N

N

The master equation and the convergence problem in
mean field games

Pierre Cardaliaguet, Francois Delarue, Jean-Michel Lasry, Pierre Louis Lions

» To cite this version:

Pierre Cardaliaguet, Francgois Delarue, Jean-Michel Lasry, Pierre Louis Lions. The master equation
and the convergence problem in mean field games. Princeton University Press. , 381, 2019, AMS-201,
9780691190709. hal-01196045

HAL Id: hal-01196045
https://hal.science/hal-01196045

Submitted on 9 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01196045
https://hal.archives-ouvertes.fr

The master equation and the convergence problem in mean field
games

P. Cardaliaguet* F. Delarue’ J.-M. Lasry? P.-L. Lions*

September 7, 2015

Abstract

The paper studies the convergence, as N tends to infinity, of a system of N coupled
Hamilton-Jacobi equations, the Nash system. This system arises in differential game theory.
We describe the limit problem in terms of the so-called “master equation”, a kind of second
order partial differential equation stated on the space of probability measures. Our first main
result is the well-posedness of the master equation. To do so, we first show the existence and
uniqueness of a solution to the “mean field game system with common noise”, which consists
in a coupled system made of a backward stochastic Hamilton-Jacobi equation and a forward
stochastic Kolmogorov equation and which plays the role of characteristics for the master
equation. Our second main result is the convergence, in average, of the solution of the Nash
system and a propagation of chaos property for the associated “optimal trajectories”.

Contents
(1__Introduction| 1
2__Main results| 18
[3 A starter: the first order master equation| 33
[4 MFG system with a common noise)| 54
[> The second-order master equation| 86
[6 Convergence of the Nash system| 117
Append 129

1 Introduction

1.1 Motivation and summary of the results

Statement of the problem. The purpose of this paper is to discuss the behavior, as N tends
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to infinity, of the strongly coupled system of IV parabolic equations

N N
—5tUN’i(t7 CC) - 2 AIJ'UNJ (ta .’L‘) - B 2 TrD?:j,xkayi(ta (L’) + H(xh DinNﬂ'(t? CC))
j=1 gk=1
) + Y DpH(xj, Dpo" (t,@)) - Dy o™ (8, 2) = FN () (1)
j#i
in [0, T] x (RN,

VYT x) = GNi(x)  in (RDY.

The above system is stated in [0, 7] x (RY)Y, where a typical element is denoted by (, ) with
x = (z1,...,x5) € (RN, The unknowns are the N maps (UN’i)ie{l,...,N}- The data are the
Hamiltonian H : R? x R? — R, the maps FN? GN : (RY)N — R, the nonnegative parameter 3
and the horizon T > 0.

System describes the Nash equilibria of an N —player differential game (see Section
for a short description). In this game, the set of “optimal trajectories” solves a system of N
coupled stochastic differential equations (SDE):

dX;y = —DypH (X4, DoV (¢, X¢))dt + V/2dB] + +/2BdWy, tel0,T], ie{l,...,N}, (2)

where vV is the solution to and the ((B)se[o.17)i=1,....~ and (Wy)epo,r1 are d—dimensional
independent Brownian motions. The Brownian motions ((Bé)te[O,T])isz, ~ correspond to the
individual noises, while the Brownian motion (Wt)te[o,T] is the same for all the equations and,
for this reason, is called the common noise. Under such a probabilistic point of view, the collec-
tion of random process ((Xi t)seo,7])i=1,...n forms a dynamical system of interacting particles.
Another, but closely related, objective of our paper is to study the mean-field limit of the
((Xi,t)te[O,T])i=1,...,N as N tends to infinity.

As explained below, the motivation for investigating and asymptotically is to justify
the passage to the limit in the theory of mean-field games.

Link with the mean-field theory. Of course, there is no chance to observe a mean-field limit
for under a general choice of the coefficients in ([I)). Asking for a mean-field limit certainly
requires that the system has a specific symmetric structure in such a way that the players in
the differential game are somewhat exchangeable (when in equilibrium). For this purpose, we
suppose that, for each i € {1,..., N}, the maps (RN 5z — FVi(x) and (R)N 3z — GVi(x)
depend only on z; and on the empirical distribution of the variables (x;) ;.

FNZ(ZB) = F(:Ul,mi\”) and GN’i(w) = G(:Ui,miv’i), (3)
where mﬁ’ = ﬁ Z#i dz; is the empirical distribution of the (z;);»; and where F,G : RY x

P(R?) — R are given functions, P(R%) being the set of Borel measures on R?. Under this
assumption, the solution of the Nash system indeed enjoys strong symmetry properties, which
imply in particular the required exchangeability property. Namely, vV
similar form to (3):

can be written into a

oMt @) = 0N (e, my), te[0,T], me RV, (4)

T

for a function vN (¢, -,-) taking as arguments a state in R? and an empirical distribution of size
N — 1 over R?.

Anyhow, even under the above symmetry assumptions, it is by no means clear whether the
system can exhibit a mean-field limit. The reason is that the dynamics of the particles



(X145, XNt)e[o,r] are coupled through the unknown solutions ol o™ to the Nash
system , whose symmetry properties may not suffice to apply standard results from the
theory of propagation of chaos. Obviously, the difficulty is that the function v*V in the right-hand
side of precisely depends upon N. Part of the challenge in the paper is thus to show that
the interaction terms in get closer and closer, as N tends to the infinity, to some interaction
terms with a much more tractable and much more explicit shape.

In order to get a picture of the ideal case under which the mean-field limit can be taken,
one can choose for a while 5 = 0 in and then assume that the function vV in the right-hand
side of is independent of N. Equivalently, one can replace in the interaction function
RYHYN 5 2 — D,H(z;,vNi(t,z)) by (RHN 2z b(z;, ma"), for a map b : R x P(RY) — R?.
In such a case, the coupled system of SDEs ([2)) turns into:

1 .
dX;, = b(Xi,t, : Zéxm)dt+ V2dBi,  tel0,T], ie{l,...,N}, (5)

N - i

the second argument in b being nothing but the empirical measure of the particle system at
time t. Under suitable assumptions on b (e.g., if b is bounded and Lipschitz continuous in both
variables, the space of probability measures being equipped with the Wasserstein distance) and
on the initial distribution of the ((Xi,t)i=1,...,N)te[O,T]7 both the marginal law of (th)te[O,T] (or
of any other player) and the empirical distribution of the whole system converge to the solution
of the McKean-Vlasov equation

oym — Am + div(mb(-,m)) = 0.

(see, among many other references, McKean [53], Sznitman [64], Méléard [55],...). The standard
strategy for establishing the convergence consists in a coupling argument. Precisely, if one
introduces the system of IV independent equations

dYis = b(Yis, L(Yi4)) dt +V/2dB;, tel0,T], ie{l,...,N},

(where L£(Y;;) is the law of Y;;) with the same (chaotic) initial condition as that of the pro-
cesses ((Xit)e[o,7])i=1,...n, then it is known that (under appropriate integrability conditions,
see Fournier and Guillin [26])

1
sup E [|X17t — Yl,t|] < CON max(2,d) (1{d:|:2} + 11’1(1 + N)]-{d:Q})-
te[0,T]

In comparison with , all the equations in are subject to the common noise (W¢)e[o,77s
at least when B £ 0. This makes a first difference between our limit problem and the above
McKean-Vlasov example of interacting diffusions, but, for the time being, it is not clear how
deep this may affect the analysis. Indeed, the presence of a common noise does not constitute a
real challenge in the study of McKean-Vlasov equations, the above coupling argument working
in that case as well, provided that the distribution of Y is replaced by its conditional distribution
given the realization of the common noise. However, the key point here is precisely that our
problem is not formulated as a McKean-Vlasov equation, since the drifts in are not of the
same explicit mean-field structure as they are in because of the additional dependence upon
N in the right-hand side of —obviously this is the second main difference between and
—. This makes rather difficult any attempt to guess the precise impact of the common noise
onto the analysis. For sure, as we already pointed out, the major issue for analyzing is
caused by the complex nature of the underlying interactions. As the equations depend upon



one another through the nonlinear system , the evolution with N of the coupling between
all of them is indeed much more intricate than in . And once again, on the top of that, the
common noise adds another layer of difficulty. For these reasons, the convergence of both
and has been an open question since Lasry and Lions’ initial papers on mean field games
[47, [48].

The mean field game system. The analysis of the Nash system as the number of players
is large pops up very naturally in game theory. Similar questions for static games were studied
a long time ago by Aumann, who introduced the concept of nonatomic games in [7]; moreover,
Schmeidler [63] and Mas-Colell [54] defined and investigated non-cooperative Nash equilibria for
one shot games with infinitely many small players.

In the case of differential games, the theory is known under the name of “mean-field games”,
whose principle goes as follows. If one tries, at least in the simpler case 8 = 0, to describe —in
a heuristic way— the structure of a game with infinitely many indistinguishable players, i.e., a
“nonatomic differential game”, one finds a problem in which each (infinitesimal) player optimizes
his payoff, depending upon the collective behavior of the others, and, meanwhile, the resulting
optimal state of each of them is exactly distributed according to the state of the population.
This is the “mean field game system” (MFG system):

—0iu — Au + H(x, Du) = F(x, m(t)) in [0, 7] x R,
oym — Am — div(mDyH (z, Du)) = 0 in [0,7] x RY, (6)
w(T,z) = G(z,m(T)), m(0,) =mg  inR%

where m () denotes the initial state of the population. The system consists in a coupling between
a (backward) Hamilton-Jacobi equation, describing the dynamics of the value function of any of
the players, and a (forward) Kolmogorov equation, describing the dynamics of the distribution
of the population. In that framework, H reads as an Hamiltonian, F' is understood as a running
cost and G as a terminal cost. Since its simultaneous introduction by Lasry and Lions [50] and by
Huang, Caines and Malhamé [32], this system has been thoroughly investigated: existence, under
various assumptions, can be found in [11} 17,33 [34] 35} 140, 50} (52]. Concerning uniqueness of the
solution, two regimes were identified in [50]. Uniqueness holds under Lipschitz type conditions
when the time horizon T is short (or, equivalently, when H, F' and G are “small”), but, as for
finite-dimensional two-point boundary value problems, it may fail when the system is set over a
time interval of arbitrary length. Over long time intervals, uniqueness is guaranteed under the
quite fascinating condition that F' and G are monotonous, i.e., if, for any measures m,m’, the
following holds:

/d(F(x,m) — F(z,m")d(m — m')(z) = 0 and /d(G(:U,m) — G(xz,m"Yd(m —m')(z) = 0. (7)
R R
The interpretation of the monotonicity condition is that the players dislike congested areas and
favor configurations in which they are more scattered, see Remark below for an example.
Generally speaking, condition plays a key role throughout the paper, as it guarantees not
only uniqueness but also stability of the solutions to @

As announced, a solution to the mean field game system @ can be indeed interpreted as
a Nash equilibrium for a differential game with infinitely many players: in that framework, it
plays the role of the Schmeidler’s non-cooperative equilibrium. A standard strategy to make
the connection between @ and differential games consists in inserting the optimal strategies
from the Hamilton-Jacobi equation in @ into finitely many player games in order to construct
approximate Nash equilibria: see [33], as well as [17, 34 35, [40]. However, although it establishes



the interpretation of the system @ as a differential game with infinitely many players, this says
nothing about the convergence of and .

When § is positive, the system describing Nash equilibria within a population of infinitely
many players subject to the same common noise of intensity § cannot be longer described by
a deterministic system of the same form as @ Owing to the theory of propagation of chaos
for systems of interacting particles, see the short remark above, the unknown m in the forward
equation is then expected to represent the conditional law of the optimal state of any player
given the realization of the common noise. In particular, it must be random. This turns the
forward Kolmogorov equation into a forward stochastic Kolmogorov equation. As the Hamilton-
Jacobi equation depends on m, it renders v random as well. Anyhow, a key fact from the theory
of stochastic processes is that the solution to a stochastic differential equation must be adapted
to the underlying observation, as its values at some time ¢ cannot anticipate the future of the
noise after t. At first sight, it seems to be very demanding as u is also required to match, at
time T, G(-,m(T)), which depends on the whole realization of the noise up until 7". The right
formulation to accommodate both constraints is given by the theory of backward stochastic
differential equations, which suggests to penalize the backward dynamics by a martingale in
order to guarantee that the solution is indeed adapted. We refer the reader to the monograph
[59] for a complete account on the finite dimensional theory and to the paper [60] for an insight
into the infinite dimensional case. Denoting by W “the common noise” (here, a d—dimensional
Brownian motion) and by mg) the initial distribution of the players at time ¢y, the MFG system
with common noise then takes the form (in which the unknown are now (ug, mg, vy)):

dyuy = {—(1 + B)Auy + H(z, Dug) — F(z,my) — \/%div(vt)}dt + vp - A/2BdW,

in [0, 7] x T¢,
dtmt = [(1 + B)Amt + div(mtDpH(mt, D’U,t))]dt — div(mt\/ﬁth), (8)
in [0, 7] x T¢,

ur(z) = G(z, mr), mo = m), in T¢

where we used the standard convention from the theory of stochastic processes that consists
in indicating the time parameter as an index in random functions. As suggested right above,
the map v; is a random vector field that forces the solution u; of the backward equation to be
adapted to the filtration generated by (Wt)te[o,T]~ As far as we know, the system has never
been investigated and part of the paper will be dedicated to its analysis (see however [19] for an
informal discussion). Below, we call the system the MFG system with common noise.

It is worth mentioning that the aggregate equations @ and (see also the master equation
@ below) are the continuous time analogues of equations that appear in the analysis of dynamic
stochastic general equilibria in heterogeneous agent models, as introduced in economic theory by
Aiyagari [3], Bewley [15] and Huggett [37]. In this setting, the factor 5 describes the intensity of
“aggregate shocks”, as discussed by Krusell and Smith in the seminal paper [42]. In some sense,
the limit problem studied in the paper is an attempt to deduce the macroeconomic models,
describing the dynamics of a typical (but heterogeneous) agent in an equilibrium configuration,
from the microeconomic ones (the Nash equilibria).

The master equation. Although the mean field game system has been widely studied since its
introduction in [50] and [32], it has become increasingly clear that this system was not sufficient
to take into account the entire complexity of dynamic games with infinitely many players. The
need for reformulating the original system @ into the much more complex stochastic version
in order to accommodate with the common noise (i.e., the case § > 0) sounds as a hint in



that direction. In the same spirit, we may notice that the original MFG system @ does not
accommodate with mean field games with a major player and infinitely many small players, see
[31]. And, last but not the least, the main limitation is that, so far, the formulation based on
the system (@ (or when 8 > 0) has not permitted to establish a clear connection with the
Nash system .

These issues led Lasry and Lions [52] to introduce an infinite dimensional equation —the so-
called “master equation”— that directly describes, at least formally, the limit of the Nash system
and encompasses the above complex situations. Before writing down this equation, let us
explain its main features. One of the key observations has to do with the symmetry properties,
to which we already alluded, that are satisfied by the solution of the Nash system . Under the
standing symmetry assumptions on the (FN’i)izly,‘.7N and (GN’i)i:Lm,N, says that the
(vN:%); N can be written into a similar form to (3], namely vV (¢, z) = vV (¢, 2, md") (where
the empirical measures mi\” are defined as in ), but with the obvious but major restriction
that the function vV that appears on the right-hand side of the equality now depends upon
N. With such a formulation, the value function to player ¢ reads as a function of the private
state of player ¢ and of the empirical distribution formed by the others. Then, one may guess,
at least under the additional assumption that such a structure is preserved as N — +o0, that
the unknown in the limit problem takes the form U = U(¢,z,m), where x is the position of the
(typical) small player at time ¢ and m is the distribution of the (infinitely many) other agents.

The question is then to write down the dynamics of U. Plugging U = U (t, x;, mgl) into the
Nash system , one obtains—at least formally—an equation stated in the space of measures
(see Subsection for a heuristic discussion). This is the so-called master equation. It takes
the form:

([ —0,U — (1 + B)AU + H(x, D,U)
—(1+p) /Rd divy [D, U] dm(y) + /]Rd Dy, U - D,H(y,D,U) dm(y)
—25/ divy [DoU] dm(y) — ﬂ/ Te[D2,,U] dm@dm = F(z,m) (9)
d R2d

R
in [0, 7] x R? x P(R?)
U(T,z,m) = G(x,m) in R? x P(R?)

A

In the above equation, .U, D,U and A,U stand for the usual time derivative, space derivatives
and Laplacian with respect to the local variables (t,z) of the unknown U, while D,,U and
D2, U are the first and second order derivatives with respect to the measure m. The precise
definition of these derivatives is postponed to Section [2] For the time being, let us just note that
it is related with the derivatives in the space of probability measures described, for instance, by
Ambrosio, Gigli and Savaré in [4] and by Lions in [52]. It is worth mentioning that the master
equation @ is not the first example of an equation studied in the space of measures —by far:
for instance Otto [58] gave an interpretation of the porous medium equation as an evolution
equation in the space of measures, and Jordan, Kinderlehrer and Otto [3§] showed that the heat
equation was also a gradient flow in that framework; notice also that the analysis of Hamilton-
Jacobi equations in metric spaces is partly motivated by the specific case when the underlying
metric space is the space of measures (see in particular [0, 24] and the references therein)—. The
master equation is however the first one to combine at the same time the issue of being nonlocal,
nonlinear and of second order.

Beside the discussion in [52], the importance of the master equation @ has been acknowl-
edged by several contributions: see for instance the monograph [12] and the companion papers
[13] and [14] in which Bensoussan, Frehse and Yam generalize this equation to mean field type



control problems and reformulate it as a PDE set on an L? space, [19] where Carmona and
Delarue interpret this equation as a decoupling field of forward-backward stochastic differential
equation in infinite dimension.

If the master equation has been discussed and manipulated thoroughly in the above refer-
ences, it is mostly at a formal level: The well-posedness of the master equation has remained,
to a large extend, open until now. Beside, even if the master equation has been introduced to
explain the convergence of the Nash system, the rigorous justification of the convergence has
not been understood.

The aim of the paper is to give an answer to both questions.

Well-posedness of the master equation. The largest part of this paper is devoted to the
proof of the existence and uniqueness of a classical solution to the master equation @D, where, by
classical, we mean that all the derivatives in @ exist and are continuous. In order to avoid issues
related to boundary conditions or conditions at infinity, we work for simplicity with periodic
data: the maps H, F' and G are periodic in the space variable. The state space is therefore the d-
dimensional torus T? = R?/Z% and m(g) belongs to P(T?), the set of Borel probability measures
on T?¢. We also assume that F, G : T¢ x P(T%) — R satisfy the monotonicity conditions , are
sufficiently “differentiable” with respect to both variables and, of course, periodic with respect
to the state variable. Although the periodicity condition is rather restrictive, the extension to
maps defined on the full space or to Neumann boundary conditions is probably not a major
issue. Anyhow, it would certainly require further technicalities, which would have made the
paper even longer than it is if we had decided to include them.

So far, the existence of classical solutions to the master equation has been known in more re-
stricted frameworks. Lions discussed in [52] a finite dimensional analogue of the master equation
and derived conditions for this hyperbolic system to be well-posed. These conditions correspond
precisely to the monotonicity property ([7]), which we here assume to be satisfied by the coupling
functions F' and G. This parallel strongly indicates —but this should not does not come as a
surprise— that the monotonicity of F' and G should play a key role in the unique strong solv-
ability of (9). Lions also explained in [52] how to get the well-posedness of the master equation
without noise (no Laplacian in the equation) by extending the equation to a (fixed) space of
random variables under a convexity assumption in space of the data. In [16] Buckdahn, Li,
Peng and Rainer studied equation @D, by means of probabilistic arguments, when there is no
coupling nor common noise (F' = G =0, 8 = 0) and proved the existence of a classical solution
in this setting; in a somewhat similar spirit, Kolokoltsov, Li and Yang [40] and Kolokoltsov,
Troeva and Yang [41] investigated the tangent process to a flow of probability measures solving
a McKean-Vlasov equation. Gangbo and Swiech [28] analyzed the first order master equation in
short time (no Laplacian in the equation) for a particular class of Hamiltonians and of coupling
functions F and G (which are required to derive from a potential in the measure argument).
Chassagneux, Crisan and Delarue [22] obtained, by a probabilistic approach similar to that used
in [16], the existence and uniqueness of a solution to (9) without common noise (when 8 = 0)
under the monotonicity condition in either the non degenerate case (as we do here) or in the
degenerate setting provided that F', H and G satisfy an additional convexity conditions in the
variables (z,p). The complete novelty of our result, regarding the specific question of solvability
of the master equation, is the existence and uniqueness of a classical solution to the problem
with common noise.

The technique of proof in [16, 22] 28] consists in finding a suitable representation of the
solution: indeed a key remark in Lions [52] is that the master equation is a kind of transport
equation in the space of measures and that its characteristics are, when 5 = 0, the MFG system



@. Using this idea, the main difficulty is then to prove that the candidate is smooth enough to
perform the computation showing that it is a classical solution of @ In [16] 22] this is obtained
by linearizing systems of forward-backward stochastic differential equations, while [28] relies on
a careful analysis of the characteristics of the associated first order PDE.

Our starting point is the same: we use a representation formula for the master equation.
When 8 = 0, the characteristics are just the solution to the MFG system @ When S is positive,
these characteristics become random under the action of the common noise and are then given
by the solution of the MFG system with common noise .

The construction of a solution U to the master equation then relies on the method of char-
acteristics. Namely, we define U by letting U (to, ¥, mo) := ut,(x) where the pair (ur, mu)ef,1
is the solution to when the forward equation is initialized at mg) € P(T?) at time tg, that is

dyuy = {—(1 + B)Aut + H(x, Dug) — F(x,my) — \/ﬁdiv(vt)}dt + vy - \/%th
in [to, T] x T¢,

dymy = [(1 + B)Amy + div (mtDpH(mt, Dut))]dt - div(mt\/%dVVt)7 (10)
in [tg, T] x T¢

ur(x) = G(z,mr), My = m) in T9,

There are two main difficult steps in the analysis. The first one is to establish the smoothness
of U and the second one is to show that U indeed satisfies the master equation @ In order to
proceed, the cornerstone is to make a systematic use of the monotonicity properties of the maps
F and G: Basically, monotonicity prevents the emergence of singularities in finite time. Our
approach seems to be very powerful, although the reader might have a different feeling due to
the length of the paper. As a matter of fact, part of the technicalities in the proof are caused by
the stochastic aspect of the characteristics . As a result, we spend much effort to handle the
case with a common noise (for which almost nothing has been known so far), but, in the simpler
case B = 0, our strategy to handle the first order master equation provides a much shorter proof
than in the earlier works [16] 22] 28]. For this reason, we decided to display the proof in this
simple context separately (Section .

The convergence result. Although most of the paper is devoted to the construction of a
solution to the master equation, our main (and primary) motivation remains to justify the
mean field limit. Namely, we show that the solution of the Nash system converges to the
solution of the master equation. The main issue here is the complete lack of estimates on
the solutions to this large system of Hamilton-Jacobi equations: This prevents the use of any
compactness method to prove the convergence. So far, this question has been almost completely
open. The convergence has been known in very few specific situations. For instance, it was
proved for the ergodic mean field games (see Lasry-Lions [47], revisited by Bardi-Feleqi [9]). In
this case, the Nash equilibrium system reduces to a coupled system of N equations in T¢ (instead
of N equations in TV as (1)) and estimates of the solutions are available. Convergence is also
known in the “linear-quadratic” setting, where the Nash system has explicit solutions: see Bardi
[8]. Let us finally quote the nice results by Fischer [25] and Lacker [45] on the convergence of
open loop Nash equilibria for the N —player game and the characterization of the possible limits.
Therein, the authors overcome the lack of strong estimates on the solutions to the N —player
game by using the notion of relaxed controls for which weak compactness criteria are available.
The problem addressed here—concerning closed loop Nash equilibria—differs in a substantial
way from [25, 45]: Indeed, we underline the surprising fact that the Nash system , which
concerns equilibria in which the players observe each other, converges to an equation in which
the players only need to observe the evolution of the distribution of the population.



Our main contribution is a general convergence result, in large time, for mean field games
with common noise, as well as an estimate of the rate of convergence. The convergence holds in
the following sense: for any @ € (T9)"V, let mY = & Zf\il 0z,. Then

N
1
NZ th U(t0>x2>m )‘ CN— (11)

We also prove a mean field result for the optimal solutions : if the initial conditions of the
((Xi.))i=1,.. n are i.i.d. and with the same law mp) € P(T%), then

E[ sup [X;0— Yil| < ON",
t€[0,T7]

where the ((Y;+)i=1,...N)twe[o,7] are the solutions to the McKean-Vlasov SDE
dYiy = —DyH (Y4, DoU (t, Yig, L(Yi|W)))dt + V2dB} + /28dW;,  te [to, T],

with the same initial condition as the ((Xj¢)i—1,. N)te[() 7). Here U is the solution of the master
equation and L(Y;+|W) is the conditional law of Y;; given the realization of the whole path W.
Since the ((Yit)e[o,1])i=1,..n are conditionally independent given W, the above result shows
that (conditional) propagation of chaos holds for the N—Nash equilibria.

The technique of proof consists in testing the solution U of the master equation @ as a
nearly solution to the N—Nash system . On the model of , a natural candidate for being
an approximate solution to the N—Nash system is indeed

uNi(t,x) = U(t,zi,md7), te[0,T], xe (THN

Taking benefit from the smoothness of U, we then prove that the “proxies” (uN 1)Z=1 ~ almost
solve the N—Nash system up to a remainder term that vanishes as N tends to o0. As
a by-product, we deduce that the (uN 1)1:1 ~ get closer and closer to the “true solutions”
(N Z)1:1 ~ when N tends to oo, which yields . As the reader may notice, the convergence
property is stated in a symmetric form, namely the convergence holds in the mean, the
average being taken over all the particles. Of course, this is reminiscent of the symmetry
properties satisfied by the N—Nash system, which play a crucial role in the proof.

It is worth mentioning that the monotonicity properties play no role in our proof of the
convergence. Except structural conditions concerning the Lipschitz property of the coefficients,
the arguments work under the sole assumption that the master equation has a classical solution.

Conclusion and further prospects. The fact that the existence of a classical solution to
the master equation suffices to prove the convergence of the Nash system demonstrates the
deep interest of the master equation, when regarded as a mathematical concept in its own right.
Considering the problem from a more abstract point of view, the master equation indeed captures
the evolution of the time-dependent semi-group generated by the Markov process formed, on
the space of probability measures, by the forward component of the MFG system ([10). Such a
semi-group is said to be lifted as the corresponding Markov process has P(T%) as state space.
In other words, the master equation is a nonlinear PDE driven by a Markov generator acting
on functions defined on P(T¢). The general contribution of our paper is thus to show that any
classical solution to the master equation accommodates with a given perturbation of the lifted
semi-group and that the information enclosed in such a classical solution suffices to determine the



distance between the semi-group and its perturbation. Obviously, as a perturbation of a semi-
group on the space of probability measures, we are here thinking of a system of N interacting
particles, exactly as that formed by the Nash equilibrium of an N—player game.

Identifying the master equation with a nonlinear PDE driven by the Markov generator of a
lifted semi-group is a key observation. As already pointed out, the Markov generator is precisely
the operator, acting on functions from P(T%) to R, generated by the forward component of the
MFG system . Put it differently, the law of the forward component of the MFG system
(T0), which lives in P(P(T?)), satisfies a forward Kolmogorov equation, also referred to as a
“master equation” in physics. This says that “our master equation” is somehow the dual (in the
sense that it is driven by the adjoint operator) of the “master equation” that would describe,
according to the terminology used in physics, the law of the Nash equilibrium for a game with
infinitely many players (in which case the Nash equilibrium itself is a distribution). We stress
that this interpretation is very close to the point of view developed by Mischler and Mouhot [56]
in order to investigate Kac’s program (up to the difference that, differently from ours, Mischler
and Mouhot’s work investigates uniform propagation of chaos over an infinite time horizon; we
refer to the companion paper by Mischler, Mouhot and Wennberg [57] for the analysis, based
on the same technology, of mean-field models in finite time). Therein, the authors introduce
the evolution equation satisfied by the (lifted) semi-group, acting on functions from P(R?) to
R, generated by the d-dimensional Boltzmann equation. According to our terminology, such an
evolution equation is a “master equation” on the space of probability measures, but it is linear
and of the first-order while ours is nonlinear and of the second-order (meaning second-order on
P(T)).

In this perspective, we also emphasize that our strategy for proving the convergence of
the N—Nash system relies on a similar idea to that used in [56] to establish the convergence of
Kac’s jump process. While our approach consists in inserting the solution of the master equation
into the N—Nash system, Mischler and Mouhot’s point of view is to compare the semi-group
generated by the N —particle Kac’s jump process, which operates on symmetric functions from
(RY)N to R (or equivalently on empirical distributions of size N), with the limiting lifted semi-
group, when acting on the same class of symmetric functions from (RY)" to R. Clearly, the
philosophy is the same, except that, in our paper, the “limiting master equation” is nonlinear
and of the second-order (which renders the analysis more difficult) and is set over a finite time
horizon only (which does not ask for uniform in time estimates). It is worth mentioning that
similar ideas have been explored by Kolokoltsov in the monograph [39] and developed, in the
McKean-Vlasov framework, in the subsequent works [40] and [41] in collaboration with his
coauthors.

Of course, these parallels raise interesting questions, but we refrain from comparing these
different works in a more detailed way: This would require to address more technical questions
regarding, for instance, the topology used on the space of probability measures and the regularity
of the various objects in hand; clearly, this would distract us from our original objective. We
thus feel better to keep the discussion at an informal level and to postpone a more careful
comparison to future works on the subject.

We complete the introduction by pointing out possible generalizations of our results. For
simplicity of notation, we work in the autonomous case, but the results remain unchanged if H or
F are time-dependent provided that the coefficients F', G and H, and their derivatives (whenever
they exist), are continuous in time and that the various quantitative assumptions we put on F,
G and H hold uniformly with respect to the time variable. We can also remove the monotonicity
condition provided that the time horizon T is assumed to be small enough. The reason is
that the analysis of the smoothness of U relies on the solvability and stability properties of the
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forward-backward system and of its linearized version: As for finite-dimensional two-point
boundary value problems, Lipschitz type conditions on the coefficients (and on their derivatives
since we are also dealing with the linearized version) are sufficient whenever 7' is small enough.

As already mentioned, we also chose to work in the periodic framework. We expect for similar
results under other type boundary conditions, like the entire space R? or Neumann boundary
conditions.

Notice also that our results can be generalized without much difficulty to the stationary
setting, corresponding to infinite horizon problems. This framework is particularly meaningful
for economic applications. In this setting the Nash system takes the form

N N
ro™Ni(x) — 2 ijvN’i(ac) —-p 2 TngjMvN’i(w) + H(z;, Dy, o™i (x))
j=1 Jik=1
+ > DpH(zj, Dy o™ (@) - Dy o™i() = F¥(z)  in (RDY,
J#i

where 7 > 0 is interpreted as a discount factor. The corresponding master equation is
rU — (1+ 8)A,U + H(z,D,U)
—(1+5) /Rd divy [DnU] dm(y) + /Rd D,,U - D,H(y, D,U) dm(y)
—2ﬁ/ divy [Dpy U] dm(y) — B/ Tt [D2,,U] dm®dm = F(z,m)
i RY P(RY), .

where the unknown is the map U = U(z,m). One can solve again this system by using the
method of (infinite dimensional) characteristics, paying attention to the fact that these charac-
teristics remain time-dependent. The MFG system with common noise takes the form (in which
the unknown are now (ug, m¢, vy)):

diuy = {rut — (14 B8)Aut + H(xz, Duy) — F(x,my) — mdiv(vt)}dt + v - \/%th
in [0, +00) x T¢

dimy = [(1 + B)Amy + div (mtDpH(mt, Dut))]dt — div(mt\/%th),
in [0, +o0) x T4

mo = Mo in T, (ut); bounded a.s.

Organization of the paper. We present our main results in Section [2| where we also explain
the notation, state the assumption and rigorously define the notion of derivative on the space of
measures. The well-posedness of the master equation is proved in Section |3 when 5 = 0. Unique
solvability of the MFG system with common noise is discussed in Section [4] Results obtained
in Section {4 are implemented in the next Section [5| to derive the existence of a classical solution
to the master equation in the general case. The last section is devoted to the convergence of
the Nash system. In appendix, we revisit the notion of derivative on the space of probability
measures and discuss some useful auxiliary properties.

1.2 Informal derivation of the master equation

Before stating our main results, it is worthwhile explaining the meaning of the Nash system, the
heuristic derivation of the master equation from the Nash system and its main properties. We
hope that this (by no means rigorous) presentation might help the reader to be acquainted with
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our notation and the main ideas of proof. To emphasize the informal aspect of the discussion,
we state all the ideas in RY, without bothering about the boundary issues (whereas in the rest
of the paper we always work with periodic boundary conditions).

1.2.1 The differential game

The Nash system arises in differential game theory. Differential games are just optimal
control problems with many (here N) players. In this game, Player ¢ (for i = 1,..., N) controls
his state (X;¢)e[o,r] through his control (v ¢)e[o,r]- The state (X;¢)e[o,) evolves according to
the stochastic differential equation (SDE)

dX; s = i dt +/2dBi + /23dW;, Xy = Tio- (12)

Recall that the d-dimensional Brownian motions ((Bi)te[o,T])i=1,..., ~ and (W4)epo,7) are indepen-
dent, (B})se[o,r) corresponding to the individual noise (or idiosyncratic noise) to player i and
(Wt)te[O,T] being the common noise, which affects all the players. Controls ((ai,t)te[O,T])i=1,...,N
are required to be progressively-measurable with respect to the filtration generated by all the
noises. Given an initial condition xg = (z1,0,...,2n,0) € (T¢)" for the whole system at time ¢,
each player aims at minimizing the cost functional:

T
I (to, xo, (0),)j=1,..v) = E [/ (L(Xis, ci5) + FNY(X ) ds + GNY (X 1) |
to
where X = (X14,...,X,) and where L : R? x R? - R, FN+:RNY - R and GN¥ : RV 5 R
are given Borel maps. If we assume that, for each player i, the other players are undistinguish-
able, we can suppose that FV* and G take the form

FNZ(.’E) = F(xi,mN’i) and GN»i(w) _ G(:Ui,mN’i),

X T

In the above expressions, F, G : R? x P(R?) — R, where P(R?) is the set of Borel measures on
R?. The Hamiltonian of the problem is related to L by the formula:

V(z,p) e RY xRY,  H(z,p) = sup {—a-p—L{z,a)}.
acRd
Let now (vN”')izl,_.,N be the solution to . By Ito’s formula, it is easy to check that (UN’i)izL_,_’N
corresponds to an optimal solution of the problem in the sense of Nash, i.e., a Nash equilibrium
of the game. Namely, the feedback strategies

(a;k (t7 w) = _DPH(-Tia DmiUN’i(ta m)))i:17...’]\/ (13)
provide a feedback Nash equilibrium for the game:
oM (b, o) = JNY (to, o, (af.)j=1,..8) < I (to, @0, v, (65.)24)
for any i € {1,..., N} and any control «; ., progressively-measurable with respect to the filtration

generated by ((BY)j=1,...N)ieo,r] and (Wy)seqo,r)- In the left-hand side, o is an abusive notation
for the process (o (t, Xjt))epo,r), Where (X, ..., Xnt)ieo,r] solves the system of SDEs
when «a;, is precisely given under the implicit form oy = o (¢, X;¢). Similarly, in the right-
hand side, &7, for j + 4, denotes (a;f (t, Xjt))te[o,r], where (X1, ..., XN t)e[o,r] now solves the
system of SDEs for the given a; ., the other («j);i's being given under the implicit form
= a}’-‘ (t,Xj). In particular, system , in which all the players play the optimal feedback
, describes the dynamics of the optimal trajectories.
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1.2.2 Derivatives in the space of measures

In order to describe the limit of the maps (v™'?), let us introduce—in a completely informal
manner—a notion of derivative in the space of measures P(R?%). A rigorous description of the
notion of derivative used in this paper is given in section

In the following discussion, we argue as if all the measures had a density. Let U : P(RY) — R.
Restricting the function U to the elements m of P(R?) which have a density in L?(R?) and
assuming that U is defined in a neighborhood O < L*(R?) of P(R?) n L2(R?), we can use the

Hilbert structure on L?(R%). We denote by U the gradient of U in L?(R%), namely

U )a) = lim (U + )~ U), peO, ge LR,

om

Of course, way can identify g—%(p) with an element of L?(R?). Then, the duality product

U
om

order derivative of U (which can be identified with a symmetric bilinear form on L2 (R9)):

(p)(q) reads as the inner product <g—%(p), @) r2(rey- Similarly, we denote by §-5 2U the second

oU

(@), pe0, q.q € L*RY).

o —(p)(g,q') = lim — ! (gU (p+eq)(d) - .

om e—0 €

We set, when possible,

U 5U

To explain the meaning of D,,U, let us compute the action of a vector field on a measure m and
the image by U. For a given vector field B : R? — R? and m € P(R?) absolutely continuous
with a smooth density, let m(t) = m(z,t) be the solution to

{ am 1 div(Bm) =0

my=m
This expression directly gives

U,y = G ~div(Bm)) ey = [ DuUlmy) - BG) dml), (1)

where we used an integration by parts in the last equality.

Another way to understand these derivatives is to project the map U to the finite dimensional
space (RN via the empirical measure: if & = (z1,...,2y5) € (R)Y, let mY := (1/N) Zf\i Oz,
and set vV (x) = U(mZ). Then one can check the following relationships (see Proposition :
for any j € {1,..., N},

1
ijuN( ) NDmU(m]mvazj)7 (16)
1 1
D}, ou™(x) = Dy [DnU (m325) + <25 DU (Y, ) (17)
while, if j # k,
Dij@ku]v(w) WDQ nU(mY ), ). (18)
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1.2.3 Formal asymptotic of the (v"")

Provided that has a unique solution, each vV, for i = 1,..., N, is symmetric with respect
to permutations on {1,..., N}\{i} and, for i # j, the role played by 2% in v™** is the same as the
role played by 7 in v/ (see Subsection . Therefore, it makes sense to expect, as limit as
N — 400,

oVt @) ~ Utz md )

where U : [0,7] x R? x P(RY) — R. Starting from this ansatz, our aim is now to provide
heuristic arguments explaining why U should satisfy (9. The sense in which the (v™M)
actually converge to U is stated in Theorem [2.13] and the proof given in Section [6]

The informal idea is to assume that vV is already of the form U(t, z;, mg ) and to plug this
expression into the equation of the Nash equilibrium : the time derivative and the derivative
with respect to x; are understood in the usual sense, while the derivatives with respect to the
other variables are computed by using the relations in the previous section.

The terms 6,0™" and H (z;, D, v™") easily become 6U and H(x, D,U). We omit for a while
the second order terms and concentrate on the expressmn

i=1,....N

> DypH(xj, Dyyv™Nd) - Dy ™
J#i

Note that D, 0™ is just like D U(t, z;, mg 27). In view of (T6),

1

N7’\/
Dajv™" > 5= Dm

(t x’ba N 71.])7

and the sum over j is like an integration with respect to m . So we find, ignoring the difference
between m2"" and ma",

Z DPH(xj’ D‘ijN’j) ) ijvai = Td DPH(ya DCEU(ta mé\/,i, y)) ' DmU(tv Ly mé\f,i’ y)dmécv’l(y)
J#i

We now study the term ZijvN’i. As AwivN’i ~ A,U, we have to analyze the quantity

J
Z Ar].UN’i. In view of (17)), we expect

J#i
N?' ~ . N7' . .
ZA;C].U L N Zdlvy [DnU] (t, zi,m x] ZTr (t,xi,my ", x5, x;)

J#e J?ﬁl 1 J#i
~ /T [ divy [DnU] (¢ i, g y)dmg  (y) + 57— /T [T [D?nmU] (t, i, my g, y)dm (y).

where we can drop the last term since it is of order 1/N.
2, N,i

Let us finally discuss the limit of the term Z Tr( ) that we rewrite

6mk6xl

62,UN,1'

(19)

Ay o™+ 23 Tr( d a”N’i)Jr >
i ki 8xk6xl

0w Oxy ki
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The first term gives A U. Using the second one becomes

N,i
I LSRN = 3 T (D2 D] (b i, md )
6xk 83;, N— ki

2/ divy [Dn U] (¢, 2, m2", y)dmb ().
Td

1

As for the last term in , we have by :

02 Nyi

Tr( ~ T D2 toa mNA
k%:é ' 5%9331) _12k12¢z ' (’m“mw s Tj, L)

/1r LT DR (il S )l ).

12

Collecting the above relations, we expect that the Nash system

aUNz 62 Nyi

N,i
ZA%U ﬁZTr axkaleH(x“D V)

—i—ZDpH .%‘],D RIREAR Dx]v = F(x;, mN")
] J#i
vV(T, ) = G, mD)

has for limit

U AU — / divy [DpU]ldm + H(x,m, D,U)
&’t R4
) -3 (AxU +2 / div, [D, U] dm + / div, [D,,U] dm + / Tr[D2,,.U] dm@dm>
R4 Rd R2d
—i—/ D, U - D,H(y, D,U)dm(y) = F(z,m)
Rd
L U(T,z,m) = G(z,m).

This is the master equation. Note that there are only two genuine approximations in the above
computation. One is where we dropped the term of order 1/N in the computation of the sum
Zj# ijvNﬂ. The other one was at the very beginning, when we replaced D, U (t, x;, mwN]) by

DIU(t,:cj,mg’i). This is again of order 1/N.

