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Introduction 1.Motivation and summary of the results

Statement of the problem. The purpose of this paper is to discuss the behavior, as N tends ¦ Ceremade, Université Paris-Dauphine, cardaliaguet@ceremade.dauphine.fr X Laboratoire Jean-Alexandre Dieudonné, Université de Nice Sophia-Antipolis. delarue@unice.fr Y 56 rue d'Assas 75006 one another through the nonlinear system (1), the evolution with N of the coupling between all of them is indeed much more intricate than in [START_REF] Ambrosio | On a class of first order Hamilton?Jacobi equations in metric spaces[END_REF]. And once again, on the top of that, the common noise adds another layer of difficulty. For these reasons, the convergence of both ( 1) and [START_REF] Achdou | Heterogeneous agent models in continuous time[END_REF] has been an open question since Lasry and Lions' initial papers on mean field games [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF].

The mean field game system. The analysis of the Nash system (1) as the number of players is large pops up very naturally in game theory. Similar questions for static games were studied a long time ago by Aumann, who introduced the concept of nonatomic games in [START_REF] Aumann | Markets with a continuum of traders[END_REF]; moreover, Schmeidler [START_REF] Schmeidler | Equilibrium points of nonatomic games[END_REF] and Mas-Colell [START_REF] Mas-Colell | On a theorem of Schmeidler[END_REF] defined and investigated non-cooperative Nash equilibria for one shot games with infinitely many small players.

In the case of differential games, the theory is known under the name of "mean-field games", whose principle goes as follows. If one tries, at least in the simpler case β 0, to describe -in a heuristic way-the structure of a game with infinitely many indistinguishable players, i.e., a "nonatomic differential game", one finds a problem in which each (infinitesimal) player optimizes his payoff, depending upon the collective behavior of the others, and, meanwhile, the resulting optimal state of each of them is exactly distributed according to the state of the population. This is the "mean field game system" (MFG system):

6 8 7 ¡f t u ¡ ∆u Hpx, Duq F px, mptqq in r0, T s ¢ R d , f t m ¡ ∆m ¡ divpmD p Hpx, Duqq 0 in r0, T s ¢ R d , upT, xq Gpx, mpT qq, mp0, ¤q m p0q in R d , (6) 
where m p0q denotes the initial state of the population. The system consists in a coupling between a (backward) Hamilton-Jacobi equation, describing the dynamics of the value function of any of the players, and a (forward) Kolmogorov equation, describing the dynamics of the distribution of the population. In that framework, H reads as an Hamiltonian, F is understood as a running cost and G as a terminal cost. Since its simultaneous introduction by Lasry and Lions [START_REF] Lasry | Mean field games[END_REF] and by Huang, Caines and Malhamé [START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF], this system has been thoroughly investigated: existence, under various assumptions, can be found in [START_REF] Bensoussan | Control and Nash Games with Mean Field effect[END_REF][START_REF] Carmona | Probabilist analysis of Mean-Field Games[END_REF][START_REF] Huang | Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized -Nash Equilibria[END_REF][START_REF] Huang | The Nash Certainty Equivalence Principle and McKean-Vlasov Systems: an Invariance Principle and Entry Adaptation[END_REF][START_REF] Huang | An Invariance Principle in Large Population Stochastic Dynamic Games[END_REF][START_REF] Kolokoltsov | Mean field games and nonlinear Markov processes[END_REF][START_REF] Lasry | Mean field games[END_REF][START_REF] Lions | [END_REF]. Concerning uniqueness of the solution, two regimes were identified in [START_REF] Lasry | Mean field games[END_REF]. Uniqueness holds under Lipschitz type conditions when the time horizon T is short (or, equivalently, when H, F and G are "small"), but, as for finite-dimensional two-point boundary value problems, it may fail when the system is set over a time interval of arbitrary length. Over long time intervals, uniqueness is guaranteed under the quite fascinating condition that F and G are monotonous, i.e., if, for any measures m, m I , the following holds:

ˆRd pFpx, mq ¡ F px, m I qdpm ¡ m I qpxq ¥ 0 and ˆRd pGpx, mq ¡ Gpx, m I qdpm ¡ m I qpxq ¥ 0. [START_REF] Aumann | Markets with a continuum of traders[END_REF] The interpretation of the monotonicity condition is that the players dislike congested areas and favor configurations in which they are more scattered, see Remark 2.6 below for an example. Generally speaking, condition [START_REF] Aumann | Markets with a continuum of traders[END_REF] plays a key role throughout the paper, as it guarantees not only uniqueness but also stability of the solutions to [START_REF] Ajtai | On optimal matchings[END_REF].

As announced, a solution to the mean field game system (6) can be indeed interpreted as a Nash equilibrium for a differential game with infinitely many players: in that framework, it plays the role of the Schmeidler's non-cooperative equilibrium. A standard strategy to make the connection between [START_REF] Ajtai | On optimal matchings[END_REF] and differential games consists in inserting the optimal strategies from the Hamilton-Jacobi equation in [START_REF] Ajtai | On optimal matchings[END_REF] into finitely many player games in order to construct approximate Nash equilibria: see [START_REF] Huang | Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized -Nash Equilibria[END_REF], as well as [START_REF] Carmona | Probabilist analysis of Mean-Field Games[END_REF][START_REF] Huang | The Nash Certainty Equivalence Principle and McKean-Vlasov Systems: an Invariance Principle and Entry Adaptation[END_REF][START_REF] Huang | An Invariance Principle in Large Population Stochastic Dynamic Games[END_REF][START_REF] Kolokoltsov | Mean field games and nonlinear Markov processes[END_REF]. However, although it establishes the interpretation of the system (6) as a differential game with infinitely many players, this says nothing about the convergence of (1) and [START_REF] Achdou | Heterogeneous agent models in continuous time[END_REF].

When β is positive, the system describing Nash equilibria within a population of infinitely many players subject to the same common noise of intensity β cannot be longer described by a deterministic system of the same form as [START_REF] Ajtai | On optimal matchings[END_REF]. Owing to the theory of propagation of chaos for systems of interacting particles, see the short remark above, the unknown m in the forward equation is then expected to represent the conditional law of the optimal state of any player given the realization of the common noise. In particular, it must be random. This turns the forward Kolmogorov equation into a forward stochastic Kolmogorov equation. As the Hamilton-Jacobi equation depends on m, it renders u random as well. Anyhow, a key fact from the theory of stochastic processes is that the solution to a stochastic differential equation must be adapted to the underlying observation, as its values at some time t cannot anticipate the future of the noise after t. At first sight, it seems to be very demanding as u is also required to match, at time T , Gp¤, mpT qq, which depends on the whole realization of the noise up until T . The right formulation to accommodate both constraints is given by the theory of backward stochastic differential equations, which suggests to penalize the backward dynamics by a martingale in order to guarantee that the solution is indeed adapted. We refer the reader to the monograph [START_REF] Pardoux | Stochastic Differential Equations, Backward SDEs, Partial Differential Equations[END_REF] for a complete account on the finite dimensional theory and to the paper [START_REF] Peng | Stochastic Hamilton Jacobi Bellman equations[END_REF] for an insight into the infinite dimensional case. Denoting by W "the common noise" (here, a d¡dimensional Brownian motion) and by m p0q the initial distribution of the players at time t 0 , the MFG system with common noise then takes the form (in which the unknown are now pu t , m t , v t q): 6 9 9 9 9 9 8 9 9 9 9 9 7

d t u t 2 ¡p1 βq∆u t Hpx, Du t q ¡ F px, m t q ¡ 2βdivpv t q @ dt v t ¤ 2βdW t in r0, T s ¢ T d , d t m t p1 βq∆m t div m t D p Hpm t , Du t q ¨$dt ¡ divpm t 2βdW t ¨,
in r0, T s ¢ T d , u T pxq Gpx, m T q, m 0 m p0q , in T d [START_REF] Bardi | Explicit solutions of some linear-quadratic mean field games[END_REF] where we used the standard convention from the theory of stochastic processes that consists in indicating the time parameter as an index in random functions. As suggested right above, the map v t is a random vector field that forces the solution u t of the backward equation to be adapted to the filtration generated by pW t q tr0,T s . As far as we know, the system (8) has never been investigated and part of the paper will be dedicated to its analysis (see however [START_REF] Carmona | The master equation for large population equilibriums[END_REF] for an informal discussion). Below, we call the system (8) the MFG system with common noise.

It is worth mentioning that the aggregate equations ( 6) and [START_REF] Bardi | Explicit solutions of some linear-quadratic mean field games[END_REF] (see also the master equation ( 9) below) are the continuous time analogues of equations that appear in the analysis of dynamic stochastic general equilibria in heterogeneous agent models, as introduced in economic theory by Aiyagari [START_REF] Aiyagari | Uninsured Idiosyncratic Risk and Aggregate Saving[END_REF], Bewley [START_REF] Bewley | Stationary Monetary Equilibrium with a Continuum of Independently Fluctuating Consumers[END_REF] and Huggett [START_REF] Huggett | The risk-free rate in heterogeneous-agent incomplete-insurance economies[END_REF]. In this setting, the factor β describes the intensity of "aggregate shocks", as discussed by Krusell and Smith in the seminal paper [START_REF] Krusell | Income and wealth heterogeneity in the macroeconomy[END_REF]. In some sense, the limit problem studied in the paper is an attempt to deduce the macroeconomic models, describing the dynamics of a typical (but heterogeneous) agent in an equilibrium configuration, from the microeconomic ones (the Nash equilibria).

The master equation. Although the mean field game system has been widely studied since its introduction in [START_REF] Lasry | Mean field games[END_REF] and [START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF], it has become increasingly clear that this system was not sufficient to take into account the entire complexity of dynamic games with infinitely many players. The need for reformulating the original system (6) into the much more complex stochastic version [START_REF] Bardi | Explicit solutions of some linear-quadratic mean field games[END_REF] in order to accommodate with the common noise (i.e., the case β ¡ 0) sounds as a hint in that direction. In the same spirit, we may notice that the original MFG system [START_REF] Ajtai | On optimal matchings[END_REF] does not accommodate with mean field games with a major player and infinitely many small players, see [START_REF] Huang | Large-population LQG games involving a major player: The Nash certainty equivalence principle[END_REF]. And, last but not the least, the main limitation is that, so far, the formulation based on the system (6) (or [START_REF] Bardi | Explicit solutions of some linear-quadratic mean field games[END_REF] when β ¡ 0) has not permitted to establish a clear connection with the Nash system [START_REF] Achdou | Partial differential equation models in macroeconomics[END_REF].

These issues led Lasry and Lions [START_REF] Lions | [END_REF] to introduce an infinite dimensional equation -the socalled "master equation"-that directly describes, at least formally, the limit of the Nash system (1) and encompasses the above complex situations. Before writing down this equation, let us explain its main features. One of the key observations has to do with the symmetry properties, to which we already alluded, that are satisfied by the solution of the Nash system [START_REF] Achdou | Partial differential equation models in macroeconomics[END_REF]. Under the standing symmetry assumptions (3) on the pF N,i q i1,...,N and pG N,i q i1,...,N , (4) says that the pv N,i q 1,...,N can be written into a similar form to (3), namely v N,i pt, xq v N pt, x i , m N,i x q (where the empirical measures m N,i x are defined as in ( 3)), but with the obvious but major restriction that the function v N that appears on the right-hand side of the equality now depends upon N . With such a formulation, the value function to player i reads as a function of the private state of player i and of the empirical distribution formed by the others. Then, one may guess, at least under the additional assumption that such a structure is preserved as N Ñ V, that the unknown in the limit problem takes the form U U pt, x, mq, where x is the position of the (typical) small player at time t and m is the distribution of the (infinitely many) other agents.

The question is then to write down the dynamics of U . Plugging U U pt, x i , m N,i x q into the Nash system (1), one obtains-at least formally-an equation stated in the space of measures (see Subsection 1.2 for a heuristic discussion). This is the so-called master equation. It takes the form: ¡f t U ¡ p1 βq∆ x U Hpx, D x U q ¡p1 βq ˆRd div y rD m U s dmpyq ˆRd D m U ¤ D p Hpy, D x U q dmpyq ¡2β ˆRd div x rD m U s dmpyq ¡ β ˆR2d Tr

D 2 mm U $ dm dm F px, mq in r0, T s ¢ R d ¢ PpR d q U pT, x, mq Gpx, mq in R d ¢ PpR d q (9)
In the above equation, f t U , D x U and ∆ x U stand for the usual time derivative, space derivatives and Laplacian with respect to the local variables pt, xq of the unknown U , while D m U and

D 2
mm U are the first and second order derivatives with respect to the measure m. The precise definition of these derivatives is postponed to Section 2. For the time being, let us just note that it is related with the derivatives in the space of probability measures described, for instance, by Ambrosio, Gigli and Savaré in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] and by Lions in [START_REF] Lions | [END_REF]. It is worth mentioning that the master equation ( 9) is not the first example of an equation studied in the space of measures -by far: for instance Otto [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] gave an interpretation of the porous medium equation as an evolution equation in the space of measures, and Jordan, Kinderlehrer and Otto [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] showed that the heat equation was also a gradient flow in that framework; notice also that the analysis of Hamilton-Jacobi equations in metric spaces is partly motivated by the specific case when the underlying metric space is the space of measures (see in particular [START_REF] Ambrosio | On a class of first order Hamilton?Jacobi equations in metric spaces[END_REF][START_REF] Feng | A comparison principle for Hamilton?Jacobi equations related to controlled gradient flows in infinite dimensions[END_REF] and the references therein)-. The master equation is however the first one to combine at the same time the issue of being nonlocal, nonlinear and of second order.

