2 − y2)‖b∗2‖

2 + 2(zt − xy)(b∗1, b
∗
2).

First observe that if x, y, z, t are four integers satisfying |xt − zy| = 1 then

|x| > |z| ⇒ |y| ≥ |t| or |y| = |z| = 0.

Suppose that |x| > |z| and |t| > |y|. This is equivalent to |x| ≥ |z| + 1 and |t| ≥ |y| + 1, and leads
to |xt| − |zy| ≥ |z| + |y| + 1. So 1 = |xt − zy| ≥ ||xt| − |zy|| ≥ |xt| − |zy| ≥ |y| + |z| + 1 and finally
|y| = |z| = 0.
So if |x| > |z| and either |y| , 0 or |z| , 0, then by (A.1), |y| ≥ |t| and (z2 − x2)(t2 − y2) ≥ 0.
Similarly if |x| < |z| and either |x| , 0 or |t| , 0, then |y| ≤ |t| and (z2 − x2)(t2 − y2) ≥ 0. Finally,

(y, z) , (0, 0) and (x, t) , (0, 0) and |xt − zy| = 1⇒ (z2 − x2)(t2 − y2) ≥ 0. (A.1)

If y = z = 0 then |x| = |t| = 1 and ‖b2‖
2 − ‖b1‖

2 = ‖b∗2‖
2 − ‖b∗1‖

2 which is either positive or zero,
provided that the basis (b∗1, b

∗
2) is minimal (see Relation (10)). The case x = t = 0 is similar.

Now by inequality (10),∣∣∣(z2 − x2)‖b∗1‖
2 + (t2 − y2)‖b∗2‖

2
∣∣∣ ≥ |z2 − x2 + t2 − y2|‖b∗1‖

2,

and this is a strict inequality when (10) is a strict one. On the other hand, thanks to (11),

2(zt − xy)(b∗1, b
∗
2) = 2(zt − xy)

(b∗1, b
∗
2)

‖b∗1‖
2 ‖b

∗
1‖

2 ≤ |zt − xy|‖b∗1‖
2,

and this is once more a strict inequality when (11) is a strict one.
Now let us show that |z2 − x2 + t2 − y2| ≥

√
2|zt − xy|. Indeed considering the squares of the both

sides and after standard computation, we have the following equivalent assertion

x4 + y4 + z4 + t4 − 2(xt − zy)2 − 2x2z2 − 2y2t2 ≥ 0.

Since (b1, b2) is a basis (see (12)), one has (xt − zy)2 = 1 and finally the following equivalent
inequality:

(x2 − z2)2 + (y2 − t2)2 − 2 ≥ 0. (A.2)

So if |x| , |z| and xz , 0, then (x2 − z2)2 > 4 since it is a square integer different from 0 and from 1.
So Inequality (A.2) is strict and the sign of ‖b2‖

2−‖b1‖
2 is the sign of (z2− x2)‖b∗1‖

2 +(t2−y2)‖b∗2‖
2.

So, by (A.1), ‖b2‖
2 , ‖b1‖

2. More precisely,

|x| < |z| ⇒ ‖b2‖
2 − ‖b1‖

2 > 0
|x| > |z| ⇒ ‖b2‖

2 − ‖b1‖
2 < 0

Now observe that if |x| = |z| then |y| , |t|, otherwise |xt| = |zy| and |xt − zy| equals 0 or 2|xt|, which
contradicts the fact that x, y, z, t are integers satisfying |xt − zy| = 1.
So if |x| = |z|, (y2−t2)2 ≥ 1. Now (y−t)2(y+t)2 = 1 leads to (|y|, |t|) ∈ {(1, 0), (0, 1)} and |x| = |z| = 1,
and finally to |z2 − x2 + t2 − y2| = 1 = |zt − xy|. If (|x|, |z||y|, |t|) < {(1, 1, 1, 0), (1, 1, 0, 1)}, the
quantity (y2 − t2)2 is strictly greater than 2 since it is a square integer strictly greater than 1.

41

If |x| = |y| = |z| = 1 and t = 0, say for example x = y = z = 1 then

‖b2‖
2 − ‖b1‖

2 = ‖b∗1‖
2 − ‖b∗1 + b∗2‖

2 ≤ 0.

The last inequality is an equality if and only if ‖b∗2‖
2 = ‖b∗1‖

2 and (b∗1, b
∗
2)/‖b∗1‖

2 = −1/2.
If |x| = |z| = |t| = 1 and y = 0 , say for example x = z = t = 1 then

‖b2‖
2 − ‖b1‖

2 = ‖b∗1 + b∗2‖
2 − ‖b∗1‖

2 ≥ 0.