1.2.4 The master equation and the MFG systems

We complete this informal discussion by explaining the relationship between the master equation
and the MFG systems. This relation plays a central role in the paper. It is indeed the corner-
stone for constructing a solution to the master equation via a method of (infinite dimensional)
characteristics. However, for pedagogical reasons, we here go the other way round: While, in
the next sections, we start from the unique solvability of the system of characteristics to prove
the existence of a classical solution to the master equation, we now assume for a while that the
master equation has a classical solution and, from this solution, we construct a solution to the
MFG system.

Let us start with the first order case, i.e., when S = 0, since this is substantially easier.
Let U be the solution to the master equation (9) and, for a fixed initial position (to,mg)) €
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[0, 7] x P(R?), (u,m) be a solution of the MFG system () with initial condition m(tg) = myg).
We claim that
orm — Am — diV(mDpH(:v, D,U(t,x, m(t)))) =0,
ult,2) = Ult,,m(), 1 [fo,T].
In other words, to compute U (to, z,m(g)), We just need to compute the solution (u,m) of the
MFG system (6) and let U(to,x,m(q)) := u(to,x). This is exactly the method of proof of
Theorem 2.8
To check , we solve the McKean-Vlasov equation

(20)

oym’ — Am' — div (m'DpH(x, D,U(t, :L‘,m'(t)))) =0, m/(to, -) = my),
and set u/(t,z) = U(t,x,m'(t)). Then

ol (tx) = U + <% 6tm'>L2 = aU + <§—Z Am! + div(m' D, H(-, DxU))>L2

0:U + /Rd (divy [D,,U] — D, U - D,H (y, DJCU))dm'(y) (21)

= —AU+H(x,D,U)— F(xz,m)

where we used the equation satisfied by U in the last equality. Therefore the pair (u',m’) is a
solution to @, which, provided that the MFG system is at most uniquely solvable, shows that
(u',m’) = (u,m).

For the second order master equation (8 > 0) the same principle applies except that, now,
the MFG system becomes stochastic. Let (to, mg)) € [0,T] x P(R?) and (us, ms) be a solution
of the MFG system with common noise . Provided that the master equation has a classical
solution, we claim that

dtmt = {(1 + B)Amt + div(mtDpH(a:, DxU(t, xT, mt))) }dt + \/ﬁdiv(mtth),

(22)
ut(x) = U(t,x, my), te[to, T], a.s..

Once again, we stress that this formula (whose derivation here is informal) underpins the rigorous
construction of the second order master equation performed in Section bl As a matter of fact,
it says that, in order to define U(tg,z,m () (meaning that U is no more a priori given as we
assumed a few lines above), one “just needs” to solve the MFG system with myg, = mq)
and then set Ul(to, r, m()) = uy(x). Here one faces the additional issue that, so far, there has
not been any solvability result for and that the regularity of the map U that is defined in
this way is much more involved to investigate than in the first order case.

Returning to the proof of (and thus assuming again that the master equation has a
classical solution), the argument is the same in the case § = 0, but with extra terms coming
from the stochastic contributions. First, we (uniquely) solve the stochastic McKean-Vlasov
equation

dym), = {(1 + B)Amy + div(m;DpH(a:, D, U(t,x, mi))) } dt + +/28div(midWy), my, = mo,
and set uy(z) = U(t,z,m}). Then, by Itd’s formula,
/ 5U ! . / 62U ! !
dey(@) = {00 + (52 (1+ B)Am; + div(miDpH( D,U)) ) |, + (55 -Dmp, Dy )t
oU )
+<%, \/QBdlv(m;th)>L2.
(23)
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In comparison with the first-order formula , equation involves two additional terms:
The stochastic term on the second line derives directly from the Brownian part in the forward
part of whilst the second order term on the first line is reminiscent of the second order term
that appears in the standard It6 calculus. We provide a rigorous proof of in Section

Using , we obtain
dydy () = {6tU +/ ((1 + B)div, [DpU] — DmU-DpH(-,DxU))dmt
R4

+3 Tr[D2,,U]dm; ® m;}dt
Ré x R4

+( [ DuUdm;) - +/2684W,
R4
Taking into account the equation satisfied by U, we get

dyuy(z) = {—(1 +B)AU + H(-, D,U) =28 | div, [DpU] dmj — F}dt

R4
+( [ DuUdm;) - +/284W,
Rd
= {-(14B)AU + H(-, D,U) — 2Bdiv(v}) — F}dt + v; - \/2BdW;

for vj := D, Udm;,.
Rd
This proves that (uj, m},v;) is a solution to the MFG system and, provided that the

MFG system is at most uniquely solvable, proves the claim.
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2 Main results

In this section we collect our main results. We first state the notation used in the paper, specify
the notion of derivatives in the space of measures, and describe the assumptions on the data.

2.1 Notations

Throughout the paper, R? denotes the d—dimensional euclidean space, with norm ||, the scalar
product between two vector a,b € R? being written a - b. We work in the d—dimensional torus
(i.e., periodic boundary conditions) that we denote T? := R?/Z¢. When N is a (large) integer,
we use bold symbols for elements of (T4): for instance, & = (x1,...,zy) € (THV.

The set P(T?) of Borel probability measures on T? is endowed with the Monge-Kantorovich
distance

di(m,m') =sup [ ¢(y) d(m —m')(y),
¢ JTd

where the supremum is taken over all Lipschitz continuous maps ¢ : T — R with a Lipschitz
constant bounded by 1. Let us recall that this distance metricizes the weak convergence of
measures. If m belongs to P(T¢) and ¢ : T? — T% is a Borel map, then ¢fm denotes the push-
forward of m by ¢, i.e., the Borel probability measure such that [¢tm](A) = m(¢~1(A)) for
any Borel set A c T¢. When the probability measure m is absolutely continuous with respect
to the Lebesgue measure, we use the same letter m to denote its density. Namely, we write
m : T? 3 2 +— m(x) € R,. Besides we often consider flows of time dependent measures of the
form (m(t))efo,r), with m(t) € P(T9) for any ¢ € [0,T]. When, at each time ¢ € [0,7T], m(t)
is absolutely continuous with respect to the Lebesgue measure on T¢, we identify m(t) with its
density and we sometimes denote by m : [0,T] x T¢ 3 (¢,z) — m(t,x) € Ry the collection of the
densities. In all the examples considered below, such an m has a time-space continuous version
and, implicitly, we identify m with it.

If ¢ : T¢ — R is sufficiently smooth and ¢ = (f1,...,€;3) € N% then D’} stands for the
o4 o ¢. The order of derivation £1 + --- + £ is denoted by |¢|. Given e € R?,

71 e éd
o0z oz

we also denote by 0.¢ the directional derivative of ¢ in the direction e. For n € N and a € (0, 1),
C"* is the set of maps for which D¢ is defined and a—Hblder continuous for any ¢ € N with
|¢| < n. We set

derivative

7) = Do)

| — 2’|

¢
|9ln+a == 2 sup |Dfp(x)| + Z sup [ D ¢(

|| <n ©€T7 g =n T
The dual space of C"** is denoted by (C"*%)" with norm

Vp e (Cn+a)/, Hp”,(nJra) = sup <,0, ¢>(C”n+o¢)l’cn+a.

|¢| nta<l

If a smooth map v depends on two space variables, e.g. ¥ = 1(z,y), and m,n € N are the order
of derivation of 1 with respect to x and y respectively, we set

!
Wlmmy = D>, D)oo,
[|<m,|¢'|<n
and, if moreover the derivatives are Holder continuous,

3 DO (z, y) — DEDg(a’, )|

sup
o =m, || =n (@Y)# (@) |z —2'|* + |y — y'[*

[l (m+an+ay 2= 19 mm) +
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The notation is generalized in an obvious way to mappings depending on 3 or more variables.

If now the (sufficiently smooth) map ¢ depends on time and space, i.e., ¢ = ¢(t,z), we say
that ¢ € C/?! (where l = n+a, ne N, a e (0,1)) if D'D]¢ exists for any £ € N? and j € N with
|¢| + 25 < n and is a—Holder in = and «/2—Hdlder in ¢t. We set

H¢||n/2+o¢/27n+a = 2 HDéDg(bHOO + Z <D£Dg¢>z,a + <D2Dg¢>t,a/2
[ +25<n [¢|+2j=n
with

<D€Dz¢>x,a = sup |¢(t,l‘) B ¢(t7xl)|’ <D£Dg¢>t,o¢ = sup |d)(t,£ﬂ) B ¢(t/a$)|

t,x£x! |l‘ - x/|a t#tx |t - tl|a

If X,Y are a random variables on a probability space (2, 4,P), £(X) is the law of X and
L(Y|X) is the conditional law of Y given X. Recall that, whenever X and Y take values in Polish
spaces (say Sx and Sy respectively), we can always find a regular version of the conditional law
L(Y|X), that is a mapping ¢ : Sx x B(Sy) — [0, 1] such that:

e for each z € Sy, ¢(x,-) is a probability measure on Sy equipped with its Borel o-field
B(SY)7

e for any A € B(Sy), the mapping Sx 3 = — ¢(z, A) is Borel measurable,

e ¢(X,-) is a version of the conditional law of X given Y, in the sense that

E[f(X,Y)] = /

Sx

(S f<a:,y>q<x,dy>)d(c<x>)<x>=E[ F(X,y)a(X, dy) |,

Sy

for any bounded Borel measurable mapping f : Sx x Sy — R.

2.2 Derivatives

One of the striking features of the master equation is that it involves derivatives of the unknown
with respect to the measure. In the paper, we use two notions of derivatives. The first one,
denoted by g—% is, roughly speaking, the L? derivative when one looks at the restriction of P(T%)
to densities in L?(T%). Tt is widely used in linearization procedures. The second one, denoted
by D,,U, is more intrinsic and is related with the so-called Wasserstein metric on P(T¢). It can
be introduced as in Ambrosio, Gigli and Savaré [4] by defining a kind of manifold structure on
P(T?) or, as in Lions [52], by embedding P(T¢) into an L?(Q2, T¢) space of random variables.
We introduce this notion here in a slightly different way, as the derivative in space of :557[7]1' In
appendix we briefly compare the different notions.

2.2.1 First order derivatives
oU
Definition 2.1. We say that U : P(T¢) — R is C' if there exists a continuous map S
m

P(TY) x T¢ - R such that, for any m,m’ € P(T%),

lim J(L=s)m & sm) =U(m) _ /Td %(m,y)d(m’ —m)(y).

s—0t S

Note that g—% is defined up to an additive constant. We adopt the normalization convention

[, 5onm. ) = (24)

i)
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For any m € P(T¢) and any signed measure p on T? we will use indifferently the notations
) and [ S5, y)du(y

—(m an —(m .

6m :u“ ’H‘d 5m 7y IU’ y

Note also that

Ym,m' € P(T?), U(m’ / / (1= s)m + sm/,y) d(m' — m)(y)ds. (25)
Td 5m
Let us explain the relationship between the derivative in the above sense and the Lipschitz
5U oU
continuity of U in P(T%). If — = ——(m, y) is Lipschitz continuous with respect to the second
m m

variable with a Lipschitz constant bounded independently of m, then U is Lipschitz continuous:
indeed, by ,

1
U(m') — U(m)| < / Dyg—U((l —s)m + sm/, )H ds di(m,m')
0 5@ [
< oV n.
< Snlhlbl[,) Dy6m(m , )L di(m,m’)

This leads us to define the “intrinsic derivative” of U.

oU

Definition 2.2. If — is of class C' with respect to the second variable, the intrinsic derivative
m

DU : P(T%) x T¢ — RY is defined by

oU
DmU(m7 y) = Dy%(mv y)

The expression D,,U can be understood as a derivative of U along vector fields:

Proposition 2.3. Assume that U is C', with :5% C' with respect to y and D,,U is continuous
in both variables. Let ¢ : T — R? be a Borel measurable and bounded vector field. Then

,{IE,% U((id + h¢)hﬂm) —U(m) _ 3 D U(m,y) - (y) dm(y).

Proof. Let us set my, s := s(id + h¢)fm + (1 — s)m. Then

U((id + ho)tm) —U(m) = / /Td 6m (mp,s,y)d((id + ho)im — m)(y)ds

A / (0 + RS()) = 5 (1 0,1) ) (y)ds
Td

o, / DU (0, + tho(y)) - 6(y) dedm(y)ds.

Dividing by h and letting h — 0 gives the result thanks to the continuity of D,,U. O

Note also that, if U : P(T?) — R and g—% is C? in y, then D,D,,U(m,y) is a symmetric
matrix since

oU oU
D,D,Um9) = D, (D)5 ) (m.3) = Hess, 50 (11, 0)

20



2.2.2 Second order derivatives.

d 6U . 1 . 2 62
If, for a fixed y € T%, the map m 5—(m, y) is C*, then we say that U is C* and denote by S2
m m

its derivative. (Pay attention that y is fixed. At this stage, nothing is said about the smoothness
2

U
in the direction y.) By Definition [2.1| we have that Sz - : P(TY) x T? x T? - R with
m

5U / / !/
S (') 5 (m.) //5m Sym - sm'sy,y') dlm' —m) (o).
52U U
If U is C? and if — (m,y,y) is C? in the variables (y, ), then we set

sm? ~ om?
52U
D;,.U(m,y,y') :== D, 5z My y)-
2 d d d dxd *U ;
We note that D7, U : P(T?%) x T% x T* — R**% The next statement asserts that Sz enjoys
m

the classical symmetries of second order derivatives.

2
Lemma 2.4. Assume that — 5 1s jointly continuous in all the variables. Then
m2
82U 82U
7(m7 Y, y/) = 7(77’1, y/7 y)7 me P(Td)7 Y, y/ € Td‘

dm? om?

0 52 52
In the same way, if v is C' in the variable y and ov is also C' in the variable y, Dy—U
m dm?2 dm?
being jointly continuous in all the variables, then, for any fized y € T¢, the map m +— D, U(m,y)
is C' and
0,20 (m,5.4) = - (DU, ). me P(TY, gy’ €T
Yy 5m2 Y, Y 5m m ’ ) ) ) )
o0 9 p 5
while, if — 52 is also C* in the variables (y,y'), then, for any fized y € T¢, the map %(D U(-,y))

is C1 in the variable y' and
(DU () (m,y') = Diyy Ulm,y, o).

Proof. First step. We start with the proof of the first claim. By continuity, we just need to show
the result when m has a smooth positive density. Let p, v € L®(T¢), such that Jpam = Jpav =0,
with a small enough norm so that m -+ sy + tv is a probability measure for any (s, t) € [0, 1]%.
Since U is C2, the mapping U : [0,1]? € (s,t) = U(m + su + nv) is twice differentiable and,
by standard Schwarz’ Theorem, D;DylU(s,t) = DsDyU(s,t), for any (s,t) € [0,1]%. Notice that

52U
DiDsU(s,t) = / (m + sp+ tr,y,y ) u(y)v(y)dydy’

[Td]2 5m2

2
DyDy(s,t) :/ U

maps 2 (m+ sp+tv, Y y) vy )dydy'.

Choosing s =t = 0, the first claim easily follows.
Second step. The proof is the same for the second assertion, except that now we have to

oU
consider the mapping U’ : [0,1] x T 3 (¢,) — 5—(m +tu,y), for a general probability measure
m
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m € P(T?%) and a general finite signed measure p on T¢, such that u(T¢) = 0 and m + p is a
probability measure. (In particular, m +tu = (1 —¢)m + t(m + p) is also a probability measure
for any ¢ € [0,1].) By assumption, U’ is C! in each variable ¢ and y with

2

0°U
Dtu/(ta y) = /]I‘d W(m + t:ua Y, y/)d/,t(y/), Dyu,(t’ y) = DmU(m + tuv y)

In particular, D;f’ is C! in y and
2

D, DU (t,y) = D

—(m+tp, g,y ) uly)dy'.
o Doz (M tits gy )y ) dy

By assumption, D, D’ is jointly continuous and, by standard Schwarz’ Theorem, the mapping
Dy’ is differentiable in ¢, with

52U
Dy(DyU')(t,y) = De(DmU(m + tyu, y)) = /Td Dy (m +tp,y, 4" p(y)dy"

Integrating in ¢, this shows that

1 52U
D U(m + p,y) — DpU(m,y) = /0 y Dym(m + tu,y, y )y )dy' dt.

Choosing p = m/ — m, for another probability measure m’ € P(T¢) and noticing that (see
Remark [2.5| below):

52U p p
L, Do syim(y') = o

we complete the proof of the second claim.
For the last assertion, one just need to take the derivative in y in the second one. O

Remark 2.5. Owing to the convention , we have

vy e T U i Vdm(y) = 0
yeT, | s (my.y)dm(y) =0,

when U is C2. By symmetry, we also have

vy' e T U "dm(y) =0
Yy € ) Td 6m2(m7y7y) m(y) -

And, of course,
52U

s oz 8 ) =0

2.2.3 Comments on the notions of derivatives

Since several concepts of derivatives have been used in the mean field game theory, we now
discuss the link between these notions. For simplicity, we argue as if our state space was R% and
not T¢, since most results have been stated in this context. (We refer to the Appendix for an
exposition on T%.)

A first idea consists in looking at the restriction of the map U to the subset of measures with
a density which is in L2(R?), and take the derivative of U in the L?(R%) sense. This is partially
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the point of view adopted by Lions in [52] and followed by Bensoussan, Frehse and Yam [12].

In the context of smooth densities, this is closely related to our first and second derivatives g%
52U
Im?2’
Many works on mean field games (as in Buckdahn, Li, Peng and Rainer [16], Carmona and
Delarue [19], Chassagneux, Crisan and Delarue [22], Gangbo and Swiech [28]) make use of an
idea introduced by Lions in [52]. It consists in working in a sufficiently large probability space
(9, A,P) and in looking at maps U : P(RY) — R through their lifting to L2(Q2, A, P; R%) defined
by

and

UX)=U(L(X)) VX eL*(Q,RY,

where £(X) is the law of X. It is clear that the derivative of U—if it exists—enjoys special
properties because U (X) depends only on the law of X and not on the full random variable. As
explained in [52], if U is differentiable at some point X € L?(Q, A,P;RY), then its gradient can
be written as

VU (Xo) = 0,U(L(X0))(Xo),

where ,U : P(R?) x R? 5 (m, z) — 9,U(m)(x) € RL. We explain in the Appendix that the
maps 0,U and D,,U introduced in Definition coincide, as soon as one of the two derivatives
exists. Let us also underline that this concept of derivative is closely related with the notion
introduced by Ambrosio, Gigli and Savaré [4] in a more general setting.

2.3 Assumptions

Throughout the paper, we assume that H : T% xR? — R is smooth, globally Lipschitz continuous
and satisfies the coercivity condition:
1 Id
L+ pl =

< D2 H(xz,p) <Cly  for (z,p) e T? x R% (26)

We also always assume that the maps F, G : T¢ x P(T¢) — R are globally Lipschitz continuous
and monotone: for any m,m’ € P(T%),

/ (F(x,m) — F(xz,m'))d(m —m')(x) > 0, / (G(z,m) — G(x,m'))d(m —m')(x) = 0. (27)
Td Td

Note that assumption implies that 5F and 6—G satisfy the following monotonicity property

(explained for I ):
dxdy = 0
/Td/qrdém xmy ( ) (y) ray

for any centered measure y. Throughout the paper the conditions and are in force.

Next we describe assumptions that might differ according to the results. Let us fix n € N
and a € (0,1). We set (with the notation introduced in subsection

. oF 1 II6F OF
Llpn(i) = Sup (dl(mlva)) ! %('77”'17')_%('77”/27')

om mi1#mse

(n+a,n+a)

and use the symmetric notation for G. We call (HF1(n)) the following regularity conditions
on F

6F(7 m, )
om

(HF1(n))  sup <|F<-,m>|n+a+\

F
+Lipn(6—) < 0.
meP(T4) om

(n+a,n+a)

23



and (HG1(n)) the symmetric condition on G:

0G(-,m, - ., 0G
N L +Lip,(2%) < .
meP(T4) m (nta,n+a) m
We use similar notation when dealing with second order derivatives:
2F L |62F 52F
Lip. (——) := d . D) — (. .
lpn(6m2) m?i%2 ( 1 (ml) m2)) 5m2 ( , M1, -, ) 5m2 ( , Mo, -, ) (n+a7n+a’n+a)

and call (HF2(n)) (respectively (HG2(n))) the second order regularity conditions on F":

OF(-,m,-
T L e )
meP(T4) ) m (n+a,n+a) )
+ sup Lﬂ;”) +Lipn(6—];21) <
meP(T4) om (n+a,n+a,n+a) om
and on G:
0G(-,m,-
(HG2(n)  sup (||G<-,m>|n+a+\(5) )
meP(T9) ) m (n+a,n+a) )
+ sup Lﬂ;”) —i—Lipn((s—C;) < oo.
meP(T4) om (n+a,n+a,n+a) om

Example 2.6. Assume that F' is of the form:
Fa.m) = [ @ (o m)(:)pla - 2)dz
Rd

where * denotes the usual convolution product (in R?) and where ® : R? — R is a smooth map
which is nondecreasing with respect to the second variable and p is a smooth, even function with
compact support. Then F' satisfies the monotonicity condition as well as the regularity
conditions (HF1(n)) and (HF2(n)) for any n € N.

Proof. Let us first note that, for any m,m’ € P(T¢),

[ (FGm) = Pt tm = ') )
= /Td [2(y. pxm(y)) = D(y, px ' (y))] (p* m(y) — p*m(y)) dy =0,

since p is even and ® is nondecreasing with respect to the second variable. So F' is monotone.
Writing ® = ®(z, ), the derivatives of F are given by

Sotemy) = [ o me)plo — 2ol - )i
and 62 F 0*®
Sz @) = [ S5 e m() ol =)oz = ol = )i
Then (HF1(n)) and (HF2(n)) hold because of the smoothness of p. O
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2.4 Statement of the main results

The paper contains two main results: on the one hand the well-posedness of the master equation,
and, on the other hand, the convergence of the Nash system with N players as N tends to
infinity. We start by considering the first order master equation (5 = 0), because, in this
setting, the approach is relatively simple (Theorem . In order to handle the second order
master equation, we build solutions to the mean field game system with common noise, which
play the role of “characteristics” for the master equation (Theorem . Our first main result
is Theorem [2.11] which states that the master equation has a unique classical solution under
our regularity and monotonicity assumptions on H, F' and G. Once we know that the master
equation has a solution, we can use this solution to build approximate solutions for the Nash
system with N —players. This yields to our main convergence results, either in term of functional
terms (Theorem or in term of optimal trajectories (Theorem .

2.4.1 First order master equation

We first consider the first order master equation (or master equation without common noise):

P
_atU(t7 x, m) - A;BU(tv Z, m) + H(.%‘, D:BU(ta T, m)) - / diVy [DmU] (t7 x,m, y) dm(y)
Td

< + | DnU(t,y,m,y) - DpH(y, DUt y,m)) dm(y) = F(z,m),
Td
in [0, 7] x T¢ x P(T%),

| U(T,z,m) = G(x,m) in T4 x P(T9).
(28)
We call it the first order master equation since it only contains first order derivatives with respect

to the measure variable. Let us first explain the notion of solution.

Definition 2.7. We say that a map U : [0,T] x T¢ x P(T?) — R is a classical solution to the
first order master equation if

e U is continuous in all its arguments (for the dy distance on P(T?)), is of class C? in x
and C' in time (the derivatives of order one in time and space and of order two in space
being continuous in all the arguments),

o U is of class C' with respect to m, the first order derivative

[0, 7] x T¢ x P(T%) x T 3 (¢, z,m,y) —

oU (t )
< x,m, )

s \b Y

being continuous in all the arguments, U /om being twice differentiable iny, the derivatives
being continuous in all the arguments,

o U satisfies the master equation (28)).

Theorem 2.8. Assume that F', G and H satisfy and in Subsection and that
(HF1(n+1)) and (HG1(n+2)) hold for some n = 1 and some a € (0,1). Then the first order
master equation has a unique solution.

Moreover, U is C' (in all variables), g—% is continuous in all variables and U(t,-,m) and

g—%(t, - m, ) are bounded in C"+?* and C"F2+ x CnTITY pespectively, independently of (t,m).
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Finally, g—% 18 Lipschitz continuous with respect to the measure variable:

110U oU
sup sup (di(mi,m2)) 1 %(t,-,ml,-)—%(t,-,mg,-) < 0.

te[0,T] m1#ma2

(n+2+a,n+a)

Section [3] is devoted to the proof of Theorem We also discuss in this section the link
between the solution U and the derivative of the solution of a Hamilton-Jacobi equation in the
space of measure.

The proof of Theorem relies on the representation of the solution in terms of the mean
field game system: for any (tg,mg) € [0,T) x P(T%), the MFG system is the system of forward-
backward equations:

—0wu — Au+ H(z, Du) = F(z,m(t))
drm — Am — div(mDpH (z, Du)) =0 (29)
u(T,z) = G(x,m(T)), m(to,-) = mo

As recalled below (Proposition [3.1), under suitable assumptions on the data, there exists a
unique solution (u, m) to the above system. Our aim is to show that the map U defined by

U(t(), " mo) = u(to, ) (30)

is a solution to . The starting point is the obvious remark that, for U defined by and
for any h e [0,T — to],

u(ty + h,-) = U(to + h,-,m(to + h)).
Taking the derivative with respect to h and letting h = 0 shows that U satisfies .

The main issue is to prove that the map U defined by is sufficiently smooth to perform
the above computation. In order to prove the differentiability of the map U, we use a flow
method and differentiate the MFG system with respect to the measure argument mg. The
derivative system then reads as a linearized system initialized with a signed measure. Fixing a
solution (u,m) to (29) and allowing for a more singular initial distribution pg € (C*F1+(T%))
(instead of a signed measure), the linearized system, with (v, u) as unknown, takes the form:

—0w — Av + DyH(x,Du) - Dv = %(z,m(t))(p(t))
Orpp — Ap — div(uDpH (z, Du)) — div(mDipH(ac, Du)Dv) =0
o(T,2) = 3 (2, m(T)) (D)), plto, ) = o

We prove that v can be interpreted as the directional derivative of U in the direction pg:

SU
v(to,x) = /Td %(to,x,mo,y)uo(y)dy'

Note that this shows at the same time the differentiability of U and the regularity of its derivative.
For this reason the introduction of the directional derivative appears extremely useful in this
context.

2.4.2 The mean field game system with common noise

As explained in the previous subsection, the characteristics of the first order master equation
are the solution to the mean field game system . The analogous construction for the second
order master equation (with 5 > 0) yields to a system of stochastic partial differential equations,
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the mean field game system with common noise. Given an initial distribution mg € P(T?) at an
initial time ¢o € [0, 7], this system readsﬂ

diuy = {—(1 + B)Aus + H(z, Duy) — F(z,my) — 2Bdiv(ve) bdt + vy - /2BdWr,
dymy = [(1 + B)Amy + div(mtDpH(mt, Dut))]dt - \/ﬁdiv(mtth), in [to, T] x T,
my, = mo, ur(z) = G(x,mr) in T9.
(31)
Here (Wi)e[o,r] 18 @ given d—dimensional Brownian motion, generating a filtration (F3)e[o,17-
The solution is the process (u¢, My, vt)se(o,1], adapted to (Ft)ef,, 1], Where, for each ¢ € [to, T,
vy is a vector field which ensures the solution (u;) to the backward equation to be adapted to the
filtration (.B)te[to,T]. Up to now, the well-posedness of this system has never been investigated,
but it is reminiscent of the theory of forward-backward stochastic differential equations in finite
dimension, see for instance the monograph [59].
To analyze , we take advantage of the additive structure of the common noise and perform
the (formal) change of variable

() = uy(z ++/26W),  1mu(x) = me(z +/28W,), zeT? tel0,T].

Setting Hy(z,p) = H(x++v/2Wi,p), Fy(x,m) = F(z++/2W;, m) and Gi(x,m) = G(x++/2W;, m)
and invoking the It6-Wentzell formula (see Section [4] for a more precise account), the pair
(tt, Mt )1efro, 1) formally satisfies the system

dytty = {—A’fl,t + gt(', Dat)~— Ft(', mt)}dt + th,
dyiy = {Avivy + div (17 Dy Hy (-, Dy) ) }dt, (32)

m, = mo, ur = G(-,mr).

where (still formally) dM; = vi(z 4+ v/2W;)dW;.

Let us explain how we understand the above system. The solution (¢)e[o,r] is seen as an
(Ft)te[o,r-adapted process with paths in the space CO([0,T],C"+2(T?)), for some fixed n >
0. The process (1t)ejo,r] reads as an (Fi)e[o,rj-adapted process with paths in the space
C°([0,T], P(T?)). We shall look for solutions satisfying

sup (Hﬂ’tHTL-ﬁ-Q-HX) € Loo(Qa -A7 ]P))v (33)

te[0,T]

(for some fixed o € (0,1)). The process (Mt)te[O,T] is seen as an (F3)se[o,7)-adapted process with
paths in the space C°([0,T],C™(T%)), such that, for any = € T¢, (Mt(x))te[O,T] is an (F¢)ef0,1]
martingale. It is required to satisfy

sup (HMtHnJra) € L®(Q, A P). (34)
te[0,T7]

Theorem 2.9. Assume that F, G and H satisfy and and that (HF1(n+1)) and
(HG1(n+2)) hold true for some n = 0 and some o € (0,1). Then, there exists a unique

solution (ﬁt,ﬁlt,Mt)te[o,T] to (32)), satisfying and (34).

We postpone the discussion of the existence of the solution to the true MFG system with
common noise to the next section, where the master equation allows to identify the correc-
tion term (v¢)se[0,17-

! In order to emphasize the random nature of the functions u and m, the time variable is now indicated as an
index, as often done in the theory of stochastic processes.
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Theorem is proved in section 4| (see Theorem for more precise estimates). The main
difference with the deterministic mean field game system is that the solution (g, 7 )o<i<T
is sought in a much bigger space, namely [C°([0,T],C™(T%)) x C°([0,T], P(T%))]®}, which is
not well-suited to the use of compactness arguments. Because of that, one can can no longer
invoke Schauder’s Theorem to prove the existence of a solution. For this reason, the proof
uses instead a continuation method, directly inspired from the literature on finite dimensional
forward-backward stochastic systems (see [61]). Notice also that, due to the presence of the
noise (Wy)e[o,r], the analysis of the time-regularity of the solution becomes a challenging issue
and that the continuation method permits to bypass this difficulty.

2.4.3 Second order master equation

The second main result of the paper concerns the analogue of Theorem when the underlying
mean-field game problem incorporates an additive common noise. Then the master equation
then involves additional terms, including second order derivatives in the direction of the
measure. It has the form (for some fixed level of common noise § > 0):

([ —0,U(t,z,m) — (14 B)AU(t,z,m) + H(z, D U(t,z,m)) — F(z,m)

—(1+08) /Td divy [DmU] (t,a;, m, y)dm(y) + /M DmU(t,x, m, y) . DpH(y, DxU(t,y,m))dm(y)

1 =28 div,[Dn,U](t,z,m,y)dm(y) — 5 Tr[D%mU(t,x,m,y,y’)]dm(y)dm(y') = 0,
']Td

T4 x T4
for (t,x,m) € [0,T] x T¢ x P(T?),
L U(T,z,m) = G(x,m), for (z,m) € T? x P(T9).

(35)
Following Definition we let

Definition 2.10. We say that a map U : [0,T] x T? x P(T%) — R is a classical solution to the
second order master equation if

o U is continuous in all its arguments (for the dy distance on P(T?)), is of class C? in x
and C! in time (the derivatives of order one in time and space and of order two in space
being continuous in all the arguments),

o U is of class C* with respect to m, the first and second order derivatives

[0, 7] x T x P(T) x T3 (£, 2,m, y) = %;U (t, 2, m, y),
m
d d d _ md / 52U

being continuous in all the arguments, the first order derivative SU /om being twice differ-
entiable in y, the derivatives being continuous in all the arguments, and the second order
derivative 62U /6m? being also twice differentiable in the pair (y,y'), the derivatives being
continuous in all the arguments,

e the function Dy(0U /0m) = D,,U is differentiable in x, the derivatives being continuous in
all the arguments,

o U satisfies the master equation (35).
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On the model of Theorem we claim

Theorem 2.11. Assume that F', G and H satisfy and m Subsection and that
(HF2(n+1)) and (HG2(n+2)) hold true for some n =2 and for some a € (0,1).

Then, the second-order master equation has a unique solution U.

The solution U enjoys the following regularity: for any o’ € [0,a), t € [0,T] and m € P(T%),
Ul(t,-,m), [6U/6m](t,-,m,-) and [6°U/6m>](t,-,m,-,-) are in C"T2+ Cn+2+a’  gntltal gpg
Crt2ta’ y gntel o onta pegpectively, independently of (t,m). Moreover, the mappings

[0,T] x P(T%) 5 (¢t,m) — U(t,-,m) € C"+>,
[OvT] x P(Td) S (t, m) — [5U/5m] (t, -, m, ) = C"+2+0/ « Cn+1+a"
[OvT] x P(Td) 3 (t, m) — [52U/5m2] (t’ © M, ) e Cn+2+a' % [Cn+a']2

are continuous. When o’ = 0, these mappings are Lipschitz continuous in m, uniformly in time.

Section [5] is devoted to the proof of Theorem As for the first order master equation,
the starting point consists in letting, given (tg,mg) € [0,T] x P(T4),

Ulto,x,mp) = Uy, (z), x€ ']I‘d,

where (g, my, Mt)te[O,T] is the solution to the mean field game system with common noise ,
when (W¢)e0,77 in the definition of the coefficients F, G and H is replaced by (W; — Wi )telto, 1]

The key remark (see Lemma [5.1)), is that, if we let my, ; = [id + V/2(Wy — Wy, )]firns, then, for
any h € [0,T —tp], P almost surely,

ﬂt0+h($) = U(tO + h) T+ \/E(Wto—i-h - Wto)) mto,to-l—h)a Te Td'

Taking the derivative with respect to h at h = 0 on both sides of the equality shows that the
map U thus defined satisfies the master equation (up to a tailor-made It6’s formula, see section
. Of course, the main issue is to prove that U is sufficiently smooth to perform the above
computation: for this we need to show that U has a first and second order derivative with
respect to the measure. As for the deterministic case, this is obtained by linearizing the mean
field game system (with common noise). This linearization procedure is complicated by the fact
that the triplet (d, 7y, Mt)te[o,T] solves an equation in which the coefficients have little time
regularity.

As a byproduct of the construction of the master equation, we can come back to the MFG
system with common noise. Let U be the solution of the master equation ([35).

Corollary 2.12. Given tg € [0,T], we call a solution to a triplet (ut, me, Vt) e[y, Of
(Ft)ie[to,r1-adapted processes with paths in the space C%([to, T], C*(T?) x P(T9) x CY(T?)) such
that supgery, 7p([uelz + [vel1) € L2, A P) and holds true with probability 1. Under the
assumptions of Theorem for amy initial data (tg,mg) € [0,T] x P(T9), the stochastic
mean field game system has a unique solution (ug, My, Vt)efo,1], where (U, Mi)e[o,r] s an
(Ft)ie[o,)-adapted processes with paths in the spaces CO([0,T],C™(T?) x P(T%)) and where the
vector field (vt)e[o,r] is given by

’Ut(x) = d DmU(tv €Z,me, y)dmt(y)
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2.4.4 The convergence of the Nash system for N players

We finally study the convergence of Nash equilibria of differential games with N players to the
limit system given by the master equation.
We consider the solution (v""%) of the Nash system:

—opNi — Z ijvN’i — BZ TrD? N4 H(z;, DxivN’i)

. g,
—i—JZ: DpH(:cj,Di;ka’j) -Dgcij’i = F(z;,mY") in [0, 7] x TNV (36)
VT, x) Z#é(x“miv’) in TV
where we have set, for & = (z1,...,zy) € (TN, ml = L Z O, -
N-15

Let us recall that, under the same assumptions on H, F' and G as in the statement of
Theorem the above system has a unique solution (see for instance [46]).

Our main result says that the v™"' “converges” to the solution of the master equation as
N — +o0. This result, conjectured in Lasry-Lions [50], is somewhat subtle because in the Nash
system players observe each other (closed loop form) while in the limit system the players just
need to observe the theoretical distribution of the population, and not the specific behavior of
each player. We first study the convergence of the functions v and then the convergence of
the optimal trajectories.

We have two different ways to express the convergence of the vV, described in the following
result:

Theorem 2.13. Let the assumption of Theorem be in force for some n =2 and let (vN'?)
be the solution to and U be the classical solution to the second order master equation. Fix
N =1 and (to, mo) € [0,T] x P(T%).

(i) For any x € (THN, let mYy = %Zf\il 0z,. Then
AR
jviﬂﬁwﬁmm—iﬂm@%mgﬂ<CN’y
i=1

(ii) For any i€ {1,...,N} and x € T?, let us set

w™i (tg, T, mg) = / / UN’i(to,CC)Hmo(d.%'j) where ¢ = (x1,...,2N).
Td Td S
J#i
Then
CN—Yd if d >3

N.i
H’UJ (th * ’I?’L(]) - U(t(]: "mO)HLl(mO) < { CNfl/Z IOg(N) ifd=2

In (i) and (i1), the constant C' does not depend on i, ty, mg, ¢ nor N.

Theorem says, in two different ways, that “in average”, the (v™*) are close to U. The
first statement explains that, for a fixed € (T%)Y, the quantity |v™N(to, ) — U (to, zs, ma )| is,
in average over 4, of order N~!. In the second statement, one fixes a measure mg and an index
i, and one averages in space v’V (o, -) over mg for all variables but the i—th one. The resulting
map w™" is at a distance of order N~/% of U(t, -, mo).

30



Because of the lack of estimates for the vV uniform with respect to N, we do not know if
it is possible to avoid the two averaging procedures in the above results. However, if one knows
that the solution of the Nash system has a (locally uniform) limit, then this limit is necessarily

U:

Corollary 2.14. Under the assumption of Theorem let (t,x1,m) € [0,T] x T¢ x P(T?) be
fized and assume that there exists v € R such that

lim sup [Nt &) —v] = 0.

N
N—+o, o) -1, m_; —m

Then, if 1 belongs to the support of m, we have v = U(t,x1,m).

We can also describe the convergence in terms of optimal trajectories. Let ¢ty € [0,T"), mg €
P(T9) and let (Z;) be an i.i.d family of N random variables of law mg. We set Z = (Z1,..., Zn).
Let also ((Bg)te[O,T])ie{l,...,N} be a family of N independent Brownian motions which is also
independent of (Z;) and let (W) (0,7 be a Brownian motion independent of the (B') and (Z;).
We consider the optimal trajectories (Y = (Y11, ..., YN1t))se[to,r] for the N—player game:

{ dY;y = —DyH(Y; 4, Dy, o™i (1, Y 1))dt 4+ +/2dBi + /2B3dW,, t e [to, T]
}/i,to = Z’L

and the solution (X; = (X14,...,X N,t))tefto,r] Of stochastic differential equation of McKean-
Vlasov type:

{ dX;; = —DyH (Xl-,t, D,U(t, Xy, L(Xi,t|W))) dt + /2dBi + \2BdW,,
Xit = Zi.

Both system of SDEs are set on (R4)"V. Since both are driven by periodic coefficients, solutions
generate (canonical) flows of probability measures on (T%)": The flow of probability measures
generated in P((T4)") by each solution is independent of the representatives in R? of the T¢-
valued random variables Z1,..., Zy.

The next result says that the solutions of the two systems are close:

Theorem 2.15. Let the assumption of Theorem[2.13 be in force. Then, for any N > 1 and any
ie{l,...,N}, we have

E[ sup Yi,t - Xi,t

te[to,T]

] < CON~ 7

for some constant C > 0 independent of tg, mg and N.

In particular, since the (X;,;) are independent conditioned on W, the above result is a
(conditional) propagation of chaos.

The proofs of Theorem and Theorem [2.15] rely on the existence of the solution U of the
master equation and constitute the aim of Section @ Our starting point is that, for any
N > 1, the “projection” of U onto the finite dimensional space [0, 7] x (T¢)" is almost a solution
to the Nash system . Namely, if we set, for any i € {1,..., N} and any © = (z1,...,zN) €
(TN,

u™Ni(t, @) = U(t, 2, md),

)
€T
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then (uN”')ie{L._’N} satisfies up to an error term of size O(1/N) for each equation (Proposi-
tion . Note that, as the number of equations in is IV, this could yield to a serious issue
because the error terms could add up. The strategy of proof consists in controlling the error
terms by exploiting the symmetry of the Nash system along the optimal paths.

One of the thrust of our approach is that, somehow, the proofs work under the sole as-
sumption that the master equation admits a classical solution. Here existence of a classical
solution is guaranteed under the assumption of Theorem which includes in particular the
monotonicity properties of F' and G, but the analysis provided in Section [6] shows that mono-
tonicity plays no role in the proofs of Theorems[2.13]and [2.15] Basically, only the global Lipschitz
properties of H and D, H, together with the various bounds obtained for the solution of the
master equation and its derivatives, matter. This is a quite remarkable fact, which demonstrates
the efficiency of our strategy.
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3 A starter: the first order master equation

In this section we prove Theorem [2.8] i.e., we establish the well-posedness of the master equation

without common noise:
{

—U(t,x,m) — A U(t,z,m) + H(z, D,U(t, z,m)) — / divy [DpU] (t, z,m,y) dm(y)
Td

) + [ DnU(t,z,m,y) - DpH(y, DU(t,y,m)) dm(y) = F(x,m)

Td
in [0, 7] x T¢ x P(T%)
| U(T,z,m) = G(z,m) in T¢ x P(T4)

(37)
The idea is to represent U by solutions of the MFG system: let us recall that, for any (tg, mg) €
[0,T) x P(T9), the MFG system is the system of forward-backward equations:

—oru — Au+ H(x, Du) = F(xz,m(t))
om — Am — div(mD,H (z, Du)) = 0 (38)
u(T,z) = G(x,m(T)), m(to,-) = mo

As recalled below, under suitable assumptions on the data, there exists a unique solution (u,m)
to the above system. Our aim is to show that the map U defined by

Ulto, -, mo) := u(to, ) (39)

is a solution to .