Beside the discussion in [START_REF] Lions | [END_REF], the importance of the master equation [START_REF] Bardi | Nonlinear elliptic systems and mean field games[END_REF] has been acknowledged by several contributions: see for instance the monograph [START_REF] Bensoussan | Mean field games and mean field type control theory[END_REF] and the companion papers [START_REF] Bensoussan | The master equation in mean field theory[END_REF] and [START_REF] Bensoussan | On the interpretation of the master equation[END_REF] in which Bensoussan, Frehse and Yam generalize this equation to mean field type control problems and reformulate it as a PDE set on an L 2 space, [START_REF] Carmona | The master equation for large population equilibriums[END_REF] where Carmona and Delarue interpret this equation as a decoupling field of forward-backward stochastic differential equation in infinite dimension.

If the master equation has been discussed and manipulated thoroughly in the above references, it is mostly at a formal level: The well-posedness of the master equation has remained, to a large extend, open until now. Beside, even if the master equation has been introduced to explain the convergence of the Nash system, the rigorous justification of the convergence has not been understood.

The aim of the paper is to give an answer to both questions.

Well-posedness of the master equation. The largest part of this paper is devoted to the proof of the existence and uniqueness of a classical solution to the master equation [START_REF] Bardi | Nonlinear elliptic systems and mean field games[END_REF], where, by classical, we mean that all the derivatives in [START_REF] Bardi | Nonlinear elliptic systems and mean field games[END_REF] exist and are continuous. In order to avoid issues related to boundary conditions or conditions at infinity, we work for simplicity with periodic data: the maps H, F and G are periodic in the space variable. The state space is therefore the ddimensional torus T d R d {Z d and m p0q belongs to PpT d q, the set of Borel probability measures on T d . We also assume that F, G : T d ¢ PpT d q Ñ R satisfy the monotonicity conditions [START_REF] Aumann | Markets with a continuum of traders[END_REF], are sufficiently "differentiable" with respect to both variables and, of course, periodic with respect to the state variable. Although the periodicity condition is rather restrictive, the extension to maps defined on the full space or to Neumann boundary conditions is probably not a major issue. Anyhow, it would certainly require further technicalities, which would have made the paper even longer than it is if we had decided to include them.

So far, the existence of classical solutions to the master equation has been known in more restricted frameworks. Lions discussed in [START_REF] Lions | [END_REF] a finite dimensional analogue of the master equation and derived conditions for this hyperbolic system to be well-posed. These conditions correspond precisely to the monotonicity property [START_REF] Aumann | Markets with a continuum of traders[END_REF], which we here assume to be satisfied by the coupling functions F and G. This parallel strongly indicates -but this should not does not come as a surprise-that the monotonicity of F and G should play a key role in the unique strong solvability of [START_REF] Bardi | Nonlinear elliptic systems and mean field games[END_REF]. Lions also explained in [START_REF] Lions | [END_REF] how to get the well-posedness of the master equation without noise (no Laplacian in the equation) by extending the equation to a (fixed) space of random variables under a convexity assumption in space of the data. In [START_REF] Buckdahn | Mean-field stochastic differential equations and associated PDEs[END_REF] Buckdahn, Li, Peng and Rainer studied equation [START_REF] Bardi | Nonlinear elliptic systems and mean field games[END_REF], by means of probabilistic arguments, when there is no coupling nor common noise (F G 0, β 0) and proved the existence of a classical solution in this setting; in a somewhat similar spirit, Kolokoltsov, Li and Yang [START_REF] Kolokoltsov | Mean field games and nonlinear Markov processes[END_REF] and Kolokoltsov, Troeva and Yang [START_REF] Kolokoltsov | On the Rate of Convergence for the Mean-Field Approximation of Controlled Diffusions with Large Number of Players[END_REF] investigated the tangent process to a flow of probability measures solving a McKean-Vlasov equation. Gangbo and Swiech [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF] analyzed the first order master equation in short time (no Laplacian in the equation) for a particular class of Hamiltonians and of coupling functions F and G (which are required to derive from a potential in the measure argument). Chassagneux, Crisan and Delarue [START_REF] Chassagneux | Classical solutions to the master equation for large population equilibria[END_REF] obtained, by a probabilistic approach similar to that used in [START_REF] Buckdahn | Mean-field stochastic differential equations and associated PDEs[END_REF], the existence and uniqueness of a solution to [START_REF] Bardi | Nonlinear elliptic systems and mean field games[END_REF] without common noise (when β 0) under the monotonicity condition [START_REF] Aumann | Markets with a continuum of traders[END_REF] in either the non degenerate case (as we do here) or in the degenerate setting provided that F , H and G satisfy an additional convexity conditions in the variables px, pq. The complete novelty of our result, regarding the specific question of solvability of the master equation, is the existence and uniqueness of a classical solution to the problem with common noise.

The technique of proof in [START_REF] Buckdahn | Mean-field stochastic differential equations and associated PDEs[END_REF][START_REF] Chassagneux | Classical solutions to the master equation for large population equilibria[END_REF][START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF] consists in finding a suitable representation of the solution: indeed a key remark in Lions [START_REF] Lions | [END_REF] is that the master equation is a kind of transport equation in the space of measures and that its characteristics are, when β 0, the MFG system [START_REF] Ajtai | On optimal matchings[END_REF]. Using this idea, the main difficulty is then to prove that the candidate is smooth enough to perform the computation showing that it is a classical solution of [START_REF] Bardi | Nonlinear elliptic systems and mean field games[END_REF]. In [START_REF] Buckdahn | Mean-field stochastic differential equations and associated PDEs[END_REF][START_REF] Chassagneux | Classical solutions to the master equation for large population equilibria[END_REF] this is obtained by linearizing systems of forward-backward stochastic differential equations, while [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF] relies on a careful analysis of the characteristics of the associated first order PDE.

Our starting point is the same: we use a representation formula for the master equation.

When β 0, the characteristics are just the solution to the MFG system [START_REF] Ajtai | On optimal matchings[END_REF]. When β is positive, these characteristics become random under the action of the common noise and are then given by the solution of the MFG system with common noise [START_REF] Bardi | Explicit solutions of some linear-quadratic mean field games[END_REF].

The construction of a solution U to the master equation then relies on the method of characteristics. Namely, we define U by letting U pt 0 , x, m 0 q : u t 0 pxq where the pair pu t , m t q trt 0 ,T s is the solution to [START_REF] Bardi | Explicit solutions of some linear-quadratic mean field games[END_REF] when the forward equation is initialized at m p0q PpT d q at time t 0 , that is in rt 0 , T s ¢ T d u T pxq Gpx, m T q, m t 0 m p0q in T d , [START_REF] Bensoussan | Smooth solutions of systems of quasilinear parabolic equations[END_REF] There are two main difficult steps in the analysis. The first one is to establish the smoothness of U and the second one is to show that U indeed satisfies the master equation [START_REF] Bardi | Nonlinear elliptic systems and mean field games[END_REF]. In order to proceed, the cornerstone is to make a systematic use of the monotonicity properties of the maps F and G: Basically, monotonicity prevents the emergence of singularities in finite time. Our approach seems to be very powerful, although the reader might have a different feeling due to the length of the paper. As a matter of fact, part of the technicalities in the proof are caused by the stochastic aspect of the characteristics [START_REF] Bensoussan | Smooth solutions of systems of quasilinear parabolic equations[END_REF]. As a result, we spend much effort to handle the case with a common noise (for which almost nothing has been known so far), but, in the simpler case β 0, our strategy to handle the first order master equation provides a much shorter proof than in the earlier works [START_REF] Buckdahn | Mean-field stochastic differential equations and associated PDEs[END_REF][START_REF] Chassagneux | Classical solutions to the master equation for large population equilibria[END_REF][START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF]. For this reason, we decided to display the proof in this simple context separately (Section 3).

The convergence result. Although most of the paper is devoted to the construction of a solution to the master equation, our main (and primary) motivation remains to justify the mean field limit. Namely, we show that the solution of the Nash system (1) converges to the solution of the master equation. The main issue here is the complete lack of estimates on the solutions to this large system of Hamilton-Jacobi equations: This prevents the use of any compactness method to prove the convergence. So far, this question has been almost completely open. The convergence has been known in very few specific situations. For instance, it was proved for the ergodic mean field games (see Lasry-Lions [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF], revisited by ). In this case, the Nash equilibrium system reduces to a coupled system of N equations in T d (instead of N equations in T N d as [START_REF] Achdou | Partial differential equation models in macroeconomics[END_REF]) and estimates of the solutions are available. Convergence is also known in the "linear-quadratic" setting, where the Nash system has explicit solutions: see Bardi [START_REF] Bardi | Explicit solutions of some linear-quadratic mean field games[END_REF]. Let us finally quote the nice results by Fischer [START_REF] Fischer | On the connection between symmetric N-player games and mean field games[END_REF] and Lacker [START_REF] Lacker | A general characterization of the mean field limit for stochastic differential games[END_REF] on the convergence of open loop Nash equilibria for the N ¡player game and the characterization of the possible limits. Therein, the authors overcome the lack of strong estimates on the solutions to the N ¡player game by using the notion of relaxed controls for which weak compactness criteria are available. The problem addressed here-concerning closed loop Nash equilibria-differs in a substantial way from [START_REF] Fischer | On the connection between symmetric N-player games and mean field games[END_REF][START_REF] Lacker | A general characterization of the mean field limit for stochastic differential games[END_REF]: Indeed, we underline the surprising fact that the Nash system (1), which concerns equilibria in which the players observe each other, converges to an equation in which the players only need to observe the evolution of the distribution of the population.

Our main contribution is a general convergence result, in large time, for mean field games with common noise, as well as an estimate of the rate of convergence. The convergence holds in the following sense: for any x pT d q N , let m N x : 1 N °N i1 δ x i . Then

1 N N i1 § § v N,i pt 0 , xq ¡ U pt 0 , x i , m N x q § § ¤ CN ¡1 . (11) 
We also prove a mean field result for the optimal solutions (2): if the initial conditions of the ppX i,¤ qq i1,...,N are i.i.d. and with the same law m p0q PpT d q, then

E sup tr0,T s |X i,t ¡ Y i,t | % ¤ CN ¡ 1 d 8 ,
where the ppY i,t q i1,...,N q tr0,T s are the solutions to the McKean-Vlasov SDE

dY i,t ¡D p H Y i,t , D x U t, Y i,t , LpY i,t |Wq ¨¨dt c 2dB i t 2βdW t ,
t rt 0 , T s, with the same initial condition as the ppX i,t q i1,...,N q tr0,T s . Here U is the solution of the master equation and LpY i,t |Wq is the conditional law of Y i,t given the realization of the whole path W . Since the ppY i,t q tr0,T s q i1,...,N are conditionally independent given W , the above result shows that (conditional) propagation of chaos holds for the N ¡Nash equilibria.

The technique of proof consists in testing the solution U of the master equation ( 9) as a nearly solution to the N ¡Nash system [START_REF] Achdou | Partial differential equation models in macroeconomics[END_REF]. On the model of (3), a natural candidate for being an approximate solution to the N ¡Nash system is indeed u N,i pt, xq U t, x i , m N,i x ¨, t r0, T s, x pT d q N . Taking benefit from the smoothness of U , we then prove that the "proxies" pu N,i q i1,...,N almost solve the N ¡Nash system (1) up to a remainder term that vanishes as N tends to V. As a by-product, we deduce that the pu N,i q i1,...,N get closer and closer to the "true solutions" pv N,i q i1,...,N when N tends to V, which yields [START_REF] Bensoussan | Control and Nash Games with Mean Field effect[END_REF]. As the reader may notice, the convergence property [START_REF] Bensoussan | Control and Nash Games with Mean Field effect[END_REF] is stated in a symmetric form, namely the convergence holds in the mean, the average being taken over all the particles. Of course, this is reminiscent of the symmetry properties satisfied by the N ¡Nash system, which play a crucial role in the proof.

It is worth mentioning that the monotonicity properties (3) play no role in our proof of the convergence. Except structural conditions concerning the Lipschitz property of the coefficients, the arguments work under the sole assumption that the master equation has a classical solution.