The last inequality is an equality if and only if ‖b∗2‖
2 = ‖b∗1‖

2 and (b∗1, b
∗
2)/‖b∗1‖

2 = −1/2.
If x = 0, then |y| = |z| = 1. If |t| ≥ 2, once more Inequality (A.2) is strict and the sign of
‖b2‖

2 − ‖b1‖
2 is the sign of (z2 − x2)‖b∗1‖

2 + (t2 − y2)‖b∗2‖
2, which is positive in this case.

Finally if x = 0, and |y| = |z| = |t| = 1, say for example y = z = t = 1 then

‖b2‖
2 − ‖b1‖

2 = ‖b∗2 + b∗1‖
2 − ‖b∗2‖

2 ≥ 0.

The last inequality is an equality if and only if (b∗1, b
∗
2)/‖b∗1‖

2 = −1/2.
If z = 0, then |x| = |t| = 1. If |y| ≥ 2, Inequality (A.2) is strict and the sign of ‖b2‖

2 − ‖b1‖
2 is the

sign of (z2 − x2)‖b∗1‖
2 + (t2 − y2)‖b∗2‖

2, which is negative in this case.
Finally if z = 0, and |x| = |y| = |t| = 1, say for example x = y = t = 1 then

‖b2‖
2 − ‖b1‖

2 = ‖b∗2‖
2 − ‖b∗1 + b∗2‖

2 ≤ 0.

The last inequality is an equality if and only if (b∗1, b
∗
2)/‖b∗1‖

2 = −1/2.

Remark 17. The only cases when ‖b2‖
2 = ‖b1‖

2 are the following:

• y = z = 0 and |x| = |t| = 1 and ‖b∗2‖
2 = ‖b∗1‖

2

• x = t = 0 and |y| = |z| = 1 and ‖b∗2‖
2 = ‖b∗1‖

2

• |x| = |z| = |y| = 1 and t = 0 and ‖b∗2‖
2 = ‖b∗1‖

2 and (b∗1, b
∗
2)/‖b∗1‖

2 = ±1/2

• |x| = |z| = |t| = 1 and y = 0 and ‖b∗2‖
2 = ‖b∗1‖

2 and (b∗1, b
∗
2)/‖b∗1‖

2 = ±1/2

• |y| = |z| = |t| = 1 and x = 0 and (b∗1, b
∗
2)/‖b∗1‖

2 = ±1/2

• |x| = |y| = |t| = 1 and z = 0 and (b∗1, b
∗
2)/‖b∗1‖

2 = ±1/2

This shows that if ‖b2‖
2 = ‖b1‖

2 the basis (b1, b2) is very close to a minimal one.

Remark 18. To show that the sign of |b2 + b1|
2 − |b2|

2 does not depend on the minimal basis b∗,
just change in Relation (12), the variables x, y, z, t by x′ := z, y′ := t, z′ := x + z, t′ := y + t and
observe that |x′t′ − z′y′| = 1 since |xt − zy| = 1.

[1] A. Akhavi and C. Moreira. Another view of the Gaussian algorithm. In Proceedings of LATIN’2004 - Buenos Aires.
LNCS 2976, pp 474–487. http://arxiv.org/pdf/0707.0644.pdf <hal-00159666>

[2] G. Birkhoff On the structure of abstract algebras. In Proceedings of the Cambridge Philosophical Society 31 (4),
pp. 433-454, 1935.

42

[3] A. Blass and N. Dershowitz and Y. Gurevich. When are two algorithms the same? In Bulletin of Symbolic Logic
15 :2(2009), pp. 145–168.

[4] S. Burris and H.P. Sankappanavar. A course in Universal Algebra. Graduate text in mathematics, Springer, 1981.
The Millennuim Edition

[5] H. Daudé and P. Flajolet and B. Vallée. An average-case analysis of the Gaussian algorithm for lattice reduction.
In Combinatorics, Probability and Computing 6 (4), pp. 397-433, 117.

[6] M. Dauchet. Simulation of Turing machines by a regular rewrite rule. Theoretical Computer Science, 2 (103), pp
409–420, 1992.

[7] N. Derschowitz and Y. Gurevich. A natural axiomatisation of computability and proof of Church’s thesis. The
Bulletin of Symbolic Logic, 14 (3), pp 299–350, Sept. 2008.

[8] Y. Gurevich. Sequential abstract-state machines capture sequential algorithms. ACM Transactions on computational
logic, 1(1), pp 77–111, 2000.

[9] S. Lakshmirvaran and J.-S. Jwo and S.K. Dhall Symmetry in interconnection networks based on Cayley graphs of
permutation groups: a survey. Parallel Computing, 19, pp 361–407, 1993.

[10] D. Lind and B. Markus. An introduction to symbolic dynamics and coding. Cambridge university press, 1995.
[11] W. Magnus and A. Karass and D. Solitar Combinatorial group theory. Second edition revisited, Dover, 1976. First

edition, Interscience Publishers, 1966.
[12] B. Vallée. Dynamical analysis of a class of Euclidean algorithms. Theoretical Computer Science, 1-3(297), pp

447–486, 2003.

43