Throughout this section assumptions and are in force. Let us however underline
that the global Lipschitz continuity of H is not absolutely necessary. We just need to know
that the solutions of the MFG system are uniformly Lipschitz continuous, independently of the
initial conditions: sufficient conditions for this can be found in [50] for instance.

The proof of Theorem requires several preliminary steps. We first recall the existence
of a solution to the MFG system (Proposition and show that this solution depends
in a Lipschitz continuous way of the initial measure mg (Proposition . Then we show by a
linearization procedure that the map U defined in is of class C! with respect to the measure
(Proposition Corollary . The proof relies on the analysis of a linearized system with a
specific structure, for which well-posedness and estimates are given in Lemma [3.4] and Lemma
We are then ready to prove Theorem (subsection . We also show, for later use,
that the first order derivative of U is Lipschitz continuous with respect to m (Proposition .
We complete the section by explaining how one obtains the solution U as the derivative with
respect to the measure m of the value function of an optimal control problem set over flows of
probability measures (Theorem .

Some of the proofs given in this section consist of a sketch only. One of the reason is
that some of the arguments we use here in order to investigate the MFG system have been
already developed in the literature. Another reason is that this section constitutes a starter only,
specifically devoted to the simpler case without common noise. Arguments will be expanded in
detail in the two next sections, when handling mean-field games with a common noise, for which
there are much less available results in the literature.

3.1 Space regularity of U

In this part we investigate the space regularity of U with respect to x. Recall that U(tg, -, mg)
is defined by
U(t()v xz, mO) = U(to, ZE)
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where (u,m) is a classical solution to (38) with initial condition m(ty) = mg. By a classical
solution to we mean a pair (u,m) € C12 x CO([to, T], P(T%)) such that the equation for u
holds in the classical sense while the equation for m holds in the sense of distribution.

Proposition 3.1. Assume that (HF1(n)) and (HG1(n+2)) hold for some n = 0. Then,
for any initial condition (tg,mo) € [0,T] x P(T?), the MFG system has a unique classical
solution (u,m) and this solution satisfies

dl(m(tl), ’I’)’L(tz
sup 2
t1#to |t2 - t1|

)) + Z |‘D£u‘|1+a/2,2+a < Gy, (40)

[¢|<n

where the constant C,, does not depend on (tg, mg).
If moreover mqy is absolutely continuous with a smooth positive density, then m s of class
Clta/2.2+e yyith o smooth, positive density.

Note that further regularity of F' and GG improves the space regularity of u but not its time
regularity (as the time regularity of the coefficients depends upon that of m, see Proposition
right above). By (40]), we have, under assumptions (HF1(n)) and (HG1(n+2))

sup  sup [|U(L,,m)llnr21a < Ch.
te[0,7] meP(T4)

Proof. We provide a sketch of proof only. Existence and uniqueness of classical solutions for
under assumptions (HF1(n)) and (HG1(n+2)) for n = 0 are standard: see, e.g., [48,/49]. Note
that we use here the Lipschitz continuity assumption on H, which guaranties uniform Lipschitz
estimates on wu.

We obtain further regularity on u by deriving in space n times the equation for u.

When mg has a smooth density, m satisfies an equation with C*2:4 exponents, so that by
Schauder theory m is C1t®/2:2+ If moreover, my is positive, then m remains positive by strong
maximum principle. O

3.2 Lipschitz continuity of U

Proposition 3.2. Assume that (HF1(n + 1)) and (HG1(n+2)) hold for some n = 0. Let
my, m3 € P(T9), to € [0,T] and (u',m'), (u?,m?) be the solutions of the MFG system with
initial condition (to,m}) and (to, m3) respectively. Then

S, {diim! (1), m20) + [ (t5) = w( )], ) < Cuchi (mb, m),

or a constant Cy, independent of to, mg and mZ. In particular,
0 0

|U(to, -, mg) = Ulto, -, mp)| < Cudy(md, m2).

n+2+ao

Proof. First step. To simplify the notation, we show the result for t) = 0. We use the well-known
Lasry-Lions monotonicity argument (see the proof of Theorem 2.4 and Theorem 2.5 of [50]):

o | Wt y) = w?(t9) (m (ty) = m*(t,y))dy
Td

_ 1
<=7 [ 3IDu ) = Dt (' () + (0,0 dy
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since F' is monotone, Du' and Du? are uniformly bounded and H satisfies . So

T
| [ put ) = D) P ' )+ e, )
T

<0 [t ) (' 1) = 0.)
Td

0

At time T we use the monotonicity of G to get

[ @) = 20 (0 (2,) = T )
= [ (Glom! (D)) = Gl (D)) () = (T, )dy > 0

At time 0 we have by the definition of dj,

/Td (w0, y) = u?(0,9)) (mi(y) — mi(y))dy < C|D(u' = u?)(0, ) ood1 (g, mi).

Hence

[0 4 ) 4.9) — D) Pt < DG )0, Yt (o ).
(41)
Second step: Next we estimate m! — m?: to do so, let (€2, F,P) be a standard probability

space, X}, X2 be random variables on  with law m{ and m3 respectively and such that
E[|Xd — X2|] = d1(m}, m3). Let also (X}!), (X?) be the solutions to

dX; = —D,H (X}, Du'(t, X}))dt +v2dB;  te[0,T], i=1,2,

where (Bt)e[o,r] is @ d—dimensional Brownian motion. Then the law of X} is m'(t) for any t.
We have

t
Bl — 7] < B[ — 31+ 8] [ (10,62 D5, D) - Dyt (X2, Dl 5, X2)
0
+|D,H (X2, Du'(s, X2)) — D,H (X2, Du’(s, X2))] ds)]
As the maps = — DpH (z, Du'(s,z)) and p — D,H(x,p) are Lipschitz continuous (see and
Proposition :
B -l t
<E[|X) — X3 + C/ E[|1X) — X2|]ds + C/ |Dul (s, z) — Du?(s, z)|m?(s, x)dzds
0 0 JTd

t t 1/2
< dj(md, m3) + C/ E[|X) — X2[]ds + C (/ |Dul (s, ) — Du2(s,a:)|2m2(s,x)dxds)
0 0 Jrd
In view of and Gronwall inequality, we obtain
1/2
E[|X; — X2I] < C | di(mb,m3) + |D(u! = u2)(0,)|L s (md, md) 2| (42)
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As dy(m'(t), m*(t)) < E[|X} — X?[], we get therefore

Jup da(m! (), (1) < C [dy(mbmd) + 1D’ =)0, du(mg, )] 43
€[0,
Third step: We now estimate the difference w := u! — u?. We note that w satisfies:

{ —dnw(t,x) — Aw(t,x) + V(t,z) - Dw(t,z) = Ri(t,x) in [0, 7] x T4
w(T,z) = Ry (z) in T¢

where, for (¢,z) € [0,T] x T9,

V(t,x) = / DpH (x, sDu'(t,x) + (1 — s)Du*(t,x)) ds,

1(6:) / /W 5 (@ sm! (1) + (1= $)m? (1), y)(m' (£, y) — m*(t, ) dyds
and
/ /W 5 (@ sm!(T) + (L= 8)m*(T),y)(m' (T, y) = m*(T, y)) dyds.

By assumption (HF1(n + 1)) and inequality (43), we have, for any ¢ € [0,T1],
OF

1
n+l+a S /0 y%(', Sml(t) + (1 - S)mQ(t)’ )

< | autmbmd) + D0, Lay b m) ]

HDle (t,) D ds dy(m' (1), m3(t))

Cn+1+a x L*©

and, in the same way (using assumption (HG1(n+2))),
1/2
Rl < C [dmbymd) + 1Dw(0, ) [ £2ds (. md) ]

On another hand, V (¢, -) is bounded in C"*1*¢ in view of the regularity of u' and u? (Proposition
. Then Lemma below states that

sup [w(t,-)[n+24a < C{HRTHnJerraJF sup | Ri(t, ')Hn+1+a}
te[0,T] te[0,T]

< O di(mp, md) + | Dw(0,) 3L dy (mf, m}) |

Rearranging, we find

sup |w(t,)|lns24a < Cdi(mg,mg),
te[0,T]

and coming back to inequality , we also obtain

sup_dy (m'(t), m*(t)) < Cdi(mg, mp).
te[0,T7]

In the proof we used the following estimate:
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Lemma 3.3. Letn > 1, V e C°([0,T],C" (T4, RY)) and f € C([0,T],C"*+(T9)). Then,
for any zr € C”*"‘(’]I‘d), the (backward) equation

{ —0iz — Az +V(t,x) - Dz = f(t,x), in [0, 7] x T¢
2T, z) = zp(x)

has a unique solution which satisfies

Hz(tlv ) - Z(t, ')Hn+a < {

sup |z(t,-)|n+a + sup s <C

T l2rllnta + sup [f(E)ln-14a ¢
te[0,T] t#l |t/ —t|2

te[0,T]
where C' depends on supsepo. 7 |V (£, )| n—14a-

Proof. Beside the time estimate, Lemma is a particular case (in the deterministic setting)
of Lemma So we postpone this part of the proof to section
We now prove the time regularity. By Duhamel formula, we have,

T T
2(t+h,-) —2(t,") = (Pr—t—n — Pr—¢)zr + / Po_ i p(s,-)ds — / Ps_11(s,-)ds
t+h t
where P; is the heat semi-group and v (s, -) := V(s,-) - Dz(s,-) — f(s,-). Hence, for 2h < T — 1,

t+2h
|2(t + B, ) = 2(t ) Inva < [(Pr—vn — Pr—i)zr|na + / | Ps—1)(s, ) In+ads
t

t+2h T
+/ |‘P87t7h¢(57 ')HnJradS + / H(Psftfh - Psft)w(sa .)Hn-&-ads'
t t+2h

+h

(44)

Recalling the standard estimates |(Pr_¢—p, — Pr—¢)2r|nta < Ch%HzTHnJra, | Ps—t10(8, )| nta <
1 3
Cls = 1) 72| v(s)|n-14a and [(P—i—n — Ps-1)(s, ) nta < Ch(s =t = k)" 2[¢(s, )n-1+a, We
find the result when 2h < T —t.
When 2h > T — t, there is no need to consider the integral from ¢ 4+ 2h to T in the above
formula , and the result follows in the same way. ]

3.3 Estimates on a linear system

In the sequel we need to estimate several times solutions of a forward-backward system of linear
equations. In order to minimize the computation, we collect in this section two different results
on this system. The first one provides existence of a solution and estimates for smooth data.
The second one deals with general data.

We consider systems of the form

(1) —0iz—Az+V(t,z) - Dz = g—:b(x, m(t)){(p(t)) + b(t, z) in [to, T] x T¢
(ii) 0p — Ap —div(pV) —divimI'Dz +¢) =0 in [to, T] x T¢ (45)
(i) 2(T,x) = %(%m(T))(P(T)) +zr(z), p(to) =po  inT

where V : [to, T] x R? — R? is a given vector field, m € C°([0, T], P(T%)), " : [0, T] x T¢ — R*4
is a continuous map with values into the family of symmetric matrices and where the maps
b:[te, T] x T - R, c: [to,T] x T¢ — R% and 27 : T — R are given. We always assume that
there is a constant C' > 0 such that

Vt,t/ S [to,T], dl( ( ),

( Clt—t'|'?,
V(t,z) € [to, T] x T¢,  C7lI,

) < E
<T(t,z) < Cl,.

(46)
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Typically, V(t,x) = DpH (x, Du(t,x)), T'(t,x) = D}, H(x, Du(t, z)) for some solution (u,m)
of the MFG system starting from some initial data m(tg) = mo. Recall that the derivative
Du is globally Lipschitz continuous with a constant independent of (tg, mg), so that assumption
gives the existence of a constant C' for which holds. We note for later use that this
constant does not depend on (tg, mo).

To simplify the notation, let us set, for n € N, X,, = C""%(T%) and let (X,,)" be its dual
space ((X,)" = (C"**(T%))"). We first establish the existence of a solution and its smoothness
for smooth data:

Lemma 3.4. Assume that b, ¢, zr and py are smooth, V is of class C+/22+2 T' s of class
C! and (m(t))tefto,) 18 @ C' family of densities, which are uniformly bounded above and below
by positive constants. Suppose furthermore that (HF1(n)) and (HG1(n+2)) hold for some
n = 0. Then system has a classical solution (z,p) € C1T/22+a  clra/22+a

Moreover, the pair (z,p) satisfies the following estimates:

[2(t', ) = 2(t, ) Int21a

sup [2(t, Yns2sa + suP - < CM. (47)
tefto,T] t#t! |t’ — t| 2
" (") — o(0)]
P t') — 1% t X, ’
sup |p(0)]| x40y + sUD Xne)' < 0 M, (48)

tt |t—t’|%

where the constant C,, depends on n, T, supyep, 1 IV (¢, )| x,.,, the constant C in (46), F and
G (but not on the smoothness assumption on b, ¢, zr, po, V., I' and m) and where M is given

by

te[to,T]

M = |zr]x, 0 + lpollo,ny + sup (60 ) x00 + le®)x,y)- (49)

te[to,T]

Remark: if mg has a smooth density which is bounded above and below by positive con-
stants and if (u,m) is the solution to (3§)), then V(¢,z) := DpH(z, Du(t,z)) and I'(¢,z) :=
D2 H(x, Du(t, x)) satisfy the conditions of Lemma

Proof. Without loss of generality we assume tg = 0. We prove the existence of a solution to
by Leray-Schauder argument. The proof requires several steps, the key argument being

precisely the estimates and .

Step 1: Definition of the map T. Let 3 € (0,1/2) and set X := C?([0,T], (X,11)"). For pe X,
we define T(p) as follows: let z be the solution to

oF
-0z — Az + V(t,x) - Dz = T(m,m(t))(p(t)) +b in [0, 7] x T¢, (50)
m 50
0G .
2(T) = 5—(:1:, m(T))(p(T)) + zr in T¢
m
By our assumptions on the data, z solves a parabolic equation with C5/27 coefficients, and, by
Schauder estimates, is therefore bounded in C**#/22+5 when p is bounded in X. Next we define
p as the solution to

0ip— Ap — div(pV) — div(mI'Dz +¢) =0 in [0,T] x T¢
p(0)=po  inT%

Again by Schauder estimates j is bounded in C'*#/22+8 for bounded p. Setting T(p) := p
defines the continuous and compact map T : X — X.
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In the rest of the proof we show that, if p = ¢T(p) for some (p,0) € X x [0,1], then p
satisfies . This estimate proves that the norm in X of p is bounded independently of o.
Then we can conclude by Leray-Schauder Theorem the existence of a fixed point for T, which,
by definition, yields a classical solution to .

From now on we fix (p,0) € X x [0, 1] such that p = 0T(p) and let z be the solution to (50]).
Note that the pair (z, p) satisfies

-0z —Az+V(t,x) - Dz =0 (:;F(w, m(t))(p(t)) + b) in [0, 7] x T¢,
m
orp — Ap —div(pV) — odivimI’'Dz 4+ ¢) =0 in [0, 7] x T¢

2(0) = 000, z(T)=a(§<x,m<T>><p<T>>+zT) in T,

Our goal is to show that and hold for z and p respectively. Without loss of generality

we can assume that o is positive, since otherwise p = 0.

Step 2: Use of the monotonicity condition. We note that

d

pn z(t,z)p(t, x)dx
Td
oF
= o [ [Smtam®)(pl0)) +b0)pit, 2)da
Td m

—0 » Dz(t,x) - [D(t,2)Dz(t,z)] m(t,z)dz — o » Dz(t,z) - ¢(t, z)dx.

Using the monotonicity of F' and G and dividing by o, we have:

/T/ [(t,z)Dz(t,x) - Dz(t, z)m(t, x)dxdt
0o Jrd

< [ [GetemT)(T) + 21(a)]o(T, 0)do
T
—i—/d 2(0, x)po(z)dz —/0 /W (b(t,z)p(t,z) + Dz(t,x) - c(t, x))dzdt

T
< 50 [0ty (for o + 101) + st 120 ) (Il + el
tefo,

te|0,T
where we have set [b] = sup [b(Z,-)]x, ., |c| := supsefo,r [e(®)ll(x,y- Using assumption (46)

te[0,T7]
on I', we get:

T
/ IT(t, z)Dz(t, )|*m(t, z)dx
0 Jrd

(51)
< C{ sup [p)lx, 41y (127,00 + []) + sup IZ(t)IXW(IpoI(anerIcl))-
te[0,T7] te[0,77]

Second step: Duality technique. Next we use a duality technique for checking the regularity
of p. Let 7€ (0,T], £ € Xp+1 and w be the solution to the backward equation

— 0w — Aw + V(t,z) - Dw = 0 in [0, 7] x T, w(r) = £ in T (52)

Lemma [3.3] states that

w(t', ) —w(t, -
sup [w(t, ) 1se + sup 1) =W Mlnrira

T < Cléln+1+a (53)
te[0,T] t#t! |t! —t|2
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where C' depends on supse 77 [V (¢, )[n+a- As

% w(t,x)p(t,z)de = —c » Duw(t,z) - (m(t, z)I(t,z)Dz(t,z) + c(t, z))dx , (54)

we get (recalling that o € (0, 1])

/€@
= O'/d w(0, ) po(x)dx — O'/T Dw(t,z) - (m(t,z)T'(t,z)Dz(t, ) + c(t, z))dzdt

d

T 0
< wO)xsa ool iy + sup [[Dw(t,)]x, ¢
te[0,T]

+ (/OT /Td |Dw(t,x)|2m(t,1:)dxdt) v (/OT y |F(t,:B)Dz(t,x)|2m(t,x)dmdt>

C €l X lpollx,ny + b | Dw(t, ) |x, el

+|Dw|| o (/ / IT(t, ) Dz(t, z)|*mi(t, :r)dmdt) 1/2] .

Using and we obtain therefore

E@)p(rw)de < Cl€l i [1o0llx,py + el + sup [p@IEE., (el + 16]Y2)
Td te[0,T7] *

1/2

n+1),

1/2 1/2
- s o0l + 1)

Taking the supremum over § with |[€|x,+1 < 1 and over 7 € |0, 7] yields to
1/2 1/2
sup [ p()|(x,1y < C[|PO|(XH+1)’ +lel + sup @ISy (e 52+ 612
€10,

te[0,T]
N[L/2 1/2 1/2
+ts[13};] l=(t )%, (looll ., oy + llel )]-

Rearranging and using the definition of M in , we obtain

1/2 1/2
S0 [P0ty \c[M+t;[3p]| 2 (ol e,y + el )]. (55)

We can use the same kind of argument to obtain the regularity of p with respect to the time
variable: integrating in time and using the Holder estimate in we have, for any 7 €
[0, 77,

() (p t,2))da

(1,2)) p(t, z)dz — a/tT » Duw(s,z) - [I'(s,z)Dz(s, z)|m(s, z)dzds

/ Dw(s,x) - c(s,x)dxds
t JTd
< O(r = )2 [€] X, S [P (X,041y

(= Y2 | D, (/T/T |F(s,x)D2(s,x)|2m(s,:L“)dﬂ:ds) "

0
(1 =1) sup Jw(t, )] x, . le(@)]-
te[0,T7]

40



Plugging into (51), we get that the root of the left-hand side in satisfies the same
bound as the left-hand side in . Therefore,

£(z) (p(r,2) = plt, ))dz
Td

1
< Cr =0l [ M+ sup 1R, (l (S, + 161)|
e b

Dividing by (7 — ¢)'/? and taking the supremum over ¢ yields

lo(t') — (M) x
sup T
t#t! |t — |2

1/2

n ! 1/2
<o+ sup ol ->|)ém(|po|(xn+ly+|c|1/2)]. (56)
€lu,

te[
Third step: Estimate of z. In view of the equation satisfied by z, we have, by Lemma [3.3
2(t, ) — z(t, - 9
t€[0,T7] t#t! |t! —t|2

< C’a[ sup g—z(aj,m(t))(p(t)) + b(t, ")
te[0,T]

i ‘ffﬂb(m’m(T))(P(T)) T

M
n+l+4+ao n+2+a:|

where C' depends on supe 7|V (t, )| nt1+a- Assumptions (HF1(n+1)) and (HG1(n+2))
on I and G and the fact that o € [0, 1] imply that the right-hand side of the previous inequality
is bounded above by

C [ sup [ p(t)] x40y + 101+ lo(T) (X0 10y + IZTlxn+2] -
te[0,T]

Estimate on p then implies (since |p(T)l|(x, .y < [P(T)ll(x, 1))

2(t)) — z(t,-
sup [|2(t, ) |ns2sa + SUp |z (', ) — 2( l)Hn+2+a
te[0,T] t#t! |t! — t|2
1/2

) 1/2 1/2
M+ sup LI (0, 0y + 1 )] .

<C

Rearranging we obtain . Plugging this estimate into and then gives (48)). ]

We now discuss the existence and uniqueness of the solution for general data. Given n > 2,
21 € Xny2, po € X!, be L°([0,T], X,), ce L®([0,T], [(X,)']%), we define a solution to (45 to
be a pair (2, p) € C°([0,T], X 12 x (X)) that satisfies (45]) in the sense of distribution.

Here is our main estimate on system .

Lemma 3.5. Let n > 0. Assume that (HF1(n+1)) and (HG1(n+2)) hold, that V €
CY([0,T), Xp+1) and that

M = |zrlx,n + ool ey + sup (60 ) x00 + le@®x,y) < oo (57)

te[to, T

Then there exists a unique solution (z, p) of with initial condition p(ty) = po. This solution
satisfies

sup H(Z(tv ')7p(t))HXn+2><(Xn+1)’ < CM,
tE[to,T]

where the constant C depends on n, T', supsero 1 |V (¢, -)| x4 the constant C in ({46), F and
G.

Moreover this solution is stable in the following sense: assume that

41



o the data V¥, m*, T'* and p’é converge to V., m, T' and po respectively in the spaces CO([0,T] x
T4, RY), CO([to, T, P(T?), C1([0,T] x T¢ R and (X,+1),

e the perturbations (b¥), (c*) and 2% converge to b, ¢ and zr, uniformly in time, in X, 1,
in [(X,)']? and in X, 4o respectively.

Suppose also that the M* (defined by for the (b%), (c¥), 2% and p§ ) are bounded above by M +
1 and that the supe[o 1 IVF(t, )| x,., are uniformly bounded. Then the corresponding solutions

(zk,,ok) converge to the solution (z,p) of mn CO([tO,T],C”+2+O‘(Td) X (C"+1+O‘(']I‘d))’).

Proof. By Lemma existence of a solution holds for smooth data. We now address the case
where the data are not smooth (so that M cannot be zero). We smoothen m, I'; b, ¢, zp and py
into m*, Tk, (bF), (c¥), 2% and p§ in such a way that the corresponding M* is bounded by 2M
and m”* is a smooth density bounded above and below by positive constants. Let (2*, p*) be a
classical solution to as given by Lemma Using the linearity of the equation, estimates
@7, imply that (z*, p¥) is a Cauchy sequence in C°([0, T],C"+2+%(T9) x C"*+*(T%))") and
therefore converges in that space to some limit (z, p). Moreover (z, p) still satisfies the estimates
[@7), (48). By (HF1(n+1)) and (HG1(n+2)), (%( ¥)(p*)) converges uniformly in time
to (g—i(-,m)(p)) while (%(-,mk)(pk)) converges to (50(, m)(p)). Therefore (z,p) is a weak
solution to (45]).

Note also that any solution of satisfies estimates , , so that uniqueness holds by
linearity of the problem. O

3.4 Differentiability of U with respect to the measure

In this section we show that the map U has a derivative with respect to m. To do so, we
linearize the MFG system (38). Let us fix (tg,mo) € [0,7] x P(T?) and let (m,u) be the
solution to the MFG system with initial condition m(ty) = mg. Recall that, by definition,
U(tg, z,mo) = u(ty,x).

For any pg in a suitable space, we consider the solution (v, ) to the linearized system

—0w — Av + DyH(x,Du) - Dv = g—:;(x, m(t))(u(t))
Oepr — Ap — div(uDypH (x, Du)) — div(mD2,H (2, Du)Dv) = 0 (58)

oI, 2) = 2% e m( ) (D)), o) = o

Our aim is to prove that U is of class C' with respect to m with

SU
v(to, ) = /Td %(to,z,mo,y)uo(y)dy'

Let us start by showing that the linearized system has a solution and give estimates on
this solution.
Proposition 3.6. Assume that (HF1(n+1)) and (HG1(n+2)) hold for some n = 0.

(i) Let mg be a smooth density bounded below by a positive constant and let ug be smooth map
on T, Then there exists a unique solution (v, p) € C1H/22+a x Cl+e/22+a 145 system (58).

(i4) If mo € P(T?) and po € (C*T1F2), there is a unique solution (v, p) of (in the sense
gien in section |3.5 m) and this solution satisfies

sup {u(t, ) In+24a + 1HOI-i110)} < Cluol-mrira),
te[to,T]
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where the constant C' depends on n, T, H, F and G (but not on (tg, myp)).

(i4i) The solution is stable in the following sense: assume that the triplet (t&, m&, uk) converges
to (tg,mo, o) in [0,T] x P(T4) x (C*T1+). Then the corresponding solutions (v, u*)
to (where (uF, m*) solves with initial condition m*(t§) = mk) converge to the
solution (v, u) in CO([to, T],C"T2H(T?) x (CnF1+e(T))).

Proof. 1t is a straightforward application of Lemmata and respectively, with V(t,z) =
DypH (z, Du(t,z)), T'(t,x) = D7 ,H(z, Du(t,z)) and zp = b = ¢ = 0. Note that V satisfies the
condition that DV belongs to C°([0,T],C" 1*%(T%)) in view of Proposition O

Corollary 3.7. Under the assumptions of Proposition there exists, for any (to,mo), a
CrH2He(TY) x CvH1H(T) map (x,y) — K(to, x,mo,y) such that, for any pg € (C"HH(TY)),
the v component of the solution of s given by

v(to, z) = (K (to, T, M0, *), f0)en+1+a(Tdy (Cn+1+a(Td)y- (59)

Moreover
HK(t07 - Mo, ')H(n+2+a,n+1+a) <Gy

and K and its derivatives in (x,y) are continuous on [0,T] x T¢ x P(T4) x T¢.

Proof. For £ € N with |¢| < n+1 and y € T%, let (vO(-,-,9), uO(-,-,y)) be the solution to
(58) with initial condition p9 = D', (the /—th derivative of the Dirac mass at y). Note that
po € (CPHIH(TH)Y . We set K (tg, z, mo,y) := v (to, z, 7).

Let us check that 0y, K (to,x,mo,y) = —v(el)(to,x,y) where e; = (1,0,...,0). Indeed, since
€ 1 (8ytce, — 0y) converges to —D1% in (C"+1*@) while, by linearity, the map e *(K (-, -, mo,y +
ee1)—K (-, -, mp,y)) is the first component of the solution of with initial condition (8, | cc,)—
dy), this map must converge by stability (point (iii) in Proposition to the first component
of the solution with initial condition —D*®'d,, which is —v(el)(-, -,y). This proves our claim.

One can then check in the same way by induction that, for |¢| < n + 1,

DK (to, z,mo,y) = (-0 (tg, 2, ).

Finally, if |¢| < n + 1, point (ii) in Proposition combined with the linearity of system
implies that

HK(@(tO, -, Mo, y) — K(E) (to, -, My, yl)H CHngy - ngy,H*(n‘Fl‘Fa)

<
n+2+a ,
< CHéy - 5y/|\,a < Cly =9~

Therefore K (tg,-,mg,-) belongs to C"+27 x ¢"+1+@  Continuity of K and its derivatives in
(to, mg) follows from point (iii) in Proposition O

We now show that K is indeed the derivative of U with respect to m.

Proposition 3.8. Assume that (HF1(n+1)) and (HG1(n+2)) hold for some n = 0. Fix
to € [0,T], mo,mm0 € P(TY). Let (u,m) and (@,7m) be the solution of the MFG system
starting from (to, mo) and (to, o) respectively and let (v, ) be the solution to with initial
condition (tg, mo — mg). Then

{09 () =00 sz 08) = m0) = s} < Clfom, )
€lto,
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As a straightforward consequence, we obtain the differentiability of U with respect to the
measure:

Corollary 3.9. Under the assumption of Proposition the map U is of class C' (in the sense

of Deﬁnition with
oU
7m(t07x7m07y) = K(t0,$7m0,y),

whose regularity is given by Corollary[3.7. Moreover,

oU

‘U(t(h "y mO) - U(t07 y mQ) /d 5 (t07 , Mo, y)d(mo - mo)(y) < Cd%(m()? mO)
T

n+2+a

Remark 3.10. Let us recall that the derivative 60U /dm is defined up to an additive constant
and that our normalization condition is

oU
/Td 5 (to, z,mo,y)dmo(y) = 0.

Let us check that we have indeed
Kt @, mo, y)dmo(y) = 0. (60)
T

For this let us chose yg = my in (58). Since, by normalization condition, 5 E(t,m(t))(m(t)) = 0,
for any ¢ € [0 T], and ‘SG = (t,m(T))(m(T)) = 0, it is clear that the solution to is just
(v, ) = (0,m). So, by . (60) holds.

Proof of Proposition[3.8. Let us set z := 4 —u —v and p := m —m — p. The proof consists in
estimating the pair (z, p), which satisfies:

—0iz — Az + D,H(x,Du) - Dz = g—ri(ac, m(t))(p(t)) +b
o — Ap — div(pDpH (z, Du)) — diV(ngpH(:L‘, Du)Dz) —div(c) =0

(T, x) = %(fﬂ,m(T))(P(T)) +2r(x), plto,-) =0,
where
b(t,x) = A(t,x) + B(t, x)

with .

Alt,x) = —/ (DpH(z,sDt + (1 — s)Du) — DpH(z, Du)) - D(4 — u) ds

0
and
Bt = [ [ (St + (=m0 = 2 e m().0) ) ()~ mio) ),

ct) = (m—m)(t )D2 H( Du(t,))(Di— Du)(t, ")

+m/ (-, sDa(t,-) + (1 — s)Du(t,-)) — Df,pH(-, Duft, ))))(D& — Du)(t,-)ds
(note that ¢(t) is a signed measure) and

D= [ [, (G i) + 0= m(m)) = 5 i) ) (1) = i) ).



We apply Lemma 3.5 to get (recalling the notation X,, = C"*(T%)):

sup |[(2(), () | xsox(Xuray S C | l20]x0se + o0l (x00y + sup (168 x,00 + [e(@)](x,))
te[to,T] te[to,T]

It remains to estimate the various quantities in the right-hand side. We have

sup [b(t)] x,1 < sup [Allx, ., + sup [Blx,..,
te[0,T7] te[0,T] te[0,T7]

where,

sup [ A x,, < C sup i —ul%,,, < Cdi(mo, i)
t€[0,T7] t€[0,7]

according to Proposition To estimate B and |z7]x,,,, we argue in the same way:

HZTHX,IH + sup HBHXn+1 < Cd%(m&mO)a
te[0,T]

where we have used as above Proposition now combined with assumptions (HF1(n+1))
and (HG1(n+2)) which imply (e.g., for F) that, for any m;,ms € P(T9),

om
oF
Yém

Xn+1

2
< Cdi(my, ma).
Xpp1 XL

< di(mq1,ma) (-, ma2,")

oF
Dym('7m1’ ) - D

Finally,

sup c(t)|x,y < sup  sup (&, c(t))x, (X,
te[ovT] tE[O,T] ||§HXn<1

where, for ||| x, <1,

<§7 >Xn7 Xn)
/ <5 i —m)D2,H (-, Du(t, -)) (D — Du)(t, )

+ m(t)/o (D2,H (-, [sDi + (1 — s)Du](t,-)) — D2, H (-, Du(t,-))) (D& — Du)(t, -)ds>

Xn,(Xn)
C (1€l u = al2dy (mo, ing) + €] o ju — al?).
So again by Proposition we get
ts[lé};] le(®)l(x,y < Cdi(mo, o).
This completes the proof. O

3.5 Proof of Theorem [2.8

Proof of Theorem (existence). We check in a first step that the map U defined by is a
solution of the first order master equation. Let us first assume that mg € C*(T¢), with mg > 0.

Let tog > 0, (u, m) be the solution of the MFG system starting from mg at time ty. Then
U(to +h, .’I,',m()) - U(toa .’L',m()) _ U(to + h, x, mO) - U(t(] + hwrvm(to + h))
h B h
N Uty + h,x,m(to + h)) — Ul(to, z,mg)
- .
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Let us set ms = (1 — s)m(tp) + sm(to + h). Note that, by the equation satisfied by m and the
regularity of U given by Corollary

Ulto + b,z m(to +h)) = Ulto + h,z,m(to))

/ / (to + Ry 2, ms, y)(m(to + h,y) — mlto, ) dyds
Td 5m

to+h
/ /W/ (5m (to + h,x,mg,y )(Am(t Y) +d1v( (t,y)DpH (y, Du(t, y)))) dtdyds

t0+h
/ /d/ y6 (to + hyx,mg,y)m(t,y) dtdyds
T

t0+h
/ / / y6 (to + h,x,ms,y) - D H(y,Du(t y)) m(t,y) dtdyds.
Td

We can then divide by h to obtain, using the continuity of D,,U and its smoothness with respect
to the space variables:

. U{to+ h,z,m(to + h)) — U(tg + h, z,mg)
st h

= /IFd <diVy [DmU] (t07x7m07y) - DmU(t()vxummy) : DpH(y,Du(to,y))> mo(y) dy

On the other hand, for h > 0,
U(to + h7$am(t0 + h)) - U(toa Z, mO) = U(to + h,.’lﬁ) - ’U/(t(), x) = hatu(t(),l') + O(h)7
since u is smooth, so that

lim U(to + hv xz, m(t() + h)) — U(t()? z, mO)
h—0+ h

= duu(to, ).

Therefore 0.U (tg, x, mg) exists and, using the equation satisfied by u, is equal to

atU(t(),fL',m()) = _/d diVy [DmU] (t()ax?m()ay)mo(y)dy
T

+ [ Dul(to, 2,m0,y) - Do (3, Dl (b, 3, mo))mo(w)dy (O
T

— AU (to, z,mo) + H(a:, D,U(t, x, mo)) — F(x,myp).

This means that U has a continuous time derivative at any point (tg,z, mg) where mg € C*(T%)
with mg > 0 and satisfies at such a point. By continuity of the right-hand side of (61]), U
has a time derivative everywhere and holds at any point. O

Next we turn to the uniqueness part of the Theorem:

Proof of Theorem (uniqueness). In order to prove the uniqueness of the solution for the
master equation, we explicitly show that the solutions of the MFG system coincide with

the characteristics of the master equation. Let V be another solution to the master equation.
The main point is that, by the definition of a solution, D%y% is bounded, and therefore D,V

is Lipschitz continuous with respect to the measure variable.
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Let us fix (tg, mp). In view of the Lipschitz continuity of D,V one can easily uniquely solve
in C°([0,T], P(T%)) the Fokker-Planck equation:

oy — Am — div(mDpH (z, D,V (t,z,m))) =0  in [to,T] x T¢
m(ty) =mo  in T%

Then let us set @(t,z) = V(¢,z,m(t)). By the regularity properties of V, @ is at least of class
C'? with

ovi(t, x) = OV (t,x,m(t)) + (5 (t, 2, 1m(t), ), ) )z 2y,

= o,V (t,z,m(t)) + <%(t, z,m(t),"), A + div(mDyH (z, D,V (t, , m))>c2v(c2),

= 0V (t,z,m(t)) + - divy [Dn V] (¢, x,m(t),y) din(t)(y)

= |, PmV @) y) - DpH{y, DV (ty,m)) di()(y).

Recalling that V satisfies the master equation, we obtain:

ova(t, x) = AV (t,z,m(t)) + H(z, DV (t,z,m(t))) — F(z,m(t))
= —Au(t,x) + H(z, Du(t,x)) — F(z,m(t))
with terminal condition a(T,x) = V(T,x,m(T)) = G(x,m(T)). Therefore the pair (u,m) is

a solution of the MFG system . As the solution of this system is unique, we get that
V(t0,$,m0) = U(t(],.iﬂ,m(])- O

3.6 Lipschitz continuity of g—g with respect to m

We later need the Lipschitz continuity of the derivative of U with respect to the measure.

Proposition 3.11. Let us assume that (HF1(n+1)) and (HG1(n+2)) hold for some n = 2.
Then

oU oU

%(ta'amh')_% < 0,

(n+2+a,n+a)

sup  sup (dl(ml,mg)f1 (t,-,ma,)

te[0,T] m1#ma2

where C' depends onn, F, G, H and T.

Proof. By continuity of g—% in the measure argument (see Corollaries and , we can assume
without loss of generality that m} and m2 are two smooth, positive densities. Let o € C®(T?).
We consider (u!', m') and (u?, m?) the classical solutions to the MFG system associated with
the initial condition (to,m$) and (tg,m3) respectively and (v!, u') and (v2, p?) the associated
classical solutions to with p!(to, ) = p?(to,-) = o-
Let us set (z,p) := (v! —v? p! — p?). We first write an equation for (z,p). To avoid too
heavy notation, we set Hi(t,z) = DyH (x, Du'(t,z)), H{ (t,z) = D2 H(z, Du'(t,z)), F|(z, ;1) =
Td g—gl(x, m', y)u(y)dy, etc... Then (z, p) satisfies
—0iz — Az + H{Dz = F{(-,p) +b
dip — Ap — div(pH}) — div(m!HDz) — div(c) = 0
2(T) = G1(p(T)) + 21, m(to) =0
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where

b(t,z) := Fi(x, 12 ( t)) — Fy(z, 12 (t) )) — [(H] - Hé)Dv2](t,x),

(t.2) = p2(t, 2)(H} — Hy)(t,2) + [(m HY — m?Hg) Dv?|(t, ),

ar(z) = Gy (1*(T) — Gy (*(T)).
We apply Lemma with V = H{. Recalling the notation X, = C"*¢ (T%), it says that, under
assumptions (HF1(n+41)) and (HG1(n+2)),

sup [2(t, )| x,00 < C[HZTHXM+ sup ([[b(¢, ) x,.0 + e(t, ')H(Xn)’)]-
te[to,T] te[0,T7]

Let us estimate the various terms in the right-hand side:

< - .
borlnes <| [ (Gat0m'(0)) = 520w (000 (T
0G oG
< (07 )ml(T)’ ) - 7(07 "mZ(T)v ) HN ( )H (n+1+a)
‘ om om (n+2+a,n+1+a)

< Cdl(m(l)a m(2)) HMOH—(TH—I-F&)

where we have used Proposition [3.6}(ii) in the last inequality. Moreover, we have

Hb(ta ')HXn+1 < HF1I(7 ﬂ2(t)) - Fé(v :UQ(t)) HXnJrl + H (H{ - Hé)(t7 ')DUQ(tv ')HXn+1’

where the first term can be estimated as z7p:

HFll ('7 :UJQ(t)) - Fé ('7 :U'Q(t)) HXnJrl < Cdl (m(l), m%)”/‘ﬂ”*(nJrlJra)'

The second one is bounded by

(] = Hy) (1) D0 (t ), ,, = [(DpH (- Du'(t ) = DpH (-, Du* (kD) D (t )4
<! =)t Mnszeallv* (¢ ) lns2ra
< Cdi(mg,md) ol (ns1+a);

where the last inequality comes from Proposition [3.2] and Proposition [3.6] thanks to assumptions
(HF1(n+1)) and (HG1(n+2)). Finally, by a similar argument,

Ol nsay = sup /T o) [ (H1 = Hy) + (= m?)HY + m*(HY — HY)De?) | ¢, )

[Plln+a<l
< H¢||Sup<1H¢(Hi — HY)(E )|, 12 ) e
+d; (ml(t)va(t)) sup }|¢(H1’Dv2)(tv )Hl + sup H(ﬁ(Hf — Hé/)(t, ')sz(t7 )HO

S l¢lo<1
< C|(' —u?)(t, )], 0l =t
+Cdy (m' (1), m* (1)) [v*(t, )2 + C| (u' —u®) (¢, )], I (E, ) s
< Cdy (mg, mg)| ol —(nra)-
This shows that

sup [2(t, ) lns24a < Cdi(mg,mg)||Holl - (nta)-
te[to,T]
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oU oU
Z(t(),.’IJ) = /Td (m(t07$7m(%7y) - &n(t0>$7m(2)>y)> ”O(y)dy7

we have proved

< 07
(n+2+a,n+a)

sup (di(mq, ms))

mi#mg

_1 16U oU
! ‘&n(t& 51, ) - %(t(): 512, )

where the supremum is taken over smooth densities. The map g—% being continuous, we can

remove the restriction of the measures m; and ms by approximation to get the full result. [

3.7 Link with the optimal control of Fokker-Planck equation

We now explain that, when F and G derive from potentials functions F and G, the space
derivative D, U is nothing but the derivative with respect to the measure of the solution ¢ of a
Hamilton-Jacobi equation stated in the space of measures. The fact that the mean field game
system can be viewed as a necessary condition for an optimal transport of the Kolmogorov
equation goes back to Lasry and Lions [50]. As explained by Lions [52], one can also write
the value function of this optimal control problem, which turns out to be a Hamilton-Jacobi
equation in the space of measure. The (directional) derivative with respect to the measure of the
value function is then (at least formally) the solution of the master equation. This is rigorously
derived, for short horizon and first order (in space and measure) master equation by Gangbo
and Swiech [28]. We show here that this holds true for the master equation without common
noise.

Let us assume that F' and G derive from C! potential maps F : P(T%) — R and G : P(T9) —
R:

F(x,m) = g—;(x,m), G(x,m) = %(w,m) (62)

Note for later use that the monotonicity of F' and G implies the convexity of F and G.