Conclusion and further prospects. The fact that the existence of a classical solution to the master equation suffices to prove the convergence of the Nash system demonstrates the deep interest of the master equation, when regarded as a mathematical concept in its own right. Considering the problem from a more abstract point of view, the master equation indeed captures the evolution of the time-dependent semi-group generated by the Markov process formed, on the space of probability measures, by the forward component of the MFG system [START_REF] Bensoussan | Smooth solutions of systems of quasilinear parabolic equations[END_REF]. Such a semi-group is said to be lifted as the corresponding Markov process has PpT d q as state space.

In other words, the master equation is a nonlinear PDE driven by a Markov generator acting on functions defined on PpT d q. The general contribution of our paper is thus to show that any classical solution to the master equation accommodates with a given perturbation of the lifted semi-group and that the information enclosed in such a classical solution suffices to determine the distance between the semi-group and its perturbation. Obviously, as a perturbation of a semigroup on the space of probability measures, we are here thinking of a system of N interacting particles, exactly as that formed by the Nash equilibrium of an N ¡player game.

Identifying the master equation with a nonlinear PDE driven by the Markov generator of a lifted semi-group is a key observation. As already pointed out, the Markov generator is precisely the operator, acting on functions from PpT d q to R, generated by the forward component of the MFG system [START_REF] Bensoussan | Smooth solutions of systems of quasilinear parabolic equations[END_REF]. Put it differently, the law of the forward component of the MFG system [START_REF] Bensoussan | Smooth solutions of systems of quasilinear parabolic equations[END_REF], which lives in PpPpT d qq, satisfies a forward Kolmogorov equation, also referred to as a "master equation" in physics. This says that "our master equation" is somehow the dual (in the sense that it is driven by the adjoint operator) of the "master equation" that would describe, according to the terminology used in physics, the law of the Nash equilibrium for a game with infinitely many players (in which case the Nash equilibrium itself is a distribution). We stress that this interpretation is very close to the point of view developed by Mischler and Mouhot [START_REF] Mischler | Kac's Program in Kinetic Theory[END_REF] in order to investigate Kac's program (up to the difference that, differently from ours, Mischler and Mouhot's work investigates uniform propagation of chaos over an infinite time horizon; we refer to the companion paper by Mischler, Mouhot and Wennberg [START_REF] Mischler | A new approach to quantitative propagation of chaos for drift, diffusion and jump processes[END_REF] for the analysis, based on the same technology, of mean-field models in finite time). Therein, the authors introduce the evolution equation satisfied by the (lifted ) semi-group, acting on functions from PpR d q to R, generated by the d-dimensional Boltzmann equation. According to our terminology, such an evolution equation is a "master equation" on the space of probability measures, but it is linear and of the first-order while ours is nonlinear and of the second-order (meaning second-order on PpT d q).

In this perspective, we also emphasize that our strategy for proving the convergence of the N ¡Nash system relies on a similar idea to that used in [START_REF] Mischler | Kac's Program in Kinetic Theory[END_REF] to establish the convergence of Kac's jump process. While our approach consists in inserting the solution of the master equation into the N ¡Nash system, Mischler and Mouhot's point of view is to compare the semi-group generated by the N ¡particle Kac's jump process, which operates on symmetric functions from pR d q N to R (or equivalently on empirical distributions of size N ), with the limiting lifted semigroup, when acting on the same class of symmetric functions from pR d q N to R. Clearly, the philosophy is the same, except that, in our paper, the "limiting master equation" is nonlinear and of the second-order (which renders the analysis more difficult) and is set over a finite time horizon only (which does not ask for uniform in time estimates). It is worth mentioning that similar ideas have been explored by Kolokoltsov in the monograph [START_REF] Kolokoltsov | Nonlinear Markov processes and kinetic equations[END_REF] and developed, in the McKean-Vlasov framework, in the subsequent works [START_REF] Kolokoltsov | Mean field games and nonlinear Markov processes[END_REF] and [START_REF] Kolokoltsov | On the Rate of Convergence for the Mean-Field Approximation of Controlled Diffusions with Large Number of Players[END_REF] in collaboration with his coauthors.

Of course, these parallels raise interesting questions, but we refrain from comparing these different works in a more detailed way: This would require to address more technical questions regarding, for instance, the topology used on the space of probability measures and the regularity of the various objects in hand; clearly, this would distract us from our original objective. We thus feel better to keep the discussion at an informal level and to postpone a more careful comparison to future works on the subject.

We complete the introduction by pointing out possible generalizations of our results. For simplicity of notation, we work in the autonomous case, but the results remain unchanged if H or F are time-dependent provided that the coefficients F , G and H, and their derivatives (whenever they exist), are continuous in time and that the various quantitative assumptions we put on F , G and H hold uniformly with respect to the time variable. We can also remove the monotonicity condition [START_REF] Aumann | Markets with a continuum of traders[END_REF] provided that the time horizon T is assumed to be small enough. The reason is that the analysis of the smoothness of U relies on the solvability and stability properties of the forward-backward system [START_REF] Bensoussan | Smooth solutions of systems of quasilinear parabolic equations[END_REF] and of its linearized version: As for finite-dimensional two-point boundary value problems, Lipschitz type conditions on the coefficients (and on their derivatives since we are also dealing with the linearized version) are sufficient whenever T is small enough.

As already mentioned, we also chose to work in the periodic framework. We expect for similar results under other type boundary conditions, like the entire space R d or Neumann boundary conditions.

Notice also that our results can be generalized without much difficulty to the stationary setting, corresponding to infinite horizon problems. This framework is particularly meaningful for economic applications. In this setting the Nash system takes the form

6 9 9 9 8 9 9 9 7 rv N,i pxq ¡ N j1 ∆ x j v N,i pxq ¡ β N j,k1 TrD 2 x j ,x k v N,i pxq Hpx i , D x i v N,i pxqq j$i D p Hpx j , D x j v N,j pxqq ¤ D x j v N,i pxq F N,i pxq in pR d q N ,
where r ¡ 0 is interpreted as a discount factor. The corresponding master equation is 

rU ¡ p1 βq∆ x U Hpx, D x U q ¡p1 βq ˆRd div y rD m U s dmpyq ˆRd D m U ¤ D p Hpy, D x U q dmpyq ¡2β ˆRd div x rD m U s dmpyq ¡ β ˆR2d Tr D 2 mm U $ dm dm F px, mq in R d ¢ PpR d q,
where the unknown is the map U U px, mq. One can solve again this system by using the method of (infinite dimensional) characteristics, paying attention to the fact that these characteristics remain time-dependent. The MFG system with common noise takes the form (in which the unknown are now pu t , m t , v t q): 6 9 9 9 9 9 8 9 9 9 9 9 7

d t u t 2 ru t ¡ p1 βq∆u t Hpx, Du t q ¡ F px, m t q ¡ 2βdivpv t q @ dt v t ¤ 2βdW t in r0, Vq ¢ T d d t m t p1 βq∆m t div m t D p Hpm t , Du t q ¨$dt ¡ divpm t 2βdW t ¨, in r0, Vq ¢ T d m 0 m0 in T d , pu t q t bounded a.s.
Organization of the paper. We present our main results in Section 2, where we also explain the notation, state the assumption and rigorously define the notion of derivative on the space of measures. The well-posedness of the master equation is proved in Section 3 when β 0. Unique solvability of the MFG system with common noise is discussed in Section 4. Results obtained in Section 4 are implemented in the next Section 5 to derive the existence of a classical solution to the master equation in the general case. The last section is devoted to the convergence of the Nash system. In appendix, we revisit the notion of derivative on the space of probability measures and discuss some useful auxiliary properties.

Informal derivation of the master equation

Before stating our main results, it is worthwhile explaining the meaning of the Nash system, the heuristic derivation of the master equation from the Nash system and its main properties. We hope that this (by no means rigorous) presentation might help the reader to be acquainted with our notation and the main ideas of proof. To emphasize the informal aspect of the discussion, we state all the ideas in R d , without bothering about the boundary issues (whereas in the rest of the paper we always work with periodic boundary conditions).

The differential game

The Nash system (1) arises in differential game theory. Differential games are just optimal control problems with many (here N ) players. In this game, Player i (for i 1, . . . , N ) controls his state pX i,t q tr0,T s through his control pα i,t q tr0,T s . The state pX i,t q tr0,T s evolves according to the stochastic differential equation (SDE)

dX i,t α i,t dt c 2dB i t 2βdW t , X t 0 x i,0 . (12) 
Recall that the d-dimensional Brownian motions ppB i t q tr0,T s q i1,...,N and pW t q tr0,T s are independent, pB i t q tr0,T s corresponding to the individual noise (or idiosyncratic noise) to player i and pW t q tr0,T s being the common noise, which affects all the players. Controls ppα i,t q tr0,T s q i1,...,N are required to be progressively-measurable with respect to the filtration generated by all the noises. Given an initial condition x 0 px 1,0 , . . . , x N,0 q pT d q N for the whole system at time t 0 , each player aims at minimizing the cost functional:

J N i t 0 , x 0 , pα j,¤ q j1,...,N ¨ E ˆT t 0 LpX i,s , α i,s q F N,i pX s q ¨ds G N,i pX T q & ,
where X t pX 1,t , . . . , X n,t q and where L :

R d ¢ R d Ñ R, F N,i : R N d Ñ R and G N,i : R N d Ñ R
are given Borel maps. If we assume that, for each player i, the other players are undistinguishable, we can suppose that F N,i and G N,i take the form

F N,i pxq F px i , m N,i
x q and G N,i pxq Gpx i , m N,i x q. In the above expressions, F, G : R d ¢ PpR d q Ñ R, where PpR d q is the set of Borel measures on R d . The Hamiltonian of the problem is related to L by the formula: dpx, pq R d ¢ R d , Hpx, pq sup αR d t¡α ¤ p ¡ Lpx, αqu . Let now pv N,i q i1,...,N be the solution to [START_REF] Achdou | Partial differential equation models in macroeconomics[END_REF]. By Itô's formula, it is easy to check that pv N,i q i1,...,N corresponds to an optimal solution of the problem in the sense of Nash, i.e., a Nash equilibrium of the game. Namely, the feedback strategies

α ¦ i pt, xq : ¡D p Hpx i , D x i v N,i pt, xqq ¨i1,...,N (13) 
provide a feedback Nash equilibrium for the game: v N,i t 0 , x 0 ¨ J N i t 0 , x 0 , pα ¦ j,¤ q j1,...,N ¨¤ J N i pt 0 , x 0 , α i,¤ , pα ¦ j,¤ q j$i q for any i t1, . . . , N u and any control α i,¤ , progressively-measurable with respect to the filtration generated by ppB j t q j1,...,N q tr0,T s and pW t q tr0,T s . In the left-hand side, α ¦ j,¤ is an abusive notation for the process pα ¦ j pt, X j,t qq tr0,T s , where pX 1,t , . . . , X N,t q tr0,T s solves the system of SDEs (12) when α j,t is precisely given under the implicit form α j,t α ¦ j pt, X j,t q. Similarly, in the righthand side, α¦ j , for j i, denotes pα ¦ j pt, X j,t qq tr0,T s , where pX 1,t , . . . , X N,t q tr0,T s now solves the system of SDEs [START_REF] Bensoussan | Mean field games and mean field type control theory[END_REF] for the given α i,¤ , the other pα j,t q j i 's being given under the implicit form α j,t α ¦ j pt, X j,t q. In particular, system [START_REF] Achdou | Heterogeneous agent models in continuous time[END_REF], in which all the players play the optimal feedback [START_REF] Bensoussan | The master equation in mean field theory[END_REF], describes the dynamics of the optimal trajectories.

Derivatives in the space of measures

In order to describe the limit of the maps pv N,i q, let us introduce-in a completely informal manner-a notion of derivative in the space of measures PpR d q. A rigorous description of the notion of derivative used in this paper is given in section 2.2.

In the following discussion, we argue as if all the measures had a density. Let U : PpR d q Ñ R. Restricting the function U to the elements m of PpR d q which have a density in L 2 pR d q and assuming that U is defined in a neighborhood O L 2 pR d q of PpR d q L 2 pR d q, we can use the Hilbert structure on L 2 pR d q. We denote by δU δm the gradient of U in L 2 pR d q, namely δU δm ppqpqq lim

εÑ0 1 ε ¡ U pp εqq ¡ U ppq © , p O, q L 2 pR d q.
Of course, way can identify δU δm ppq with an element of L 2 pR d q. Then, the duality product δU δm ppqpqq reads as the inner product x δU δm ppq, qy L 2 pR d q . Similarly, we denote by δ 2 U δm 2 the second order derivative of U (which can be identified with a symmetric bilinear form on L 2 pR d q): δU δm ppqpq, q I q lim εÑ0 1 ε

¡ δU δm pp εqqpq I q ¡ δU δm ppqpq I q

D m U pm, yq D y δU δm pm, yq, D 2 mm U pm, ¤, y, y I q D 2 y,y I δU δm pm, y, y I q. ( 14 
)
To explain the meaning of D m U , let us compute the action of a vector field on a measure m and the image by U . For a given vector field B : R d Ñ R d and m PpR d q absolutely continuous with a smooth density, let mptq mpx, tq be the solution to 4 fm

ft divpBmq 0 m 0 m
This expression directly gives

d dh U pmphqq | h0 x δU δm , ¡divpBmqy L 2 pR d q ˆRd D m U pm, yq ¤ Bpyq dmpyq, (15) 
where we used an integration by parts in the last equality.