Theorem 3.12. Under the assumptions of Theorem let U be the solution to the master
equation and suppose that holds. Then the Hamilton-Jacobi-Bellmann equation

—ad(t.m)+ [ Dyttt ) dm(y) = [ div [D,) (1., )dm) = Fm)

Td
in [0,7] x P(T%), (63)
U(T,m) = G(m) in P(Td)7
has a unique classical solution U and
D U(t,z,m) = D, U(t, x,m) Y(t,z,m) € [0,T] x T¢ x P(T?). (64)

We represent the solution U of as the value function of an optimal control problem: for
an initial condition (tg,mg) € [0,7] x P(T%), let

T T
U(tg, mg) := (Tilgg)/t [ » H* (z,a(t, z)) m(t, dw)]dt + /t F(m(t))dt + G(m(T)) (65)

(where H™ is the convex conjugate of H with respect to the second variable) under the constraint
that m € C°([0,T], P(T%)), « is a bounded and Borel measurable function from [0, 7] x T¢ into
R? and the pair (m, a) satisfies in the sense of distribution:

dm — Am — div(am) = 01in [0,T] x T<, m(tg) = mg in T% (66)
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Of course, is understood as the Fokker-Planck equation describing the flow of measures
generated on the torus by the SDE

dZt = —O[(t, Zt)dt + dBt, te [0, T],

which is is known to be uniquely solvable in the weak sense. Notice that, throughout the
subsection, we shall use, as in , the notation m(t,dx) to denote the integral on the torus
with respect to the (time-dependent) measure m(t).

The following characterization of the optimal path for ¢/ is due to Lasry and Lions [50]:

Proposition 3.13. For an initial position (tg,mg) € [0,T] x P(T%), let (u,m) be the solution
of the MFG system (38). Then (m,a) = (m,DpH(-, Du(-,-))) is a minimizer for U(to, mo).

Proof. For a function 7 € C°([0, 7], P(T%)) and a bounded and measurable function & from
[0,T] x T¢ into R?, we let
T T
T, ) = / / H* (2, a(t, 2)) diin(t) +/ F(m(®))dt + G (m(T))

to Td to

where M solves
oy — Arin — div(@mm) = 0in [0,7] x T%  1h(to) = mo in T

As, for any m’ € P(T9), o € R,

H*(x,0) = sup (¢ - p— H(z,p)),
peRA

we have, by convexity of F and G,
J(m, &)

> /t OT[ /T ) [d(t,x) - Du(t,z) — H(x,Du(t,:c))]m(t,d:c)]dt

T
+ /t f(m(t)) + F(-, m(t)) (m(t) — m(t))]dt + g(m(T)) + G(-, m(T)) (m(T) — m(T))
= J(m, )

+ /tT _/Td [Du(t, ) - (&(t, z)m(t, dz) — a(t,x)m(t,dz)) — H(z, Du(t,z)) (1 — ) (t, dx)”dt

T
+ [ P(m(®) i = m)@)dt + G m(D) ((T) = m(T)).

to

because
a(t,z) - Du(t,z) — H(z, Du(t,z)) = H*(z, oft, z)).

Using the equation satisfied by (m,w) and (m,w) we have

/tOT[ y Du(t,z) - (&(t,z)m(t,dz) — a(t, z)ml(t, daz))]dt

T

+ /OT [/W(é’tu + Au)(t, z) (1 — m)(t, da:)]dt
= —G(-,m(T)) ((T) — m(T)) + /OT[/W (H(x, Du(t, 2)) = F (2, m(t)) ) (7 = m)(t, dx)]dt.

This proves that J(m, &) = J(m, «) and shows the optimality of (m, a). O

_ [/Tdu(t,x)(m - m)(tmlx)]

0
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Proof of Theorem[3.13. First step. Let us first check that U, defined by (65), is C* with respect
to m and satisfies
%(t,x,m) = U(t,ZU, m) - U(tvyvm)dm(y) V(ta x,m) € [OvT] x T% x P(T ) (67)
Td

Assume for a while that holds true. Then, taking the derivative with respect to x on both
sides shows .

We now prove (67)). Let mo, 79 be two initial measures, (u,m) and (@, 7) be the solutions
of the MFG system with initial conditions (to, mg) and (to, mg) respectively. Let also (v, u)
be the solution of the linearized system with initial condition (¢g, M9 — mgp). Let us recall
that, according to Proposition we have

up {la —u—vlps2ea + i —m—pl 110} < Cdi(mo, i) (68)
telto,

while Proposition [3.2] and Proposition [3.6] imply that

sup {Hﬂ - an+2+a + H/’LH—(n-i-l-i-a)} < Cdy (mo,mo)-
te[0,T7]

Our aim is to show that

Z/l(t(), mo) — Z/[(to, mo) — /]Td U(to, xZ, mo)d(mo — mo)(m) = O(d%(mo, mo)) (69)

Indeed, if holds true, then U is a derivative of & and, by convention , proves .

Second step. We now turn to the proof of (69). Since (u,m) and (@,1) are optimal in
U(to, mo) and U(to, mo) respectively, we have

u(t07 mO) - Z/{(t(), mo)
T
= [, (L7 Dot Dite)ite. )~ [ oy Dt ) ) )
T
+ / (F () = F(m®) )dt + G(1(T)) - G(m(T)).

to

Note that, by (68),
/tOT (/Td H* (g;jppH(x, Da(t,x)))m(t, dz) — /Td H* <x,DpH(x,Du(t,x)))m(t,dx)> dt
_ /tOT (/Td H* (x,DpH(x,Du(t, @))u(t, dz)

+ » D,H* (:13, DpH (z, Du(t, y:))) . [DZPH(:E, Du(t,z)) Do(t, z)|m(t, dm))dt +0(d3(mo, 1))

T
= /t (/]I‘d (Du(t,x) - DpH (2, Du(t,z)) — H(z, Du(t,x)))u(t, dx)
+ [ Du(t,z) - [D2,H (x, Du(t,x)) Do(t, z)|ml(t, dm))dt +O(d3(mo, mp)),

Td
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where we have used the properties of the Fenchel conjugate in the last equality, while
T
/t [F (1)) = F(m() |at + G((T) ~ G(m(D))
0 T
=/ (/ F(a:,m(t)),u(t,da:))dt—i—/ G (2, m(T)) (T, dz) + O(d3 (mq, 19)).
to Td Td

Recalling the equation satisfied by v and u, we have

T u(t, x)u(t, dx)
= /w [H(x, Du(t,z)) — F(:U,m(t))]u(t, dx) — » Du(t,z) - DpH (z, Du(t, ) u(t, d)

= ). Du(t,x) - [Dng(x, Du(t,x))Dv(t,x)]m(t, dzx).

Putting the last three identities together, we obtain
U(to, ho) — U(to, mo)

T
) ‘/to (i /Tﬂ“@)ﬂ(tvdw))dt * / |Gl m(T)) u(T, dz) + O(dF(mo, 1))
= /[rd u(to, z)p(to, dx) + O(d%(mo,an)) = /Td U(to, z,mo)d(mo — mo)(x) + O(d%(mo,mo))_

This completes the proof of .

Third step. Next we show that U is a classical solution to the Hamilton-Jacobi equation (63)).
Let us fix (tp,mg) € [0,T) x P(T9), where mg has a smooth, positive density. Let also (u, m) be
the solution of the MFG system with initial condition (to,mg). Proposition [3.13]states that
(m, DpH(-, Du(-,-))) is a minimizer for U(ty, mp). By standard dynamic programming principle,
we have therefore, for any h € (0,7 — ty),

U(to, mg) = /tt0+h /d H* (a:,DpH(x, Du(t,m)))m(t,x)dmit

to+h (70)
+ / F(m(t))dt + U(to + h, m(to + h)).
to
Now we note that
u(tO + ha mO) - Z/l(t(), mO)
h
_ Z/{(t[) + h,mo) — U(to + h, m(to + h)) n U(to + h, m(to + h)) — U(to,mO) (71)

h h

We can handle the first term in the right-hand side of by using the fact that ¢/ is C! with
respect to m. Letting mgj, 1= (1 — s)mo + sm(to + h)), we have:

U(to-i—hmto—i—h)) U(to-i—hmo)

/ /Td 61/1 (to + hymsp,y)d(m(to + h) — mo)(y)ds
/ /Td /tto+h to +h,mg Y ) . (Dm(t,y) + DpH(y,Du(t,y))m(t,y)) dtdyds.
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Dividing by h, letting h — 0" and rearranging gives

lim Z/{(to + h, m(to + h)) — U(to + h, mo)
h—07t

= / div [Dp U] (to, mo, y)dmo(y) —/ D U(to, mo,y) - DpH(y,Du(to,y)) dmg(y).
Td Td

To handle the second term in the right-hand side of , we use and get

lim u(to + h7 m(tO + h)) B u(t()? mO)
h—0*+ h

= —/Td H* (waDPH($>DU(tO,$)))dmO(x) — F(mo).

As Du(tg, z) = DU (tg, z,mo) = Dpnld(to, mo, x), we have

—H* (z, DpH(m, Du(t, x))) — DpU(tg, mo, x) - DpH(y, Du(ty, y))
= —H*(z, DpH (z, Dpld (to, mo, 7)) + Dyl (to, mo, ) - DpH (2, Dinld (to, mo, x))
= H(:E,DmU(to,mo,l‘)).

Collecting the above equalities, we obtain therefore

. Uty + h,mp) —U(to, mp)
lim
h—0+ h

= —/ div [ Dy U] (to, mo, y)dmo(y) +/ H (z, Dpld (to, mo, z) )dmo(z) — F(mo).
Td Td

As the right-hand side of the above equality is continuous in all variables, this shows that U is
continuously derivable with respect to ¢ and satisfies .

Last step. We finally check that ¢/ is the unique classical solution to (63). For this we use
the standard comparison argument. Let V be another classical solution and assume that V # U.
To fix the ideas, let us suppose that sup(V — U) is positive. Then, for any € > 0 small enough,

sup V(t,m) —U(t,m) + elog(i)
(t,2)€(0,T] x P(T4) T

/) be a maximum point. Note that ¢ < T because V(T,-) = U(T,-). By

is positive. Let (£,
m) and regularity of V and U, we have:

optimality of (£,

oV ) — d (i) + 5 =0 and %(f,m, Y = %(f, ),
so that
D V(t, i, ) = DyU(t, 1w, -) and div [D,,, V] (£,70, -) = div [DU] (£, 1, -).
Using the equation satisfied by & and V yields to f = 0, a contradiction. O
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4 MFG system with a common noise

The main purpose of the two next sections is to show that the same approach as the one developed
in the previous section may be implemented in the case when the whole system is forced by a
so-called ‘common noise’. Such a common noise is sometimes referred to as a ’systemic noise’,
see for instance Lions’ lectures at the Collége de France.

Thinking of a game with a finite number of players, the common noise describes some noise
that affects all the players in the same way, so that the dynamics of one given particle readsﬂ

dX; = —DyH(Xy, Dug(Xy))dt + V2dB; + A/26dW;, te[0,T], (72)

where 3 is a nonnegative parameter, B and W are two independent d-dimensional Wiener pro-
cesses, B standing for the same idiosyncratic noise as in the previous section and W now standing
for the so-called common noise. Throughout the section, we use the standard convention from
the theory of stochastic processes that consists in indicating the time parameter as an index in
random functions.

As we shall see next, the effect of the common noise is to randomize the MFG equilibria so
that, with the same notations as above, (m;);>0 becomes a random flow of measures. Precisely,
it reads as the flow of conditional marginal measures of (X¢)e[o,7] given the realization of W. In
order to distinguish things properly, we shall refer the situation discussed in the previous section
to as the ‘deterministic’ or ‘first-order’ case. In this way, we point out that, without common
noise, equilibria are completely deterministic. Compared to the notation of the introduction or
of section [2, we let the level of common noise 5 be equal to 1 throughout the section: this is
without loss of generality and simplifies (a little) the notation.

This section is specifically devoted to the analysis of the MFG system in the presence of
the common noise (see (§))). Using a continuation like argument (instead of the classical strat-
egy based on the Schauder fixed point theorem), we investigate existence and uniqueness of a
solution. On the model of the first-order case, we also investigate the linearized system. The
derivation of the master equation is deferred to the next section. The use of the continuation
method in the analysis of MFG systems is a new point, which is directly inspired from the
analysis of finite dimensional forward-backward systems: Its application is here made possible
thanks to the monotonicity assumption required on F' and G.

As already mentioned, we assume without loss of generality that 8 = 1 throughout this
section.

4.1 Stochastic Fokker-Planck/Hamilton-Jacobi-Bellman System

The major difficulty for handling MFG with a common noise is that the system made of the
Fokker-Planck and Hamilton-Jacobi-Bellman equations in becomes stochastic. Its general
form has been already discussed in [19]. Both the forward and the backward equations become
stochastic as both the equilibrium (m;)o<i<7 and the value function (u;)o<t<7 depend upon the
realization of the common noise W. Unfortunately, the stochastic system does not consist of a
simple randomization of the coefficients: In order to ensure that the value function u; at time ¢
depends upon the past before ¢ in the realization of (Ws)o<s<r, the backward equation incor-
porates an additional correction term which is reminiscent of the theory of finite-dimensional
backward stochastic differential equations.

2Equation (72)) is set on R? but the solution may be canonically mapped onto T? since the coefficients are
periodic: When the process (X;)e[o,77 is initialized with a probability measure on T¢, the dynamics on the torus
are independent of the representative in R¢ of the initial condition.
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The Fokker-Planck equation satisfied by (1m¢)se[o,7] reads
dymy = [2Amy + div(my Dy H (my, Duy)) |dt — v/2div(medW), ¢ € [0,T]. (73)
The value function u is sought as the solution of the stochastic HIB equation:
dyuy = {—2Au; + H(z, D) — F(z,my) — \@div(vt)}dt + v - dW, (74)

where, at any time ¢, v; is a random function of z with values in R?. Once again, we emphasize
that the term v; - dW; = Zle vidW} permits to guarantee that (u;)o<i<7 is adapted with
respect to the filtration generated by the common noise. The extra term —+/2div(v;) may be
explained by the so-called 1to6-Wentzell formula, which is the chain rule for random fields applied
to random processes, see for instance [44]. It permits to cancel out the bracket that arises in the
application of the Ito6-Wentzell formulaﬂ to (ue(Xe))iefo,r], With (Xt)o<i<r as in (72). Indeed,
when expanding the infinitesimal variation of (u;(Xt))e[o,7], the martingale term contained
in u; conspires with the martingale term contained in X and generates an additional bracket
term. This additional bracket term is precisely v/2div(v¢)(X;); it thus cancels out with the term
—+/2div(v;)(X;) that appears in the dynamics of u;. For the sake of completeness, we provide
a rough version of the computations that enter the definition of this additional bracket. When
expanding the difference wsy gt (Xetar) — ue(Xy), for ¢ € [0, 7] and an infinitesimal variation dt,
the martingale structure in induces a term of the form vy (X; 1 g:)(Wisqr — We). By standard
It6’s formula, it looks like

vr(Xegar) Wegar — W)

d_ Ay 75
LX)t (%)

d d
Z (Xerar) Wiy ar = Wi) = D vi(X)dW] + /2 P
i1 i=1 i=1 """

the last term matching precisely the divergence term (up to the sign) that appears in (74)).

As in the deterministic case, our aim is to define U by means of the same formula as in
([39), that is U(0,z,mg) is the value at point = of the value function taken at time 0 when the
population is initialized with the distribution m.

In order to proceed, the idea is to reduce the equations by taking advantage of the additive
structure of the common noise. The point is to make the (formal) change of variable

() = ug(z + V2We),  1g(x) = me(x +V2Wy), zeT¢, tel0,T].

The second definition makes sense when m; is a density, which is the case in the analysis
because of the smoothing effect of the noise. A more rigorous way to define my; is to let it be
the push-forward of m; by the shift T¢ 5 z — z — v/2W,; € T Pay attention that such a
definition is completely licit as m; reads as a conditional measure given the common noise. As
the conditioning consists in freezing the common noise, the shift = — x — /2W; may be seen as
a ‘deterministic’ mapping.

The main feature is that m; is the conditional law of the process (X; — ﬁWt)te[O,T] given
the common noise. Since

d(Xe—V2W,) = =D, H (Xy —V2Wy +V2Wy, Duy(Xy —V2Wy +V2W3) ) dt ++v/2dB;,  t e [0,T].

3In the application of It6-Wentzell formula, u; is seen as a (random) periodic function from R to R.
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we get that (17)e[o,r] should satisfy

dying = {Ainy + div (e DpH(- + vV2Wy, Dity)) bt (76)
= { Ay + div(iu D, Hy (-, Diy)) bdt,
where we have denoted Hy(x,p) = H(zx + +/2W;, p). This reads as the standard Fokker-Planck
equation but in a random medium. Such a computation may be recovered by applying the It6-
Wentzell formula to (my(x + ﬁWt))te[o,T]a provided that each m; be smooth enough in space.
Quite remarkably, (Th)te[o,T] is of absolutely continuous variation in time, which has a clear
meaning when (mt)te[o,T] is seen as a process with values in a set of smooth functions; when
("71)te[o,77 18 seen as a process with values in P(T%), the process ({y, mt))tefo,r] (¢ ) standing
for the duality bracket) is indeed of absolutely continuous variation.

Similarly, we can apply (at least formally) It6-Wentzell formula to (u;(x + \/§Wt))te[07T] in
order to express the dynamics of (i) e, 77-

dyity = {—Ady + H(- + V2Wy, Dity) — F(- + vV2Wy,my) }dt + 5,dWy,

= {—Aty + Hy(-, D) — F,(-,my) }dt + 5,dWy, te[0,T], (77)
where Fy(z,m) = F(x 4+ v/2W;, m), for a new representation term o(z) = v;(z + v/2W,), the
boundary condition writing ir(-) = G(-,mr) with G(z,m) = G(z + v/2Wp,m). In such a way,
we completely avoid any discussion about the smoothness of v. Pay attention that there is no
way to get rid of the stochastic integral as it permits to ensure that @; remains adapted with
respect to the observation up until time ¢.

Below, we shall investigate the system f directly. It is only in the next section, see
Subsection that we make the connection with the original formulation f and then
complete the proof of Corollary The reason is that it suffices to define the solution of
the master equation by letting U(0, x,mg) be the value of @p(x) with my as initial distribution.
Notice indeed that () is expected to match @ig(x) = ug(x — v2Wp) = ug(x). Of course, the
same strategy may be applied at any time ¢ € [0, 7] by investigating (@, (z4+/2(Wj —W)) sefe.17-

With these notations, the monotonicity assumption takes the form:

Lemma 4.1. Let m and m' be two elements of P(T%). For some t € [0,T] and for some

realization of the noise, denote by m and m' the push-forwards of m and m' by the mapping
T 5 2+ 2 — /2W; € T%. Then, for the given realization of (W) sefo,175

/ (Fy(z,m) — Fy(x, m'))d(m —m') =0, / (é(x, m) — é(a:,m'))d(rh —m') = 0.
Td Td

Proof. The proof consists of a straightforward change of variable. O

Remark 4.2. Below, we shall use quite systematically, without recalling it, the notation tilde ~
in order to denote the new coefficients and the new solutions after the random change of variable
x>z + A/ 2W,.

4.2 Probabilistic Set-Up

Throughout the section, we shall use the probabilistic space (€2,.4,P) equipped with two inde-
pendent d-dimensional Brownian motions (By);>0 and (W})=0. The probability space is assumed
to be complete. We then denote by (F¢)¢=0 the completion of the filtration generated by (W3):=o.
When needed, we shall also use the filtration generated by (Bi)i=o.
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Given an initial distribution mg € P(T%), we consider the system

dpng = {Ariy + diV(ﬁltDpﬁt('v D)) }dt,

N R L = - (78)
diuy = {—Aut + Ht(-, Dut) — Ft(', mt)}dt + dM;,

with the initial condition my = mg and the terminal boundary condition up = G(-,mr), with
G(z,m7) = G(z + V2Wrp, mr).

The solution (@¢)epo,7) is seen as an (Ft)sefo,r]-adapted process with paths in the space
C°([0,T],C™(T%)), where n is a large enough integer (see the precise statements below). The pro-
cess (Mt )e[o,7] reads as an (F)epo,r]-adapted process with paths in the space c°([0,T], P(T?)),
P(T?) being equipped with the 1-Wasserstein metric d;. We shall look for solutions satisfying

sup (Hat”nJra) € LOO(Qa Aa P)a (79)
te[0,T]

for some « € (0, 1).

The process (Mt)te[()j] is seen as an (F)e[o,r]-adapted process with paths in the space
C°([0,T],C"2(T%)), such that, for any = € T¢, (Mt(JU))te[o,T] is an (F)se[o,r] martingale. It is
required to satisfy

sup (HMtHn,nga) e L*(Q, A, P). (80)
t€[0,T]
Notice that, for our purpose, there is no need to discuss of the representation of the martingale
as a stochastic integral.

4.3 Solvability of the Stochastic FP/HJB System

The objective is to discuss the existence and uniqueness of a classical solution to such the
system under the same assumptions as in the deterministic case. Theorem below covers
Theorem in Section

Theorem 4.3. Assume that F, G and H satisfy and i Subsection . Assume
moreover that, for some integer n = 2 and someﬁ a€0,1), (HF1(n-1)) and (HG1(n)) hold
true.

Then, there exists a unique solution (Tht,ﬂt,Mt)te[o,T] to , with the prescribed initial
condition mo = my, satisfying and [B0). It satisfies supyepo 7] ([tt)n+a + 1M |nsa—z) €
L*(Q, A P).

Moreover, we can find a constant C' such that, for any two initial conditions mqy and my, in
P(T9), we have

S (i) + s = 7.) < Cdiomo. ) P —ae.
e b

where (1, @, M) and (!, @', M') denote the solutions to with mo and my, as initial condi-
tions.

Theorem [4.3]is the analogue of Propositions [3.1] and [3.2] in the deterministic setting, except
that we do not discuss the time regularity of the solutions (which, as well known in the theory
of finite dimensional BSDEs, may be a rather difficult question).

“In most of the analysis, « is assumed to be (strictly) positive, except in this statement where it may be zero.
Including the case a = 0 allows for a larger range of application of the uniqueness property.
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The strategy of proof relies on the so-called continuation method. We emphasize that,
differently from the standard argument that is used in the deterministic case, we will not make
use of Schauder’s theorem to establish the existence of a solution. The reason is that, in order
to apply Schauder’s theorem, we would need a compactness criterion on the space on which the
equilibrium is defined, namely L®(2, A, P;CO([0,T], P(T9))). As already noticed in the earlier
paper [2I], this would ask for a careful (and certainly complicated) discussion on the choice of
) and then on the behavior of the solution to with respect to the topology put on Q.

Here the idea is as follows. Given two parameters (9, w) € [0, 1]%, we shall first have a look
at the parameterized system:

dyrivy = {Arny + div[ry (YD, H,(-, D) + by)] }dt, (81)

ditiy = {—Afbt + ﬂﬁt(-, D'ZLt) - wﬁ’t(-, mt) + ft}dt + th,
with the initial condition My = mg and the terminal boundary condition 4y = @G (-,m7) + g1,
where ((bt, fi)ie[o,r], 97) is some input.

In the above equation, there are two extreme regimes: when 9 = w = 0 and the input is
arbitrary, the equation is known to be explicitly solvable; when ¥ = @ = 1 and the input is set
equal to 0, the above equation fits the original one. This is our precise purpose to prove first, by
a standard contraction argument, that the equation is solvable when ¥ = 1 and @ = 0 and then
to propagate existence and uniqueness from the case (9, @) = (1,0) to the case (J,@) = (1,1)
by means of a continuation argument.

Throughout the analysis, the assumption of Theorem is in force. Generally speaking,
the inputs (bt)sepo,r) and (fi)ee[o,r] are (Ft)ie[o,r] adapted processes with paths in the space
C°([0, 7], [CH(TH)]?) and C°([0,T],C"(T?)) respectively. Similarly, gr is an Fr-measurable
random variable with realizations in C"**(T¢). We shall require that

sSup Hthla sup HftHn71+a> HgTHn—t-a
te[0,T] te[0,T]
are bounded (in L*(Q, A, P)).

It is worth mentioning that, whenever ¢ : [0,T] x T¢ — R is a continuous mapping such
that ¢(t,-) € C*(T?) for any t € [0,T], the mapping [0,T] 3 t — |l¢(t, )]s is lower semi-
continuous and, thus, the mapping [0,7] 5 t > sup[o4 [¢(t, )] is continuous. In partic-
ular, whenever (fi)se[o,r] i3 a process with paths in CO([0,T],C*¥(T9)), for some k > 0, the
quantity supefo 7y | filk+a is a random variable, equal to supe[o 71~q || ftllk+a; and the process
(suPsefo,q lfs]k-+a)iefo,r) has continuous paths. As a byproduct,

€SSUpPyen SUup HftHk+a = Ssup eSSUpweQHftHk+oz'
te[0,T] te[0,T]

4.3.1 Cased=w=0
We start with the following simple lemma:

Lemma 4.4. Assume that 9 = @ = 0. Then, with the same type of inputs as above, has
a unique solution (mt,ﬂt,Mt)te[o’T], with the prescribed initial condition. It satisfies and
. Moreover, there exists a constant C, only depending on n and T, such that

essup,eq SUP ||U¢[nta < C(essupweQHgTHn+a + essup,en SUp HftanlJra% (82)
te[0,77] te[0,T
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Proof of Lemma[{.4. When ¥ = w = 0, the forward equation simply reads
dymy = { Ay + div[mube| }dt, ¢ € [0,T]

with initial condition mg. This is a standard Kolmogorov equation (with random coefficient)
which is pathwise solvable. By standard estimates, we have

dl (m& ms)
eSSUpP,,eq SUPp —————

i < essupP,eq 0o
s#t |s —t|2

As ¥ = w = 0, the backward equation in has the form:
ditiy = {—Aat +ft}dt+th, te [O,T],

with the terminal boundary condition @i = gr. Although the equation is infinite-dimensional, it
may be solved in a quite straightforward way. Taking the conditional expectation given s € [0, T']
in the above equation, we indeed get that any solution should satisfy (provided we can exchange
differentiation and conditional expectation):

diB| | Fs| = {—AE[w|Fs] + E[fi|Fs]}dt, tels, T,

which suggests to let

T
ts(z) = Elus(2)|Fs],  as(z) = Pr_sgr(z) —/ Pi_ofy(z)dt, se[0,T], ze T, (83)

where P denotes the heat semigroup (but associated with the Laplace operator A instead of
(1/2)A). For any s € [0,T] and z € T?, the conditional expectation is uniquely defined up to a
negligible event under P. We claim that, for any s € [0, T'], we can find a version of the conditional
expectation in such a way that the process [0,7] 3 s — (T 3 x > iis(x)) reads as a progressively-
measurable random variable with values in C°([0,77],C%(T¢)). By the representation formula
, we indeed have that, P almost surely, @ is jointly continuous in time and space. Making
use of Lemma below, we deduce that the realizations of [0,7] 3 s = (T¢ 3 2 > @4(z))
belong to C°([0,T],C°(T%)), the mapping [0,T] x Q 3 (s,w) — (T 3 2 — (@5(w))(x)) being
measurable with respect to the progressive o-field

P ={AeB(0,T)®A: Vte[0,T], An ([0,t] x Q) € B([0,t]) ® F:}. (84)
By the maximum principle, we can find a constant C, depending on 7" and d only, such that

essuP,eq SUP |iis]o < essupyeq sup [isfo < C(essupgeqllgrio + essupoeq sup | fsfo)-
s€[0,T] s€[0,T7] 0<s<T

More generally, taking the representation formula at two different z,2’ € T and then
making the difference, we get

essupeq SUP |isla < C(essupeqgr|a + essup,eq sup | fsla)-
s€[0,T7] s€[0,T1]

We now proceed with the derivatives of higher order. Generally speaking, there are two ways to
differentiate the representation formula (83). The first one is to say that, for any k€ {1,...,n—

1},
T
Dl;ﬁs(x) = PT*S (DkgT) (x) - / Pt—s (Dﬁft) (J")dta (va) € [07 T] X Tda (85)
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which may be established by a standard induction argument. The second way is to make use of
the regularization property of the heat kernel in order to go one step further, namely, for any

ke{l,...,n},

D];as( ) = Pr— s D gT / DP;- 8 71ft)( )dt
(86)

= Pr_y(DFgr)(z) — / DP,(DE " f ) (z)dt,  (s,x) €0,T] x T,
0
where DP;_ stands for the derivative of the heat semigroup. Equation is easily derived
from (8F)). It permits to handle the fact that f is (n — 1)-times differentiable only.
Recalling that [DPyp| < t=2|p|q for any bounded Borel function ¢ : T¢ — R and for
some ¢ > 1 independent of ¢ and of t € [0,T], we deduce that, for any k € {1,...,n}, the

mapping [0, T] x T¢ 3 (s, z) — DFi,(x) is continuous. Moreover, we can find a constant C' such
that, for any s € [0,T],

_ 1
esSUPeq | Us|k+a < essup,eallgr|k+a + C/s \/ﬁessupweg\lft\lkm—ldt- (87)

In particular, invoking once again Lemma below, we can find a version of the condi-
tional expectation in the representation formula us(x) = E|us(x)|Fs] such that @ has paths
in C°([0,T],C"(T%)). For any k € {1,...,n}, DFa is progressively-measurable and, for all
(s,2) € [0,T] x T4, it holds that DFa,(z) = E[DFau,(x)|F,].

Using (87), we have, for any k€ {1,...,n},

essuPyeq SUP [Us[kta < Clessupeq|or|ita + essupieq sup_ || fslkra—1)-
s€[0,T7] s€[0,T"

Now that % has been constructed, it remains to reconstruct the martingale part (Mt)ogtg’]"

in the backward equation of the system (with ¥ = w = 0 therein). Since @ has trajectories
in C°([0,T],C"F(T%)), n > 2, we can let:

Mi(x) = (x) — up(x /Aus ds—/ fs(z)ds, tel0,T], z e T

It is then clear that M has trajectories in CO([0,T],C" 2(T%)) and that

€ssUP,en SUp HMtHn+a—2 < 0.
te[0,T7]

It thus remains to prove that, for each 2 € T%, the process (M (x))o<i<7 is a martingale (starting
from 0). Clearly, it has continuous and (F;)o<t<r-adapted paths. Moreover,

Nep(2) — My(w) = gr(x) — in(a /Aus ds—/fs te[0,7], ze T

Now, recalling the relationship E[Ads(x)|F;] = E[Aus(z)|F], we get

/ Aiiy(2)ds| Fy] = / Atig(z)ds|Ft].
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Taking the conditional expectation given F;, we deduce that
~ ~ T T
E[MT(m) — Mt(x)|]:t] = E[gT(aj) — w(x) —/ fs(x)ds +/ Aﬂs(x)ds‘ft] =0,
t t

the second equality following from (83). This shows that My(z) = E[Mry(x)|F], so that the
process (My(x))o<t<r is a martingale, as required. O

Remark 4.5. Notice that, alternatively to , we also have, by Doob’s inequality,

E[ sup [itlnra] < CE[lgrli.o + s | filsa-]- (88)
€10,

te[0,T]

Lemma 4.6. Consider a random fieldUd : [0, T] xT? — R, with continuous paths (in the variable
(t,x) € [0,T] x T¢), such that
essup,,eq [U|lo < 0.

Then, we can find a version of the random field [0,T] x T 3 (t,x) > E[U(t,z)|F;] such that
[0,T] 5t +> (T 5 2 — E[U(t,z)|F:]) is a progressively-measurable random variable with values
in C°([0,T1],C°(T%)), the progressive o-field 2 being defined in (84).

More generally, if, for some k = 1, the paths of U are k-times differentiable in the space
variable, the derivatives up to the order k having jointly continuous (in (t,x)) paths and satisfying

€SSup,eq SUup Hu(tv )Hk < %0,
te[0,T]

then we can find a version of the random field [0,T] x T¢ 3 (t,x) — E[U(t,z)|F;] that is
progressively-measurable and that has paths in C°([0, T],C*(T%)), the derivative of order i writing
[0,T] x T¢ 5 (¢, z) — E[DLU(t, x)| F].

Proof. First step. We first prove the first part of the statement (existence of a progressively-
measurable version with continuous paths). Existence of a differentiable version will be handled
next. A key fact in the proof is that, the filtration (F¢).e[o,7] being generated by (Wy)e[o,77, any
martingale with respect to (F¢)se[o,r] admits a continuous version.

Throughout the proof, we denote by w the (pathwise) modulus of continuity of U on the
compact set [0, 7] x T¢, namely:

w(d) = sup sup U(s,z) —U(t,y)], d>0.
x,y€Te:|z—y|<d 5,t€[0,T]:[t—s|<d

Since essup,,cq|U|lo < o0, we have, for any ¢ > 0,
essup eqw(d) < .

By Doob’s inequality, we have that, for any integer p > 1,

Ve > 0, P(;g&pﬂl@[w(é) |.7:s] > 6) < 51E[w(;>],

the right-hand side converging to 0 as p tends to oo, thanks to Lebesgue’s dominated convergence
theorem. Therefore, by a standard application of Borel-Cantelli Lemma, we can find an increas-
ing sequence of integers (ap)p>1 such that the sequence (supeo 7 E[w(1/ay)|Fs])p=1 converges
to 0 with probability 1.
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We now come back to the original problem. For any (¢,z) € [0,T] x T¢, we let
V(ta JJ) = E[u(tax)p:t]

The difficulty comes from the fact that each V(t, ) is uniquely defined up to a negligible set.
The objective is thus to choose each of these negligible sets in a relevant way.

Denoting by 7 a dense countable subset of [0,7] and by & a dense countable subset of T¢,
we can find a negligible event N < A such that, outside N, the process [0,T] 3 s — E[U(t, x)|F;]
has a continuous version for any t € 7 and x € X. Modifying the set IV if necessary, we have,
outside N, for any integer p > 1, any ¢,t' € T and z,2' € X, with [t — /| + |z — 2'| < 1/a,,

sup |E[U(t, )| F.] — EU(E, )\ Fl| < sup E[w(—

Fs),
s€[0,T] s€[0,T7] ap) | ]

the right-hand side converging to 0 as p tends to co. Therefore, by a uniform continuity extension
argument, it is thus possible to extend continuously, outside N, the mapping 7 x X' 3 (¢, z) —
([0,T] 2 s = E[U(t, x)|Fs]) € C°([0,T], R) to the entire [0,7] x T<. For any (¢,z) € [0,T] x T¢,
the value of the extension is a version of the conditional expectation E[U(t, z)|Fs]. Outside N,
the slice (s,z) — E[U(s, z)|Fs] is obviously continuous. Moreover, it satisfies, for all p > 1,

Ve, ' e T, |z —2/| < L = sup [E[U(s,z)|F] —E[U(s,2")|Fs]| < sup IEQ[w(i

ap s€[0,T s€[0,T7] ap

T,

which says that, for each realization outside N, the functions (T¢ 3 x > E[U(s,z)|Fs]) 5€[0,7]
are equicontinuous. Together with the continuity in s, we deduce that, outside IV, the function
[0,T] 3 s > (T% 5 z — E[U(s,x)|Fs]) € C°(T?) is continuous. On N, we can arbitrarily let
V = 0, which is licit since N has zero probability. Progressive-measurability is then easily checked
(the fact that V is arbitrarily defined on N does not matter since the filtration is complete).
Second step. We now handle the second part of the statement (existence of a C* version).
By a straightforward induction argument, it suffices to treat the case kK = 1. By the first step,
we already know that the random field [0,7] x T? 3 (t,z) + E[D,u(t, z)|F;] has a continuous
version. In particular, for any unit vector e € R?, it makes sense to consider the mapping

T x R* 5 (z, h) > %(E[u(t,x + he) | Fi] = E[U(t,2)|F]) — E[D.UE, @), )| 7]

Notice that we can find an event of probability 1, on which

‘% (E[u(t,  + he)| F] — Blu(t, x)|ft]) — E[(D,U(t, ), €>|-7:t]‘

_ ‘E[/01<Dx2/{(t,  + \he) — DU(t, ), e>d)\|}'t]

(89)

)

/01 (E[(Dxu(t, z + Ahe), e>|ft] - E[<Dxu(t7 ), e>|}"t]>d)\

where we used the fact the mapping [0, 7] x T¢ 3 (¢, z) — E[D,u(t, z)|F:] has continuous paths
in order to guarantee the integrability of the integrand in the third line. By continuity of the
paths again, the right hand side tends to 0 with A (uniformly in ¢ and x). O

Instead of , we will sometimes make use of the following:
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Lemma 4.7. We can find a constant C' such that, whenever ¢ = w = 0, any solution to
satisfies:

ke (L), [ OWPucallslira

t \/S—t

T
< c(essupwemgﬂm v essupweg|fs|k+a1ds).
t

Proof. Assume that we have a solution to . Then, making use of in the proof of Lemma
we have that, for all k € {1,...,n} and all s € [0,T],

essubeqlfrli a1

T
e <c N . 90
essup,eq || Us | k+a (GSSUPweQ|gT|k+a /S VT —s T) (90)

Dividing by 4/s — t for a given ¢ € [0, T], integrating from ¢ to 7" and modifying the value of C
if necessary, we deduce that

g essupwegl\ﬂs\lkm

t VS~
essUDyeq | fr ka1
(eSSUpweQ lg7llk+a / / \/%L/ﬂ%g dr)

= ofesmvcolorlira + [ el s | s} ]

the last line following from Fubini’s theorem. The result easily follows. O

ds

Following , we shall use the following variant of Lemma

Lemma 4.8. For p € {1,2}, we can find a constant C' such that, whenever ¥ = w = 0, any
solution to satisfies, for all t e [0,T]:

T as)h r
Vke{l,...,n}, E[/t \/S;dm] CIE[|gT|k+a /s|fr|£+a_1dr\]-"t].

Proof. The proof goes along the same lines as that of Lemma We start with the following
variant of (87), that holds, for any s € [0, 77,

T frlksant

a2, < CE[|gT|k+a [t \f] (o1)

Therefore, for any 0 <t < s < T, we get

Tl amn

1l < CE[lorlf, + [ et 7
Dividing by 4/s — t and integrating in s, we get

o[ ([ b)) < cmflontt+ [ 15[t a7

[here ore,
| (/ |, /SHk_ >| | C | H97 H + / H 7 H + di |“ :|
E d Jt E o J a— t]

which completes the proof. O
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4.3.2 A priori estimates

In the previous paragraph, we handled the case ¥ = w = 0. In order to handle the more general
case when (9, w) € [0,1]?, we shall use the following a priori regularity estimate:

Lemma 4.9. Let (bg)te[w] and (fz?)te[O,T] be (Ft)e[o,r] adapted processes with paths in the space
CO([0, 7], (T4 RY)) and C°([0, T],C" 1 (T?)) and g be an Fr-measurable random variable with
values in C™(T?), such that

essuP,eq SUp b1, essupueq Sup [ fPlnra—1, essupueqlgrlnta < C,
te[O,T] tE[O,T]

for some constant C' = 0. Then, for any k € {0,...,n}, we can find two constants A\, and Ay,
depending upon C, such that, denoting by B the cylinder:

B:= {w e CO([0,T],C™(T%) : Yk € {0, ..., n}, VEE [0,T], |wilpra < A exp(M(T — t))},

it holds that, for any integer N > 1, any family of adapted processes (M, ");=1. N with paths
in CO([0,T], P(T%)) x B, any families (a)i—1,_n € [0,1]Y and (b%);—1.. N € [0, 1]V with a* +
vt ay <2 and b 4 - + 0N <2, and any input (ft)te[o,r) and gr of the form

N N
fir = D@ Hi (. D) = VE o) + £, gr = 2,6 G( i) + g5,
=1 =1

any solution (m,a) to for some ¥, w € [0,1] has paths in CO([0,T], P(T9)) x B, that is
essup,eqltit|kra < Arexp(Me(T —1t)), t€[0,T].

Proof. Consider the source term in the backward equation in :

N
v i= OH,(-, Dity) — @ Fy(-,1i) + Y [ Hy(-, Dity) = B Ey (-, mp) | + f7.
i=1
Then, for any k € {1,...,n}, we can find a constant C}, and a continuous non-decreasing function
@y, independent of (', a’), 7 =1,..., N, and of (7, @) (but depending on the inputs (b7)efo,77,
(fto)te[o,T] and gr), such that

lelhsat < Col1+ O (tlra 1+ max |@lkia1) + [Tlera+ max |@lia].  (92)

When k = 1, the above bound holds true with ®; = 0: It then follows from (HF1(n-1)) and
from the fact that H (or equivalently H;) is globally Lipschitz in (x, p) (uniformly in ¢ if dealing
with H, instead of H ). When k € {2,...,n}, it follows from the standard Faa di Bruno formula
for the higher-order derivatives of the composition of two functions (together with the fact that
D, H is globally bounded and that the higher-order derivatives of H are locally bounded). Faa
di Bruno’s formula says that each ®; may be chosen as a polynomial function.

Therefore, by and by in the proof of Lemma (choosing the constant C} such
that g3 [k+a + supep(ray [G(-m)[k+a < Ck ), we deduce that

essupweQHatHkJra < Gk |:1 + essup,eq Sup (I)k<H7:LSHk+a71 + max Hﬂ’inJrafl)
se[0,T] i=1,...N

C | - ~i
" [essuP,eq s ko + e55UPyeq max [ [osa]ds|-
t s—t i=1,....N

=1,...
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Now (independently of the above bound), by and Lemma we can modify C in such a
way that

T ~
essupwEQHuSHk-‘rOc ( ~ ~ )
ds < Cp|1+ d 1+ m —
t — s < Cy essup, e ses[lég“] kel s kra—1 ,maxy |t ] k+a—1

[ERRE

T
+ [ (essupenlislina + esupcn max |az|k+a)ds} ,

so that, collecting the two last inequalities (and allowing the constant C} to increase from line
to line),

€SSUP e Hﬂt Hk+a

<ck[1+essupweg sup @ ([0 fivamr + max[iroms )
5€[0,T i=1,...,.N

~1
essup max;— U
/ (essupweQHﬂSHk+a + wed) e H SHk+a) S]
t d

Vs —1

< Gk [1 + essupyeq Sup (pk(HﬂSHk-‘ra—l + max H@iﬂkm—l)
5€[0,T i=1,...,.N

(93)

! eSSUp e MaX;=1,.. N Sup al s
+/ (essupweQHﬂSHkJm + we i=1,..., rels,T] || +a>ds].
t

Vs —1

Now, notice that the last term in the above right-hand side may be rewritten

ds

/T €SSUpP,,en MaX;=1,.,N SUDre[s,T] Hﬂz«HMa
\ Vs —1
/Tt €SSUP,en MaXj=1, . N SUPpe[t45,T] Hﬂfnukmd
= S?
0 Vs

which is clearly non-increasing in ¢. Returning to , this permits to apply Gronwall’s lemma,
from which we get:

essupeq il ra < Ce {1 s s (slerans + mas, 1 lroc)
se[0,T =L,..,
(94)

N /T eSSUD, 0 M1, 5D efo 7] | o ds]'
t

Vo —1

In particular, if, for any s € [0, 7] and any i € {1,..., N}, essup,eq|@/lxra < Axexp(Ae(T —s)),
then, for all t € [0, 7],

/T esSUP,eq MaXi=1,.. N SUP,efs 7] |Ur |k ta ds < A, /T exp(Ag (T — s)) ds
t \S — t = t \S — t
95
T=t exp(=Aps) (95)
< Apexp(Ae(T — 1)) ; Tds,
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the passage from the first to the second line following from a change of variable. Write now

Tt s
Akexp(/\k(T—t))/O eXp(\/;\k)ds

= A exp(M\e(T — 1)) /000 eXP(—\/;\kS)dS A T+<;O eXp(—)\k(;g/g_ (T — 1))

~ AvexpOn(r 1) [ Xp(f’“)d [ R,

+00
< Apexp(Me(T — t))/ exp( )\ks A, / exp(—Ags) exp(-Ms)
0 VT +s

ds

and deduce, from and (95), that we can find two constants v1(A,) and y2()\x) that tend to
0 as A\ tend to +oo such that

essUPyeq [ Ut [k +a

-----

+ Y2 (M) Ay exp (A (T — t))]
Choosing Ay, first such that 72(\g)C < 1 and then A such that

L+ essup,eqessupuefo, 1y @ ([ fira-1 | max [ fera1) < 71(Aw)Ax,
we finally get that

essup,eqliclira < Ak exp(M(T — 1))

The proof is easily completed by induction. O

4.3.3 Case (¥, w) = (1,0)
Using a standard contraction argument, we are going to prove:

Proposition 4.10. Given some adapted inputs (b)iefo,r1, (ft)ie[o,r] and gr satisfying

essuPeq SUP [bell1, essupyeq sup | filnta-1, essupueqlgrinta <o,
te[0,T] te[0,T]

the system , with ¥ = 1 and w = 0, admits a unique adapted solution (mt,at)te[o,ﬂ, with
paths in CO([0,T], P(T9)) x CO([0,T],C"(T9)). It satisfies

essuPyeq SUP ||Ut]nta < 0.
te[0,7]

Proof. Actually, the only difficulty is to solve the backward equation. Once the backward
equation has been solved, the forward equation may be solved by means of Lemma

In order to solve the backward equation, we make use of the Picard fixed point theorem.
Given an (F)e[o,r] adapted process (iit)e[o,7], With paths in CO([0,T],C™(T?)) and satisfying
€SSUPe0 SUPyef0,7] [Tt n+a < 00, we denote by (i})se[o,r) the solution to the backward equation
n (81), with ¢ = @ = 0 and with (ft)ie[o,r) replaced by (fi + Hi(+, Dit))e[o,r]- By Lemma
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the process (if)sefo,r] belongs to CO([0, 7], C"(T?)) and satisfies essup,eq sUPsefo,1] [t nta < 0.
This defines a mapping (with obvious domain and codomain)

W (W) seqo,r) = (Ug)iefo,r]-

The point is to exhibit a norm for which it is a contraction.

Given two adapted datas (ﬂé)te[O’T], i = 1,2, with paths in C°([0,T],C"(T%)) and with
esSUP,eq SUPye[0,7] @ [pra < 00, i = 1,2, we call (ﬂ;’i)te[oj], i = 1,2, the images by ¥. By
Lemma (with N =1, a' =1 and b' = 0), we can find constants (Aks Ak)k=1,..n such that
the cylinder

B= {w e C°([0,T],C™(T%) : Yk € {0,...,n}, Vt€ [0,T], |w|ssa < Axexp(Me(T — t))},

is stable by W. We shall prove that ¥ is a contraction on B.

We let @, = @} — @ and @} = ' — @)?, for ¢ € [0,T]. We notice that

—dw, = [ AW, — (V;, Diyy|dt — dN,

with the terminal boundary condition @/} = 0. Above, (Nt)te[O,T] is a process with paths in
C°([0,T],C"2(T%)) and, for any = € T, (Nt(if))te[o,T] is a martingale. Moreover, (‘Zt)te[o,T] is
given by

~ 1 ~
Vi(z) = /0 Dy (w, D (x) + (1 — r)Di())dr.

We can find a constant C' such that, for any @', 4° € B,

sup [Vilnta1 < C.
t€[0,T]

Therefore, for any @', 42 € B, for any k € {0,...,n — 1}
Vte [OaT]v ||<‘~/t7 Dwt>“k+a < CHthkJrlJron w = ﬂ/l - ﬁQ‘

Now, following (90, we deduce that, for any k € {1,...,n},

eSSUPweQHwSHk+a d

T
essu w; < C’/ s, 96
pwEQH t”k-l‘a . \/ﬁ ( )

so that, for any p > 0,

T T s
5 - exp(pt)
/O essupeq | W) |k-+a exp(ut)dt < C/O essuP,eq [Ws | k-+a (/0 Vs —1 dt) ds

+00 _ T
< (C’/ exp(,us)ds)/ essupP,,e || Ws || k+a exp(ps)ds.
0 Vs 0

Choosing u large enough, we easily deduce that ¥ has at most one fixed point in B. Moreover,
letting @ = 0 and defining by induction @'*! = U(a'), i € N, we easily deduce that, for u large
enough, for any 7,75 € N|

T
s . C
/ essupweQHu;ﬂ — Uy||lnra exp(ut)dt < 50
0
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so that (modifying the value of C)

C

| essupacql @i ailsade < 5.
0

Therefore, by definition of B and by (96), we deduce that, for any € > 0,

o C
VieN, supessup,eq sup |G = @f|nta < CVE + 5,
jeN te[0,T] 2i\/e

from which we deduce that the sequence (@i');eny converges in L*(Q,C°([0,T],C"(T%))). The
limit is in B and is a fixed point of V.

Actually, by Lemma (with N = 1 and a' = b' = 0), any fixed point must be in B, so
that ¥ has a unique fixed point in the whole space. ]

4.3.4 Stability estimates

Lemma 4.11. Consider two sets of inputs (b, f,g) and (V, f',¢') to (81), when driven by two
parameters ¥, w € [0,1]. Assume that (m, @) and (m', ') are associated solutions (with adapted
paths that take values in C°([0,T], P(T%)) x C°([0,T],C™(T%))) that satisfy the conclusions of
Lemma with respect to some vectors of constants A = (A1,...,Ap) and X = (A1,..., ).
Then, we can find a constant C' = 1, depending on the inputs and the outputs through A and A\
only, such that, provided that

1

essupen sup [l < &
te[0,T]
it holds that
E[ sup |y — @47 o + dF (72, 1027) |
te[0,T]
< C{di(mo,mb) +E[ sup b~ 813 + sup |fs — Has + lor — grl2eal )
tE[O,T] te[07T]

Remark 4.12. The precise knowledge of A and X is crucial in order to make use of the converity
assumption of the Hamiltonian.

The proof relies on the following stochastic integration by parts formula:

Lemma 4.13. Let (my)epo,r] be an adapted process with paths in C°([0, T], P(T?)) such that,

with n as in the statement of Theorem for any smooth test function o € C*(T9), P almost
surely,

il [ e@am)] = { [ |86 - o). Detaplami(o ar, e o171,

for some adapted process (B¢)o<t<r with paths in CO([0,T], [CO(T)]9). (Notice, by separability
of C"(T9), that the above holds true, P almost surely, for any smooth test function ¢ € C*(T%).)
Let (ut)efo,r) be an adapted process with paths in C°([0,T],C™(T%)) such that, for any x € T,

dyug(z) = v (x)dt + dMy(x), te[0,T],

where (Vt)ie[o,r] and (Mi)efo,r] are adapted processes with paths in cO([0,T],C%(T?) and, for
any x € T¢, (My())e[o,r] i a martingale.
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Assume that
essupeq U (Jlueln + [Btlo + [vello + [Milo) < oo (97)

<t

Then, the process

( [ et - [ { [ Do) + Bue) - it Dus<x>>]dms<x>}ds) .

18 a continuous martingale.

Proof. Although slightly technical, the proof is quite standard. Given two reals s < ¢ in [0, 7],
we consider a mesh s =79 <71 <--- <ry =t of the interval [s,¢]. Then,

[ wtimi@) = [ u@am. @

- OM“(

) (@), (o)
= 2| [ werime,

o[
D)= [t @i )]
@ -/

; TZ: [ /T (), wr, (@), (x)} *
- NZO [ s 0 = o). D ot ) o

; 2 /T A / (@) + My, &) = 3, (o) o, o),

By conditional Fubini’s theorem and by (97)),

E[&l /d{th(x) (z) }dmy, (z)| Fs ]

Z {]E Mt1+1 ) - Mti (x)|f8]}dmtz(x) =0,
so that
E[SN|F] =
where we have let

SN .= f[rd ug(x)dmy(x) — /er us(x)dms(x)

N—-1

a3 / +{ /T JBdur (@) - </8r(33)aDuri+1($)>]dmr(m)}dr

=0

— ,Z(:) / {/MI dr}dmr,(ﬂv)
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Now, we notice that the sequence (S™)y=1 converges pointwise to
S§° .— / ug(x)dmy(x) —/ wg(z)dm(z)
Td Td
t
_/ {/]l‘d [Aur(ﬂc) — {Br(x), Duy(x)) + %(fﬁ)]dmr(x)}dr.

As the sequence (SY)y=1 is bounded in L®(Q, A,P), it is straightforward to deduce that, P
almost surely,
E[$*|7] = Jim E[$"|F] =0.
—00

We now switch to

Proof of Lemma[{.11]. Following the deterministic case, the idea is to use the monotonicity
condition. Using the same duality argument as in the deterministic case, we thus compute by
means of Lemma [4.13

dy / (@) — @) d(my — )
Td
— {—19 (D@, — Diiy, DpHy(-, Dit)din, — DpHy (-, Dity)ding y
Td
— | (Di; — Diy, bjdin}, — bydring y + 79/ (Hy(-, Dity) — Hy (-, Diig) ) d(ri) — 1ng)
Td Td

— o [ (Beomd) = Fiomo) (i — i) + /T (- fa(, - mt)}dt
+ dM,,

where (Mt)te[o,T] is a martingale, with the terminal boundary condition

/d (W — ar)d(mly —mr) =@ | (G(-,mlp) — G(-,my))d(ily — )
T
+ [ (o = an)dtaty = ).
Making use of the convexity and monotonicity assumptions and taking the expectation, we

can find a constant ¢ > 0, depending on the inputs and the outputs through A and X only, such
that

T
ﬁcE/ [/ |Di, — Diy|*d (1 + m;)]dt
0 Td
< [lug = uol1d1 (0, M) + E[lgr — grldy (r, m7)] (99)

T T
+E/|¢—Mﬂm—mhﬁ+E/(Kmnm—Dm»Hwﬁ—ﬂmdwmﬁmw
0 0

We now implement the same strategy as in the proof of Proposition in the deterministic
case. Following , we get that there exists a constant C', depending upon 7', the Lipschitz
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constant of D, H and the parameters A and A, such that

sup dj (g, my)
te[0,T]

T
<c(d1<mg,mo>+ o 11— bilo + 9 | [ / |Da;—Das|d(ms+m;)}ds),
0 Td

t€[0,T7]

(100)

which holds pathwise.
Taking the square and the expectation and then plugging , we deduce that, for any small
1 > 0 and for a possibly new value of C,

E[Sltlp di(mmy,my)] < C{ﬁfld?(moa mg) + nE[ sup ||@; — 43|

te[0,T7
0 lessupuen sup [whE[ sup (7 — 3] (101)
te|0,T te|0,T

# B[ sup b= l§ + sup 1= fi} +lor g lf]}-
te[O t€[07T]

Following the deterministic case, we let w; = @; — 1y, for t € [0,T], so that
— divy = [Ady — IV, D) + wR} — (fy — f))]dt — dIVy, (102)

with the terminal boundary condition wy = wRT + g'p — gr. Above, (Nt)te [0,7] is & process with
paths in C°([0, T],C°(T4)), with essup,cq SUPye0,7] IN¢]o < o0, and, for any = € T¢, (Ny(z T))sel0,1]
is a martingale. Moreover, the coefficients (V;f)te[O,T] (Rt)te[o 77 and RT are given by

1
_ /0 D, (. rDi(x) + (1 — r) D (z)) dr,
o
i) - / O o e+ (1= )l (g — ) dir

/ S (z, rinp + (1 — r)mg) (e — ) dr.
Following the deterministic case, we have

S R 1 + 1B nsa < C sup dy(ii, ). (103)
te[0,T7] te[0,T]

Moreover, recalling that the outputs 4 and @' are assumed to satisfy the conclusion of Lemma

we deduce that

sup [Vi|nta1 < C.
te[0,7]

In particular, for any k € {0,...,n — 1}
Ve [0,T], [V, Dip)|isa < Clde]rs1+a-
Now, following and implementing (103)), we get, for any ¢ € [0, T,

0| kv

k ~ -
E[|9T—gép|k+a+ / Wlese gy o sup 1o = flvas + sup_di(on, ) m}
t VS — s€[0,T] s€[0,T]

T
<OE[|9T—g'T|k+a+ [ odrads + sup 1= Fllera 1+ s diim, i) m],
t s€[0,T s€[0,T7]
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the second line following from Lemma (with p = 1). By Doob’s inequality, we deduce that

E[ sup |7 q]
se[t,T]

T
<E[|9T—9'T|k+a+ [ VRt + s = £l + 0 d%(ﬁzs,m;)}
t s€[0,T] s€[0,T7]

By Gronwall’s lemma, we deduce that, for any k € {1,...,n},

E[ sup 63 ,0] < CE|lgr = g5 lfa + sup 1fi = flfas + sup &) (104)
te[0,T] te[0,T] te[0,T]

We finally go back to (101). Choosing 1 small enough and assuming that essup,cq|bt||1 is also
small enough, we finally obtain (modifying the constant C):

E[ sup (| — @47, o + di (e, m})) |

te[0,T]
< C{d3(mo, mh) + E[ sup_[b— B3+ sup [fo— fil2eas + lor — g2l
tE[O,T] te[O7T]
which completes the proof. O

4.3.5 Proof of Theorem [4.3

We now end up the proof of Theorem

First step. We first notice that the L? stability estimate in the statement is a direct conse-
quence of Lemma (in order to bound the solutions) and of Lemma (in order to get the
stability estimate itself), provided that existence and uniqueness hold true.

Second step (a). We now prove that, given an initial condition mg € P(T%), the system
is uniquely solvable.

The strategy consists in increasing inductively the value of w, step by step, from w = 0 to
w = 1, and to prove, at each step, that existence and uniqueness hold true. At each step of
the induction, the strategy relies on a fixed point argument. It works as follows. Given some
w € [0,1), we assume that, for any input (f,g) in a certain class, we can (uniquely) solve (in
the same sense as in the statement of Theorem [4.3))

dyiing = { Ay + div [ Dy, Hy (-, Diig) | Yt

. - - (105)
dity = {—Aty + H(-, Diy) — wEFy(-,my) + fi}dt + dMy,

with 79 = my as initial condition and @ = wG(-, m7) + gr as boundary condition. Then, the
objective is to prove that the same holds true for @ replaced by @ + ¢, for € > 0 small enough
(independent of w). Freezing an input (f,g) in the admissible class, the point is to show that
the mapping

(fe = —€Fy(-,my) + ﬁ)te[O,T]

® 1 (Mut)sefo,r) — { gr = €G(-;m7) + gr

} = (Th:e)te[o,Ty

is a contraction on the space of adapted processes (17)e[o,r] With paths in C°([0, T], P(T%)),
where the last output is given as the forward component of the solution of the system (105]).
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The value of @ being given, we assume that the input (f, g) is of the form

Z VE(-,mi), gr= Z b'G(-, mh (106)

where N > 1, b',...,bY > 0, with e + b* +--- + oY < 2, and (mi)izl,,,,,N (or equivalently
(m%);=1,.n) is a family of N adapted processes with paths in C°([0, T, P(T%)).

The input (( ﬁ)te[O,T]a gr) being given, we consider two adapted processes (mﬁ”)te[w] and
(m?))temﬂ with paths in C°([0, T], P(T%)) (or equivalently (mgl))te[O’T] and (m§2))te[o’T] without
the push-forwards by each of the mappings (T? 3z — x — v2W; € Td)te[O,Tb cf. Remark ,
and we let

ft(i) = —eﬁ’t(-,mgi)) + fi, t€[0,T]; ggf) = —eG(-,mg)) +gr; i=1,2.

and ‘ A
m® =& (m®), i=1,2
Second step (b). By Lemma we can find positive constants (Ag)g=0,..n and (Ag)r=0,.n

such that, whenever (17, it )se[o,r] solves (105]) with respect to an input (( f )te[o,]> g) of the
same type as in (106]), then

Vk e {0,...,n}, Vte[0,T], essup,eq|itlita < Akexp(Au(T —1)).

It is worth mentioning that the values of (Ay)r=o, . n and (Ag)g=o,. n are somehow universal

in the sense that they depend neither on @ nor on the precise shape of the inputs (f, g) when
taken in the class (106)). In particular, any output (m;)te[O,T] of the mapping ® must satisfy the
same bound.

Second step (c). We apply Lemma with b =b" =0, (fi, f))o<t<r = ( _t(1)7 ﬂ(2))0<t<T and
(97, 97) = (g(Tl), 95«2)) We deduce that

E[ sup d2( (1/),fn§ ))]
te[0,T]

<@C{B] sup I1FCm") = Bl.mlans +162C.mi?) = GrtamP)h ]
€10,

the constant C being independent of @ and of the precise shape of the input (f,g) in the class
(106). Up to a modification of C, we deduce that

E[ sup d2(~(ll), 72 ))] < eZCE[ sup d2( (1) ~(2))],
t€[0,T] t€[0,T7]

which shows that @ is a contraction on the space L2(Q2, A, P;C°([0, T], P(T%))), when ¢ is small
enough (independently of w and of (f, ) in the class (106)). By Picard fixed point theorem, we
deduce that the system is solvable when ww is replaced by w + ¢ (and for the same input
(f,9) in the class ) By Lemma and Proposition the solution must be unique.

Third step. We finally establish the L* version of the stability estimates. The trick is
to derive the L® estimate from the L? version of the stability estimates, which seems rather
surprising at first sight but which is quite standard in the theory of backward SDEs.
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The starting point is to notice that the expectation in the proof of the L? version permits to
get rid of the martingale part when applying It6’s formula in the proof of Lemma m (see for
instance ) Actually, it would suffice to use the conditional expectation given Fy in order to
get rid of it, which means that the L? estimate may be written as

E[ ol (d3 (e, 1) + @ — gl 10) [Fo] < Cdi(mo, mp),
te|0,

which holds IP almost surely. Of course, when mg and my, are deterministic the above conditional
bound does not say anything more in comparison with the original one: When mg and m(, are
deterministic, the o-field Fy contains no information and is almost surely trivial. Actually, the
inequality is especially meaningful when the initial time 0 is replaced by another time ¢ € (0,71,
in which case the initial conditions become 7; and m} and are thus random. The trick is thus to
say that the same inequality as above holds with any time ¢ € [0, 7] as initial condition instead
of 0. This proves that

B[ sup (df (e, 3) + [ = 071 0) 73] < Ot ).
S€E|t,

Since |@; — Uy||ln+a is Fr-measurable, we deduce that
It — Ugllnya < Cdi(me, my).
Plugging the above bound in (100), we deduce that (modifying C' if necessary)

sup dj(myg,my) < Cdy(mg, my).
te[0,T]

Collecting the two last bounds, the proof is easily completed. O

4.4 Linearization

Assumption. Throughout the paragraph, « stands for a Holder exponent in (0, 1).

The purpose here is to follow Subsection and to discuss the following linearized version
of the system :

. e )2 . .
dtZt = {—Azt + <V2()’th> — Tni("mt)(pt) + f?}dt + th’
O1pr — Apr — diV(ﬁtVt) — div(thtDEt + [3?) =0,

(107)

with a boundary condition of the form

_ G _
T = %('va)(pt) + g%?

where (Mt)te[O,T] is the so-called martingale part of the backward equation, that is (Mt)te[O’T]
is an (F¢)se[0,rj-adapted process with paths in the space C°([0,T],C%(T%)), such that, for any
xz e T9, (M())sefo,r) is an (Fi)ie[o,r] martingale.

Remark 4.14. Above, we used the same convention as in Remark . For (pt)iefo, ) with paths
in CO([0,T], (C*(T9))") for some k = 0, we let (pt)ie[o,r) be the distributional-valued random
function with paths in C°([0,T], (C*(T%))) defined by

<<p, pt>ck(Td)7(ck(Td))/ = <(,0( + \/§Wt), ﬁt>ck(11‘d)7(0k('ﬂ‘d))’-
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Generally speaking, the framework is the same as that used in Subsection namely we
can find a constant C' > 1 such that:

1. The initial condition o = po takes values in (C"T® (T%))’, for some o € (0, ), and, unless
it is explicitly stated, it is deterministic.

2. (f/t)te[O,T] is an adapted process with paths in C°([0, T],C"(T%, R?)), with

€SSuPe SUp H‘N/tHnJra <C.
te[0,7]

3. (174)sefo,r) is an adapted process with paths in CO([0, T], P(T%)).

4. (T't)te[o,r 1s an adapted process with paths in CO([0, 7], [C*(T9)]%*9) such that, with prob-
ability 1,

sup HFtHI < C7
te[0,T]

V(t,z) € [0,T] x T¢, C~'I; <Ty(z) < Cly.

5. (l;g)te[07;p] is an adapted process with paths in C°([0, 7], [(C*T*~(T9))']¢), and (Jzto)te[o,T]
is an adapted process with paths in CY([0,7],C"(T¢)), with

essUPyeq S[HPT](HE?Iunmun + [ Ina) < oo
te

)

6. G2 is an Fp-measurable random variable with values in C"*1(T9), with
~0
essup,eq|grln+1+a < 0.

Here is the analogue of Lemma (3.5

Theorem 4.15. Under the assumption (1-6) right above and (HF1(n)) and (HG1(n+1)),
forn =2 and B € (¢/, ), the system (107) admits a unique solution (p,z, M), adapted with
respect to the filtration (F¢)se[o, with paths in the space CO([0,T7], (C"F(T?))" x CPT1HA(T?) x
C"P(T) and with essup,, supefo 1] (15t]-(ntp) + | Zelnr14p + | Meln-11p) < 0. It satisfies

sz o1 (17d-user + Vv + [¥hlra) <
tel0, T

)

The proof imitates that one of Theorem and relies on a continuation argument. For a
parameter ¢ € [0, 1], we consider the system

dtZt = {—Azt + <‘/t(~), DZt> - 195777;(, mt)(f)t) + fto}dt + th, (108)
upr — Apy — div(p, Vi) — div (9D + ) =0,
with the boundary conditions
_ _ 8G i
Po = po, 2T = ﬁ%('amT)(PT) + 9%- (109)

75



As above the goal is to prove, by increasing step by step the value of ¥, that the system ,
with the boundary condition , has a unique solution for any ¢ € [0, 1].

Following the discussion after Theorem notice that, whenever (b)) is a process
with paths in CO([0,7],C~(*+8)(T%)), for some 8 € (o/, ), the quantity supsefo, 7] 10t (nrar) 18
a random variable, equal to Supe[o 71~q || 0t] - (ntar)- Moreover,

essuPeq SUP [1bef—(ntar) = sup essup eq|bell—(ntan-
te[0,7] te[0,T]

Below, we often omit the process (Mt)t€[07T] when denoting a solution, namely we often write
(Pts Zt)sefo, 1) instead of (pt, Z, Mt)te[O,T] so that the backward component is understood implic-
itly. We feel that the rule is quite clear now: In a systematic way, the martingale component
has two degrees of regularity less than (2¢)e[o,77-

Throughout the subsection, we assume that the assumption of Theorem is in force.

4.4.1 Case v =0
We start with the case 9 = 0:

Lemma 4.16. Assume that 9 = 0 in the system (L08)) with the boundary condition (109). Then,
forany B € (!, a), there is a unique solution (p, Z), adapted with respect to (F¢)se[o,r7, with paths
in CO([0, T, (C™*A(T4)Y x C™++3(T4))) and with essup,, supreqo ) (1| —ues) +Ztlns1+5) < 0.
Moreover, we can find a constant C', only depending upon C, the bounds in (HF1(n)) and
(HG1(n+1)), T and d, such that

€SSuUp,en Sup HﬁtH—(n-&-a’) <Cl(HpOH—(n-&-o/)'i'essupweQ sup HB(t)H—(n-&-o/—l))a
te[0,T] te[0,T]

esSUP,e SUP | Zint14a < Cl(essqueQHgg“Hn+1+a + essup,en Sup HJEtOHn—i-a)~
te[0,T7 te[0,T7]

Proof. When ¥ = 0, there is no nonlinearity in the equation and it simply reads

(i) dpz = {—AZ + Vi(+), Dz + fto}dt +dM;, (110)
(i1) 0upe — Apr — div (5 Vi) — div(BY) = 0,
with the boundary condition pg = pg and Zp = g%.

First step. Let us first consider the forward equation (110}(ii)). We notice that, whenever p
and (bg)te[O,T] are smooth in the space variable, the forward equation may be solved pathwise in
the classical sense. Then, by the same duality technique as in Lemma (with the restriction
that the role played by n in the statement of Lemma [3.5] is now played by n — 1 and that the
coefficients ¢ and b in the statement of Lemma are now respectively denoted by b° and fY),
for any (5 € [o/, a], it holds, P almost surely, that

sup Al sy < C'(lAo] — gy + sup [00]_(n-115))- (111)
te[0,T] te[0,T]

Whenever po and (b? )te[0,7] are not smooth but take values in (€™ (T4)) and (C*+' ~1(T%))
only, we can mollify them by a standard convolution argument. Denoting the mollified sequences
by (pd)n=1 and ((bg’N)te[O,T])N%, it is standard to check that, for any 8 € (o/, ), P almost
surely,

lim (||pY — poll_(nis) + Sup b — byl N =0, 112
NHHO(H 0 [ p by tl-(n14)) (112)
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from which, together with (111)), we deduce that, P almost surely, the sequence ((p;" )te[0,17])N>1
is Cauchy in the space C([0, T, (C"*#(T))’), where each (¥ )te[o,r] denotes the solution of the
forward equation (ii)) with inputs (p{), (l;g’N)te[O,T]). With probability 1 under P, the limit
of the Cauchy sequence belongs to C([0,T], (C""#(T%))) and satisfies (I1I)). Pathwise, it solves
the forward equation.

Note that the duality techniques of Lemma are valid for any solution (p¢)e[o,7) of the
forward equation in (ii)), with paths in C°([0, T, (C"*#(T9))"). This proves uniqueness to
the forward equation.

Finally, it is plain that the solution is adapted with respect to the filtration (F)[o,r]- The
reason is that the solutions are constructed as limits of Cauchy sequences, which may be shown
to be adapted by means of a Duhamel type formula.

Second step. For the backward component of , we can adapt Proposition the
solution is adapted, has paths in C°([0, T'],C"T1+5(T?)), for any B € (¢, ), and, following (82),
it satisfies:

essuP,e SUP |Zt[nt14+a < C/(essqueQHg%Hn—H—&-a + eSsup,en SUp HftoHn—i-a)7
0<t<T te[0,T

)

which completes the proof. O

4.4.2 Stability argument

The purpose is now to increase 1 step by step in order to prove that (108)—(109) has a unique
solution.
We start with the following consequence of Lemma [£.16}

Lemma 4.17. Given some ¥ € [0,1], an initial condition py in (C"T* (T4, a set of coeffi-
ctents (f/t, my, Ft)te[O,T] as in points 2, 8 and 4 of the introduction of Subsection and a set of
nputs ((l;?, ﬂo)te[oﬂ,gg) as in points & and 6 of the introduction of Subsection consider a
solution (pt, Zt)ie[o,r] of the system with the boundary condition , the solution being
adapted with respect to the filtration (Ft)ie[o,r], having paths in the space C°([0, T, (C"*+A(T))) x
CO([0, TT,C"H1+8(T9)), for some B € (o/,a), and satisfying essup,cq supseqo, 7] ot] —(n+ sy +
|Ztlnt14) < 0.
Then,

€SSUPe SUP [Hﬁt“—(nm’) + H5t|\n+1+a] < .
te[0,T]

Proof. Given a solution (py, Zt)se[o,7] @s in the statement, we let

030 L s e g0 70 OF, 0 0, o 0G

b =0 +9m Dz, f = [} =9 Cm)(p), te[0.T]; 5% =g +9=(mr)(pr)
om om

Taking benefit from the assumption (HF1(n)), we can check that (l;?)te[o’T], ( f?)te[O,T] and g%

satisfy the same assumptions as (B?)te[m, ( ﬂo)te[o,T] and % in the introduction of Subsection
4.4l The result then follows from Lemma [£.16] O

The strategy now relies on a new stability argument, which is the analog of Lemma

Proposition 4.18. Given some ¥ € [0,1], two initial conditions po and pj in (e (Td)y,
two sets of coefficients (Vi, iy, Tt)seror) and (VY, My, T4)sejo,r) as in points 2, 8 and 4 of the
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introduction of Subsection and two sets of inputs ((bY, ﬂo)te[()’T],g%) and ((bY', f )te[O,T],gi}’)
as in points 5 and 6 of the introductz’on of Subsection consider two solutions (pt, Zt)iefo,1]
and (pt,zt)te o,7] of the system with the boundary condition , both being adapted
with respect to the filtration (ft)te[O,T]; having paths in the space CO([0,T], (C"*P(T9))") x
CO([0,T],C"HHB(T?)), for some B € (o, ), and satisfying

eSSUpwthS[lolI;] (5] =nrpy + 1Ztlns1+8 + 15t —(ns8) + 12t Int148) < .
€10,

Then, it holds that

E[ R P ]
te[0,77] t€[0,T]

)

< {10 = 1 et

+E[ sup [0 = 077 (o nt sup 1= 7 nra + 137 = 37 s14a
t€[0,T7 te[0,77]

#5000 v+ VA ) (T = T+ e 17 =T}
€[0

the constant C' only depending upon C' in the introduction of Subsection@ T,d, a and o/.

Proof. First step. The first step is to make use of a duality argument.

We start with the case when po, pj, 0 and b are smooth. Letting 139 = 9 D2z + I;?
and b = 9miT\DZ, + bY, for t € [0,T], we notice that (Pt)iefo,r) and (Ph)efo,r] solve the
linear equation (ii) in @_D with (BQ)te[o’T] and (BY )te[o,7] Teplaced by (B?)te[O,T] and (bY )te[0,17]
respectively. By Lemma [4.16 with (Bg)te[O,T] in (110) equal to (139)te[0,T] and with n in the
statement of Lemma [4.16| replaced by n — 1, we deduce that (p¢)sejo,r] and (p})sepo,r] have
bounded paths in CO([0,T], (C"~1*#(T9))"), for the same 3 € (a/,a) as in the statement of
Proposition

With a suitable adaptation of Lemma and with the same kind of notations as in Sub-

section this permits to expand the infinitesimal variation of the duality bracket {Z; — 2], py —
Py xn,x7, With X, = C"F(T4). We compute

deZe— 2 e = Py, x
= {(PG =D A=) (D= V)= 7)) Jel
(R — 1 ﬁ2>xn,xgdt - <D 5 — )80 — 50'>Xn717X;71}dt
= )=+ (e = ) (o ), Y

—o{(D(E - 2) D)) +(D(E—Z). (b =)Dz ) Ldi
+ di My,

where (M;)o<i<7 is a martingale and where we applied Remark to define (p¢)seo,r) and
(Pi)teo,r)- An important fact in the proof is that the martingale part in (110) has contin-
uous paths in C°([0,7],C" '8 (T?)), which permits to give a sense to the duality bracket
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(in =) with (pr — py)seo,r]; since (pr — pi)iefo,r] is here assumed to have continuous paths in
CO([0, T, (™ 1+5(T%))"). Similarly, the duality bracket of (% — Z{)se[o,r] With the Laplacian of
(Pt — Pi)te[o,r) makes sense and, conversely, the duality bracket of (p)sefo,r] with the Laplacian
of (2 — Zé)te[oﬂ makes sense as well, the two of them canceling with one another.

Of course, the goal is to relax the smoothness assumption made on pg, py, b0 and b,
Although it was pretty straightforward to do in the deterministic case, it is more difficult here
because of the additional martingale term. As already mentioned, the martingale term is defined
as a duality bracket between a path with values in C°([0, T, C*~!*8(T%)) and a path with values
in CO([0, T],C— ("~ 1+8)(T9)). Of course, the problem is that this is no more true in the general
case that (pr — p})we[o,r] has paths in cO([0,T],c~(=148)(T4)). In order to circumvent the
difficulty, a way is to take first the expectation in order to cancel the martingale part and then
to relax the smoothness conditions. Taking the expectation in the above formula, we get (in the
mollified setting):

SE[Gi— 2 - P
~{-E[(PG - 2. (7 - Vt’>>xn,xn]+E[<D% i=W)=), .}
(Bl (R ==, B pE-DR-w), )

n—1
B ﬁ{E[ %("mt)(pt = h) e ﬁ2>xn,xgl]
B[ = S Cm) (), )
{ [<D N,y D (5 — 5;)>meg] + E[<D(2t — 2, (T — m;rg)D2;>XmX;l] }

Whenever po, ﬁo, [)0 and bY are not smooth (and thus just satisfy the assumption in the statement
of Pr0p0s1t10n 4.18)), we can mollify them in the same way as in the first step of Lemma“ We
call (5 )p=1, (/56 ' Jp=1, (b,?’N)p>1 and (b} N)p>1 the mollifying sequences. For any (' € (¢/, a)

and P almost surely, the two sequences respectively converge to po and f, in norm | -||_(,1g) and

(113)

the two last ones respectively converge to b and b in norm |- |—(n—1+pry, uniformly in ¢ € [0, T7].
With (py, 2t)refo,r] and (4, Z1)seo,7) the original solutions given by the statement of Proposition
we denote, for each N > 1, by (g, ¥ )te[o,r] and (ﬁ;’N, Z;’N)te[O,T] the respective solutions
to (110), but with (59, 2, g%)te[m respectively replaced by
- - - R - OF . _ 0G
(0 =8N + oLz, I = JP = 05 Coma)(po). 3 = 3+ 05 () (or)

. - . OF . N oG
and (B = BN gm0 D, Y = JY = 05 (omi)(ph). 9% = G + 05 (ml) (o))

te[o,1)’

te[0,T]

By linearity of and by Lemma we have that (p)¥)y=1 and (ﬁ;N) N=1 converge to py
and g} in norm | - ||_(,+g), uniformly in ¢ € [0, 77, and that (Z))y>1 and (Z ") n=1 converge to
Z; and Z; in norm | - ||;,+143, uniformly in ¢ € [0, 7.

Then, we may write down the analogue of for any mollified solution (5, ZN)n=1 (pay
attention that the formulation of for the mollified solutions is slightly different since the
mollified solutions only satisfy an approximating version of ) Following (112]), we can
pass to the limit under the symbol E. By Lemma [4.16] we can easily exchange the almost sure
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convergence and the symbol E, proving that the identity (113]) holds true under the standing
assumption on go, por, (b)sefo,r) and (bY")sefo,r7- )
Using the convexity of I' and the monotonicity of F', we deduce that

T
E [<2T — 2. P17 = Pr)x, (x ),] + CH?E[/ ( |D(z, — ) \des) ds]
noAm t Td
T
<E[{Z0 = 2060 — P0)x, x| + C’Eu @(Hﬁs = Pl -nrary + 112 = 5;|n+1+a)ds],
where

© := [ po — fol—(ntary + 137 = 97 [n+1+a

+ sup (170 = F0%hra + 1B = B oy
s€[0,T]

+ (2210 + 1850 nran) (IVs = Vilnta + di(ms, m) + |Ts — F's\lo)]-
Recalling that

_ /96

= (5 () (or = ). pr = Py )

" 19«%("’”7’) - %(',m%))(p%), pr — :5/T>

= _Cl@HﬁT - ﬁ&“”—(n-ﬁ-a’)v

Xn, X!,
~0 ~0r ~ ~/

+ {37 — 97+ PT — PT) X0, X",

Xn, X!,

where we have used the monotonicity of G to deduce the second line, we thus get

mE[/OT( DG~ 5;)\2de) ds]

< [0 (120~ Hlustra + 17 = Frlnsar (114)

T
b [ 1= Py + - z;|n+1+a)ds)].

Second step. As a second step, we follow the strategy used in the deterministic case in order
to estimate (|5 — pil|l—(n+ar))tefo,r] in terms of fOT(de |D (25 — Z,)|*drins)ds in the left-hand side

of .

We use again a duality argument. Given ¢ € C"*%(T9) and 7 € [0,T], we consider the
solution (wy)e[o,7], with paths in C°([0, 7], C"+8(T?)), to the backward PDE:

vy = {— Aty + (Vi(-), Din)}, (115)

with the terminal boundary condition w, = £. Pay attention that the solution is not adapted.
It satisfies (see the proof in the last step below), with probability 1,

vt e [O’T]’ HthnJra’ < C,H€Hn+a’>

_ c’ (116)
vie[0,7), [@tfpr1rar < ﬁ”f”%a'-
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Then, letting X, = "+ (T%) and following the end of the proof of Lemma we have
dt<ﬁ)ta ﬁt - 52>X;’(X;)/
— (D, 10 — 130’>
< ! ! X;—l’ n—1

— 0( Diy, oD (5 = 7))

dt + { Dy, (V; = Vi) p, dt
it (D (V=R )

,dt — 19<Dﬂ)t7 (Ml — mér;)D2§>X;,(er)’dt7

no(Xn)

so that
- ) 1/2
€= Bz vy < Clélusar| @40 [ [ Dt~ P am.) as).
Therefore,
T ) 1/2
I5r = Al (nrar) < O'[@ " 0( | [ Ipe -z dms) ds]. (117)
0 R4

Plugging (117) into (114)), we obtain

T
ma[/ ( Dz — g;)fdms) ds] <C'E|0(0+ sup |5~ Hlns14a) | (118)
0 Td te[0,T7]
Therefore,
~ ~I 12 / ~ ~
E[ts[gg] |pe — pt\l_(n+af)] <0 E[@ (9 + S 12 — ZtHnJrlJra)]- (119)

Third step. We now combine the two first steps to get an estimate of (|2 — Z{|n+1+a)te[0,7]-
Following the proof of (104]) on the linear equation (102|) and using the assumptions (HF1(n))
and (HG1(n+1)), we get that

T
Bl sp 12 = Zilaasal < E[@2 + 161 = P12 oy + /0 125 = ﬁ;|2(n+a’)d8]‘ (120)
€10,

By (119), we easily complete the proof.
It just remains to prove (116)). The first line follows from Lemma The second line may

be proved as follows. Following , we have, with probability 1,
Vte 0’ ’ ~ , < Cl HgHTLJrOé/ + H{[}SHTL“Fl“I’O{/d . 121
0.0), ihsrear < 0 (1t [ IE0hntaer g, (121)
Integrating and allowing the constant C’ to increase from line to line, we have, for all ¢t € [0, 7),
[ b,
t S — t
, T 1 T T 1
<C / ds+/ w / /ds dr
et [ Gyt [ Voo ([ )
<0 lelusar+ [ Nirlupryords]
¢
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Plugging the above estimate into (121)), we get that

.
Vie[0,7), VT = t|wtnt1rar < C'(|§In+a’ * / VT "”|ﬂ7r|n+1+a’dr>’
t

which yields, by Gronwall’s lemma,

- o4
vte [0,7), [Wtllntirar < ﬁ”f”nw/a

which is the required bound. O

4.4.3 A priori estimate

A typical example of application of ProposMonMis to choose: pj, = 0, (Y, f ) = (0,0,0),
V =V, T =I", in which case

(7',7) = (0,0).