Another way to understand these derivatives is to project the map U to the finite dimensional space pR d q N via the empirical measure: if x px 1 , . . . , x N q pR d q N , let m N x : p1{Nq °N i1 δ x i and set u N pxq U pm N

x q. Then one can check the following relationships (see Proposition 6.1): for any j t1, . . . , N u,

D x j u N pxq 1 N D m U pm N x , x j q, (16) 
D 2 x j ,x j u N pxq 1 N D y rD m U s pm N x , x j q 1 N 2 D 2 mm U pm N x , x j , x j q (17) while, if j $ k, D 2 x j ,x k u N pxq 1 N 2 D 2 mm U pm N x , x j , x k q. ( 18 
)
1.2.3 Formal asymptotic of the pv N,i q Provided that (1) has a unique solution, each v N,i , for i 1, . . . , N , is symmetric with respect to permutations on t1, . . . , N uztiu and, for i j, the role played by x i in v N,i is the same as the role played by x j in v N,j (see Subsection 6.2). Therefore, it makes sense to expect, as limit as

N Ñ V, v N,i pt, xq U pt, x i , m N,i
x q where U : r0, T s ¢ R d ¢ PpR d q Ñ R. Starting from this ansatz, our aim is now to provide heuristic arguments explaining why U should satisfy [START_REF] Bardi | Nonlinear elliptic systems and mean field games[END_REF]. The sense in which the pv N,i q i1,...,N actually converge to U is stated in Theorem 2.13 and the proof given in Section 6.

The informal idea is to assume that v N,i is already of the form U pt, x i , m N,i x q and to plug this expression into the equation of the Nash equilibrium (1): the time derivative and the derivative with respect to x i are understood in the usual sense, while the derivatives with respect to the other variables are computed by using the relations in the previous section.

The terms f t v N,i and Hpx i , D x i v N,i q easily become fU ft and Hpx, D x U q. We omit for a while the second order terms and concentrate on the expression

j$i D p Hpx j , D x j v N,j q ¤ D x j v N,i . Note that D x j v N,j is just like D x U pt, x j , m N,j
x q. In view of ( 16),

D x j v N,i 1 N ¡ 1 D m U pt, x i , m N,i x , x j q,
and the sum over j is like an integration with respect to m N,i

x . So we find, ignoring the difference between m N,i

x and m N,j x ,

j$i D p Hpx j , D x j v N,j q ¤ D x j v N,i ˆTd D p Hpy, D x U pt, m N,i x , yqq ¤ D m U pt, x i , m N,i
x , yqdm N,i

x pyq.

We now study the term j ∆ x j v N,i . As ∆ x i v N,i ∆ x U , we have to analyze the quantity

j$i ∆ x j v N,i .
In view of (17), we expect

j$i ∆ x j v N,i 1 N ¡ 1 j$i div y rD m U s pt, x i , m N,i x , x j q 1 pN ¡ 1q 2 j$i Tr D 2 mm U $ pt, x i , m N,i x , x j , x j q ˆTd div y rD m U s pt, x i , m N,i x , yqdm N,i x pyq 1 N ¡ 1 ˆTd Tr D 2 mm U $ pt, x i , m N,i
x , y, yqdm N,i

x pyq,

where we can drop the last term since it is of order 1{N . Let us finally discuss the limit of the term ķ,l

Trp f 2 v N,i fx k fx l q that we rewrite

∆ x i v N,i 2 ķ$i Trp f fx i fv N,i fx k q ķ,l$i Trp f 2 v N,i fx k fx l q (19)
The first term gives ∆ x U . Using [START_REF] Buckdahn | Mean-field stochastic differential equations and associated PDEs[END_REF] the second one becomes

2 ķ$i Trp f fx k fv N,i fx i q 2 N ¡ 1 ķ$i Tr rD x D m U s pt, x i , m N,i x , x k q 2 ˆTd div x rD m U s pt, x i , m N,i
x , yqdm N,i

x pyq.

As for the last term in [START_REF] Carmona | The master equation for large population equilibriums[END_REF], we have by [START_REF] Carmona | Forward-Backward Stochastic Differential Equations and Controlled McKean Vlasov Dynamics[END_REF]:

ķ,l$i Trp f 2 v N,i fx k fx l q 1 pN ¡ 1q 2 ķ,l$i Tr D 2 mm U $ pt, x i , m N,i x , x j , x k q ˆTd ˆTd Tr D 2 mm U $ pt, x i , m N,i
x , y, y I qdm N,i x pyqdm N,i x py I q.

Collecting the above relations, we expect that the Nash system 6 9 9 9 9 9 8 9 9 9 9 9 7

¡ fv N,i ft ¡ j ∆ x j v N,i ¡ β ķ,l Trp f 2 v N,i fx k fx l q Hpx i , D x i v N,i q j$i D p Hpx j , D x j v N,j q ¤ D x j v N,i F px i , m N,i x q v N,i pT, xq Gpx i , m N,i
x q has for limit This is the master equation. Note that there are only two genuine approximations in the above computation. One is where we dropped the term of order 1{N in the computation of the sum °j$i ∆ x j v N,i . The other one was at the very beginning, when we replaced D x U pt, x j , m N,j

x q by D x U pt, x j , m N,i x q. This is again of order 1{N .

The master equation and the MFG systems

We complete this informal discussion by explaining the relationship between the master equation and the MFG systems. This relation plays a central role in the paper. It is indeed the cornerstone for constructing a solution to the master equation via a method of (infinite dimensional) characteristics. However, for pedagogical reasons, we here go the other way round: While, in the next sections, we start from the unique solvability of the system of characteristics to prove the existence of a classical solution to the master equation, we now assume for a while that the master equation has a classical solution and, from this solution, we construct a solution to the MFG system.

Let us start with the first order case, i.e., when β 0, since this is substantially easier. Let U be the solution to the master equation ( 9) and, for a fixed initial position pt 0 , m p0q q r0, T s ¢ PpR d q, pu, mq be a solution of the MFG system (6) with initial condition mpt 0 q m p0q .

We claim that f t m ¡ ∆m ¡ div ¡ mD p H x, D x U pt, x, mptqq ¨© 0, upt, xq U pt, x, mptqq, t rt 0 , T s. [START_REF] Carmona | Control of McKean-Vlasov Dynamics versus Mean Field Games[END_REF] In other words, to compute U pt 0 , x, m p0q q, we just need to compute the solution pu, mq of the MFG system [START_REF] Ajtai | On optimal matchings[END_REF] and let U pt 0 , x, m p0q q : upt 0 , xq. This is exactly the method of proof of Theorem 2.8.

To check [START_REF] Carmona | Control of McKean-Vlasov Dynamics versus Mean Field Games[END_REF], we solve the McKean-Vlasov equation

f t m I ¡ ∆m I ¡ div ¡ m I D p H x, D x U pt, x, m I ptqq ¨© 0, m I pt 0 , ¤q m p0q , and set u I pt, xq U pt, x, m I ptqq. Then f t u I pt, xq f t U e δU δm , f t m I i L 2 f t U e δU δm , ∆m I div m I D p Hp¤, D x U q ¨iL 2 f t U ˆRd ¡ div y rD m U s ¡ D m U ¤ D p Hpy, D x U q © dm I pyq ¡∆ x U Hpx, D x U q ¡ F px, mq (21) 
where we used the equation satisfied by U in the last equality. Therefore the pair pu I , m I q is a solution to [START_REF] Ajtai | On optimal matchings[END_REF], which, provided that the MFG system is at most uniquely solvable, shows that pu I , m I q pu, mq.

For the second order master equation (β ¡ 0) the same principle applies except that, now, the MFG system becomes stochastic. Let pt 0 , m p0q q r0, T s ¢ PpR d q and pu t , m t q be a solution of the MFG system with common noise [START_REF] Bensoussan | Smooth solutions of systems of quasilinear parabolic equations[END_REF]. Provided that the master equation has a classical solution, we claim that

d t m t 3 p1 βq∆m t div ¡ m t D p H x, D x U pt, x, m t q
¨©A dt 2βdivpm t dW t q, u t pxq U pt, x, m t q, t rt 0 , T s, a.s.. [START_REF] Chassagneux | Classical solutions to the master equation for large population equilibria[END_REF] Once again, we stress that this formula (whose derivation here is informal) underpins the rigorous construction of the second order master equation performed in Section 5. As a matter of fact, it says that, in order to define U pt 0 , x, m p0q q (meaning that U is no more a priori given as we assumed a few lines above), one "just needs" to solve the MFG system [START_REF] Bensoussan | Smooth solutions of systems of quasilinear parabolic equations[END_REF] with m t 0 m p0q and then set U pt 0 , x, m p0q q u t 0 pxq. Here one faces the additional issue that, so far, there has not been any solvability result for [START_REF] Bardi | Explicit solutions of some linear-quadratic mean field games[END_REF] and that the regularity of the map U that is defined in this way is much more involved to investigate than in the first order case.

Returning to the proof of ( 22) (and thus assuming again that the master equation has a classical solution), the argument is the same in the case β 0, but with extra terms coming from the stochastic contributions. First, we (uniquely) solve the stochastic McKean-Vlasov equation

d t m I t 3 p1 βq∆m I t div ¡ m I t D p H x, D x U pt, x, m I t q ¨©A dt 2βdivpm I t dW t q, m I t 0 m 0 ,
and set u I t pxq U pt, x, m I t q. Then, by Itô's formula,

d t u I t pxq 3 f t U e δU δm , p1 βq∆m I t div m I t D p Hp¤, D x U q ¨iL 2 β e δ 2 U δ 2 m Dm I t , Dm I t i L 2 A dt e δU δm , 2βdivpm I t dW t q i L 2 . ( 23 
)
In comparison with the first-order formula [START_REF] Carmona | Probabilistic analysis of mean field games with a common noise[END_REF], equation [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF] involves two additional terms:

The stochastic term on the second line derives directly from the Brownian part in the forward part of [START_REF] Bensoussan | Smooth solutions of systems of quasilinear parabolic equations[END_REF] whilst the second order term on the first line is reminiscent of the second order term that appears in the standard Itô calculus. We provide a rigorous proof of (23) in Section 5. Using [START_REF] Bensoussan | On the interpretation of the master equation[END_REF], we obtain

d t u I t pxq 3 f t U ˆRd ¡ p1 βqdiv y rD m U s ¡ D m U ¤ D p Hp¤, D x U q © dm t β ˆRd ¢R d Tr D 2 mm U $ dm I t m I t A dt ¡ ˆRd D m U dm I t © ¤ 2βdW t
Taking into account the equation satisfied by U , we get

d t u I t pxq 3 ¡p1 βq∆ x U Hp¤, D x U q ¡ 2β ˆRd div x rD m U s dm I t ¡ F A dt ¡ ˆRd D m U dm I t © ¤ 2βdW t 2 ¡p1 βq∆ x U Hp¤, D x U q ¡ 2βdivpv I t q ¡ F @ dt v I t ¤ 2βdW t for v I t : ˆRd D m U dm I t .
This proves that pu I t , m I t , v I t q is a solution to the MFG system [START_REF] Bensoussan | Smooth solutions of systems of quasilinear parabolic equations[END_REF] and, provided that the MFG system is at most uniquely solvable, proves the claim.

Main results

In this section we collect our main results. We first state the notation used in the paper, specify the notion of derivatives in the space of measures, and describe the assumptions on the data.

Notations

Throughout the paper, R d denotes the d¡dimensional euclidean space, with norm |¤|, the scalar product between two vector a, b R d being written a ¤ b. We work in the d¡dimensional torus (i.e., periodic boundary conditions) that we denote T d : R d {Z d . When N is a (large) integer, we use bold symbols for elements of pT d q N : for instance, x px 1 , . . . , x N q pT d q N . The set PpT d q of Borel probability measures on T d is endowed with the Monge-Kantorovich distance

d 1 pm, m I q sup φ ˆTd φpyq dpm ¡ m I qpyq,
where the supremum is taken over all Lipschitz continuous maps φ : The dual space of C n α is denoted by pC n α q I with norm dρ pC n α q I , }ρ} ¡pn αq : sup

T d Ñ R
}φ} n α ¤1
xρ, φy pC n α q I ,C n α .

If a smooth map ψ depends on two space variables, e.g. ψ ψpx, yq, and m, n N are the order of derivation of ψ with respect to x and y respectively, we set }ψ} pm,nq : |D p , I q φpx, yq ¡ D p , I q φpx I , y I q| |x ¡

x I | α |y ¡ y I | α .
The notation is generalized in an obvious way to mappings depending on 3 or more variables.