Then, Proposition Mprovides an a priori L? estimate of the solutions to (107)). (Pay attention
that the constant C' in the statement depends upon the smoothness assumptions satisfied by
f/) The following corollary shows that the L? bound can be turned into an L® bound. It reads
as extension of Lemma to the case when 9 may be non zero:

Corollary 4.19. Given ¥ € [0,1], an initial condition po in (€™ (T4 and a set of inputs
((bg,f?)te[O,T],gg) as in points 1-6 in the introduction of Subsection consider an adapted
solution (pr, Z)sefo.r] of the system (108)~([109), with paths in the space C°([0, T, (C™P(T))') x

CO([0,T],C"HHB(T?) for some B € (o', ), such that

€ssup,cq Sup <H2tHn+1+B + HﬁtHf(nW)) < ®©.

te[0,T]

Then, we can find a constant C', only depending upon C, T, d, o and o/, such that

essubuen Sup (12t hnsira + 15t] nier)
te[0,T]

) (122)

<|Po|| wrary + 055y [ ni1va + 51D (|7 lnva + 181 o )]

te[0,T]

For another initial condition gy in (C"** (T%))" and another set of inputs (b, ﬁo’)te[oﬂ,g%’) as
in points 1-6 in the introduction of Subsection consider an adapted solution (p}, éé)te[oﬂ of
the system (L108)~(109), with paths in the space C°([0, T, (C"*P(T%))") x CO([0,T],C"1+5(T4))
for the same B € (o, &) as above, such that,

essubicq sp (1 he1os + 170 ) < o

te[0,T

)

Then, we can find a constant C', only depending upon C, T, d, a and o/ and on

~071

180l (ntary + 150]~(n+ary + essupea[lgrln+1+a + 197 In+1+al

+essubacq 30p (11 + 17 v+ IRy + I s ]
tefo,
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such that

essUP,eq SUpP [|l5t = Zlni1ea + 15 - ﬁl|l%(n+a')]
te[0,T]

<1 = 2
0 2 70712 (123)
+eSSUpweQ(|§T |ln+1+a+ S[UP [Hbt _b H (n+a’—1) +l|ft - t/lln-l-a]
te[0

espen sup (1% = V113, + dimem) + 10 - TYE]) |
te|0,T

Proof. We start with the proof of (122)).

First step. The proof relies on the same trick as that used in the third step of the proof of
Theorem In the statement of Proposition the initial conditions py and pj, are assumed
to be deterministic. It can be checked that the same argument holds when both are random
and the expectation is replaced by a conditional expectation given the initial condition. More
generally, given some time t € [0,T], we may see the pair (ps, Zs)se[r,7) s the solution of the
system with the boundary condition , but on the interval [¢,T] instead of [0,7]. In
particular When gy =0, BV, f, §) = (0,0, 0) V V!, T' =T’ (in which case (¢, %) = (0,0)),
we get

E| sup (1224140 + 1702 e llftl < C'[I7t ) + E[O71F] .

selt,T]

where we have let

O = sup [B]_(nrar—1) + sup |f7ln+a + 197 lns1+a-
seft,T] s€[t,T]

Second step. We now prove the estimate on p. From the first step, we deduce that

|2l 4140 < C,[|lﬁtl|2_(n+af) + E[@2|ft]] < C,[l|ﬁtl|2_(n+ar) + GSSUPweQ@2] (124)
The above inequality holds true for any t € [0, 7], P almost surely. By continuity of both sides,
we can exchange the ‘P almost sure’ and the ‘for all ¢ € [0, T']’. Now we can use the same duality

trick as in the proof of Proposition “ With the same notations as in and -, we

have

vee[0,7],  [@ilnrar < C'€nsar-
Then, we have
T 70
<wT’ﬁT>X;,(X;)/ S <@0’50>X;,(X;)' +/ HDUNJSHnJra’fl(llbsll—(n+a’—1) + HZSlanra)dS
< Clelhrar (1l-oser + [ [1el s + essupe©] ).
from which we deduce, by Gronwall’s lemma, that

5] sy < C'(Jf0ll(nrary + 5Up_essup,eq®),
te[0,T]
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and thus

€SSUP e S[u%] HﬁtHf(nJra’) < Cl(”ﬁﬂ”*(nJra’) + essupwEQG)). (125)
te|o,

By (124) and (125]), we easily get a bound for Z.
Last step. It then remains to prove (123]). By means of the first step, we have bounds for

sz 5 ([Zhvrtva+ [ nrrra + 1] us + 170 -ser)-
te|0,T

Plugging the bound into the stability estimate in Proposition we may proceed in the same
way as in the two first steps in order to complete the proof. ]

4.4.4 Proof of Theorem [4.15]

We now complete the proof of Theorem [4.15] It suffices to prove

Proposition 4.20. There is an € > 0 such that if, for some ¥ € [0,1) and 8 € (o/,a), for
any initial condition po in (C** (T4))’ cmd any input ((b? )te[OT (fO )te[0,775 G%) as in the in-
troduction of Subsectwn u the system - has a unique solution (pt,Zt)te[o 7] with
paths in CO([0, T], (C"*+P(T?))") x C°([0, T7, C"+1+6(']I‘d)) such that essup,, supepo, (19t - (n+p) +
|Ztn+14+8) < 00, (P, Zt)ieo,r) also satisfying essup,, supyefo 1115t —(n+ar) + [ 2tln+1+a) < 0, then
unique solvability also holds with 9 replaced by ¥+ ¢, for the same class of initial conditions and
of inputs and in the same space; moreover, solutions also lie (almost surely) in a bounded subset
of the space L*([0,T], (C+)(T9))) x L®([0, T],C 1+ (T%)).
Proof. Given 9 € [0,1) in the statement, ¢ > 0, an initial condition p € (€™ (T4))’, an input
((bt)te[OT ( ft )te[0,7]5 G%) satisfying the prescription described in the introduction of Subsec-
tion and an adapted process (pr, Zt)se[o,r] (P having po as initial condition) with paths in
CO([O,T], (C"HB(TH))) x CO([0,T], €™ 18 (T?)) such that

esSUP, e ts[lép](l\ﬁt\h(nm') + |z ns14a) < o0, (126)
we call ®.(p, 2) the pair (9}, Z])o<t<r solving the system with respect to the initial condition
po and to the input:

b = ey Dz + b2,

~ OF, ~
Y = =T ma ) + 7,

6G

~01 ~0
J— - _’ _l’_ .

gr = 5m( mr)(pr) + g1

By assumption, it satisfies

essupyen 5D (1741 tnsar) + |2t 14a) < 0,

te[0,7]
By Corollary
essuPeq SUD (|Zfn+1+a + |5t -(ntar)

te[0,T]

< C'[|50|—(n+o/) recesen 1 (170 user) + [Elasa o)
e 9

s 0 (B-Gusain 17 lnse) + 11asn1a] |
te|o,
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where c is a constant, which only depends on the constant C' appearing in points 1-6 in intro-
duction of Subsection and on the bounds appearing in (HF1(n)) and (HG1(n-+1)).
In particular, if

essupyeq SUP (|2 ln14a + |0tll-(n+ar)) (127)
te[0,T]

< 20,(|ﬁ0|—(n+a’) + eSSUPweQ[HfJ%”nHm + SS%](‘|B?‘|—(n+a’—1) + |ft0|n+04)])a
tefo,

and 2C"ce < 1, then

essupuen SUP (|2 Ins1+a + 9L —(n+ar))
te[0,T]

sup (1 nvar-1) + 1 7lsa)] ).
€[0,T]

<20 (Vol-trean + espen e + s
4

so that the set of pairs (p, Z) that satisfy (126) and ((127) is stable by ®. for & small enough.
Now, given two pairs (5, 2 )refo,r) and (57, Z7)efo,r) satisfying (127), we let (5, 2} )sefo,r]

and (ﬁ?' , Zf' )te[o,T] be their respective images by ®.. We deduce from Proposition that

E| sup |5 = 222100+ 00 15 = 312 o)
te[0,T] te[0,1]
< C'E| swp 5 =2 1pa+ s |5 = 51 s |
te[0,17] te[0,T]

for a possibly new value of the constant C’, but still independent of ¢ and e. Therefore, for C’e? <
1 and 2C"ce < 1, ®. is a contraction on the set of adapted processes (pt, Et)te[O,T] having paths
in CO([0, T, (C"+P(T9))") x CO([0, T],C"+1+P(T9)) and satisfying (and thus as well),
which forms a closed subset of the Banach space C°([0, T], (C"*#(T9))") x CO([0, T],C"*#(T%)).
By Picard fixed point theorem, we deduce that ®. has a unique fixed point satisfying .
The fixed point solves —, with ¥ replaced by ¥ + €.

Consider now another solution to f with ¢ replaced by ¥ + ¢, with paths in a
bounded subset of CO([0, T, (C*+P(T%))") x c°([0, T], C"++7#(T4)). By Proposition it must
coincide with the solution we just constructed. O
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5 The second-order master equation

Taking benefit of the analysis performed in the previous section on the unique solvability of the
MFG system, we are now ready to define and investigate the solution of the master equation.
The principle is the same as in the first-order case: the forward component of the MFG system
has to be seen as the characteristics of the master equation. The regularity of the solution of
the master equation is then investigated through the tangent process that solves the linearized
MFG system.

As in the previous section, the level of common noise 5 is set to 1 throughout this section.
This is without loss of generality and this makes the notation a little bit simpler.

5.1 Construction of the Solution

Assumption. Throughout the paragraph, we assume that the assumption of Theorem is in
force, with av € (0, 1).

For any initial distribution mg € P(Td), the system admits a unique solution so that,
following the analysis performed in the deterministic setting, we may let

U(0,z,mg) = Up(z), zE€ <.

The initialization is here performed at time 0, but, of course, there is no difficulty in replacing
0 by any arbitrary time to € [0, 7], in which case the system rewrites
dymy = {Aﬁlt + diV(TNYLtDpPItmt(', Dﬂt)) }dt,

) e S : (128)
dtut = {—AUt + Hto,t('a Dut) - Ft(),t('7 mto,t)}dt + th,

with the initial condition 7y, = mo and the terminal boundary condition i = Gy, (-, me, 1),
under the prescription that

Mgy = (id + V2(W, — Wio)) i,

Fioa(, 1) = Fz +vV2(W; = W), ),

G, 1) = Gz + V2AAWrp — Wio)s 1)

f[to’t(az,p) = H(x + \/§(Wt - Wto),p), zeT? peR? pue P(']I‘d).

(129)

It is then possible to let
Ult, z,mo) = gy (z), x €T
We shall often use the following important fact:

Lemma 5.1. Given an initial condition (to, mg) € [0,T] x P(T?), denote by (17, Ut )gepro, 1) the
solution of with the prescription and with my, = mo as initial condition. Call
my,¢ the image of my by the random mapping T 5 2 — z + \/§(Wt — Wi,) that is my,; =
[id + V2(W; — Wy, )#e. Then, for any to + h € [to, T], P almost surely,

thO_,_h(CC) = U(to +h,x+ \/§(Wt0+h — Wto), ’I’Tlt()’to_i_h)7 re T
Proof. Given tg and h as above, we let

my = [’Ld + \/§(Wt0+h — Wto)]ﬁmt, ’L_Lt(l‘) = ﬂt[ZL‘ — \/§(Wt0+h — Wto)], te [to + h,T], T € Td.
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We claim that (my, Ut) e[, +5,7] 18 @ solution of (128)—(129), with ¢o replaced by to + h and with
Mo, to+h aS initial condition.
The proof is as follows. We start with a preliminary remark. For t € [to + h, T,

[id + V2(Wy — Wiy, ) [t = [id + V2(W, — Wi, ) [t = mug . (130)

We now prove that the pair (my, Ut)s,+h<t<T SOlves the forward equation in (128). To this
end, denote by (Xt,.t)se[t,,7] the solution of the SDE

dXt(ht = _Dpﬁto,t (Xt07t, Dﬂt(Xt07t))dt + \/§dBt, te [to, T],

the initial condition Xy, ;, having mg as distribution. (Notice that the equation is well-posed as
D1 is known to be Lipschitz in space.) Then, the process (X; = Xto,t+\/§(Wto+h_Wto))te[to+h,T]

has (my = (id + vV2(Wyyin — Wio )t )iefto+n,1) @s marginal conditional distributions (given
(Wit)ie[o,7)- The process satisfies the SDE

dX; = —DpHy,, (Xt —V2(Wyg i — Way), Diig (X — V2(Wig1n — Wto))>dt +1/2dB,
— =Dy eng (X, Due (X)) dt + V2dBy,

which is enough to check that the forward equation holds true, with my, 4, = my ¢+, as initial

condition, see .
We now have
dyity = [= Aty + {Hy 1 (-, Diig) — Fyg ¢ (-, m402) } (- = V2(Wigon — Wyy)) |t
+dMy (- = V2(Wigh, — Wiy))
= [—Au + {Hygini (-, Die) — Fyyin (-, meg ) ] dt + dMy (- — V2(Wigin — Way)).

Now, says that my, ; reads [id + \/§(Wt — Wt0+h)]ﬁmt, where (m¢)s, +h<t<T is the current
forward component. This matches exactly the prescription on the backward equation in (|128)|)
and .

If my, to+n was deterministic, we would have, by definition of U, U(ty + h,x,m¢, 1o+n) =
U, +n(2), © € T, and thus, by definition of @y,

Gg 41 () = Uto + hyx + V2(Wigeh — Wao)y Mg 1o+n), @ € T (131)

Although the result is indeed correct, the argument is false as my, 4,44 is random.

To prove , we proceed as follows. By compactness of P(T¢), we can find, for any e,
a family of N disjoint Borel subsets A',..., AN < P(T9), each of them being of diameter less
than e, that covers P(T9).

For each i € {1,..., N}, we may find p; € A’. We then denote by (mi,ﬂi)te[t0+h7T] the
solution of 7, with g replaced by tg + h and with p; as initial condition. We let

N
mt = Z mlzflAl (mto,t0+h)7
i=1
N
7th = Z TAJ,%].Az (mto’tOJrh) .
i=1
Since the events {my, +,4+n € A%} for each i = 1,..., N, are independent of the Brownian

motion (Wi — Wiy yn)iefto+n,], the process (17, Gt )sefro+h,7] 1S a solution of (128)—(129), with

87



to replaced by tg + h and with 17y, 4,14 as initial condition. With an obvious generalization of
Theorem to cases when the initial conditions are random, we deduce that

N
E[HatOJrh - at0+h‘|3l+a] < CE[d%(mto-i-hv mto-i—h)] =C Z E[]-AZ (mto,t()-i-h)d%(mto,to—i-ha MZ)] .

=1

Obviously, the right-hand side is less than Ce?. The trick is then to say that ag’o 4+ reads
Ul(to + h, -, p;). Therefore,

N

Z IEE[]-A1 (mto,toJrh) Hﬂ’t0+h - U(t() + Ny :U’i)HELJra] < 052‘
1=1

Using the Lipschitz property of U(tg + h,-,-) in the measure argument (see Theorem [4.3]), we

deduce that )

n+o

E[Hﬂch - U(to +h, '7mto,to+h) H ] < Ce

Letting € tend to 0, we complete the proof. ]

Corollary 5.2. For any o' € (0,a), we can find a constant C such that, for any to € [0,T],
he[0,T —to], and mg € P(T9),

HU(tO + h, -7m0) — U(to’ .’mO)HnJra’ < Ch(afa’)/g

Proof. Using the backward equation in (128)), we have that
to+h - -
fLto(') = E[Phato-i-h(') - / Py, (Hto,t(" D’ELS) - Fto,t(" mto,s))ds] .
to
Therefore,
to+h ~ ~
1) = By n0) = B| (P = i)egun()— [ Prctg (i D) = Fialyrneg ) s
to
So that
fity — Bty ) vt < E[| (P — id)igyinl,,, o
to+h

+C (S — to)il/zHﬁto,t(U Das) - Ftoyt(" mtOvS)H

to

ds.

n+a’—1
It is well checked that

E||(Ph = id)itg 4], o0 | < CHOTV2E 1]

n+a’ n+a]

< Ch(afa’)/Q’

the last line following from Lemma
Now, by Lemma 5.1

E[ﬂt0+h] = E[U(to + h, -+ \/E(Wto—i-h — Wto),mto,t0+h)]
= E[U(to + hy- + V2(Wigin — Wiy)s mtgt,0) — U(to + hy-,mo)] + U(to + h, -, mq),
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where, by Theorem it holds that

HE[U(tO + h, -+ \/ﬁ(Wt0+h - Wto),mt07t0+h) — U(to +h,-, mo)]H
< CE[|d1(myy tg+h, m0)] ]
+E[[U(to + by + VEWigen = Wag),mo) = Ut + by, mo) |

n+a’

n+a’] ’

which is less than Ch(@=2)/2,

5.2 First-order Differentiability

Assumption. Throughout the paragraph, we assume that F, G and H satisfy and
in Subsection and that, for some integer n > 2 and some a € (0,1), (HF1(n)) and
(HG1(n+1)) hold true.

The purpose is here to follow Subsection [3.4] in order to establish the differentiability of U
with respect to the argument mg. The analysis is performed at ¢y fixed, so that, without any
loss of generality, ty can be chosen as tg = 0.

The initial distribution mg € P(T%) being given, we call (1, @) the solution of the system
(78)) with mg as initial distribution. Following , the strategy is to investigate the linearized

system (of the same type as (107])):

By 3 - N . JF .
dizy = {—Azt + <Dth(', Diy), D%y — Tﬂ;(a mt)(/ot)}dt + dM;,
Oupr — Apy — div(py DpHy(-, Dity)) — div (i D2, Hy (-, Dity) Dz;) = 0,

(132)

with a boundary condition of the form

Zr = g%('ymT)(PT)-

As explained later on, the initial condition of the forward equation will be chosen in an ap-
propriate way. In that framework, we shall repeatedly apply the results from Subsection (4.4
with

Vi(-) = DpHy(-, Dtiy), Ty = D2 Hy(-,Diiy), te[0,T], (133)

which motivates the following lemma:

Lemma 5.3. There exists a constant C' such that, for any initial condition mg € P(T?), the
processes (Vi)efo,r] and (T't)efo,r) in (133) satisfy points 2 and 4 in the introduction of Subsection
44

Proof. By Theorem and Lemma we can find a constant C such that any solution
(17t Ut)efo,] tO satisfies, independently of the initial condition my,

essuPyeq SUP | Utfnt14+a < C.
t€[0,77]

In particular, allowing the constant C to increase from line to line, it must hold that

essup,,en Sup HDpﬁt('7Dﬂt)Hn+a <C
te[0,T]
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Moreover, implementing the local coercivity condition , we deduce that (assuming C' > 1),
with probability 1, for all ¢ € [0, 7],

ITefi < C5 VoeT!, O 'y <Ty(x) < Cly,
which completes the proof. O

Given y € T? and a d-tuple £ € {0,...,n}? such that [¢| = > | ¢; < n, we call T? 53 2 >
v®) (z,m0,y) € R the value at time 0 of the backward component of the solution to when the
forward component is initialized with the distribution (—1)I1D¢,. Clearly, D6, € (C*+*' (T4))’
for any o’ € (0, 1), so that, by Theorem v (-, mg,y) belongs to C"+*(T9). (Recall that,
for a test function ¢ € C*(T%), (D%,)p = (—1)|E‘Df’Zl y[dgo(y).) Similarly, we may denote by

1 Y4

(B¢, 2,)e[o.7 the solution of ([32) with 55 = (—1)//D%, as initial condition. For simplicity,
we omit mg in the notation. We then have

0¥ = v mo,y). (134)
We then claim

Lemma 5.4. Let mg € P(T%). Then, with the same notation as above, we have, for any
o € (0,a) and any d-tuple £ € {0, ... ,n}? such that (| < n,

lim  essup,,cq t:&;%(”ﬁf’ﬁh - ﬁf’yH—(nw/) + H

~€,y+h ”’Zvy
2
Td3h—0

herea) =0 (135)

Moreover, for any £ € {0,...,n—1}¢ with |[¢| <n —1 and any i€ {1,...,d},

. 1 ( ~l,y+he; ~0, ~l+e;,
limpg, 0)5h-0 €SSUP, e SUPe[0,7] (HE (V" = pY) — b ¢ yH_(n o)
n+1+a> = 0’

+H%(§f,y+hei _ gf,y) _ été+e¢,y‘
where e; denotes the i vector of the canonical basis and £ +e; is understood as (b+e); =4 —|—5f,
forje{1,...,d}, (5? denoting the Kronecker symbol.
In particular, the function [T%)? 3 (z,y) — v (2, mo,y) is n-times differentiable with respect
to y and, for any £ € {0,...,n}? with |(| < n, the derivative ng(o)(-,mo,y) : T4 5 2 —
ng(o) (z,mo,y) belongs to C"T1H(T?) and writes

DO (z,mo,y) = v (x,mo,y), (2,y) € T

Moreover,

sup  sup [D5O (- mo, ) husr o < .
mo€eP(T?) yeT

Proof. By Corollary (with @ = @ and o/ = o for some o' € (0, «)), we can find a constant
C such that, for all y € T¢, for all mg € P(T¢) and all £ € {0,...,n}? with |[¢| < n,

"67 ~£7
€SSUpP,,ey SUp (HZt yHn+1+a + Hpt yH—(n+a’)) < C.
te[0,7]

In particular,
HU(Z)('v mo, y)HnJrlJra < C.
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Now, we make use of Proposition We know that, for any o’ € (0,1),

tan [ D18, = D5,y = 0.

n+a') -
Therefore, for o/ < a, Corollary (with o/ = o/ < a and a = «) gives (135). This yields

}lLir%Hv(@(-, mo,y + h) — v(g)(-, m, 0,

y) Hn—&-l-&-a =

proving that the mapping T¢ 3 y — v (-, mg,y) € C*T1+*(T4) is continuous.
Similarly, for [{| <n —1and i€ {1,...,d},

lm |7

R\{0}3h—0 (D0yene, = D'0y) + DHQ%H*(

0,

n+a') -
or equivalently,

1
lim = (=)D, spe, — (—~D)VID?s,) — (—1)lFel D e, 0,

R\{0}3h—0" h | —(nta) ~

As a byproduct, we get

1
i = OIS N Oy _ pltte(,
R\{(%IQI}L—J)Hh[U ( , Mo,y + hez) v ( 7m07y)] v ( 7m07y)

= 07
n+l+4+a

which proves, by induction, that
DOz, mo,y) = 0z, mo,y), w,yeT
This completes the proof. ]
Now, we prove

Lemma 5.5. Given a finite signed measure y on T%, the solution Z to (132) with u as initial
condition reads, when taken at time 0,

Z:Risx— Zo(x) = /d U(O)(:p,mo,y)du(y).
T

Proof. By compactness of the torus, we can find, for a given ¢ > 0, a covering (U;)1<i<n of
T?, made of disjoint Borel subsets, such that each U;, i = 1,..., N, has a diameter less than .
Choosing, for each i € {1,..., N}, y; € U;, we then let

Then, for any ¢ € C1(T), with |p|; < 1, we have

/Td p(y)d(p — /f)(y)‘ =

N
> / (o) — o)) < Clule

where we have denoted by ||| the total mass of .
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Therefore, by Proposition

< Cule,

N
20 - Z /U U(O)(am()vyl)diu(y)
i=1 i

n+l+a

where we have used the fact that, by linearity, the value at time 0 of the backward component
of the solution to ([132)), when the forward component is initialized with uf, reads

N N
D3 oo ) = 3 [ oo )i
=1 i=1 i

By smoothness of v(9) in y, we easily deduce that

< Clule.

2 — / O (. mo, y)du(y)
Td

n+l+4+a

The result follows by letting ¢ tend to 0. O
On the model of Corollary we now claim

Proposition 5.6. Given two initial conditions mqg,mfy € P(T), we denote by (172, Ut ) pefo, 7]
and (1M, @4 )sefo,] the respective solutions of with mo and myg as initial conditions and by
(Pt Zt)ieo,r) the solution of (132)) with mgy —mg as initial condition, so that we can let

6ﬁt:m2—rht—ﬁt, 5;7}:112—@—2,5, tE[O,T]
Then, for any o' € (0, ), we can find a constant C, independent of mo and m{, such that

€SSUP,eq SupT(H‘Sﬁt”—(n—i-a’) + H(SthnJrlJra) < Cd%(movmfj)-

xlx

In particular,

2 /
< Cdl (m07 m0)7
n+l+a

HU(O, oml) — U(0,-,mp) — /Td v O (@, mo, y)d(mp — mo) (y)

and, thus, for any x € T¢, the mapping P(T?) 3 m s U(0,z,m) is differentiable with respect to
m and the derivative reads, for any m € P(T?),

oU

5 (0.2,m,y) = v (z,m,y), yeT

The normalization condition holds:

[, v mo)dm() <o,

Td

The proof is the same as in the deterministic case (see Remark [3.10)).
Proof. We have

. - - _ N §F, . 5
dy (5215) = {—A(ézt) + <Dth(-, Dut), D(&zt)> — %(, mt) (5[),5) + ft}dt + dMy,
01(6pt) — A(0py) — div[(0pe) DpHy(-, Diy) | — div[my D}, Hy (-, Diig) (D6%) + be] = 0,
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with a boundary condition of the form

_ G N
dzr = %('mlT)((SPT) + g1,

where
by = my(DypHy(-, Dity) — DpHy(+, Dity)) — 11y D2, Hy(+, Diiy) (Dt — Dity)
fi = Hy(-, D@}) — Hy(-, Ditg) — { DpHy(-, Diiy), Dit, — Diiyy

- - OF,
- (Ft('7 m;) - Ft('a mt) - 5777;(’ mt) (m; - mt))a
~ ~ / ~ 5(; i
gr = G(-,mp) — G(-,mr) — %('va)(mT - mT)-
Now,
by = (), — i) (DpHy(+, Dity) — DpHy(+, Diiy))

1
+ mt/ | D2,H: (-, AD@; + (1 = \)Dity) — D2, i, D) | (D — D) dA
— 1y / D2 H, (-, \Dii} + (1 — X\) D) (Dt — Diig)dX
+ 1 / / AD3 Hy (-, AsDit, + (1 — A+ A(1 — 8)) Dii) (D}, — Diag) **dAds,

fi = / {D,Hy(-,\Di, + (1 — \)Dit) — D, Hy(-, Diiz), Diily — Diiy ydA

— /1(§Ft ( JAmy + (1 — /\)mt) — git(-,mt)) (mfe - mt)d)\
/ / N D2 Hy (-, AsDiy + (1 — X+ A(1 = 5)) D) (Diiy — Dig), Dty — Dty ydAds
- /0 (% (-, Amy + (1 = XNymy) — (;f;(-,mt)) (my —my)dA,
gr = /0 (gg( Amf + (1= A)ymy) — g—i(-,mT)> (mfp — mr)dA.

By Lemma we have a universal bound for
€SSUPye SUP (HatHn-&-l—&-a + ”aItHn-&-l—&-a)-

te[0,T

We deduce that

Jorl—1 < € (Qu (g, i) Nty = il + 3 — ]},

il < € (1 = @l + o (0, 0) )

197 In+14a < CdF (g, ).

Therefore, by Theorem we deduce that

€sSup,ey SUP Hi)tH 1 +essup,eq Sup HftHnJra + essup,eq |97 nt1ra < Cd% (mOa mO)

xlx xlx
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By Corollary we get the first of the two inequalities in the statement. We deduce that

|U(0,-,mp) = U(0, -, mo) < Cdi(mo, myp).

- ZOHn+1+a

By Lemma [5.5] we complete the proof. ]

Proposition 5.7. For any o/ € (0,a), we can find a constant C such that, for any mg, m{ €
P(TY), any y,y' € T% and any index £ € {0,...,n}* with |¢| < n, denoting by (i, Ut )sefo,7] and
(1}, U;)sefo,r] the respective solutions of (T8), and then (i, Zt)wefo,r) and (P}, Zf)ie[o,r] the corre-
sponding solutions of when driven by two initial conditions (—1)I' D', and (—1)|£|D£5y/,
it holds that

essupweg[ SUp | = Hlns14a + sup |ﬁt—ﬁ;n(n+a/)] < C(di(mo, mp) + Iy — o).
te[0,T] te[0,T7]

In particular,

< C<d1(mo, mg) + |y — y’la')-

U oU
VyayIETd7 ‘Dém(ovammy) _Diﬁ(oaumavyl)

n+l+4+a

Proof. Given two initial conditions mq and myg, we call (1, U )efo,r) and (1my, Uy)efo,r] the
respective solutions of (78). With (1, i)sefo,r] and (1}, @})eo,r], We associate the solutions
(Pt Zt)seo,r) and (P}, Zf)seo,r) Of when driven by two initial conditions (—1)I/ D%, and
(-1)ID*,,. Since || < n, we have

|D*5, — D',

ra’
—(n+a/) < |y_y| :
In order to prove the first estimate, we can apply Corollary with

Vi = D,H(-,Diy), V! = D,H(-,Dil}),
I, = D2 H(-, D), T,=D2H/- Diy),

so that, following the proof of Proposition
[Ve = Vllnta + [T = Tillo < Cllae = @ ns1+a-

Now, the first estimate in the statement follows from the combination of Theorem and
Corollary

The second estimate is a straightforward consequence of the first one. O

Proposition 5.8. Propositions and easily extend to any initial time to € [0,T]. Then,
for any o' € (0,a), any to € [0,T] and mg € P(TY)

U oU
Dei(to + h7 -, Mo, ) - Dz*(t(b +, Mo, )

Yém Yém =0

fim Sup n+l+a/,o/

h=0yef0,... n}d |o|<n

Proof. Given two probability measures m, m’ € P(T¢), we know from Proposition that, for
any t € 0,7,

) = Utseom) = [ 57 (tom,g)d(on’ = m)(s) + O(@ (), (136)
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the equality holding true in C"*'*®(T%) and the Landau notation O(-) being uniform in ¢y and
m (the constant C' in the statement of Proposition being explicitly quantified by means of
Proposition related to the stability of solutions to the linear equation).

By Proposition the set of functions ([T¢]? 3 (z,y) (6U/6m)(t, ,m,y))selo,1) is rel-
atively compact in C*T1H (T9) x ¢+’ (T9), for any o/ € (0,c). Any limit & : [T9]? - R
obtained by letting ¢ tend to ¢y in (136 must satisfy (use Corollary to pass to the limit in
the left-hand side):

U(t07 %y m,) - U(t07 %y m) = / (b(7 y)d(m/ - m) (y) + O(d%<m7 m/))7
Td
the equality holding true in C°(T¢). This proves that, for any = € T,

/w(to,x,m,y)d(m’—m)(y)z/ ®(z,y)d(m' —m)(y).
T Td

)

Choosing m’ as the solution at time h of the Fokker-Planck equation
&’tmt = —div(bmt), t 2 0,

for a smooth field b and with mg = m as initial condition, and then letting h tend to 0, we
deduce that

DU (to,z,m,y) -bly)dm(y) = | Dy®(z,y) - b(y)dm(y).

T Td

When m has full support, this proves that

oU
@(:B,y) = %(t(]vxamay) —i—C(.CIf), x?@/ETd'
Since both sides have a zero integral in y with respect to m, ¢(x) must be zero.

When the support of m does not cover T?, we can approximate m by a sequence (my)n>1
of measures with full supports. By Proposition we know that, for any o' € (0, a),

. SU 5U -
nh—I};)lO tf;%]‘m (t7 iy ) B %(t’ T ) n+1l+a/,af B 07
so that, in C"H1+¢ (T4) x € (T9),
5U U U
tiglo %(t7'7m7 ) = nh—lg?ﬁtllglo %(t7'7mna') = %(t()a'vma )

We easily complete the proof when |¢| = 0. Since the set of functions ([T9]? 3 (x,y)
(DU /6m) (¢, ©,m,y))seo,r) is relatively compact in crtita’(mdy  ¢o'(T9), any limit as ¢
tends to to must coincide with the derivative of index ¢ in y of the limit of [T?]? 5 (z,y) —
[6U /om](t,x, m,y) as t tends to to. O

5.3 Second-order Differentiability

Assumption. Throughout the paragraph, we assume that F, G and H satisfy and
in Subsection and that, for some integer n > 2 and some a € (0,1), (HF2(n)) and
(HG2(n+1)) hold true.
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In order to complete the analysis of the master equation, we need to investigate the second-
order differentiability in the direction of the measure, on the same model as for the first-order
derivatives.

As for the first order, the idea is to write the second-order derivative of U in the direction
m as the initial value of the backward component of a linearized system of the type ,
which is referred next to as the second-order linearized system. Basically, the second-order
linearized system is obtained by differentiating one step more the first-order linearized system

(132). Recalling that (132) has the form

JF,

dizy = {—AZ% + (DpHy(-, Diiy), DZ) — 7( me)(pe) }dt + dMy,

(137)
Oupr — Apy — div(pe Dy Hy (-, Diiy)) — div(mtszHt(-, Diy)Dz) = 0,

with the boundary condition 3

o= 9 o) ),
the procedure is to differentiate the pair (p, Z)se[o,7] With respect to the initial condition mg of
("7, Ut )yefo,], the initial condition of (p, Zt)se[o,r] being kept frozen.

Above, (my, ut)o<t<r is indeed chosen as the solution of the system , for a given initial
distribution mg € P(T?), and (j, Zt)tefo,1] @s the solution of the system with an initial
condition pg € (C"*(T%)), for some o/ < a. Implicitly, the initial condition pg is understood
as some mf — myg for another m{, € P(T%), in which case we know from Proposition that
(Pts Zt)e[o,r) Teads as the derivative, at ¢ = 0, of the solution to when initialized with
the measure mg + e(m({ — mp). However, following the strategy used in the analysis of the
first-order derivatives of U, it is much more convenient, in order to investigate the second-order
derivatives of U, to distinguish the initial condition of (jt)e[o,7] from the direction my — mo
used to differentiate the system . This says that, in , we should allow (g, 5t)te[o,T] to
be driven by an arbitrary initial condition pg € (C" (T4)Y".

Now, when is driven by an arbitrary initial condition pg and myg is perturbed in the
direction m{, —my for another m{, € P(T?) (that is my is changed into mq + (mf — mg) for some
small ¢), the system obtained by differentiating (at € = 0) takes the form

dt "(2) — { AZ(Q) —+ <_D Ht DUt th2)> 7mt)(p£2))

3,
m
2 3\ D3 -\ OF v
+ <D Ht Dut), th ® D&mut> — W(7 mt)(pt, 5mmt)}dt + th,
a2 — NG - div(ﬁ§ )Dpﬂ't(-,Dﬁt)) - div<mthth(-,Dat)Dz§2>> (138)
— div (D2, i, Diig) Doyn ) = div (i D, Hi(-, D) D5,)
— div (mtDppth( Dit) D% ® Donits ) =0,

with a terminal boundary condition of the form

~(2) 6G

52G
ApT = %(',mT)(P(Q))

52 (-,mr)(pr, Ommr),

where we have denoted by (Ommt, Omiit)e[o,r) the derivative of (M, Ut)seo,7) When the initial
condition is differentiated in the direction m{, — mq at point mg, for another mj, € P(T¢). In
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(138), the pair (,552), 2§2))te[0’T] is then understood as the derivative of the solution (p¢, Zt)se[0,1]
to (|137)).

Now, using the same philosophy as in the analysis of the first-order derivatives, we can choose
freely the initial condition pg. Generally speaking, we will choose pg = (—1)‘Z|D£6y, for some
multi-index £ € {0,...,n — 1} with || < n — 1 and some y € T?. Since py is expected to be
insensitive to any perturbation that could apply to mg, it then makes sense to let p[(f) =0. As
said above, the initial condition &,,mq of (&y,My)o<i<T is expected to have the form m{ — myg
for another probability measure my, € P(T%). Anyhow, by the same linearity argument as in the
analysis of the first-order derivative, we can start with the case when J,,mg is the derivative
of a Dirac mass, namely 0,,mg = (—1)““‘Dk(5<, for another multi-index k € {0,...,n — 1}¢,
and another ¢ € T?, in which case (O, it )o<i<r is another solution to , but with
OmMmo = (—1)|k|Dk5< as initial condition. Given these initial conditions, we then let

’U(Ak) ('7 mo, Y, C) = Z(()2)7

provided that (138) has a unique solution.
In order to check that existence and uniqueness hold true, we may proceed as follows. The

system ([138]) is of the type (107, with
Vi = D,Hy(-, D), Ty = D2 Hy(-, Diiy),
b = peD2,Hy (-, Ditg) D tiy + Oyivg D2 Hy (-, Dity) DZy + 110 Dy Hy (-, D) D2 @ Do,
: B } 3 3 62F,
fP = (D2 Hy(, Diiy), D% @ Doy liy ) — W;(wmt)(m, OmmMmi),
o 0%G
9% = m('va)(pTa Ommr).
(139)

Recall from Theorem [.3] and Lemma [£.9 on the one hand and from Corollary on the other
hand that we can find a constant C' (the value of which is allowed to increase from line to line),
independent of myg, vy, ¢, £ and k, such that

essup e SUp |it|nt1+a < C,
te[0,T]

(140)

/N

essupeq| Sup (12t s+ [0t focteo + 1]y + 10mrie] uian)] < C

te[0,T]

Since |¢|, |k| < n — 1, we can apply Corollary with n replaced by n — 1 (notice that n — 1
satisfies the assumption of , so that

eSSpreg[ Sup](HﬁtH—(nmun + Hamth—(nmul))] <C. (141)

te[0,T

Therefore, we deduce that

€SSupPyen SUp HBng(nJro/fl) <C.
te[0,T]

Similarly,

€SSuPyeq SUp HJFtOHn-i-a + esSupyen Sup Hgan-&-l—&-a <C.
te[0,T] te[0,T]
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From Theorem we deduce that, with the prescribed initial conditions, (138]) has a unique
solution. Moreover, by Corollary

~(2 ~(2
essupeq SUD 7 |ni1ra + essupeq sup 57| _pnian < C. (142)
te[0,T] te[0,T]

On the model of Lemma we claim:

Lemma 5.9. The function
[T 3 (@,5,¢) = v (@, m0,5,0)

admits continuous crossed derivatives in (y, (), up to the order n—1 in y and to the order n —1
in ¢, the derivative

D, DEVO (mo,y, €) : T 5 2 = Dy DEVOD (2,m0, 3, €),
for |£], k| <n — 1, belonging to C"T1+%(T) and writing
DD (@, mo,y, ¢) = v (@, mo,y,¢),  w,y,¢ e T

Moreover, for o/ € (0,«), there exists a constant C such that, for any multi-indices £,k with
0], k| <n =1, any y,y'.¢,¢ € T and any mg € P(TY),

HU(&k)('a mo,Y, C)“n+1+a < Ca
H’U(Z’k)('a mo, Y, C) - U(£7k)('7m0>y,7 CI)“H+1+Q < C(|y - y/|0/ + |C - <’|O/)‘

Proof. With the same notations as in Lemma we denote by (ﬁf ’C, Zf ’C)te[oi] the solution

to (132) with (—1)/*ID¥5; as initial condition and by (ﬁf’y, 5f’y)te[0,T] the solution to with

(=1 D%, as initial condition.

X C/Bny;roposition (applied with both n — 1 and n), we have, for any y,3’ € T¢ and any
) € )

sk, sk.¢ ~k, ~k,¢ '
essupweg[ sup |z ‘- 2 ¢ ln+1+a + sup | ‘- Pt ¢ |(n+o¢’1):| <Clg=¢N",
te[0,T] te[0,T] (143)
"‘67 "’E’ ! ”Z’ "’Z’ ! !

eSSUpweQ[ sup |27 — 2 [ns14a + sup 50 — Y |—(n+a’—1)] <Cly—y'|~.

te[0,T] te[0,T]

Denote now by (l;f’k’y’g)te[oj] the process (B?)te[o’T] in (139) when (pt, Zt)se0,7] stands for the
process (ﬁf’y,éf’y)te[oj] and (Ommi, Omiit)iefo,r] 15 replaced by (ﬁf’g,éf’c)te[oﬂ. Define in a

similar way (ff’k’y’c)te[o’T] and gﬁz’“’y’? Then, combining (143)) with (140) and (141))

essup,, [Hﬁ%k’yl’c — G| ntl4a
s (R B]y  LR  R))

<C(ly—y1" +12=21").
By Proposition we deduce that

[ mo,y, ) = v o,y )| <Oy =y +Ic= 1), (144)

n+l+a
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which provides the last claim in the statement (the L* bound following from ({142))).
Now, by Lemma (applied with both n and n — 1), we know that, for |k| < n —2 and

jed{l,...,d},

1, . ~ B .
lim eSSUpweQI: sup (HE (p§+he]7k . pg,k) o ptg,k+€j H
te[0,T]

R\{0}3h—0 —(n+o/-1)

1 ~C+hejk ~C.k ~C,k+e;
L R Rt W | B
where e; denotes the j'' vector of the canonical basis of R%. Therefore, by (T40)),

1 - L - .
(H ; (bf,k,y,ﬁ-‘rhe] . bf,k,y,() _ bf7k+6]7y7<”7(

lim essupweﬂ[ sup

R\{0}3h—0 t€[0,1] nta’-1)
1
+ 5

- wra)

1, tky, C lky, )
g (@ — gy g )] =0

ky,C+he;j ik, k+e;y.C
; I P I k]

By Proposition [.18]

1
im [ (0@R) (. NI (251 _ (ke H -
}ILLI)%H}Z(/U ( 7m07y7<+h€]) v ( 7m07y7C)) v ’ ( 7m07y7<) ntlia 0,

which proves, by induction, that

Dlgv(&O) (J:a mo, Y, C) = U(&k) (:Ba mo, Y, C)a z,y, C € Td'
Similarly, we can prove that

DR (z,mo,y, ) = v (@, mo,y,0), w,y,Ce T
Together with the continuity property (144)), we complete the proof. ]

We claim that

Proposition 5.10. We can find a constant C such that, for any mo,mjy € P(T9), any y,y,¢ €
T, any multi-indices €,k with |€|, |k| <n —1,

VD mo,y.0) = oD mh,y.Q)| < Cdi(mo,mp).