If now the (sufficiently smooth) map φ depends on time and space, i.e., φ φpt, xq, we say that φ C l{2,l (where l n α, n N, α p0, 1q) if D D j t φ exists for any N d and j N with | | 2j ¤ n and is α¡Hölder in x and α{2¡Hölder in t. We set }φ} n{2 α{2,n α :

| | 2j¤n }D D j t φ} V | | 2jn xD D j t φy x,α xD D j t φy t,α{2 with xD D j t φy x,α : sup t,x$x I |φpt, xq ¡ φpt, x I q| |x ¡ x I | α , xD D j t φy t,α : sup t$t I ,x |φpt, xq ¡ φpt I , xq| |t ¡ t I | α .
If X, Y are a random variables on a probability space pΩ, A, Pq, LpXq is the law of X and LpY |Xq is the conditional law of Y given X. Recall that, whenever X and Y take values in Polish spaces (say S X and S Y respectively), we can always find a regular version of the conditional law LpY |Xq, that is a mapping q : S X ¢ BpS Y q Ñ r0, 1s such that:

• for each x S X , qpx, ¤q is a probability measure on S Y equipped with its Borel σ-field

BpS Y q, • for any A BpS Y q, the mapping S X x Þ Ñ qpx, Aq is Borel measurable, • qpX, ¤q is a version of the conditional law of X given Y , in the sense that E f pX, Y q $ ˆSX ¢ˆS Y f px, yqqpx, dyq d LpXq ¨pxq E ˆS Y f pX, yqqpX, dyq & ,
for any bounded Borel measurable mapping f : S X ¢ S Y Ñ R.

Derivatives

One of the striking features of the master equation is that it involves derivatives of the unknown with respect to the measure. In the paper, we use two notions of derivatives. The first one, denoted by δU δm is, roughly speaking, the L 2 derivative when one looks at the restriction of PpT d q to densities in L 2 pT d q. It is widely used in linearization procedures. The second one, denoted by D m U , is more intrinsic and is related with the so-called Wasserstein metric on PpT d q. It can be introduced as in Ambrosio, Gigli and Savaré [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] by defining a kind of manifold structure on PpT d q or, as in Lions [START_REF] Lions | [END_REF], by embedding PpT d q into an L 2 pΩ, T d q space of random variables.

We introduce this notion here in a slightly different way, as the derivative in space of δU δm . In appendix we briefly compare the different notions.

First order derivatives

Definition 2.1. We say that U : PpT d q Ñ R is C 1 if there exists a continuous map δU δm :

PpT d q ¢ T d Ñ R such that, for any m, m I PpT d q, lim sÑ0 U pp1 ¡ sqm sm I q ¡ U pmq s ˆTd δU δm pm, yqdpm I ¡ mqpyq.
Note that δU δm is defined up to an additive constant. We adopt the normalization convention ˆTd δU δm pm, yqdmpyq 0.

(
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For any m PpT d q and any signed measure µ on T d , we will use indifferently the notations δU δm pmqpµq and ˆTd δU δm pm, yqdµpyq.

Note also that dm, m I PpT d q, U pm I q ¡ U pmq ˆ1 0 ˆTd δU δm pp1 ¡ sqm sm I , yq dpm I ¡ mqpyqds. [START_REF] Fischer | On the connection between symmetric N-player games and mean field games[END_REF] Let us explain the relationship between the derivative in the above sense and the Lipschitz continuity of U in PpT d q. If δU δm δU δm pm, yq is Lipschitz continuous with respect to the second variable with a Lipschitz constant bounded independently of m, then U is Lipschitz continuous: indeed, by [START_REF] Fischer | On the connection between symmetric N-player games and mean field games[END_REF],

§ § U pm I q ¡ U pmq § § ¤ ˆ1 0 D y δU δm pp1 ¡ sqm sm I , ¤q V ds d 1 pm, m I q ¤ sup m P D y δU δm pm P , ¤q V d 1 pm, m I q.
This leads us to define the "intrinsic derivative" of U . Definition 2.2. If δU δm is of class C 1 with respect to the second variable, the intrinsic derivative

D m U : PpT d q ¢ T d Ñ R d is defined by D m U pm, yq : D y δU δm pm, yq
The expression D m U can be understood as a derivative of U along vector fields: 

Proposition 2.3. Assume that U is C 1 , with
ˆ1 0 ˆTd ˆ1 0 D m U pm h,s , y thφpyqq ¤ φpyq dtdmpyqds.
Dividing by h and letting h Ñ 0 gives the result thanks to the continuity of D m U .

Note also that, if U :

PpT d q Ñ R and δU δm is C 2 in y, then D y D m U pm, yq is a symmetric matrix since D y D m U pm, yq D y ¢ D y δU δm
pm, yq Hess y δU δm pm, yq.

Second order derivatives.

If, for a fixed y T d , the map m Þ Ñ δU δm pm, yq is C 1 , then we say that U is C 2 and denote by δ 2 U δm 2 its derivative. (Pay attention that y is fixed. At this stage, nothing is said about the smoothness in the direction y.) By Definition 2.1 we have that

δ 2 U δm 2 : PpT d q ¢ T d ¢ T d Ñ R with δU δm pm I , yq ¡ δU δm pm, yq ˆ1 0 ˆTd δ 2 U
δm 2 pp1 ¡ sqm sm I , y, y I q dpm I ¡ mqpy I q.

If U is C 2 and if δ 2 U δm 2 δ 2 U δm 2 pm, y, y I q is C 2 in the variables py, y I q, then we set

D 2 mm U pm, y, y I q : D 2 y,y I δ 2 U
δm 2 pm, y, y I q.

We note that D 2 mm U : being jointly continuous in all the variables, then, for any fixed y T d , the map m Þ Ñ D m U pm, yq is C 1 and D y δ 2 U δm 2 pm, y, y I q δ δm D m U pm, yq ¨py I q, m PpT d q, y, y I T d , while, if δ 2 U δm 2 is also C 2 in the variables py, y I q, then, for any fixed y T d , the map δ δm pD m U p¤, yqq is C 1 in the variable y I and D m D m U p¤, yq ¨pm, y I q D 2 mm U pm, y, y I q.

PpT d q ¢ T d ¢ T d Ñ R d¢d .
Proof. First step. We start with the proof of the first claim. By continuity, we just need to show the result when m has a smooth positive density. Let µ, ν L V pT d q, such that ´Td µ ´Td ν 0, with a small enough norm so that m sµ tν is a probability measure for any ps, tq r0, 1s 

D m U pm µ, yq ¡ D m U pm, yq ˆ1 0 ˆTd D y δ 2 U
δm 2 pm tµ, y, y I qµpy I qdy I dt. Choosing µ m I ¡ m, for another probability measure m I PpT d q and noticing that (see Remark 2.5 below): ˆTd D y δ 2 U δm 2 pm, y, y I qdmpy I q 0, we complete the proof of the second claim. For the last assertion, one just need to take the derivative in y in the second one.

Remark 2.5. Owing to the convention (24), we have

dy T d , ˆTd δ 2 U
δm 2 pm, y, y I qdmpy I q 0, when U is C 2 . By symmetry, we also have

dy I T d , ˆTd δ 2 U δm 2 pm, y, y I qdmpyq 0.
And, of course,

ˆrT d s 2 δ 2 U
δm 2 pm, y, y I qdmpyqdmpy I q 0.

Comments on the notions of derivatives

Since several concepts of derivatives have been used in the mean field game theory, we now discuss the link between these notions. For simplicity, we argue as if our state space was R d and not T d , since most results have been stated in this context. (We refer to the Appendix for an exposition on T d .)

A first idea consists in looking at the restriction of the map U to the subset of measures with a density which is in L 2 pR d q, and take the derivative of U in the L 2 pR d q sense. This is partially the point of view adopted by Lions in [START_REF] Lions | [END_REF] and followed by Bensoussan, Frehse and Yam [START_REF] Bensoussan | Mean field games and mean field type control theory[END_REF].

In the context of smooth densities, this is closely related to our first and second derivatives δU δm and δ 2 U δm 2 . Many works on mean field games (as in Buckdahn, Li, Peng and Rainer [START_REF] Buckdahn | Mean-field stochastic differential equations and associated PDEs[END_REF], Carmona and Delarue [START_REF] Carmona | The master equation for large population equilibriums[END_REF], Chassagneux, Crisan and Delarue [START_REF] Chassagneux | Classical solutions to the master equation for large population equilibria[END_REF], Gangbo and Swiech [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF]) make use of an idea introduced by Lions in [START_REF] Lions | [END_REF]. It consists in working in a sufficiently large probability space pΩ, A, Pq and in looking at maps U : PpR d q Ñ R through their lifting to L 2 pΩ, A, P; R d q defined by r

U pXq U pLpXqq dX L 2 pΩ, R d q,
where LpXq is the law of X. It is clear that the derivative of r U -if it exists-enjoys special properties because r U pXq depends only on the law of X and not on the full random variable. As explained in [START_REF] Lions | [END_REF], if r U is differentiable at some point X 0 L 2 pΩ, A, P; R d q, then its gradient can be written as ∇ r

U pX 0 q f µ U pLpX 0 qqpX 0 q, where f µ U :

PpR d q ¢ R d pm, xq Þ Ñ f µ U pmqpxq R d .
We explain in the Appendix that the maps f µ U and D m U introduced in Definition 2.2 coincide, as soon as one of the two derivatives exists. Let us also underline that this concept of derivative is closely related with the notion introduced by Ambrosio, Gigli and Savaré [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] in a more general setting.

Assumptions

Throughout the paper, we assume that H : T d ¢R d Ñ R is smooth, globally Lipschitz continuous and satisfies the coercivity condition:

C ¡1 I d 1 |p| ¤ D 2 pp Hpx, pq ¤ CI d for px, pq T d ¢ R d . (26) 
We also always assume that the maps F, G : T d ¢ PpT d q Ñ R are globally Lipschitz continuous and monotone: for any m, m I PpT d q, ˆTd pFpx, mq ¡ F px, m I qqdpm ¡ m I qpxq ¥ 0, ˆTd pGpx, mq ¡ Gpx, m I qqdpm ¡ m I qpxq ¥ 0. [START_REF] Gangbo | Metric viscosity solutions of Hamilton-Jacobi equations depending on local slopes[END_REF] Note that assumption [START_REF] Gangbo | Metric viscosity solutions of Hamilton-Jacobi equations depending on local slopes[END_REF] implies that δF δm and δG δm satisfy the following monotonicity property (explained for F ):

ˆTd ˆTd δF δm px, m, yqµpxqµpyqdxdy ¥ 0 for any centered measure µ. Throughout the paper the conditions ( 26) and ( 27) are in force.

Next we describe assumptions that might differ according to the results. Let us fix n N and α p0, 1q. We set (with the notation introduced in subsection 2.1) Lip n p δG δm q V.

Lip n p δF δm q : sup m 1 $m 2 pd 1 pm 1 , m 2 qq ¡1
We use similar notation when dealing with second order derivatives: Then (HF1(n)) and (HF2(n)) hold because of the smoothness of ρ.

Lip n p δ 2 F δm 2 q : sup m 1 $m 2 pd 1 pm 1 , m 2 qq ¡1 δ 2 F δm 2 p¤, m 1 , ¤, ¤q ¡ δ 2 F

Statement of the main results

The paper contains two main results: on the one hand the well-posedness of the master equation, and, on the other hand, the convergence of the Nash system with N players as N tends to infinity. We start by considering the first order master equation (β 0), because, in this setting, the approach is relatively simple (Theorem 2.8). In order to handle the second order master equation, we build solutions to the mean field game system with common noise, which play the role of "characteristics" for the master equation (Theorem 2.9). Our first main result is Theorem 2.11, which states that the master equation has a unique classical solution under our regularity and monotonicity assumptions on H, F and G. Once we know that the master equation has a solution, we can use this solution to build approximate solutions for the Nash system with N ¡players. This yields to our main convergence results, either in term of functional terms (Theorem 2.13) or in term of optimal trajectories (Theorem 2.15).

First order master equation

We first consider the first order master equation (or master equation without common noise): U pT, x, mq Gpx, mq in T d ¢ PpT d q.

(28) We call it the first order master equation since it only contains first order derivatives with respect to the measure variable. Let us first explain the notion of solution.

Definition 2.7. We say that a map U : r0, T s ¢ T d ¢ PpT d q Ñ R is a classical solution to the first order master equation if

• U is continuous in all its arguments (for the d 1 distance on PpT d q), is of class C 2 in x and C 1 in time (the derivatives of order one in time and space and of order two in space being continuous in all the arguments),

• U is of class C 1 with respect to m, the first order derivative V.

r0, T s ¢ T d ¢ PpT d q ¢ T d pt, x, m, yq Þ Ñ δU δm pt, x,
Section 3 is devoted to the proof of Theorem 2.8. We also discuss in this section the link between the solution U and the derivative of the solution of a Hamilton-Jacobi equation in the space of measure.

The proof of Theorem 2.8 relies on the representation of the solution in terms of the mean field game system: for any pt 0 , m 0 q r0, T q ¢ PpT d q, the MFG system is the system of forwardbackward equations: 

As recalled below (Proposition 3.1), under suitable assumptions on the data, there exists a unique solution pu, mq to the above system. Our aim is to show that the map U defined by U pt 0 , ¤, m 0 q : upt 0 , ¤q

is a solution to [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF]. The starting point is the obvious remark that, for U defined by [START_REF] Guéant | Mean Field Games and Applications[END_REF] and for any h r0, T ¡ t 0 s, upt 0 h, ¤q U pt 0 h, ¤, mpt 0 hqq. Taking the derivative with respect to h and letting h 0 shows that U satisfies [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF].

The main issue is to prove that the map U defined by [START_REF] Guéant | Mean Field Games and Applications[END_REF] is sufficiently smooth to perform the above computation. In order to prove the differentiability of the map U , we use a flow method and differentiate the MFG system [START_REF] Gomes | Mean field games models-a brief survey[END_REF] with respect to the measure argument m 0 . The derivative system then reads as a linearized system initialized with a signed measure. Fixing a solution pu, mq to [START_REF] Gomes | Mean field games models-a brief survey[END_REF] and allowing for a more singular initial distribution µ 0 pC n 1 α pT d qq I (instead of a signed measure), the linearized system, with pv, µq as unknown, takes the form: x, mpT q ¨pµpT qq, µpt 0 , ¤q µ 0 .

We prove that v can be interpreted as the directional derivative of U in the direction µ 0 : vpt 0 , xq ˆTd δU δm pt 0 , x, m 0 , yqµ 0 pyqdy.

Note that this shows at the same time the differentiability of U and the regularity of its derivative. For this reason the introduction of the directional derivative appears extremely useful in this context.

The mean field game system with common noise

As explained in the previous subsection, the characteristics of the first order master equation [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF] are the solution to the mean field game system [START_REF] Gomes | Mean field games models-a brief survey[END_REF]. The analogous construction for the second order master equation (with β ¡ 0) yields to a system of stochastic partial differential equations, the mean field game system with common noise. Given an initial distribution m 0 PpT d q at an initial time t 0 r0, T s, this system reads1 6 8 7

d t u t 2 ¡p1 βq∆u t Hpx, Du t q ¡ F px, m t q ¡ 2βdivpv t q @ dt v t ¤ c 2βdW t , d t m t p1 βq∆m t div m t D p Hpm t , Du t q ¨$dt ¡ c 2βdivpm t dW t ¨, in rt 0 , T s ¢ T d , m t 0 m 0 , u T pxq Gpx, m T q in T d . ( 31 
)
Here pW t q tr0,T s is a given d¡dimensional Brownian motion, generating a filtration pF t q tr0,T s . The solution is the process pu t , m t , v t q tr0,T s , adapted to pF t q trt 0 ,T s , where, for each t rt 0 , T s, v t is a vector field which ensures the solution pu t q to the backward equation to be adapted to the filtration pF t q trt 0 ,T s . Up to now, the well-posedness of this system has never been investigated, but it is reminiscent of the theory of forward-backward stochastic differential equations in finite dimension, see for instance the monograph [START_REF] Pardoux | Stochastic Differential Equations, Backward SDEs, Partial Differential Equations[END_REF].

To analyze [START_REF] Huang | Large-population LQG games involving a major player: The Nash certainty equivalence principle[END_REF], we take advantage of the additive structure of the common noise and perform the (formal) change of variable ũt pxq u t px 2βW t q, mt pxq m t px 2βW t q, x T d , t r0, T s. ∆ mt div mt D p Ht p¤, Dũ t q ¨@dt, mt 0 m 0 , ũT Gp¤, m T q. [START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF] where (still formally) d Mt v t px c 2W t qdW t . Let us explain how we understand the above system. The solution pũ t q tr0,T s is seen as an pF t q tr0,T s -adapted process with paths in the space C 0 pr0, T s, C n 2 pT d qq, for some fixed n ¥ 0. The process p mt q tr0,T s reads as an pF t q tr0,T s -adapted process with paths in the space C 0 pr0, T s, PpT d qq. We shall look for solutions satisfying

sup tr0,T s }ũ t } n 2 α ¨ L V pΩ, A, Pq, (33) 
(for some fixed α p0, 1q). The process p Mt q tr0,T s is seen as an pF t q tr0,T s -adapted process with paths in the space C 0 pr0, T s, C n pT d qq, such that, for any x T d , p Mt pxqq tr0,T s is an pF t q tr0,T s

martingale. It is required to satisfy sup tr0,T s } Mt } n α ¨ L V pΩ, A, Pq. (34) 
Theorem 2.9. Assume that F , G and H satisfy [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] and [START_REF] Gangbo | Metric viscosity solutions of Hamilton-Jacobi equations depending on local slopes[END_REF] and that (HF1(n+1)) and (HG1(n+2)) hold true for some n ¥ 0 and some α p0, 1q. Then, there exists a unique solution pũ t , mt , Mt q tr0,T s to (32), satisfying [START_REF] Huang | Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized -Nash Equilibria[END_REF] and [START_REF] Huang | The Nash Certainty Equivalence Principle and McKean-Vlasov Systems: an Invariance Principle and Entry Adaptation[END_REF].

We postpone the discussion of the existence of the solution to the true MFG system with common noise [START_REF] Huang | Large-population LQG games involving a major player: The Nash certainty equivalence principle[END_REF] to the next section, where the master equation allows to identify the correction term pv t q tr0,T s . Theorem 2.9 is proved in section 4 (see Theorem 4.3 for more precise estimates). The main difference with the deterministic mean field game system is that the solution pũ t , mt q 0¤t¤T is sought in a much bigger space, namely rC 0 pr0, T s, C n pT d qq ¢ C 0 pr0, T s, PpT d qqs Ω , which is not well-suited to the use of compactness arguments. Because of that, one can can no longer invoke Schauder's Theorem to prove the existence of a solution. For this reason, the proof uses instead a continuation method, directly inspired from the literature on finite dimensional forward-backward stochastic systems (see [START_REF] Peng | Fully Coupled Forward-Backward Stochastic Differential Equations and Applications to Optimal Control[END_REF]). Notice also that, due to the presence of the noise pW t q tr0,T s , the analysis of the time-regularity of the solution becomes a challenging issue and that the continuation method permits to bypass this difficulty.

Second order master equation

The second main result of the paper concerns the analogue of Theorem 2.8 when the underlying mean-field game problem incorporates an additive common noise. Then the master equation ( 28) then involves additional terms, including second order derivatives in the direction of the measure. It has the form (for some fixed level of common noise β ¡ 0): 6 9 9 9 9 9 9 9 9 9 9 9 8 9 9 9 9 9 9 9 9 9 9 9 7

¡f t U pt, x, mq ¡ p1 βq∆ x U pt, x, mq H x, D x U pt, x, mq ¨¡ F x, m ¡p1 βq ˆTd div y D m U $ t, x, m, y ¨dmpyq ˆTd D m U t, x, m, y ¨¤ D p H y, D x U pt, y, mq ¨dmpyq ¡2β ˆTd div x D m U $ t, x, m, y ¨dmpyq ¡ β ˆTd ¢T d Tr D 2
mm U t, x, m, y, y I ¨%dmpyqdmpy I q 0, for pt, x, mq r0, T s ¢ T d ¢ PpT d q, U pT, x, mq Gpx, mq, for px, mq T d ¢ PpT d q.

(35) Following Definition 2.7, we let Definition 2.10. We say that a map U : r0, T s ¢ T d ¢ PpT d q Ñ R is a classical solution to the second order master equation [START_REF] Huang | An Invariance Principle in Large Population Stochastic Dynamic Games[END_REF] 

if
• U is continuous in all its arguments (for the d 1 distance on PpT d q), is of class C 2 in x and C 1 in time (the derivatives of order one in time and space and of order two in space being continuous in all the arguments),

• U is of class C 2 with respect to m, the first and second order derivatives

r0, T s ¢ T d ¢ PpT d q ¢ T d pt, x, m, yq Þ Ñ δU δm pt, x, m, yq, r0, T s ¢ T d ¢ PpT d q ¢ T d ¢ T d pt, x, m, y, y I q Þ Ñ δ 2 U
δm 2 pt, x, m, yq, being continuous in all the arguments, the first order derivative δU {δm being twice differentiable in y, the derivatives being continuous in all the arguments, and the second order derivative δ 2 U {δm 2 being also twice differentiable in the pair py, y I q, the derivatives being continuous in all the arguments,

• the function D y pδU{δmq D m U is differentiable in x, the derivatives being continuous in all the arguments,

• U satisfies the master equation [START_REF] Huang | An Invariance Principle in Large Population Stochastic Dynamic Games[END_REF].

On the model of Theorem 2.8, we claim Theorem 2.11. Assume that F , G and H satisfy (26) and (27) in Subsection 2.3 and that (HF2(n+1)) and (HG2(n+2)) hold true for some n ¥ 2 and for some α p0, 1q.

Then, the second-order master equation [START_REF] Huang | An Invariance Principle in Large Population Stochastic Dynamic Games[END_REF] has a unique solution U .

The solution U enjoys the following regularity: for any α I r0, αq, t r0, T s and m PpT d q, U pt, ¤, mq, rδU{δmspt, ¤, m, ¤q and rδ 2 U {δm 2 spt, ¤, m, ¤, ¤q are in C n 2 α I , C n 2 α I ¢ C n 1 α I and C n 2 α I ¢ C n α I ¢ C n α I respectively, independently of pt, mq. Moreover, the mappings r0, T s ¢

PpT d q pt, mq Þ Ñ U pt, ¤, mq C n 2 α I , r0, T s ¢ PpT d q pt, mq Þ Ñ rδU{δmspt, ¤, m, ¤q C n 2 α I ¢ C n 1 α I , r0, T s ¢ PpT d q pt, mq Þ Ñ rδ 2 U {δm 2 spt, ¤, m, ¤, ¤q C n 2 α I ¢ rC n α I s 2
are continuous. When α I 0, these mappings are Lipschitz continuous in m, uniformly in time.

Section 5 is devoted to the proof of Theorem 2.11. As for the first order master equation, the starting point consists in letting, given pt 0 , m 0 q r0, T s ¢ PpT d q, U pt 0 , x, m 0 q ũt 0 pxq, x T d , where pũ t , mt , Mt q tr0,T s is the solution to the mean field game system with common noise [START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF], when pW t q tr0,T s in the definition of the coefficients F , G and H is replaced by pW t ¡W t 0 q trt 0 ,T s . The key remark (see Lemma 5.1), is that, if we let m t 0 ,t rid c 2pW t ¡ W t 0 qsU mt , then, for any h r0, T ¡ t 0 s, P almost surely, ũt 0 h pxq U t 0 h, x c 2pW t 0 h ¡ W t 0 q, m t 0 ,t 0 h ¨, x T d . Taking the derivative with respect to h at h 0 on both sides of the equality shows that the map U thus defined satisfies the master equation (up to a tailor-made Itô's formula, see section 5.4.4). Of course, the main issue is to prove that U is sufficiently smooth to perform the above computation: for this we need to show that U has a first and second order derivative with respect to the measure. As for the deterministic case, this is obtained by linearizing the mean field game system (with common noise). This linearization procedure is complicated by the fact that the triplet pũ t , mt , Mt q tr0,T s solves an equation in which the coefficients have little time regularity.

As a byproduct of the construction of the master equation, we can come back to the MFG system with common noise. Let U be the solution of the master equation [START_REF] Huang | An Invariance Principle in Large Population Stochastic Dynamic Games[END_REF].

Corollary 2.12. Given t 0 r0, T s, we call a solution to (31) a triplet pu t , m t , v t q trt 0 ,T s of pF t q trt 0 ,T s -adapted processes with paths in the space C 0 prt 0 , T s, C 2 pT d q ¢ PpT d q ¢ C 1 pT d qq such that sup trt 0 ,T s p}u t } 2 }v t } 1 q L V pΩ, A, Pq and (31) holds true with probability 1. Under the assumptions of Theorem 2.11, for any initial data pt 0 , m 0 q r0, T s ¢ PpT d q, the stochastic mean field game system (31) has a unique solution pu t , m t , v t q tr0,T s , where pu t , m t q tr0,T s is an pF t q tr0,T s -adapted processes with paths in the spaces C 0 pr0, T s, C n pT d q ¢ PpT d qq and where the vector field pv t q tr0,T s is given by v t pxq ˆTd D m U pt, x, m t , yqdm t pyq.

The convergence of the Nash system for N players

We finally study the convergence of Nash equilibria of differential games with N players to the limit system given by the master equation.