Proof. The proof consists of a new application of Proposition Given

e the solutions (17, Ur)tefo,r] and (My, Up)efo,r] to (78) with mg = mg and my = my as
respective initial conditions,

e the solutions (01, Omiit)tefo,r] and (Omiy, Omiy)efo,r) to (L37)), with (17, ts)sepo,r) and
(17}, Ut )sefo,r) @s respective input and 0,10 = Oming = (—=1)*ID*6; as initial condition,
for some multi-index k with |k| < n — 1 and for some ¢ € T¢,

e the solutions (p¢, Zt)efo,r] and (, Z4)sejo,r) to (L37)), with (1, Gt )refo,r) and (g, Uy)efo,1]
as respective input and (—1)1D*$, as initial condition, for some multi-index ¢ with |¢| <
n — 1 and for some y € T¢,
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(2)r ~(2)

e the solutions (ﬁgQ),2§2))te[o7T] and (p;", 2" )sefo,1) to the second-order linearized system
(L38) with (1, i, pr, Zt, OmiTie, Omit)efo,r) @and (g, @t, Py, 2ty OmiMy, OmTy)sefo,] &S Tespec-
tive input and with O as initial condition.

Notice from (I34) that Zo = v{9(-,mg,y) and 2, = vO(-,m}), y).

With each of (1, s, pt, Zt, Omt, Omiit)iefo,r) and (g, Uy, Py, 21, Omilg, Om iy )e[o,r], We can
associate the same coefficients as in ((139)), labeling with a prime the coefficients associated with
the input (g, Uy, t, 21, OmMy, Oy )tefo,r]- Combining with (140) and (141]), we obtain:

1Ve = Villnva + 1T = Tillo + 187 = 07 | —nrar—1y + [ 7 = S lnta + |97 — 9% Ins1+a
< C'(Hﬂt — Ullnt1+a + 12 = Zlnti+a + [0mbe — Oniilns14a

+ dl(mbmt/) + Hﬁt - ﬁé“—(n-&-a’—l) + Hammt - ammg”—(n-ﬁ-a’—l))'

By Propositions and (applied with both n and n — 1), we complete the proof. O
On the model of Lemma [5.5] we have

Lemma 5.11. Given a finite measure p on T?, the solution 72 o (1132), with 0 as initial
condition, when (My)o<i<T 1S initialized with mo, (pt)o<i<T 1S initialized with (—1)|£‘D25y, for
0| <n—1 andye T, and (Ominy)o<i<r 45 initialized with u, reads, when taken at time 0,

2 RY5 50 52(z) = /T o4O (@ mo, y, )du(C).
Now,

Proposition 5.12. We can find a constant C' such that, for any multi-index ¢ with |¢| < n—1,
any mo, my € P(T?) and any y € TY,

< Cd3(mg, m}).
n+l+a

’U(ﬁ)('améhy) - ,U(E)('vm(hy) - /]l'd v(€70)('7m07y7 C)d(m6 - mO)(C)

Proof. We follow the lines of the proof of Proposition Given two initial conditions mg, m(, €
P(T%), we consider

e the solutions (17, Ur)tefo,r] and (My, Up)efo,r] to (78) with mg = mg and my = my as
respective initial conditions,

e the solution (01, Omlie)sefo,r) to (132), when driven by the input (i, i) e[o,r] and by
the initial condition &, = mg — my,

e the solutions (p¢, Zt)efo,r] and (B, Z4)sejo,r) to (L37)), with (17, Gt )refo,r) and (Mg, Uy)efo,1]
as respective input and (—1)/“/D*s, as initial condition, for some multi-index ¢ with [¢| <
n — 1 and for some y € T¢,

o the solution (37, 2)ero.r1 to (T38) with (Mg, s, fe, 3¢, Omiite, Omis iejo.r] a8 input and 0

as initial condition.
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Then, we let
05 = p -, 85 =2 -z -2, telo,T].

We have
IR
om

7 (,m) (6057 + fi}dt + dIL,
(557) — A(657)) — div[ (657 Dy (-, Dity)] — div[my D2, Hi(-, D) (DZY) + b] = 0,

dt(5 )) - {_A(5§§2)) + <ngt("Dat)7D(5§§2))

with a boundary condition of the form

. 5G _

where
b = 7, (Dpﬁt(-,Da;) — D,y (-, Dﬂt)) + (nggpﬁt(-, Dit}) — i D2, Hi(, Dat))ng
— Oy D2 Hy (-, Diiy) D% — py D2, Hy (-, Dig) Doty — 11 Dy, Hy (-, Dity) D2 @ Dy,
fi = (DpH,(-, D&}) — DpHy(-, Diy), D7,y — { D2 Hy(+, Dity), D% ® Dépily y

- ~ 27
(Bt ) = S 60) = T ) 1, D)),

. G 6G 502G
Jr = %(wm'T)(ﬂ'T) - %('amT)(p/T) = 52 Csmr)(pr, dmmr ),

and where (Mt)te[O,T] is a square integrable martingale as in ((107]).
Therefore,

Et = (,5;: - f’t) (Dpﬁt('a Da;) - Dpﬁt('v Dﬂt))

+ (= e ) (D2, D) — D2, D) ) D
+ (il = i — Oy ) D2, Hil-, Dit) D,
+ my (Df)pﬁt(', Dﬁ;) - Dgpﬁt('a D’at) - Dippf{t(-, Dﬂt)Dam’l]t> Dz,

and
i = <D,,Ert(-, Dit}) — D, H, (-, Diiy), D3, — D§t>
n <Dpﬁ1t(-, Dii}) — DyHy (-, Dity) — D2, Hy(-, Diy) Dépiy, th>

e (Bt = B o)) (= )

m
om t
6F, SE 52F

+ (Tﬂ;("m;)(pt) - Tn;('vmt)(ﬂt) - W;('ymt)(pt, 5mmt)),
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Similarly,

gr = (g%(?mf_p) — g%(’m:p)) (pép — PT)
: ~ 5
(3% (omi) om) = 4o o ma)pr) — 33 oma)or. B ).

Applying Theorem Lemma Propositions and and (140)) and (141]) and using the
same kind of Taylor expansion as in the proof of Proposition we deduce that :

essubienr Sp |Bel-rrar1) + |l + 07 los140 | < Cafmo,m).
te[o,

By Proposition we complete the proof. O
We thus deduce:

Proposition 5.13. For any x € T?, the function P(T?) 3 m > U(0,x,m) is twice differentiable
in the direction m and the second-order derivatives read, for any m € P(T%)

52U

5 2(0 r,m,y,y) = (0’0)(56,77%3/,?//)7 y,y €T

In particular, for any o’ € (0,a), t € [0,T] and m € P(T?), the function [62U /6m?](0,-,m,-, )
belongs to C"T1+(Td) x ¢+ (T?) x ¢4 (T9) and the mapping

52U

55(0,m, ) € CPHHRE(TY) s (T x cn (1)

P(TY 3m —
is continuous (with respect to dy). The derivatives in y and y' read:

52U
Dy Dy s—5(0,2,m,y.y) = v (@, my,y'), yy/ €T k|10 <n—1.

Proof. By Proposition we indeed know that, for any multi-index ¢ with [¢| < n — 1 and
any x,y € T¢, the mapping P(T¢) 3 m Dg [6U/dm](0, z,m,y) is differentiable with respect to
m, the derivative writing, for any m € P(T%),

5 U
DZ
5m[ Yom
By Lemma 5.9, [6/dm] [De [6U/6m]](0,2,m,y,y") is n — 1 times differentiable with respect to

vy and, together with Proposition u the derivatives are continuous in all the parameters.
Making use of Schwarz’ Lemma [2.4] the proof is easily completed. O

](O,w,m,y,y') = v49(0,2,m,y,y"), y,y € T

Following Proposition we finally claim:

Proposition 5.14. Proposz’tz’on easily extend to any initial time tg € [0,T]. Then, for any
"€ (0,a), any to € [0,T] and mqy € P(T)

U 52U
(t0+h7 , Mo, ) D5D1y§5 Q(th , Mo, ) =0.

n+1+a/ o/ ,0f

lim sup sup HD

yy
h=0 || <n—1 |f|<n—1 om
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5.4 Proof of Theorem [2.11]

We now prove Theorem Of course the key point is to prove that U, as constructed in the
previous, subsection is a solution of the master equation .

5.4.1 Regularity Properties of the Solution

The regularity properties of U follow from Subsections and see in particular Propo-
sitions and (pay attention that, in the statements of Theorem and of Proposition
the indices of regularity in y and 3y’ are not exactly the same).

5.4.2 Derivation of the Master Equation

We now have all the necessary ingredients in order to derive the master equation satisfied by
U. The first point is to recall that, whenever the forward component (1), in (128) is

initialized with mgo € P(T%) at time ¢, then
U(th xvm()) = ato(x)v T e Tda

(1t )sefto,7) denoting the backward component in ([128). Moreover, by Lemma for any h €
[T - to]a d

ﬂto-l—h(x) = U(to + h,ﬂf + \/i(Wto—i-h - Wto)ymto,t0+h)a xeT )
where my,; the image of m; by the random mapping T¢ 5 2 > 2+ /2(W; — Wi,) that is
Mt = [id + V2(W; — Wy, ). In particular, we can write

U(to + hvxa mO) - U(t(),x, mO)

h
_ E[U(t() +h,x + \/Q(WtoJrh - Wto)amtmtwh)] — U(t(), x’mO)
h
N Ul(to + h,z,mo) — E[U (to + h,n;—i— V2(Wiy i — Wio)s Mg t0+1) | (145)
_ E[ﬂtﬁh(ﬂf])l] — U, ()
n U(to + h,SE,mo) - E[U(to + h,i’L-i- \/Q(th_h - Wto)amto,to+h)] '

We start with the first term in the right-hand side of (145)). Following , we deduce from the
backward equation in (128) that, for any x € T¢,

dt [E(’LNLt (l’))] = E[{—Aﬂt + Ij[to,t('a D’LNLt) — Ftoi('? mto,t)}(m)]dt,

where the coefficients Fto,t and f[to,t are given by (129). In particular, thanks to the regularity
property in Corollary we deduce that

,lli{% E[Uto+h($])1] — Uy, () = —A,U(ty, mg, ) + H(x, DIU(tO,mo,a:)) — F(x,mo). (146)

In order to pass to the limit in the last term in (145]), we need a specific form of 1t6’s formula.
The precise version is given in Lemma below. Applied to the current setting, with

Bt() = DpH('a DxU(t7 ) mto,t))7
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it says that

o
Jim EIE[U(to +hya + V2(Wign — Wio)s g aoen) — U (to + h,x,mo)]
= AZEU(t(),xva)

+ 2 / diVy [DmU] (t(); x,mo, y) dmO(y)
Td

147
- T4 DmU(tﬂaxamOvy)DpH(y7DU(t0>y7m0))dm0(y) ( )

+2 / lex [.DmU] (tO’ x,mo, y) dmo (y)
Td

# [ DR oo, ) o )mo).
[T4]?

From (146)) and (147), we deduce that, for any (x,mg) € T¢ x P(T%), the mapping [0,T] 5 t +>
U(t,z,mp) is right-differentiable and, for any ¢y € [0,7T),

U(to + h,x,mg

~—

. - U(th z, mO)
lim

)
= —2AxU(t0, T, mo

— Q/Td divy [ D U] (to, 2, mo, y)dmo(y)

-z

+ H(a:, D, U(ty, x, mo)) — F(:J;, mo)

+ Dy, U (to, z, mo,y) DpH (y, DU (to, y, mo) ) dmo(y)
T

- 2/ lem[DmU] (t07x7m07y)dm0(y) - / Tr[DgnmU(t()vxamOvyayl):ldmo(y)dm()(y/)'
Td [Td]Q

Since the right-hand side is continuous in (g, z, mg), we deduce that U is continuously differen-
tiable in time and satisfies the master equation .

5.4.3 TUniqueness

It now remains to prove uniqueness. Considering a solution V' to the master equation along
the lines of Definition the strategy is to expand

Uy = V(t,x + \/§Wt,m;), te 0,77,

where, for a given initial condition mg € P(T¢), m/} is the image of 7} by the mapping T? 5 x
T+ 2W;, (71)e[0,] denoting the solution of the Fokker-Planck equation

iy = { i + i (i Dy i (-, DoV (1, + VoW, 1)) Yt

which reads, for almost every realization of (Wi)e[o,r], as the flow of conditional marginal
distributions (given (W;)ep0,77) of the McKean-Vlasov process

dXy = —DpHy(Xy, D,V (t, + V2Wy, L(X|W)))dt +v2dBy, te[0,T], (148)

Xo having mg as distribution. Notice that the above equation is uniquely solvable since D,V
is Lipschitz continuous in the space and measure arguments (by the simple fact that D2V and
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D,,D,V are continuous functions on a compact set). We refer to [64] for standard solvability
results for McKean-Vlasov SDEs (which may be easily extended to the current setting).

Of course, the key point is to prove that the pair (m;,a;)te[oﬂ solves the same forward-
backward system as (1, Uiy )sefo,7], in which case it will follow that V (0, x,mg) = @ = g =
U(0,2z,mp). (The same argument may be repeated for any other initial condition with another
initial time.)

The strategy consists of a suitable application of Lemmal5.15 below. Given 0 < ¢ < t+h < T,
we have to expand the difference

E[V(t + hy2 + V2Win, my )| Fe| = V (8, + V2Wi, m))

=E[V(t+ h,x + V2Wysn, m) )| Fe] = V(¢ + b2 + V2We, m))
+V(t+ h,a +V2Wy,m)) — V (t, 2 +V2W;,m})

= Sin+ St

(149)

By Lemma below, with
5t() = DPH(anV(uam;))a le [O7T]7

it holds that
Stl,h = h[AxV(t,m + ﬁthmg) + 2/ divy [ D V] (t, 2 + ﬁWt,m;,y)de(y)
Td

— DmV(t, T+ \/§Wt, m;, y) . DpH(y7 D:BV(ta Y, m;ﬁ))dm;(y)
Td (150)
+ 2/ divy [Din V] (t, 2 + V2Wi, m}, y)dm) (y)
Td

+ / Tr[D,Qan] (t, x +V2Wy,my,y, y’) dmi(y)dmi(y') + epprn |
[T4]

where (€5.t)s te[to,7]:s<¢ 15 @ family of real-valued random variables such that

lim sup Ellesst|| = 0.
PNO g te[to, T):|s—t|<h [ ’ ]

Expand now St% , in (149) at the first order in ¢ and use the fact that ¢,V is uniformly continuous

on the compact set [0,7] x T¢ x Py(T¢). Combining (T49)), (150) and the master PDE
satisfied by V', we deduce that

E[V (t + h,2 + V2Wiip, m}, )| F] — V (L, z + V2W,, m})
— <AVt + VW mp) — H (x + V2Wi, DLV (¢ @+ V2W,m)))

+ F($ + \/QWt, m;) + 5t,t+h] .

Considering a partition ¢t =ty < t; < --- <ty =T of [t,T] of step size h, the above identity
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yields

E[G(z + V2Wr,mf) =V (t, 2 + V2W, mt) | F]

N-1
— = | AaV (b w + VWi ) = Hw + VW, DoVt + VW, m),))
1=0
+F (2 + x/iwti,m;i)]
N—
2 €t ti +h|-7:t

Since
lim sup sup E[‘]E[ar,su:t”] < lim sup sup E[|£T75|] =0,
ANO - 7,5€[0,T]:|r—s|<h ANO - 7,5€[0,T]:[r—s|<h
we can easily replace each E[ey, ;,+n|F¢] by €4, itself, allowing for a modification of e, 4,, .
Moreover, here and below (cf. the proof of Lemma , we use the fact that, for a random
process (Vt)se[o,r], With paths in C°([0, T],R), satisfying

essup, sup |y| < oo,
wes) 1e[0.7] (151)
it must hold that
im  sup Effed] =0, mes= —— / (0 — o), (152)
h\O g 1e[0,T:|s—t| <h s =t Js

the proof just consisting in bounding |ns | by wy(h), where w., stands for the pathwise modulus
of continuity of (7¢)se[0,77, Which satisfies, thanks to (151]) and Lebesgue’s dominated convergence
theorem,

Jim Efw, ()] = 0.

Therefore, allowing for a modification of the random variables e, 4, +p, for i =0,..., N — 1, we
deduce that
E|G(z + V2Wr,m}) =V (t, 2 + V2W;, my) | F]

T
= —/ [AxV(s,x +/2W,, m;) - H(ac +2W,, D,V (s, x + \/§Ws,m;))

t
+ F(x + ﬁWS,mg)]ds

N-1
+h 2 €ty ti+h-
i=0
Letting, for any = € T¢,
M/(z) = V(t,z + V2W;,m})

¢
+ / [AxV(s, z +V2Ws,ml) — H(x + V2Ws, D,V (s, + V2W,,m)))

0
+ F(w +V2Ws, m;)]ds,
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we deduce that
N-1

E[Mp(z) — M{(2)|Fe] = h D, €4, t4n-
1=0

Now, letting h tend to 0, we deduce that (]\th’(x))te[O’T] is a martingale. Thanks to the regularity
properties of V' and its derivatives, it is bounded.
Letting
oy(z) = V(t,x +V2W;,m}), tel0,T],

we finally notice that

T
O(x) = Gr(z,mh) + / [AL0s(x) — Hs (2, Dog(x)) + F(z,m))|ds — (Mp — M;)(z), te0,T],
t
which proves that (m}, oy, ]\Nﬂ)te[O,T] solves ([78)).

5.4.4 Tailor-made It6’s Formula

Let U be a function satisfying the same assumption as in Definition [2.10] and, for a given
to € [0,T], (t)sefro,77 be an adapted process with paths in C°%([to, T], P(T%)) such that, with
probability 1, for any smooth test function ¢ € C*(T4),

| [ wwainto)|

(153)
- {/Td [Ap(z) — (Bi(z + V2(W, — Wy,)), Dgp(x)}]dmt(m)}dt, t e [to, T],

for some adapted process (8;)seft,,r], With paths in C°([to, T1, [CO(T9)]?), such that

essuPeq Sup | Bifo < oo,
te[to,T]

so that, by Lebesgue’s dominated convergence theorem,

lim E| sup 18s = Btllo] = 0.
h—=0 " "5 te[0,T],|t—s|<h

In other words, (1)se[t,,r] stands for the flow of conditional marginal laws of (X¢)se[s,,r] given
Fr, where (Xt)sept,,17 solves the stochastic differential equation:

dXy = —B(Xy + V2(Wy — W) )dt +v2dBy,  te [to, T],

X4, being distributed according to my, conditional on F7. In particular, there exists a deter-
ministic constant C' such that, with probability 1, for all to <t <t+h < T,

di(Mysn, ) < CVh.

Given some t € [tg, T], we denote by my = (- = - + v/2(W; — Wy, ) the push-forward of 7y
by the application T¢ 3 x +> 2 + W; — W, € T? (so that my, = 1y,).

We then have the local Ito-Taylor expansion:
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Lemma 5.15. Under the above assumption, we can find a family of real-valued random variables

(5s,t)3,te[t0,T];S<t such that
lim sup E[|gs’t|] =0,
A0 s,te[to,T]:|s—t|<h

and, for any t € [to, T,
%[E[U(t +hy V2 Wi — Wig)ymyyn) — Ut + hyx + V2(Wigp, — Wey),my) |]-"t]]

= AU (t, @+ V2(Wy — Wyy),my) +2 /w divy [ D U] (t, @ + V2(Wy — Wyy), my, y) dma(y)
~ | DU (t, 2 4+ V2(Wi = Wiy ), m,y) - Be(y)dme(y)

+ 2/ div, [DmU] (t7 T+ \/§(Wt — W), ma, y)dmt(y)
Td

! /[ d]2 r [Dz”mU] (t’ T+ V2AWe = W), ey, yl)dmt(y)dmt(y/) + Ettin-
T

Proof. Without any loss of generality, we assume that tg = 0. Moreover, throughout the analysis,
we shall use the following variant of (152)): For two random processes (Ve)seo,r] and (9))sefo, 775
with paths in C([0,T],C°(E)) and C°([0, T], F) respectively, where E is a compact metric space
(the distance being denoted by dg) and F' is a metric space (the distance being denoted by df),
satisfying

essup,en Sup |[yfo < o,

te[0,T7]
it must hold that
lim  sup  E[lne]] =0, 7e= sup sup e (y) —s(x)|- (154)
PNO 5 tel0,T):s—t|<h T€[s,t] z,y€E:dE(T,y)<SUPe[s,¢) AF (V7575)

Now, for given ¢t € [0,T) and h € (0,7 —t], we let 6,W; = Wy, — Wy and 6pmy = my gy, — .
By Taylor-Lagrange’s formula, we can find some random variable A with values in [0, 1] E]such
that

U(t + h,x + \/§Wt+h,mt+h) — U(t + h,x+ \/§Wt,mt)
§U
= V2D, U(t + h,z +V2W;,my) - 6, Wy + / %(t + hy + V2We, my, y) d(Spme ) (y)
Td
+ D2U (t + b,z + V2Wy + V2X6, Wi, my + Aoy ) - (6, W) ®?
§

U
+2 Dx%(t + h,x + V2W + V2N Wy, my + Ao, y) - 5, Wed(8pmy) (y)
Td

1 52U
+ 5 /[Td]2 W(t + h; T+ \/§Wt + ﬁ)\(ghWt; my + )\(5hmt’ 1, y/)d(5hmt) (y)d(5hmt) (y/)

=T} + T2 + TP + T} + T,

(155)

® The fact that A is a random variable may be justified as follows. Given a continuous mapping ¢ from
T¢ x P(T?) into R and two random variables (X, m) and (X’,m’) with values in (R?,P(T%)) such that the
mapping [0,1] 3 ¢ — p(cX'+ (1 — ¢)X,cm’ + (1 — ¢)m) vanishes at least once, the quantity A\ = inf{c € [0,1] :
e(eX"+ (1 —c)X,em’ + (1 — ¢)m) = 0} defines a random variable since {A > ¢} = Nnem (0} Neregefo,e {9 (¢ X' +
1-)X,dm' + (1 —=)ym)p(X,m) > 1/n}.
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where we used the dot “-” to denote the inner product in Euclidean spaces. Part of the analysis
relies on the following decomposition. Given a bounded and Borel measurable function ¢ : T¢ —
R, it holds that

/ (1) (3me) (v)
Dimen(s) = [ el)imi()

oy + V2Wysp) dingn(y) — ” oy + V2Wy)ding (y) (156)

\\\\

(v + V2Wiin)d(Fn — ) (y) + /Td [@(y +V2Wiih) — oy + ﬁWt)]dmt(y)
(y + V2Woin)d (e n — 1e) (y) + /Td [w(y + V265, W) — w(y)]dmt(y)-

Td

In particular, whenever ¢ is a bounded Borel measurable mapping from [T?]? into R, it holds
that

_l’_
= /[Td]2 ‘P(y +V2Wyin,y + \/§Wt+h)d(’r~nt+h — Tht)(y)d(mHh — ﬁzt) (y") (157)
+ / :‘P(Z’J + \/§Wt+ha y + ﬁéhWt) — QP(y + \/§Wt+h, yl)]d(mt+h o mt) (y)dma(y')

+ /Td]2 :‘P(Z/ + V25, Wy + \/§Wt+h) — cp(y, v+ \/§Wt+h)]dmt(y)d(fnt+h — fnt)(y')

+ :tp(y + V20, Wy + V20,W) — o (y + V25, W, y)
— oy +V20u1) + 9(y,5') | dme(y)dma ().
We now proceed with the analysis of . We start with 7). It is pretty clear that
E[T}|F] = o. (158)

Look at now the term 777. Following (156), write it

oU
T? = / g (t +h,z + V2W, my, y + V2Wiip ) d (s n — 1) (y)

“r/ [g:{l(tﬁ-h JL"‘F\&Wt,mt,y-i-\f(ShWt)

oU
— %(t + h, x4+ V2W;, my, y)]dmt(y)

(159)

2,1 2,2
=T, +T,".
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By the PDE satisfied by (1)e[s,,17, We have

t+h
21 / ds/ t—l—h ac—i—\th,mt,y—i-\fWHh)dms()
Td
G (160
— / ds Dy%(t + hyx + NV2Wy, my, y + \/§Wt+h) - Bs (y + \/EWS)dms(y).
t Td

Therefore, taking the conditional expectation, dividing by A and using the fact that my is the
push-forward of 71; by the mapping T? 3 z + x + /2W; (pay attention that the measures below
are my and not my), we can write

21|]:t / A t :c+\/>Wt,mt, )dmt(y)

- 4 DmU(t7 T+ \/§Wt> mg, y) . /Bt(y)dmt(y) + €t,t+h)
T

where, as in the statement, (e5¢)o<s<t<7 1S @ generic notation for denoting a family of random
variables that satisfies

lim sup E|les¢|| =0. 161
h\0|t s|2h [| t” (161)

Here we used the same trick as in ) to prove (161]) (see also (152))). Indeed, by a first
application of ((154)), we can write

21 t+h SU
/ ds | Ay (5,2 + V2Ws,ms, y + V2Ws) dinns(y)
Td
t+h SU
- / ds Dy%(sa T+ \/§W5a ms, Y + \/QWS) . /85 (y + \/iws)dms(y) + hgt,tJrh-
t Td
Then, we can apply (154]) once again with
oU -
vs(z) = Ay—(s, T+ V2Ws, mg, y + ﬁWs)dms(y)
Td om
oU
Dy%(s, T+ V2We, g,y + V2Wy) - B (y + V2Wy) ding (y).

Using It6’s formula to handle the second term in (159)), we get in a similar way

oU
—E[T?| 7] = 2/ Ayé—(t,x + V2Wi, my, y) dme(y)
Td m

(162)
- dDmU(tax + ﬁWtamtay) Bt(y)dmt(y) +€t,t+h'
T
Turn now to T} in (155)). Using again (154)), it is quite clear that
—E[TE|F] = AUt 2 + V2Wi,my) + g (163)
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We now handle T}}. Following (I56]), we write
Ty
oU
=2 I:Da:% (t+h,x+ V2Wy + V2 W, my + Aoy, y + \/§Wt+h)
Td
: 5hWt]d(mt+h - Tht) (y)

U
2 [D (t+ by + VW, + V2AGL Wi, my + Adma, y + V26, W)

Td x%
§U
— Do (t + b2 + V2Wy + V2X6, Wi, my + Ao, y)] -6 Wdmy (y)
=Ty + 1,7

Making use of the forward Fokker-Planck equation for (1)se[s,,r] as in the proof of (162)), we

get that

1
EE[T;’Hft] = Ett+h-

Now, by Taylor-Lagrange’s formula, we can find another [0, 1]-valued random variable X\
such that

T2 = 9 /w [Dny%(t + hya + V2Wi + V2N Wy, my + A, y + V2N 8, W)
. ((5hWt)®2]dmt(y).
And, then,
1 1 4,2
EE[T’%U}] = EIE[TH |]:t] + Ettth
=2 /Td divy [ng%] (t, =+ V2Wi, my, y)dmy(y) + erien (164)

= 2/ div, [Dygﬂ] (t, x + \/QWt, me, y)dmt(y) + Ett+h-
Td m
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It finally remains to handle 77. Thanks to (157)), we write
Ty
1 52U
- - 52 (t + h,x + V2Wy + V2AL Wi, my + Ao,y + V2Wiin, ¥ + V2 W)
[T4]?
d(men — me) () d (Mpsn — M) (y')

1 §2U
+ 2/ [(57712 (t-i—h .%'+\/7Wt +\[/\(5hWt,mt +)\(5hmt,y+\f§hWt,y +\th+h)
[T]2

52U
— s g(t+hrt V2W, + V2N, Wi, my + A, v,y + \fgWHh)]dmt(y)
d(imen — 1) ()

1 52U
+ 2/ [W(t + hy @+ V2Wy A+ V2N Wy, my + Ay, y + V2Wign, 3+ V20, W)
[Td]

52U N N
— 5 (t+h,z+ V2W, + VAL Wy, iy 4+ AN, y + V2 Wi, y')]d(mHh — 1) (y)
dmy(y')
1 52U 1
+ 5 W(t +h,x+ \/§Wt + ﬁA&hWt, mg + Nopmy, y + \/E(shWt, Yy + \/ﬁ(shWt)
[T4]2
52U
—ss(t+hat VWi + V2N Wy, my + Ao, y + V20, Wi, o)
52U
— 55 (L how + V2R Wi e+ Aowime, y, ' + V20, W)
52U
+ S (t+ hya + V2W + V2A W, my + Aowme, y,y )]dmt(y)dmt(y’)
1
§(T51+T52+T53+T54) (165)

Making use of the Fokker-Planck equation satisfied by (174)e[s, 7| together with the regularity
assumptions of §2U/dm? in Definition it is readily seen that

1
EE[T,?’I + T+ TP | F] = erpin (166)

Focus now on T,f 4 With obvious notation, write it under the form

Tt = T ot S A, (167)
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Performing a second-order Taylor expansion, we get

5,4,1
Th

52U
= /[ s 52 (t +h,x+ V2W; + \/7)‘5hWt7 mg + Aoy, Y,y )dmt(y)dmt(y’)
T

+ V2 Dy 5 Ut + hyw VW, + VAGWe, e + A, ,5') - 6 Wdima(y)dma(y)
[T4]2
+ \fD (t + h, x4+ V2Wy + V2ALWe, my 4+ Nopmy, v, y ) S Widmy(y)dmy(y')
[T4]2
52U
+ Di Sm2 (t + h7 T+ \/§Wt + \/i)\éhwta my + A(Sth’ta Y, yl) ’ (5hWt)®2dmt(y)dmt(yl)
[T<]?

52U
+ - Dy (4 b+ V2We + V2AG e me + Ao, . ) (65 W2) 22 dmy (y)dmy (y/)
T

52U
+/ 2Dy Dy 5 (t+ h, 4+ V2Ws + V2AL Wi, my + Aopme, y, ) - (0W2) 22 dmy (y)dmy (y/)
[r4)2

+ Ett+h
=T L+ IR T+ TR+ T+ hepon.
Similarly, we get
T2 = T 4 I+ JE + heggon,
T = TP 4 12+ JE + heggon,
from which, together with (167)), we deduce that
Tt = Y 4 herpon, (168)

and then, with (166]),

1
E]}E[Tfﬂft] E[ T 4|-7:t] + Ett+h
2 (169)

0°U
/[d] Tr[D Dy (t.z+ V2w, my,y, y')]dmt(y)dmt(y/) + et tthe
T

2h

From (155]), (158)), (162), (163]), (164) and (169)), we deduce that,

%[E[U(t Bz + VIWianmy) — U(t+ bz + VW, mt)|ft]]

= AUtz +V2Wi,my) + 2 /w divy [ D U] (t, @ + V2Wi, me, y) dmy ()
-/ DU (t, 2 4+ V2Wi,my, y) - Be(y)dma(y)
+2 /Td dive [Dn U] (t, @ + V2Wy, my, y) dmy(y)
+ /[Td]2 Tr[DfnmU(t, x + V2Wy, my, y, y/)]dmt(y)dmt(y/) + €t t+h

which completes the proof. O
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5.5 Proof of Corollary

We are now ready to come back to the well-posedness of the stochastic MFG system

diuy = {—2Aut + H(x, Dus) — F(x,my) — ﬁdiv(vt)}dt + v - V/2dWy,
dymy = [2Amy + div(myDpH (z, D)) |dt — v/2div(mdWy),  in [to,T] x T4,  (170)
my, = mo, ur(z) = G(z, mr) in T¢.

For simplicity of notation, we prove the existence and uniqueness of the solution for ty = 0.

First step. Ezistence of a solution. We start with the solution (at,mt,Mt)te[QT] to the
System
dyiiny = { Ay + div (1 DpHy (-, Diiy)) }dt,
diytiy = {—Aﬁt + Ht(-, bet) — Ft(', mt)}dt + th, (171)
mo = mo, ar(z) = G(z, m7) in T9,
where Hy(z,p) = H(z++2W;,p), Fi(x,m) = F(z++/2W;,m) and G(z,m) = G(x++/2Wr, m).
The existence and uniqueness of a solution (g, My, Mt)te[O,T] to is ensured by Theorem
Given such a solution, we let

u(x) = dy(x — V2W), zeT?; my = (id + V2Wy)tme, te[0,T],

and claim that the pair (us, my)e[o,r) thus defined satisfies (170)) (for a suitable (v )sef0,77)-

The dynamics satisfied by (m4)e[o,r] are given by the so-called It6-Wentzell formula for
distributed-valued processes, see [43, Theorem 1.1], the proof of which works as follows: for any
test function ¢ € C3(T¢) and any z € R, we have [, ¢(z)dm(z) = [ra d(x + V2W)dimu(z);
expanding the variation of ([1q ¢(x + 2)dm¢(x))se[o,r) by means of the Fokker-Planck equation
satisfied by (17)e[o,r] and then replacing z by v2W;, we then obtain the semi-martingale
expansion of ([rq ¢(x + ﬁwt)dmt(x))te[w] by applying the standard Ito-Wentzell formula.
Once again we refer to [43, Theorem 1.1] for a complete account.

Applying [43, Theorem 1.1] to our framework (with the formal writing (m:(z) = M (x —
\/EWt))te[()’T]), this shows exactly that (m¢).e[o, 77 solves

dmy = {28my + div (D Hy(w = V2Wy, Ditg(w — V2W0)) ) bt — V2div(m,d¥))
= {28m + div(D,H (z, Duy(a)) ) }dt — v2div (myd 7). (172)

Next we consider the equation satisfied by (Ut)te[o,T]- Generally speaking, the strategy is
similar. Intuitively, it consists in applying It6-Wenztell formula again, but to (u;(x) = as(x —
ﬂWt))te[o,T]- Anyhow, in order to apply It6-Wentzell formula, we need first to identify the
martingale part in (i ())e[o,r] (namely (]\th(w))te[o’T]). Recalling from Lemmathe formula

ﬂt(x) :U(t,x—l—\@Wt,mt), te [O,T],

we understand that the martingale part of (@¢(z))se[o,7) should be given by the first-order expan-
sion of the above right-hand side (using an appropriate version of It6’s formula for functionals
defined on [0,7] x T¢ x P(T%)). For our purpose, it is simpler to express u;(x) in terms of U
directly:

ug(x) = U(t,ar,mt), te[0,T].

The trick is then to expand the above right-hand side by taking benefit from the master equation
satisfied by U and from the tailor-made It6’s formula given in Lemma [5.15
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In order to apply Lemma we observe that, in (U(t, ,m¢))se[o,r], the r-dynamics are
entirely frozen so that we are led back to the case when U is independent of x. With the same
notation as in Lemma [5.15 we then get

E[U(t + h,z,myyn) — U(t + h, z,my)| 7]

= Q/Td divy [ Dy U] (t, 2, my, y)dmy(y)
(173)

/. D U(t,2,my,y) - DpH (y, Duy(y))dmy(y)
T

+ /[ d]2 Tr[DTQnmU] (t7 T, mg, Y, y/)dmt(y)dmt(y’) —+ Et’tJrh'
T

Of course, this gives the absolutely continuous part only in the semi-martingale expansion of
(U(t, z,m¢))te[o,r]- In order to compute the martingale part, one must revisit the proof of Lemma
5.150 Going back to , we know that, in our case, Tﬁ, Tg’ and Tfl1 are zero (as everything
works as if U was independent of x).

Now, denoting by (7st)s,te[0,1]:s<¢ @ family of random variables satisfying

1
lim — sup E[ns.)*] = 0, (174)
hNO B 5,te[0,T]:[s—t|<h [ ’ ]

we can write, by (159) and (160)):
TE = \/§< p,2Y

” ym(tax>mtvy)dmt(y)> “OnWi + Mgt
Moreover, by (165 and (168))

5
Ty = Nt t+h>

proving that
U(t + h? x, mt+h) - E[U(t + h’? x, mt+h)|ft]

oU
= \/Q( Dy(s(tamamtay)dmt(y)> oWt + N t4h,
Td m
for some family (7s,¢)s te[0,7]:s<¢ that must satisfy (174). With such a decomposition, it holds that
E[nt,t4+n|Ft] = 0. Therefore, for any ¢ € [0,7] and any partition 0 =rg <7 <rp <--- <ry =1,
we have

N-1
(U(Ti-i-la Z, m?”i+1) - E[U(T’L-‘rlv Z, mri+1)|fri]>
i=0
N-1 SU
= |:\/§< DyT(Tia xvmnvy)dmm (y)> ) (Wri+1 - Wﬁ) + 771”»;,1“¢+1:|a
i=0 T4 m

with the property that
E[nm,ﬁ+1|fn] = 07 E[|777“i,Ti+1|2] < TrriaTi+1|Ti+1 - Ti|7

where limp~ o Sup(, yyeo,772:/s—t|<h Ts;t = 0. By a standard computation of conditional expecta-
tion, we have that
2

N-1
}13%15“ 2 Mririan
=0
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where § stands for the mesh of the partition rg,71,...,7rn. As a consequence, the following limit
holds true in L?:

N-1

t
%I\I‘% (U(ri+1>$7mri+1) - E[U(Ti+1ax7m7“i+1)|f7“i]> = \/5/ DmU(S>$7mS7y) < dWs.
=0 0

Together with , we deduce that
dyug(x) = {@U(t,x,mﬂ
+ [ [2 D]t m0,) = DUt m0,0) - Dy (. D) )
+ /Td /Ed Tr[DfnmU] (t,:(:,mt,y,y’)dmt(y)dmt(y’)}dt

Ve ( DmU@,x,mt,y)dmt(y)) LA,
’]I‘d

Letting

(@) = | DuU(tz,mey)dm(y), te0,T], zeT,

and using the master equation satisfied by U, we obtain therefore
dyu(x) = {—ZAut(x) + H(z, Duy(z)) — F(z,my) — ﬁdiv(vt(x)) } dt 4 vi(z) - V2dW;.

Together with (172]), this completes the proof of the existence of a solution to (170)).

Second step. Uniqueness of the solution. We now prove uniqueness of the solution to ((170]).
Given a solution (ut, my)e[o,r] (With some (vt)epo,17) to (170), we let

ﬂt(l‘) = ut(:n + \/§Wt), S Td, my = (Zd— \/EWt)jjmt, te [0, T]

In order to prove uniqueness, it suffices to show that (ﬂt,fnt)te[O’T] is a solution to (for
some martingale (Mt)te[o,T])-

We first investigate the dynamics of (1¢)e[0,7)- As in the first step (ewistence of a solution),
we may apply It6-Wenztell formula for distribution-valued processes. Indeed, thanks to [43]
Theorem 1.1] (with the formal writing (1 (x) = my(z + vV2W4))iepo,r]), Wwe get exactly that
(74 )4e(0,7) satisfy the first equation in .

In order to prove the second equation in , we apply 1to-Wentzell formula for real-valued
processes to (us(x) = ug(x + ﬁWt))te[O,T]a see [43, Theorem 3.1].
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6 Convergence of the Nash system

In this section, we consider, for an integer N > 2, a classical solution (v ’i)l-e{17...’ ny of the Nash
system with a common noise:

—o™Ni(t, ) ZA Nt x) BZTrD% 2,V Nt z) + H(xi,DxivN’i(t, x))
]7
ZD H(zj, Dy;v Ni(t, x)) - ijvN’Z(t,m) = F(x;, mY?) in [0, 7] x (THN
. ];éz
v™VUT, ) = Gz, mY?) in (T4)N
(175)
- 1
where we set, for € = (z1,...,zy) € (TH)N, mdi = N_1 dz;. Our aim is to prove Theorem
J#i
which says that the solution (v ’i)ie{1,..., N} converges, in a suitable sense, to the solution of
the second order master equation and Theorem which claims that the optimal trajectories
also converge.
Throughout this part we assume that H, F' and G satisfy the assumption of Theorem
with n > 2. This allows us to define U = U(t, 2z, m) the solution of the second order master
equation

([ _o,U — (1 + B)AU + H(z, DoU) — (1 + §) Ad divy [DuU] dm(y)

+ | DnU-Dy,H(y,D,U) dm(y)

A

_25/ div, [DmU] dm(y) — B TeD2, U dm(y)dm(z) = F(z,m) (176)

[T4]?
in (0,7) x T¢ x P(T9),
L U(T,z,m) = G(x,m) in T¢ x P(T9),

where 5 > 0 is a parameter for the common noise. For o' € (0, ), we have for any (t,z) €
[0,T] x T¢, m,m’ € P(T?)

52U

oU
W(tv ERUZED) )

om

+

UGt m) s zrer + \ (t, -, )

(n+2+a/ ,n+1+a’) (n+2+a’,n+a’ n+a’) (177)

< CO)
and that the mapping

d *U n+2+a/ (md n+al ppdy |2

[0.T] x P(T%) 3 (t,m) > = (£, -,m. ) €C (T%) x [c (T )] (178)
is continuous. As already said, a solution of satisfying the above properties has been built
in Theorem [2.1]] - When 8 = 0, one just needs to replace the above assumptions by those of
Theorem [2.8) which does not require the second order differentiability of F and G with respect
to m.

The main idea for proving the convergence of the (v ”')ie{l,_.’ ny towards the solution U is
to use the fact that suitable finite dimensional projections of U are nearly solutions to the Nash
equilibrium equation. Actually, as we already alluded to at the end of Section [2] this strategy
works under weaker assumptions than that required in the statement of Theorem What is

really needed is that H and D, H are globally Lipschitz continuous and that the master equation
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has a classical solution satisfying the conclusion of Theorem (or Theorem if 3=0). In
particular, the monotonicity properties of F' and GG have no role in the proof of the convergence
of the N-Nash system. We refer to Remarks [6.5] and [6.7 below and we let the interesting reader
reformulate the statements of Theorems [2.13] and 2.15] accordingly.

6.1 Finite dimensional projections of U
For N >2andie{l,...,N} we set

, , 1
u™Ni(t, @) = U(t, x5, md")  where & = (z1,...,zy) € (THY, mMi = N1
J#i

Note that the vV are at least C? with respect to the x; variable because so is U. Moreover,

d,uN* exists and is continuous because of the regularity of U. The next statement says that
u™N'? is actually globally C? in the space variables:
Proposition 6.1. For any N =2, i€ {1,..., N}, v is of class C? in the space variables, with
D%u “t,x) = N D mU (x5, mi x)) (j #19),
; 1 .
Dc%:z,:c 77’(t7w) N7D D U(t L, M N, 7:[;]') (] ta Z)7
» 1
Di],m 7Z(tvm) = ﬁDy [DmU] (tvxlamN’ x])
1 ; .
+ WD%mU(twmmﬁ’C%,%) (J # 1)
‘ 1 .
while, if j # k, Di 2 U u™Ni(t, x) = WDgnmU(t, zi,miyt x, xy) (4,7, k distinct).