We consider the solution pv N,i q of the Nash system: 

¡f t v N,i ¡ j ∆ x j v N,i ¡ β j,k TrD 2 x j ,x k v N,i Hpx i , D x i v N,i q j$i D p Hpx j , D x j v N,j q ¤ D x j v N,i F px i , m N,i x q in r0, T s ¢ T N d v N,i pT, xq Gpx i , m N,i x q in T N d (36) 
where we have set, for x px 1 , . . . , x N q pT d q N , m N,i

x 1 N ¡ 1 j$i δ x j .
Let us recall that, under the same assumptions on H, F and G as in the statement of Theorem 2.11, the above system has a unique solution (see for instance [START_REF] Ladyženskaja | N Linear and quasilinear equations of parabolic type[END_REF]).

Our main result says that the v N,i "converges" to the solution of the master equation as N Ñ V. This result, conjectured in Lasry-Lions [START_REF] Lasry | Mean field games[END_REF], is somewhat subtle because in the Nash system players observe each other (closed loop form) while in the limit system the players just need to observe the theoretical distribution of the population, and not the specific behavior of each player. We first study the convergence of the functions v N,i and then the convergence of the optimal trajectories.

We have two different ways to express the convergence of the v N,i , described in the following result: Theorem 2.13. Let the assumption of Theorem 2.11 be in force for some n ¥ 2 and let pv N,i q be the solution to [START_REF] Huang | The NCE (mean field) principle with locality dependent cost interactions[END_REF] and U be the classical solution to the second order master equation. Fix N ¥ 1 and pt 0 , m 0 q r0, T s ¢ PpT d q.

(i) For any x pT d q N , let m N

x : 1 N °N i1 δ x i . Then

1 N N i1 § § v N,i pt 0 , xq ¡ U pt 0 , x i , m N x q § § ¤ CN ¡1 .
(ii) For any i t1, . . . , N u and x T d , let us set w N,i pt 0 , x, m 0 q : ˆTd . . . ˆTd v N,i pt 0 , xq

¹ j$i
m 0 pdx j q where x px 1 , . . . , x N q.

Then w N,i pt 0 , ¤, m 0 q ¡ U pt 0 , ¤, m 0 q

L 1 pm 0 q ¤ 4 CN ¡1{d if d ¥ 3 CN ¡1{2 logpN q if d 2
In (i) and (ii), the constant C does not depend on i, t 0 , m 0 , i nor N . Theorem 2.13 says, in two different ways, that "in average", the pv N,i q are close to U . The first statement explains that, for a fixed x pT d q N , the quantity |v N,i pt 0 , xq ¡Upt 0 , x i , m N,i x q| is, in average over i, of order N ¡1 . In the second statement, one fixes a measure m 0 and an index i, and one averages in space v N,i pt 0 , ¤q over m 0 for all variables but the i¡th one. The resulting map w N,i is at a distance of order N ¡1{d of U pt 0 , ¤, m 0 q.

Because of the lack of estimates for the v N,i uniform with respect to N , we do not know if it is possible to avoid the two averaging procedures in the above results. However, if one knows that the solution of the Nash system has a (locally uniform) limit, then this limit is necessarily U : Corollary 2.14. Under the assumption of Theorem 2.13, let pt, x 1 , mq r0, T s ¢ T d ¢ PpT d q be fixed and assume that there exists v R such that lim sup

N Ñ V, x I 1 Ñx 1 , m N,1 x I Ñm § § v N,1 pt, x I q ¡ v § § 0.
Then, if x 1 belongs to the support of m, we have v U pt, x 1 , mq.

We can also describe the convergence in terms of optimal trajectories. Let t 0 r0, T q, m 0 PpT d q and let pZ i q be an i.i.d family of N random variables of law m 0 . We set Z pZ 1 , . . . , Z N q. Let also ppB i t q tr0,T s q it1,...,N u be a family of N independent Brownian motions which is also independent of pZ i q and let pW t q tr0,T s be a Brownian motion independent of the pB i q and pZ i q. We consider the optimal trajectories pY t pY 1,t , . . . , Y N,t qq trt 0 ,T s for the N ¡player game:

4 dY i,t ¡D p HpY i,t , D x i v N,i pt, Y t qqdt c 2dB i t c 2βdW t , t rt 0 , T s Y i,t 0 Z i
and the solution p Xt p X1,t , . . . , XN,t qq trt 0 ,T s of stochastic differential equation of McKean-Vlasov type:

5 d Xi,t ¡D p H ¡ Xi,t , D x U t, Xi,t , Lp Xi,t |Wq ¨© dt c 2dB i t c 2βdW t , Xi,t 0 Z i .
Both system of SDEs are set on pR d q N . Since both are driven by periodic coefficients, solutions generate (canonical) flows of probability measures on pT d q N : The flow of probability measures generated in PppT d q N q by each solution is independent of the representatives in R d of the T dvalued random variables Z 1 , . . . , Z N . The next result says that the solutions of the two systems are close:

Theorem 2.15. Let the assumption of Theorem 2.13 be in force. Then, for any N ¥ 1 and any i t1, . . . , N u, we have

E sup trt 0 ,T s § § §Y i,t ¡ Xi,t § § § & ¤ CN ¡ 1 d 8
for some constant C ¡ 0 independent of t 0 , m 0 and N .

In particular, since the p Xi,t q are independent conditioned on W , the above result is a (conditional) propagation of chaos. The proofs of Theorem 2.13 and Theorem 2.15 rely on the existence of the solution U of the master equation [START_REF] Huang | An Invariance Principle in Large Population Stochastic Dynamic Games[END_REF] and constitute the aim of Section 6. Our starting point is that, for any N ¥ 1, the "projection" of U onto the finite dimensional space r0, T s¢pT d q N is almost a solution to the Nash system [START_REF] Huang | The NCE (mean field) principle with locality dependent cost interactions[END_REF]. Namely, if we set, for any i t1, . . . , N u and any x px 1 , . . . , x N q pT d q N , u N,i pt, xq : U pt, x i , m N,i x q, then pu N,i q it1,...,N u satisfies [START_REF] Huang | The NCE (mean field) principle with locality dependent cost interactions[END_REF] up to an error term of size Op1{N q for each equation (Proposition 6.3). Note that, as the number of equations in [START_REF] Huang | The NCE (mean field) principle with locality dependent cost interactions[END_REF] is N , this could yield to a serious issue because the error terms could add up. The strategy of proof consists in controlling the error terms by exploiting the symmetry of the Nash system along the optimal paths. One of the thrust of our approach is that, somehow, the proofs work under the sole assumption that the master equation ( 35) admits a classical solution. Here existence of a classical solution is guaranteed under the assumption of Theorem 2.11, which includes in particular the monotonicity properties of F and G, but the analysis provided in Section 6 shows that monotonicity plays no role in the proofs of Theorems 2.13 and 2.15. Basically, only the global Lipschitz properties of H and D p H, together with the various bounds obtained for the solution of the master equation and its derivatives, matter. This is a quite remarkable fact, which demonstrates the efficiency of our strategy.

A starter: the first order master equation

In this section we prove Theorem 2.8, i.e., we establish the well-posedness of the master equation without common noise: 9 9 9 9 9 8 9 9 9 9 9 9 

6 9
7 ¡f t U pt, x, mq ¡ ∆ x U pt, x, mq H x, D x U pt, x, mq ¨¡ ˆTd div y rD m U s pt, x, m, yq dmpyq ˆTd D m U pt, x, m, yq ¤ D p H y, D x U pt, y, mq ¨dmpyq F px, mq in r0, T s ¢ T d ¢ PpT d q U pT, x, mq Gpx, mq in T d ¢ PpT d q (37)
The idea is to represent U by solutions of the MFG system: let us recall that, for any pt 0 , m 0 q r0, T q ¢ PpT d q, the MFG system is the system of forward-backward equations:

6 8 7 ¡f t u ¡ ∆u Hpx, Duq F px, mptqq f t m ¡ ∆m ¡ divpmD p Hpx, Duqq 0 upT, xq Gpx, mpT qq, mpt 0 , ¤q m 0 (38)
As recalled below, under suitable assumptions on the data, there exists a unique solution pu, mq to the above system. Our aim is to show that the map U defined by

U pt 0 , ¤, m 0 q : upt 0 , ¤q (39) 
is a solution to [START_REF] Huggett | The risk-free rate in heterogeneous-agent incomplete-insurance economies[END_REF].

Throughout this section assumptions ( 26) and ( 27) are in force. Let us however underline that the global Lipschitz continuity of H is not absolutely necessary. We just need to know that the solutions of the MFG system are uniformly Lipschitz continuous, independently of the initial conditions: sufficient conditions for this can be found in [START_REF] Lasry | Mean field games[END_REF] for instance.

The proof of Theorem 2.8 requires several preliminary steps. We first recall the existence of a solution to the MFG system (38) (Proposition 3.1) and show that this solution depends in a Lipschitz continuous way of the initial measure m 0 (Proposition 3.2). Then we show by a linearization procedure that the map U defined in (39) is of class C 1 with respect to the measure (Proposition 3.8, Corollary 3.9). The proof relies on the analysis of a linearized system with a specific structure, for which well-posedness and estimates are given in Lemma 3.4 and Lemma 3.5. We are then ready to prove Theorem 2.8 (subsection 3.5). We also show, for later use, that the first order derivative of U is Lipschitz continuous with respect to m (Proposition 3.11). We complete the section by explaining how one obtains the solution U as the derivative with respect to the measure m of the value function of an optimal control problem set over flows of probability measures (Theorem 3.12). Some of the proofs given in this section consist of a sketch only. One of the reason is that some of the arguments we use here in order to investigate the MFG system [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] have been already developed in the literature. Another reason is that this section constitutes a starter only, specifically devoted to the simpler case without common noise. Arguments will be expanded in detail in the two next sections, when handling mean-field games with a common noise, for which there are much less available results in the literature.

Space regularity of U

In this part we investigate the space regularity of U with respect to x. Recall that U pt 0 , ¤, m 0 q is defined by U pt 0 , x, m 0 q upt 0 , xq where pu, mq is a classical solution to [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] with initial condition mpt 0 q m 0 . By a classical solution to [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] we mean a pair pu, mq C 1,2 ¢ C 0 prt 0 , T s, PpT d qq such that the equation for u holds in the classical sense while the equation for m holds in the sense of distribution. Proposition 3.1. Assume that (HF1(n)) and (HG1(n+2)) hold for some n ¥ 0. Then, for any initial condition pt 0 , m 0 q r0, T s ¢ PpT d q, the MFG system (38) has a unique classical solution pu, mq and this solution satisfies

sup t 1 $t 2 d 1 pmpt 1 q, mpt 2 qq |t 2 ¡ t 1 | 1{2 | |¤n }D u} 1 α{2,2 α ¤ C n , (40) 
where the constant C n does not depend on pt 0 , m 0 q.

If moreover m 0 is absolutely continuous with a smooth positive density, then m is of class C 1 α{2,2 α with a smooth, positive density.

Note that further regularity of F and G improves the space regularity of u but not its time regularity (as the time regularity of the coefficients depends upon that of m, see Proposition 3.1 right above). By [START_REF] Kolokoltsov | Mean field games and nonlinear Markov processes[END_REF], we have, under assumptions (HF1(n)) and (HG1(n+2))

sup tr0,T s sup mPpT d q }Upt, ¤, mq} n 2 α ¤ C n .
Proof. We provide a sketch of proof only. Existence and uniqueness of classical solutions for [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] under assumptions (HF1(n)) and (HG1(n+2)) for n 0 are standard: see, e.g., [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Large investor trading impacts on volatility[END_REF]. Note that we use here the Lipschitz continuity assumption on H, which guaranties uniform Lipschitz estimates on u.

We obtain further regularity on u by deriving in space n times the equation for u.

When m 0 has a smooth density, m satisfies an equation with C α{2,α exponents, so that by Schauder theory m is C 1 α{2,2 α . If moreover, m 0 is positive, then m remains positive by strong maximum principle.