Remark 6.2. If we only assume that U has a first order derivative with respect to m, one can
show that, for any N > 2, i€ {1,..., N}, u™ is of class C! in all the variables, with

Dz].uN’i(t,x) D U(t L, T N 7xj) VJ 7 ia

N —
with a globally Lipschitz continuous space derivative. The proof is the same except that one
uses Proposition instead of Proposition

Proof. For & = (xj)jeq1,.. vy such that z; # xy for any j # k, let € = minjuy [z; — 2| For
v = (v;) € (RY)N with v; = 0 (the value of i € {1,..., N} being fixed), we consider a smooth
vector field ¢ such that

o(z) = v; if x € B(z;,€¢/4),

where B(x;,€e/4) is the ball of center x; and of radius €¢/4. Then, in view of our assumptions

(177) and (178]) on U, Propositions and in Appendix imply that

‘U(t’ zi, (id + O)my ") = Ut zimg™) = | DU (b mi,mz",y) - 6(y) dmy ™ (y)
Td
B i/ Dy[DnU] (8, mz™ y)$(y) - $(y) dmg'(y)
Td
1

=3 o L P i/ 00) - 000 A )| < Lol wllolis )
Td JTd
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for some modulus w such that w(s) — 0 as s — 0. Therefore,

u™Ni(t, @+ v) — Vit )
= U((id + ¢)gmz ") — U(mg™)

. . 1 . A
= | DyU(t,z,md"y) - o(y) dml(y) + 2/Td Dy[DnU](t, 25, mE" y)d(y) - p(y)dmb " (y)

Td
1 Ni N Ny
+ 5 /]rd T Dg,me(t, Liy My ’Zaya Z)¢(y) ’ gb(z)dmm ’z(y)dmm7 (Z) + ||¢”is(mi\’ﬂ)w(quHLki(mg’l))
1
:7217 U(t,zi,m m’szj)'vfrWZD (DU (¢, i, mg " ) vj - v
];éz J#i
s 3 Dl () -+ o)

7. k#1

This shows that «™* has a second order expansion at x with respect to the variables ()i
and that

Dx]u “t,x) = Nl_ 1DmU(t, iy N’ x]) (j #1),
Dg]_@juN’i(t,x) = ﬁDy[DmU] (t,xi,mg’i,xj)
+ (Nil)gD?nmU(t,xi, miv’i,afj, ) (j #1)
while, if j # k, Dz 2, U u™Ni(t, x) = WD%WU(L xi,mg’i,xj,xk) (1,7, k distinct).

So far we have proved the existence of first and second order space derivatives of U in the open
subset of [0,7] x (T4)™ consisting in the points (¢, %) = (¢, 21, -+ xy) such that z; # z; for any
i # j. As DU, Dy [Dp,U] and D2, U are continuous, these first and second order derivatives
can be continuously extended to the whole space [0, 7] x (T%)™, and therefore u™? is C? with
respect to the space variables in [0, 7] x TV¢. O

We now show that (UN’i)ie{l,...,N} is “almost” a solution to the Nash system ([175)):

Proposition 6.3. One has, for any i€ {1,...,N},

—opulVt — Z:AIJUNZ BZ Ter 2, U u™Nt 4+ H (25, Dy, uY)
gk

Nyi N,j _
) +§ZD u 't (t,x) - D H(a:j,D u™(t,@)) = Fz;,m Ny 4N, @) (179)
in (0,7) x TNV,
WM T ) = Glaima")  in TV,

where vV € CO([0, T x T?) with
C

HT oo € N
Remark 6.4. When 3 = 0, we can require U to have only a first order derivative with respect

to the measure, but in this case equation (179) only holds a.e. with Vi e L% still satisfying
C

< —=.
N

T
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Proof. As U solves (L76), one has at a point (¢, xz,mgl).
—8U — (14 B)AU + H(z;, D,U) — (14 3) /d divy [Dp U] (, 25, my " y)dmb - (y)
+ - DmU(t,xi,mN ) D H(y,D U(t,y,m ))dm “(y)
-2 » div, [DmU] (t, zi,mht y)dmfv\“(y)
- B » TrD?nmU(t, wi,mg’i, Y, z)dmi\”(y)dmi\”(z) = F({L‘Z’, mi\”)

So u™Vt satisfies:

— 0™ — (14 B)Ag,u™’ + H(ws, Dyu™") — (14 ) / divy [Dp U] (t, @i, my y)dm ()
Td

N— my" x;) - DpH (x5, DU (t, x5, mb"))
J#t
— 2B | dive[DnU](t, zi,my, y)dmb " (y)
Td
- B TrD?%@mU(t7x’LvmiV7Z7y7z)dm]w\[7z(y)dm]z\[7l(z) = F(xumi:\w)
Td

Note that, by Proposition

1
In particular,
C
[ Do ju™" oo < N (180)
By the Lipschitz continuity of D,U with respect to m, we have
Nji N,j c
[DLU (1, mi¥) = DU (b, g, iy )| < Oy (i, i) < <,
so that, by Lipschitz continuity of D,H,
N ¢
|DpH (x5, DoU(t, 5, m X)) - D pH (25, Dy, u™ (t,@))| < N (181)

Collecting the above relations, we obtain

7 2 DU (i y) - DpH (a5, DaU (o m )

Lz

~ S D, U - DpH (z, DyU(t, zj, mY"))
i

_ZD Y -D H(x],D T ( ))+O(1/N)>
J#i
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where we used ((180) in the last inequality. On the other hand,

N N
S A uM w5 Y TD? L u = (14 ) AN 4 (14 B) Y Ay
7=l k=1 jti
+28Y D, wNT 4+ 8 > TeDZ  u
J#i j#k#i

where, using Proposition

S uita) = [ div, (Dot (s md o) d ()
Td

J#i
1 . )
ey L DR U (bl ) dmd )
N - 1 Td
2 TrD ,T) = / lex[D U] (t Tiy T iv’i,y)dmiv’i(y)
J#t
Z Ter 2 U “(t, ) / / Te[DZ,, U] (t Lz, mit z)dmg’i(y)dmg’i(z).
kit Td JTd
Therefore
— ot x) — Z ijuN BZ TrDm 2, U u™Ni(t, x) + H (i, Dy u™i(t, x))
+ 2 ijuN’i(t, x) - Dy, H (z;, Dzju I(t, x))
J#i
1 . . ,
TN /T T DU (1 w6, mg sy, y) dmg ™ (y) = F(ws,mg™) + O(1/N),
which shows the result. O

Remark 6.5. The reader may observe that, in addition to the existence of a classical solution
U (to the master equation) satisfying the conclusion of Theorem only the global Lipschitz
property of D,H is used in the proof, see (181)).

6.2 Convergence

We now turn to the proof of Theorem For this, we consider the solution (UNJ)ie{l,..‘,N} of
the Nash system (175)). By uniqueness of the solution, the (N ’i)z‘e{l,..., ny must be symmetrical.
By symmetrical, we mean that, for any & = (1)1, N} € TN and for any indices j # k, if
x = (T1)ieq1,..., N} is the N-tuple obtained from @ by permuting the j and k vectors (i.e., ; = x;
for 1 ¢ {j,k}, T; = xp, Tp = x;), then

oVt &) = o™it ) if i ¢ {4, k}, while 0™ (¢, &) = o™F(t, ) if i = 7,

which may be reformulated as follows: There exists a function VV : T¢ x [T9]¥~! — R such
that, for any x € T¢, the function [T N1 3 (y1,...,yn_1) = VV(z, (y1,...,yn_1)) is invariant
under permutation, and

Vie {17 7N}7 x € [Td]N7 /UN’i(t’x) = VN(mm (x17"'7xi—17xi+17" . ,.’L'N))
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Note that the (uN”')ie{L_.,N} are also symmetrical.

The proof of Theorem consists in comparing “optimal trajectories” for v™* and for
u™N?) for any i € {1,...,N}. For this, let us fix tg € [0,T), mg € P(T¢) and let (Zi)ieq1,...N}
be an ii.d family of N random variables of law mg. We set Z = (Z;)jeq1,.. vy Let also
((Bé)te[O’T])ie{l’“_, ~y be a family of N independent d-dimensional Brownian Motions which is
also independent of (Z;);c¢1,.. ny and let W be a d-dimensional Brownian Motion independent
of the ((Bg)te[O,T])ie{l,...,N} and (Zi)ef1,..,n3- We consider the systems of SDEs with variables
(Xt = (Xin)ieqr,.n)eefo,r] and (Y = (Yir)ieq,...n})iefo,r) (the SDEs being set on R? with
periodic coefficients):

dXi+ = —DpH (X, Dy, u™N (¢, X)) dt + V2dBj + /2BdWy  t€ [to,T] (182)
Xi,to = Zi7

and
}/;,t() = Z’L

Note that, since the (uN’i)ie{L._,,N} are symmetrical, the processes ((Xi)we[t,7])ie(1,...,.N} are
exchangeable. The same holds for the ((Yit)ie[t,,17)ieq1,..., v} and, actually, the N R24_valued
processes (X, Yit)ielto,])ieq1,...,N} are also exchangeable.

Theorem 6.6. Under the standing assumptions, we have, for any i€ {1,...,N},
C
E[ sup [Yie— Xigl] < =, (184)
te[to,T] N
S N S Ol
te(to,T)
T
+ / | D2, o™t Y ) — Dyui(t, Y ) |Pdt | < CN 2, (185)
to
and, P almost surely,
N
1 . .
v DTNk, Z2) — N (to, Z)] < CN T, (186)
i=1

where C' is a (deterministic) constant that does not depend on to, mo and N.

Proof of Theorem[6.0. First step. We start with the proof of (185). For simplicity, we work
with tg = 0. Let us first introduce new notations:

UM = u™i(t Y, VY=oV YY),
_DUt’N’i’j = ijuN’i(t7 Yt)7 D‘/tN’i“j = ij’l)N7i(t7 Yt)7 te [07T]

Using equation (175) satisfied by the (v™ ’i)ie{l,..., N}, we deduce from Ito’s formula that, for any
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ie{l,...,N},
dvtN’—[auNlth ZD VN6 Y ) - DpH (Y, Doy o™ (5 Y 1))
+ZA V(LY ) +ﬁ2Ter a0 Yt)]dt

+\f2D o thdB“m/ ZDZ]U (.Y )dW;

(187)
_ [H(Y;,t,Dziv it Y ) —DmivN”(t, Y,) - DpyH (Yig, Doo™ (8, Y )
— F(Yig,my? )]dt
+\f2D NI Y )dB] + /28 Dy o™ (1, Y ) dW,.
J
Similarly, as (u® ’i)ie{17._.7 Ny satisfies (179), we have by standard computation
- [H()@t,DziuN’i(t, Y1) — Dy uNi(t,Yy) - DyH (Yig, Dat™i(,Y4))
- FY; ,le PV, Y ]dt

(Vo my () =18, Y3) (188)

—ZDa;]u (t.Y1) - (DpH (Vi Dayv ™ (8,Y 1)) = DpH (Y, Dayu™ (8, ) )t

+\f2D ANt Y ) - dB] + BED AN Y ) - AW

Make the difference between and (188), take the square and apply Ito’s formula again:
d[UtN,i _ VtN,i]2
= [2 (@ = VM) (H (Yo, DU = H(Yig, V)
=2(07 =) (DU Dy (i, DUY) - Dyt (1 DY)
—2(UN = V) - ([DU = DV Dy H (Vi DY)
—2(UN" — VtN’i)rN’i(t,Yt)]dt
(UM - VY S DU (D, (Y0, DY) - D, (¥, DU )i
+ [22 IDUN — DYV 1 28| 3 (DU — DY) ﬂdt
+ ﬁJZ(DUjW — DVN) . dB] i 28> (DU — DV - dw,
J J

Recall now that H and D,H are Lipschitz continuous in the variable p. Recall also that
DUtN’Z’z = D%U(t,Yi,t,mg’:) is bounded, independently of 7, N and ¢, and that DUtN’Z’J =
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D, U(t, Yi,t,mg’i) is bounded by C/N when i % j, for C' independent of i, j, N and ¢. Re-
call finally from Proposition that ™% is bounded by C/N. Integrating from ¢ to T in
the above formula and taking the conditional expectation given Z (with the shorten notation
EZ[-] = E[-|Z]), we deduce:

2o = v +22Ez[/ |DU§V’i’j—D‘/SN’i’j|2ds]

Nyi Nz K %
lupt = v N/ EZ[[UN* — vV ]ds
(189)
T
+C/ E? |U;V=%—V;Nﬂ| : |DU;W—DVSNM|]ds

2/ EZ| [0V — V4| | DUN# — DY) |ds.
H:l

Note that the boundary condition U%V - VTN " is zero. By a standard convexity argument, we
get

. , T N .
EZ[|U" = V] +EF [/ |DUN — DVSN’“|2ds]
t
< " EZ[uN _ya L pz[ (1 pyng N.jij|2
<4z +C | E [lUN+ — v, ’|]ds+§ZIE t |DUNGI — DY Nai|2gs|.
J
By Gronwall’s Lemma, we finally get (modifying the value of the constant C):
. , T N .
sup EZ[|U;" — ViV P] + EZ [/ |DUN# DVSN’“|2ds]
te[0,T7 0
R L N
-y E DUN:GI — pyNaid24s].

Taking the expectation and using the exchangeability of the processes ((Xj ¢, Yj t)ie[to,71) je(1,....N}»
we obtain ([185)).

Second step. We now derive and (| - We start w1th - Noticing that Uév -
VONz = u™N¥(0,Z) — v™V¥(0, Z), we deduce, by summing ({ over i € {1,..., N}, that, with
probability 1 under P,

(190)

LS (0, 2) — o0, 2] < &
N &t N’

which is exactly (186).
We are now ready to estimate the difference X;; — Yy, for t € [0,7] and i € {1,...,N}. In

view of the equation satisfied by the processes (Xit)seo, 7] and by (Yit)sepo,17, we have

t
| X — Yi </ ‘DpH(Xi,&DmiUN’i(S,Xs)) D H(st,D UNZ (s,Yy) )‘ds
0

' T ) N (191)
< C/ |Xi75 — Y;,S|d8 + C/ ‘DUSN,M . D‘/SN,z,z ds.
0 0
By Gronwall inequality and by (190]), we obtain (184)). .
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Remark 6.7. The reader may observe that, in addition to the existence of a classical solution
U (to the master equation) satisfying the conclusion of Theorem only the global Lipschitz

properties of H and DpH are used in the proof, see (189)) and (191)).
Proof of Theorem[2.13 For part (i), let us choose mo =1 and apply (186):

N

1 , .

< ‘U(tg, Z;,my — o™it Z)‘ <CON"'  ae,
=1

where Z = (Z1,...,ZN) with Zy,..., Zy ii.d. random variables with uniform density on T,
The support of Z being (T4, we derive from the continuity of U and of the (vN’i)ie{Lm’N}
that the above inequality holds for any x € (T4)V:

N
DU o, wi, my) — o™ik, @) < CNT' - Vo e (THY.
=1

Then we use the Lipschitz continuity of U with respect to m to replace U (tg,xi,miv’i) by
U(to, ;, mY) in the above inequality, the additional error term being of order 1/N.

For proving (ii), we use the the Lipschitz continuity of U and a result by Dereich, Scheutzow
and Schottstedt [23] to deduce that, for d > 3 and for any z; € T,

Loy [0 t) = Ut aimo) [ T ma(da)

Jj#i
_ / (Ut 20, md ) = U (t, 21, mo) | | [ mo(da)
Td(N-1) i
<C di(mf,mo) [ [mo(dz;) < CN-V4.
Td(N-1) A

If d = 2, following Ajtai, Komlos and Tusnddy [6], the right-hand side has to be replaced by
N2 log(N). Combining Theoremwith the above inequality, we obtain therefore, for d > 3,

Hu}N,i(tO7 . mo) — U(t(), K mO)HLl(mo)
= /]I‘d /ﬂ‘d(Nl) o (t, (-Z'j)) ]l;lzmo(dl‘g) - U(ta L, mO) dmO(xl)

N

< E[pNi(t Z) — u™Ni(t, Z)] +/ [N (t, @) — U(t, 25, mo)| | | mo(dx;)
TdN .
j=1

<CON-' 4 OoN~Vd < oNT4,

As above, the right-hand side is N~/2log(N) if d = 2. This shows part (i) of the theorem. [J

Proof of Corollary[2.14. We fix (t,z1,m) € [0,T] x T¢ x P(T?) and assume that there exists
v € R such that
lim sup ‘UN’l(t, x') —v| =0.
N,1

N—+o0, ) —x1, m ;) —m
€T

Our aim is to show that, if z1 belongs to the support of m, then v = U(t,x1, m). For this we
first note, from a standard application of the maximum principle, that the (v" ")ief1,..,N} are
uniformly bounded by a constant M (independent of N).
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Fix € > 0. By our assumption there exists Ng > 0 and § > 0 such that

Nt 2') — o] < if N> No, dy(m',m) <6 and |z) — )| <. (192)

a:”

N
i, [ () Ty =0,
Niriloo (Td)N=1 ® ]1_[2 i

we can also choose Ny large enough so that

. !/
/Td)Nl {dlm;m%}l—[mdaﬁ if N> Npand |z; — 27| <6

Then, integrating (192) over (T%)N~1, we obtain
‘ Lt 2h) —v| <e+ Me=e(M+1) if N> Npand |z — ]| <8

We now integrate this inequality with respect to the measure m on the ball B(z1,0):
/ ‘w L, o) —v|dm(z}) < e(M + 1)m(B(x1,6)).
(1,6)

Now Theorem M(u) states that w™'!(¢,-) converges in L}, to U(t,-,m). Thus, letting N —
+0o0 in the above inequality, we get

/ U(t, 2}, m) —v|dm(z}) < (M + 1)m(B(z1,9)).
B(x1,6)

Since U is continuous and z; is in the support of m, this last inequality implies that v =
U(t,x1,m). O

6.3 Propagation of chaos

We now prove Theorem Let us recall the notation. Throughout this part, (v™#);c {1,..,N} 18
the solution of the Nash system and the ((Yit)sefto,17)ie(1,..., v} are “optimal trajectories”
for this system, i.e., solve (|183]) With Y+ = Z; as initial condition at time ?5. Our aim is to
understand the behavior of the ((Y; t)tefto, T])ie{1,...,N} for a large number of players N.

For any i € {1,..., N}, let (X)) be the solutlon the SDE of McKean-Vlasov type:

dXiy = —D,H (Xy,t, DUt Xy, c(Xi,t|W)) dt +2dBi +\28dW,, Xy = Zi.

Recall that, for any i € {1,..., N}, the conditional law £(X; ;|W) is equal to (m;) where (uy, my)
is the solution of the MFG system with common noise given by — (see section .
Solvability of the McKean-Vlasov equation may be discussed on the model of .

Our aim is to show that

E[ sup |Yiy — zt\] < CNVES),
te(to, T
for some C' > 0. Before starting the proof of Theorem [2.15] we need to estimate the distance
between the empirical measure associated with the (Xi,t)ie{l,..., ~y and my. For this, let us set
X, = (Xi,t)ie{l,...,N}' As the (f(”) are, conditional on W i.i.d. random variables with law my,
we have by a variant of a result due to Horowitz and Karandikar (see for instance Rashev and
Riischendorf [62], Theorem 10.2.1):
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Lemma 6.8.

oy, o] <o e

Proof. The proof is exactly the same as for Theorem 10.2.7 in [62] (for the i.i.d. case). In this
proof independence is only used twice and, in both cases, one can simply replace the expectation
by the conditional expectation. O

Proof of Theorem[2.15. The proof is a direct application of Theorem combined with the

following estimate on the distance between ()N(M)te[to’T] and the solution (X ¢)sept,, 17 of (182):

IE[ sup [ X, — i,t‘] < ON-V@+9), (193)
te[to,T]

Indeed, by the triangle inequality, we have, provided that (193]) holds true:

E[ sup ‘Ylt Zt‘] éE[ sup ‘th Xit
te[to,T] te[to,T]

< C(N +N— 1/(d+8))7

] + IE[ sup ‘X@t — th‘]
tE[to,T]

where we used ([184)) to pass from the first to the second line.
It now remains to check (193)). For this, we fix i € {1,..., N} and let

plt) = B[ sup [Xio— K|
Se[tot

Then, for any s € [to, ], we have
X6 — Xis| < t:\—DpH(XZ-,r, Do u™(r, X)) + DpH (X, DU (7, Xi g, my) ) |dr
ts|—DpH(Xi,T,DxU(r, Xiymy!)) + DpH (Xi, DyU (r, X, m") ) |dr
0
+ t:‘—DpH(Xi,T, DU (r, Xiym3")) + DypH (Xip, DoU (r, X, my))|dr

As (x,m) — D,U(t,z,m) is uniformly Lipschitz continuous, we get

S
|[Xis = Xis| < C <|Xi,r = Xig| i (mx) my") + di (m3] mr))d“
to
where
di (my!,mY") € —— Z X6 — Xjsl. (194)
Lz
Hence
S
Xiys — Xi78| < C/ <|Xi7r - zr| + 2 [ Xjr — ]T‘| + dl(m~ mr))dﬁ
to ‘]#’L
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Taking the supremum over s € [to,t] and then the expectation, we have, recalling that the
random variables (X, — X;)jeq1,.. vy have the same law:

p(t) = E[ sup ‘Xi,s - XZS‘]
s€[to,t]

t _ 1 N
<C (E[ sup | X, — z‘,TI] + 2 E[ sup [ Xjr — Xjir Dds
re(to,s] j#i r€fto,s]

to

+CE| sup d m]y’i,mr

Le[to’T] i X, )]
t

<C [ p(s)ds+CN~HE+8),

to

where we used Lemma for the last inequality. Then Gronwall inequality gives (193)). O
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7 Appendix

We now provide several basic results on the notion of differentiability on the space of probability
measures used in the paper, including a short comparison with the derivative on the set of
random variables.

7.1 Link with the derivative on the set of random variables

As a first step, we discuss the connection between the derivative 6U/dm in Definition and
the derivative introduced by Lions in [52] and used (among others) in [16], 22].

The notion introduced in [52] consists in lifting up functionals defined on the space of prob-
ability measures into functionals defined on the set of random variables. When the underlying
probability measures are defined on a (finite dimensional) vector space E (so that the ran-
dom variables that are distributed along these probability measures also take values in E), this
permits to benefit from the standard differential calculus on the Hilbert space formed by the
square-integrable random variables with values in F.

Here the setting is slightly different as the probability measures that are considered through-
out the article are defined on the torus. Some care is thus needed in the definition of the linear
structure underpinning the argument.

7.1.1 First order expansion with respect to torus-valued random variables.

On the torus T¢, we may consider the group of translations (Ty)yerd, parameterized by elements
z of R%. For any y € RY, Ty maps T? into itself. The mapping R 5 y 7,(0) being obviously
measurable, this permits to define, for any square integrable random variable X € L2 (Q, A, P;RY)
(where (€2, A, P) is an atomless probability space), the random variable 7¢(0), which takes values
in T¢. Given a mapping U : P(T?) — R, we may define its lifted version as

U:L*(QAP;RY) 3 X o U(X) = U(L(m5(0))), (195)

X
where the argument in the right-hand side denotes the law of 75 (0) (seen as a T¢-valued random
variable). Quite obviously, £(7¢(0)) only depends on the law of X.

Assume now that the mapping U is continuously Fréchet differentiable on L*(Q, A, P;RY).
What [52] says is that, for any X € L?(, A, P;RY), the Fréchet derivative has the form

DU(X) = 0,U(L(X))(X), P almost surely, (196)

for a mapping {5,:(7(5()2)) RYsy ﬁ](ﬁ(f())(y) e R} e L2(RY, L'(X)) This relationship
is fundamental. Another key observation is that, for any random variables X and Y with values
in R? and ¢ with values in Z¢, it holds that

N N R = 2o A
lim —| (X + € +27) = 0(X) | = E[(DU (X +§).7)|,
which is, by the simple fact that 75, £(0) = 75 (0), also equal to

lim *[0(X +27) - 0(X)| = E[(DU (X).7)]

{—:—)0 c ? Y

proving that

DU(X) = DU(X +§). (197)
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Consider now a random variable X from Q with values into T¢. With X, we may associate
the random variable X, with values in [0,1)¢, given (pointwise) as the only representative of X
n [0,1)9. We observe that the law of X is uniquely determined by the law of X and that for
any Borel function h : T¢ — R, o
E[r(X)] = E[n(X)],

where h is the identification of h as a function from [0,1)¢ to R.
Then, we deduce from (196]) that

DU(X) = 8:(/]([3( X ))(X), P almost surely.
Moreover, from , we also have, for any random variable é with values in Z¢,
DU(X +¢€) = 5;(7(/5()2))()2), P almost surely.
Since 8HU(E(X))(-) isin L2(R%, £(X)) and X takes values in [0,1)?, we can identify éuU(ﬁ(X))(-)
with a function in L?(T%, £(X)). Without any ambiguity, we may denote this function (up to a

choice of a version) by

T 5y > 6, U (L(X))(y).

As an application we have that, for any random variables X and Y with values in T¢,
U(L(Y))-U(L(X)) =U() - U(X)
- IE/Ol<D(7(/L(>\Y +(1-NX)),V - X’>d)\.
Now, we can write
W+ A-NX=X+AY -X)=2, with Z=r7,3_g,(X).

Noticing that Z is a random variable with values in T%, we deduce that
1
U(L(Y)) - U(L(X)) = E /O (U (L3 (X)) (ry gy (X)), ¥ = X e

Similarly, for any random variable é with values in Zd,

U(L(Y)) -U(L(X)) =U(Y +§€) - U(X)

:E/OI<DU(X+)\(}7+§—X)),Y+£—X>d)\.

Now, X + A(Y + & — X)) writes Z + ¢, where ¢ is a random variable with values in Z% and Z is
associated with the T?-valued random variable Z = T+ X)(X ), so that

U(L(Y)) - U(£(X)) = E/1<DU(2),Y vE- X>dA
" (198)
- IE/O <5uU(£(T,\(Y/+£—X)(X))(T/\(?JFE_X)(X)),Y + _X>CM.

The fact that é can be chosen in a completely arbitrary way says that the choice of the repre-
sentatives of X and Y in the above formula does not matter. Of course, this is a consequence
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of the periodicity structure underpinning the whole analysis. Precisely, for any representatives
X and Y (with values in RY) of X and Y, we can write

1
U(L(Y)) - U(L(X)) = E /0 (U (Llry5—3(X)) (s (X)).¥ = X )i (199)

Formula gives a rule for expanding, along torus-valued random variables, functionals
depending on torus-supported probability measures. It is the analogue of the differentiation
rule defined in [52] on the space of probability measures on R? through the differential calculus
in L2(Q, A, P; R%).

In particular, if U is continuously differentiable, with (say) DU being Lipschitz continuous
on L?(Q, A,P;R%), then (with the same notations as in (198)))

E||DU(Y) — DU(X)[*| = E[|DU(Y +€) - DU(X)P]

< CE[|Y +€ - X2 (200)

Now, for two random variables X and Y with values in the torus, one may find a random variable
€, with values in Z%, such that, pointwise,

£ = argmin,ega|r(Y) - X|,

the right-hand side being the distance dpa(X,Y) between X and Y on the torus. Put it differ-
ently, we may choose é such that |1A/ + é - X | = dpa(X,Y). Plugged into , this shows that
the Lipschitz property of DU (on L%(Q, A, P; R?%)) reads as a Lipschitz property with respect to
torus-valued random variables.

Next, we make the connection between the mapping P(T?) x T? 5 (m,y) — 0,U(m)(y) € R?
and the derivative P(T9) x T? 3 (m,y) > [0U/ém](m,y) € R? defined in Definition

7.1.2 From differentiability along random variables to differentiability in m

Proposition 7.1. Assume that the function U is differentiable in the sense explained in Sub-
subsection and thus satisfies the expansion formula . Assume moreover that there
exists a continuous version of the mapping 0,U : P(T4) x T¢ 5 (m,y) — 8,U(m,y) € RY.

Then, U is differentiable in the sense of Definition . Moreover, U /om is continuously
differentiable with respect to the second variable and

DnU(m,y) = 0,U(m)(y), meP(T?), ye T

Proof. First step. The first step is to prove that, for any m € P(T¢), there exists a continuously
differentiable map V(m,-) : T¢ 3 y +> V(m,y) € R such that

0,U(m)(y) = DyV(m,y), yeT"

The strategy is to prove that 9,U(m) : T¢ + 8,U(m)(y) is orthogonal (in L?(T¢, dy)) to
divergence free vector fields. It suffices to prove that, for any smooth divergence free vector field
b: T4 — RY,

Td@uU (m)(y), b(y))dy = 0.

Since 0,U is jointly continuous in (m,y), it is enough to prove the above identity for any m
with a positive smooth density. When m is not smooth, we may indeed approximate it by m * p,
where x denotes the convolution and p a smooth kernel on R¢ with full support.
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With such an m and such a b, we consider the ODE (set on R? but driven by periodic
coefficients)
b(Xy)
dX; =
T om(Xy)

dt, t=0,

the initial condition X, being [0,1)%valued and distributed according to some m € P(T%)
(identifying m with a probability measure on [0,1)4). By periodicity of b and m, (X;)i=o
generates on T¢ a flow of probability measures (m);=o satisfying the Fokker Planck equation

oymy = —div(—mt), t>0, mg=m.
m

Since b is divergence free, we get that m; = m for all ¢ = 0. Then, for all ¢t > 0,
U(mt) — U(mg) =0,

so that, with the same notation as in (I98)), limy o[(U(X;) — U(Xo))/t] = 0. Now, choosing
Y = X; and X = X in (199), we get

Td<6uU (m)(y),b(y))dy = 0.
We easily deduce that d,U(m) reads as a gradient that is
0uU(m)(y) = 0,V (m,y).
It is given as a solution of the Poisson equation
AV(m,y) = divy 6,U(m)(y)

Of course, V(m,-) is uniquely defined up to an additive constant. We can choose it in such a
way that
V(m,y)dm(y) = 0.
Td
Using the representation of the solution of the Poisson equation by means of the Poisson kernel,
we easily deduce that the function V is jointly continuous.

Second step. The second step of the proof is to check that Definition holds true. Let us
consider two measures of the form m¥ and m¥, where N € N*, X = (z1,...,2y) € (TH)V is
such that z; # z; and Y = (y1,...,yn) € (T4)YN. Without loss of generality we assume that the
indices for Y are such that

N N
1 1 _
dy (my,my’) = N Z dra(Ti,yi) = N Z |Zi — il (201)
i=1 i=1
where Z1,...,Zy and 71, ...,7n are well-chosen representatives, in R?, of the points z1,...,zy
and y1,...,yn in T? (dpa denoting the distance on the torus). Let X be a random variable such

that P(X = #;) = 1/N and Y be the random variable defined by Y = ¢; if X = Z;. Then, with
the same notations as in (195)), Pz (o)) = my and Priro (o)) = m¥y.
Thanks to (199), we get
1
U(md) - Um¥) = /0 E[(0uU (£(rs5+1-x(0)) ) (g4 1-xx(0)), ¥ = X )|dA
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So, if w is a modulus of continuity of the map J,U on the compact set P(T?%) x T?, we obtain

by :

)~ )~ [ B[(00 ) (g 1o 0).F — ) a

< IE[|}7 — X’H]w(dl(m%, mg)) = dl(m%, mg)w(dl(m%, my))

(202)

Moreover, since D,V (m,y) = 0,U(m)(y), we have

1 —
/0 E[<5uU(m§) (TAY+(1—,\)X(0)) (T,\?Jr(l_)\)j{),Y — X>] d\
1 & [ N
- N Z/o <D9V(vaTA@+(1—A)@(0))7§¢ - i‘i>d)\
i=1
1 !
=N > / (DyV (m¥, \gi + (1 = NE:), 5 — T pd,
i=170
where we saw DyV(m% ,+) as a periodic function defined on the whole R?. Then,

[ =[085 15 @) G a9 = X)]ir= [V ondond - m¥)

By density of the measures of the form m% and my and by continuity of V', we deduce from
([202) that, for any measure m,m’ € P(T%),

\U(rn') ~UGm) = [ V)i - m)(@

< dl(m,m’)w(dl(m,m')),
which shows that U is C! in the sense of Definition with g—% =V. O

7.1.3 From differentiability in m to differentiability along random variables

We now discuss the converse to Proposition |7.1

Proposition 7.2. Assume that U satisfies the assumption of Definition[2.4. Then, U satisfies
the differentiability property (199). Moreover, Dy, U(m,y) = 0,U(m)(y), m € P(T?) and y € T.

Proof. We are given two random variables X and Y with values in the torus T?. By Definition

.1
U(L(Y)) = U(L£(X))

1
:/ [/ W()\E(y)+(1—A)£(X),y)d(C(Y)—E(X))(y)]d)‘
0 T

a Om
= /1 IE[:;U()\L(Y) +(1-NL(X),Y) - Z—U(AL(Y) + (1 — )\)L(X),X)]d)\
0 m m

1 1 SU _ _ _ _
_ / / E[Dy5 (ALOY) + (1= NLX)) (VY + (1= )X (Y — X)]d)\d)\’,
0 Jo m

where X and Y are R%valued random variables that represent the T%valued random variables
X and Y, while D,[6U/ém](m,") is seen as a periodic function from R? into R%*<,
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By uniform continuity of D,,U = D,[6U/ém] on the compact set P(T?) x T? we deduce
that,

U(L(Y)) = U(£(X))

oUu

=E| Dy~ (LX) (X)(Y = X) | + E[IX - Y ]"?w(E[|X - V"]'/%), (203)

for a function w : Ry — R, that tends to 0 in 0 (w being independent of X and Y'). Above, we
used the fact that d;(£(X), £(Y)) < E[|X — Y [*)]'/2.

Let now Z = 7\(y_x)(X), for A € [0,1], so that Zx1. = 7.(y_5)(Zx), for 0 S A< A+e <L
Then, (A+¢)Y +[1— (A +¢)]X and AY + (1 — \)X are representatives of Zy,. and Z) and the
distance between both reads

(A+e)Y +[1-(A+8)]X =AY + (1 - N)X| =¢|Y — X|.

Therefore, by (203]),

LU(23) = E[ D, 2 (L) (20 (Y - X) |, Ae[0.1]

Integrating with respect to A € [0,1], we get (199). O

7.2 Technical remarks on derivatives

Here we collect several results related with the notion of derivative defined in Definition 2.11
The first one is a quantified version of Proposition

Proposition 7.3. Assume that U : T¢ x P(T?) — R is C', that, for some n € N, U(-,m) and

oU ‘ . . .
—(-,m,-) are in C"*® and in C"*® x C? respectively, and that there exists a constant C,, such

om
that, for any m,m' € P(T?),

)

om (n+a,2)
and

/ (5U / 2 /
ut,m)=U(,m)— [ —(,m,y)dm —m)(y) < Cpdi(m,m’). (205)
Td OM n+a

Fiz m € P(T?) and let ¢ € L?(m,R%) be a vector field. Then

UG+ dpm) = UCm) = [ Do) 60) dm()| < (G4 Dol (200

Td

n+o

Below, we give conditions that ensure that (205) holds true.

Proof. Using (205)) we obtain

UG i opm) = U = [ S pa(ia + 0)m = m) )

n+o (207)
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Using the regularity of g—%, we obtain, for an {1,--- ,d}-valued tuple ¢ of length |¢| < n and for
any x € Td, (omitting the dependence with respect to m for simplicity):

[, D55 eaaf(id + omb) ~ [ DS pdmiy) ~ [ DDLU G) - 6l0) dm(y

:/ <D§;§U (z,y+o(y)) — DﬁgU( y) — DrDmU(x’y)> 6y dm(y)
B /0 /Td (DﬁDng (2,9 +56(y)) = Do DU, y)) - $(y) dm(y)ds

1 1
= [ [ sPiD, Dot oy + o)) - ) dmiy) st <l

where we used (204) in the last line.
Coming back to (207)), this shows that

D0 (- oypm) — DU~ [ DDLU o) dm)| < Culllag

Td o)

which proves (206 but with a = 0.
The proof of the Holder estimate goes along the same line: if z, 2’ € T¢, then

/ DL (2, y)d{(id + 0)m}(y) / DL, y)dm(y / DD, U(xy) - ély) din(y)
(/ DZ ou x',y)d{(id—i— gb)jjm}( / D (2, y)dm(y)
[ DDLU ) - b() dm<y>)

-
= /Td (DﬁgU (z,y+¢(y)) — DﬁgU( )—Df;DmU(x,y)) - é(y) dm(y)
- [ (PGt 00) = DL ) ~ DDAV ) - 0t0) )
B /0 /T (Dﬁpya@fvy +50(y)) - DiDmU@,y)) - $(y) dm(y)ds
/ /]I‘d (DZD ~— (@', y + s6(y)) — DﬁDmU(x',y)) - p(y) dm(y)ds

_ / / s(DLD, DU (3, + sto(y)
0 JO Td
— DLDyD,U (2 y + st¢(y)))¢(y) - ¢(y) dm(y) dsdt
< C’n|a7 - $/|a‘|¢‘|i2(m)

This shows that

/Td %(’ m, y)d[{(z’d + <Z>)ﬂm} — m] (y) — /11‘01 DpU(-,m,y) - ¢(y) dm(y)

< Cnl@l72(m)

n+ao

Plugging this inequality into (207)) shows the result. O

We now give conditions under which (205]) holds.

135



Proposition 7.4. Assume that U : T¢ x P(T%) — R is C' and that, for some n € N*,

5—U( m,-) + Lip v < Cp.
0 "\ 4
m (n+a,n+a) m

Then, for any m,m' € P(T¢), we have

Uy — U (- m) - /T U, y)d(m! —m)(y)

a om

< Cpd?(m,m).

n+ao

Proof. We only show the Holder regularity: the L® estimates go along the same line and are
simpler. For any ¢ € N? with |¢| <n and any z,2’ € T?, we have

‘DZU(JJ m') — DU (x,m) / D (30 m,y)d(m’ —m)(y)

~(pemty — it [ 45 @ o~ miw) )|

1
</
0

oU oU
[ (pt5 e <1—s>m+sm',y> D2 (0.

— [Dg 5U( (1 —s)m+sm,y) — DS 5U(3: m y)]) d(m' —m)(y)|ds

Tom Tom

< sup DyDﬁg—U(x, (1—s)ym+sm’,y) — D , D ((;U (x,m,y)
8,y m
[D DﬁgU( "(1=s)m+sm',y) — Dy D¢ ;SU (',m y)]‘dl(m,m’)

oU
< Lip, ((5m> |z — 2'|*d}(m, m').
This proves our claim. O

Proposition 7.5. Assume that U : P(T%) — R is C? with, for any m,m' € P(T%),

U(m') — Ulm) — / o

Td (5m

-5 /T 5 (m,y.y)d(m’ = m)(y)d(m’ —m)(y)

where w(t) — 0 as t — 0, and that

—(m,y)d(m’ —m)(y)

2
H '5U2( 77') <CO
om 2,2)
Then, for any m € P(T%) and any vector field ¢ € L3(m,R%), we have
U+ om) = Un) ~ [ DuUm, ) 005) dm()

- /T DyDnU(m,y)é(y) - 6(y) dm(y)

- é /Td T4 DymU(m,y,y)o(y) - &(y') dm(y)dm(y')

< 9125 @(19]1s,),

where the modulus W depends on w and on Cjy.
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Proof. We argue as in Proposition by our assumption, we have

(‘%(m, w)d({(id + $)pm} —m) ()

—/ / Sz (MY 2 (zd+¢)ﬁm}—m)(y)d({(id+¢)ttm}—m)(z)
Td JTd 0
< df(m, (id + ¢)fm)w(di (m ,(zd+d>)ﬁm))<H¢H%;nw(|\¢lhgn)-

(G + oypm) Uy - |

Now
L, 5o {(id + egm} = m| )
- [ (om0~ 5 mn)) dm
= [ (D5 60 + D35 0 )60) - 60) + O ) dm()
Td m
= [ (Paln.) - 6) + 3D, PAT1.)000) - 610) + O ) dinly)
Td
where
06w dml) < [D30uU],, [ 16 Fdmis) < Colol,
Td Td
Moreover,

/T/T sz o {(id+ 9)pm] —m >d[{<id+¢>ﬂm}—m] 2)

2
/T/TQ; Hmy+ 0), =+ () — 3D my + 0).2) — & pm.y, = + 6(2))

2

g UQ(m Y, 2 )) dm(y)dm(z)
D2 62U ) ,

/Td /Td< 55y, 2)6() - () + O (I8 PIe(2)| + [6 W)l é(2)] )) dm(y)dm(2)

/ / ( Ulm,y, 2 <y>-<z><z)+0(|¢<y>|2|¢(z>|+|¢<y>||¢<z>|2))dm(y)dm<z>,
Td ']Td

where
/T |o(ls@Ploe)+ 16l ) [dm(y)dm(z)
< sup | D U (my -, ) en 19075, < Coll¢l7a -
Putting the above estimates together gives the result. O

We complete the section by giving conditions under which inequality (208) holds:

Proposition 7.6. Assume that the mapping P(T?%) 3 m — gm—[é(m, .,-) is continuous from P(T%)
into (C2(T9))? with a modulus w. Then (208) holds.
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Proof. We have

U(m!

Hence

//Mm (1= $)m + sm',y)d(m’ —m) ()
= [ o’ = m(o)

///Td sz (L= sT)m + sty ¢f )d(m'” —m) (y)d(m’ —m)(y').

O
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