Lipschitz continuity of U

Proposition 3.2. Assume that (HF1(n 1)) and (HG1(n+2)) hold for some n ¥ 0. Let m 1 0 , m 2 0 PpT d q, t 0 r0, T s and pu 1 , m 1 q, pu 2 , m 2 q be the solutions of the MFG system (38) with initial condition pt 0 , m 1 0 q and pt 0 , m 2 0 q respectively. Then

sup tr0,T s 3 d 1 pm 1 ptq, m 2 ptqq u 1 pt, ¤q ¡ u 2 pt, ¤q n 2 α A ¤ C n d 1 pm 1 0 , m 2 0 q, for a constant C n independent of t 0 , m 1 0 and m 2 0 . In particular, U pt 0 , ¤, m 1 0 q ¡ U pt 0 , ¤, m 2 0 q n 2 α ¤ C n d 1 pm 1 0 , m 2 0 q. Proof. First step.
To simplify the notation, we show the result for t 0 0. We use the well-known Lasry-Lions monotonicity argument (see the proof of Theorem 2.4 and Theorem 2.5 of [START_REF] Lasry | Mean field games[END_REF]):

d dt ˆTd u 1 pt, yq ¡ u 2 pt, yq ¨ m 1 pt, yq ¡ m 2 pt, yq ¨dy ¤ ¡C ¡1 ˆTd 1 2 |Du 1 pt, yq ¡ Du 2 pt, yq| 2 m 1 pt, yq m 2 pt, yq ¨dy
since F is monotone, Du 1 and Du 2 are uniformly bounded and H satisfies [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF]. So

ˆT 0 ˆTd |Du 1 pt, yq ¡ Du 2 pt, yq| 2 m 1 pt, yq m 2 pt, yq ¨dydt ¤ C ˆT d u 1 pt, yq ¡ u 2 pt, yq ¨ m 1 pt, yq ¡ m 2 pt, yq ¨dy & T 0 .
At time T we use the monotonicity of G to get ˆTd

u 1 pT, yq ¡ u 2 pT, yq ¨ m 1 pT, yq ¡ m 2 pT, yq ¨dy ˆTd Gpy, m 1 pTqq ¡ Gpy, m 2 pTqq ¨ m 1 pT, yq ¡ m 2 pT, yq ¨dy ¥ 0.
At time 0 we have by the definition of d 1 , ˆTd

u 1 p0, yq ¡ u 2 p0, yq ¨ m 1 0 pyq ¡ m 2 0 pyq ¨dy ¤ C}Dpu 1 ¡ u 2 qp0, ¤q} V d 1 pm 1 0 , m 2 0 q. Hence ˆT 0 ˆTd m 1 pt, yq m 2 pt, yq ¨|Du 1 pt, yq ¡ Du 2 pt, yq| 2 dydt ¤ C}Dpu 1 ¡ u 2 qp0, ¤q} V d 1 pm 1 0 , m 2 0 q. ( 41 
)
Second step: Next we estimate m 1 ¡ m 2 : to do so, let pΩ, F, Pq be a standard probability space, X 1 0 , X 2 0 be random variables on Ω with law m 1 0 and m 2 0 respectively and such that Er|X 1 0 ¡ X 2 0 |s d 1 pm 1 0 , m 2 0 q. Let also pX 1 t q, pX 2 t q be the solutions to

dX i t ¡D p HpX i t , Du i pt, X i t qqdt c 2dB t t r0, T s, i 1, 2
, where pB t q tr0,T s is a d¡dimensional Brownian motion. Then the law of X i t is m i ptq for any t.

We have

E |X 1 t ¡ X 2 t | $ ¤ E |X 1 0 ¡ X 2 0 | $ E ˆt 0 ¡ § § D p H X 1 s , Du 1 ps, X 1 s q ¨¡ D p H X 2 s , Du 1 ps, X 2 s q ¨ § § § § D p H X 2 s , Du 1 ps, X 2 s q ¨¡ D p H X 2 s , Du 2 ps, X 2 s q ¨ § § ds © &
.

As the maps x Þ Ñ D p Hpx, Du 1 ps, xqq and p Þ Ñ D p Hpx, pq are Lipschitz continuous (see [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] and

Proposition 3.2): E |X 1 t ¡ X 2 t | $ ¤ E |X 1 0 ¡ X 2 0 | $ C ˆt 0 E |X 1 s ¡ X 2 s | $ ds C ˆt 0 ˆTd |Du 1 ps, xq ¡ Du 2 ps, xq|m 2 ps, xqdxds ¤ d 1 pm 1 0 , m 2 0 q C ˆt 0 E |X 1 s ¡ X 2 s | $ ds C ¢ˆt 0 ˆTd |Du 1 ps, xq ¡ Du 2 ps, xq| 2 m 2 ps, xqdxds 1{2 .
In view of [START_REF] Kolokoltsov | On the Rate of Convergence for the Mean-Field Approximation of Controlled Diffusions with Large Number of Players[END_REF] and Gronwall inequality, we obtain

E |X 1 t ¡ X 2 t | $ ¤ C d 1 pm 1 0 , m 2 0 q }Dpu 1 ¡ u 2 qp0, ¤q} 1{2 V d 1 pm 1 0 , m 2 0 q 1{2 % . ( 42 
)
As

d 1 pm 1 ptq, m 2 ptqq ¤ Er|X 1 t ¡ X 2 t |s, we get therefore sup tr0,T s d 1 pm 1 ptq, m 2 ptqq ¤ C d 1 pm 1 0 , m 2 0 q }Dpu 1 ¡ u 2 qp0, ¤q} 1{2 V d 1 pm 1 0 , m 2 0 q 1{2 % . ( 43 
)
Third step: We now estimate the difference w : u 1 ¡ u 2 . We note that w satisfies:

4 ¡f t wpt, xq ¡ ∆wpt, xq V pt, xq ¤ Dwpt, xq R 1 pt, xq in r0, T s ¢ T d wpT, xq R T pxq in T d
where, for pt, xq r0,

T s ¢ T d , V pt, xq ˆ1 0 D p Hpx, sDu 1 pt, xq p1 ¡ sqDu 2 pt, xqq ds, R 1 pt, xq ˆ1 0 ˆTd δF δm px, sm 1 ptq p1 ¡ sqm 2 ptq, yqpm 1 pt, yq ¡ m 2 pt, yqq dyds and R T pxq ˆ1 0 ˆTd δG δm px, sm 1 pTq p1 ¡ sqm 2 pTq, yqpm 1 pT, yq ¡ m 2 pT, yqq dyds.
By assumption (HF1(n 1)) and inequality [START_REF] Krylov | On the Itô-Wentzell formula for distribution-valued processes and related topics[END_REF], we have, for any t r0, T s,

D R 1 pt, ¤q n 1 α ¤ ˆ1 0 D y δF δm p¤, sm 1 ptq p1 ¡ sqm 2 ptq, ¤q C n 1 α ¢L V ds d 1 pm 1 ptq, m 2 ptqq ¤ C d 1 pm 1 0 , m 2 0 q }Dwp0, ¤q} 1{2 V d 1 pm 1 0 , m 2 0 q 1{2 %
and, in the same way (using assumption (HG1(n+2))),

}R T } n 2 α ¤ C d 1 pm 1 0 , m 2 0 q }Dwp0, ¤q} 1{2 V d 1 pm 1 0 , m 2 0 q 1{2 % .
On another hand, V pt, ¤q is bounded in C n 1 α in view of the regularity of u 1 and u 2 (Proposition 3.1). Then Lemma 3.3 below states that sup

tr0,T s }wpt, ¤q} n 2 α ¤ C 3 }R T } n 2 α sup tr0,T s }R 1 pt, ¤q} n 1 α A ¤ C d 1 pm 1 0 , m 2 0 q }Dwp0, ¤q} 1{2 V d 1 pm 1 0 , m 2 0 q 1{2 %
.

Rearranging, we find sup

tr0,T s }wpt, ¤q} n 2 α ¤ Cd 1 pm 1 0 , m 2 0 q,
and coming back to inequality [START_REF] Krylov | On the Itô-Wentzell formula for distribution-valued processes and related topics[END_REF], we also obtain sup tr0,T s

d 1 pm 1 ptq, m 2 ptqq ¤ Cd 1 pm 1 0 , m 2 0 q.
In the proof we used the following estimate:

Lemma 3.3. Let n ¥ 1, V C 0 pr0, T s, C n¡1 α pT d , R d qq and f C 0 pr0, T s, C n¡1 α pT d qq.
Then, for any z T C n α pT d q, the (backward) equation 

4 ¡f t z ¡ ∆z V pt, xq ¤ Dz f pt, xq, in r0, T s ¢ T d zpT,
Recalling the standard estimates }pP T ¡t¡h ¡ P T ¡t qz T } n α ¤ Ch 1 2 }z T } n α , }P s¡t ψps, ¤q} n α ¤ Cps ¡ tq ¡ 1 2 }ψpsq} n¡1 α and }pP s¡t¡h ¡ P s¡t qψps, ¤q} n α ¤ Chps ¡ t ¡ hq ¡ 3 2 }ψps, ¤q} n¡1 α , we find the result when 2h ¤ T ¡ t.

When 2h ¡ T ¡ t, there is no need to consider the integral from t 2h to T in the above formula [START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF], and the result follows in the same way.

Estimates on a linear system

In the sequel we need to estimate several times solutions of a forward-backward system of linear equations. In order to minimize the computation, we collect in this section two different results on this system. The first one provides existence of a solution and estimates for smooth data.

The second one deals with general data. We consider systems of the form

6 9 9 9 8 9 9 9 7 piq ¡f t z ¡ ∆z V pt, xq ¤ Dz δF δm px, mptqqpρptqq bpt, xq in rt 0 , T s ¢ T d piiq f t ρ ¡ ∆ρ ¡ divpρV q ¡ divpmΓDz cq 0 in rt 0 , T s ¢ T d piiq zpT, xq δG δm px, mpT qqpρpTqq z T pxq, ρpt 0 q ρ 0 in T d (45) 
where

V : rt 0 , T s¢R d Ñ R d is a given vector field, m C 0 pr0, T s, PpT d qq, Γ : r0, T s¢T d Ñ R d¢d
is a continuous map with values into the family of symmetric matrices and where the maps

b : rt 0 , T s ¢ T d Ñ R, c : rt 0 , T s ¢ T d Ñ R d and z T : T d Ñ R are given.
We always assume that there is a constant C ¡ 0 such that dt, t I rt 0 , T s,

d 1 pmptq, mpt I qq ¤ C|t ¡ t I | 1{2 , dpt, xq rt 0 , T s ¢ T d , C¡1 I d ¤ Γpt, xq ¤ CI d . (46) 
Typically, V pt, xq D p Hpx, Dupt, xqq, Γpt, xq D 2 pp Hpx, Dupt, xqq for some solution pu, mq of the MFG system [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] starting from some initial data mpt 0 q m 0 . Recall that the derivative Du is globally Lipschitz continuous with a constant independent of pt 0 , m 0 q, so that assumption [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] gives the existence of a constant C for which [START_REF] Ladyženskaja | N Linear and quasilinear equations of parabolic type[END_REF] holds. We note for later use that this constant does not depend on pt 0 , m 0 q.

To simplify the notation, let us set, for n N, X n C n α pT d q and let pX n q I be its dual space (pX n q I pC n α pT d qq I ). We first establish the existence of a solution and its smoothness for smooth data: Lemma 3.4. Assume that b, c, z T and ρ 0 are smooth, V is of class C 1 α{2,2 α , Γ is of class C 1 and pmptqq trt 0 ,T s is a C 1 family of densities, which are uniformly bounded above and below by positive constants. Suppose furthermore that (HF1(n)) and (HG1(n+2)) hold for some

n ¥ 0. Then system (45) has a classical solution pz, ρq C 1 α{2,2 α ¢ C 1 α{2,2 α .
Moreover, the pair pz, ρq satisfies the following estimates:

sup trt 0 ,T s }zpt, ¤q} n 2 α sup t$t I }zpt I , ¤q ¡ zpt, ¤q} n 2 α |t I ¡ t| 1 2 ¤ C n M. (47) 
and

sup trt 0 ,T s }ρptq} pX n 1 q I sup t$t I }ρpt I q ¡ ρptq} pX n 1 q I |t ¡ t I | 1 2 ¤ C n M, (48) 
where the constant C n depends on n, T , sup trt 0 ,T s }V pt, ¤q} X n 1 , the constant C in (46), F and G (but not on the smoothness assumption on b, c, z T , ρ 0 , V , Γ and m) and where M is given by

M : }z T } X n 2 }ρ 0 } pX n 1 q I sup trt 0 ,T s p}bpt, ¤q} X n 1 }cptq} pXnq Iq. (49) 
Remark: if m 0 has a smooth density which is bounded above and below by positive constants and if pu, mq is the solution to [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] Proof. Without loss of generality we assume t 0 0. We prove the existence of a solution to [START_REF] Lacker | A general characterization of the mean field limit for stochastic differential games[END_REF] by Leray-Schauder argument. The proof requires several steps, the key argument being precisely the estimates ( 47) and [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF].

Step 1: Definition of the map T. Let β p0, 1{2q and set X : C β pr0, T s, pX n 1 q I q. For ρ X, we define Tpρq as follows: let z be the solution to

6 9 8 9 7 ¡f t z ¡ ∆z V pt, xq ¤ Dz δF δm px, mptqqpρptqq b in r0, T s ¢ T d , zpT q δG δm px, mpT qqpρpTqq z T in T d (50) 
By our assumptions on the data, z solves a parabolic equation with C β{2,β coefficients, and, by Schauder estimates, is therefore bounded in C 1 β{2,2 β when ρ is bounded in X. Next we define ρ as the solution to

In the rest of the proof we show that, if ρ σTpρq for some pρ, σq X ¢ r0, 1s, then ρ satisfies [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF]. This estimate proves that the norm in X of ρ is bounded independently of σ.

Then we can conclude by Leray-Schauder Theorem the existence of a fixed point for T, which, by definition, yields a classical solution to [START_REF] Lacker | A general characterization of the mean field limit for stochastic differential games[END_REF].

From now on we fix pρ, σq X ¢r0, 1s such that ρ σTpρq and let z be the solution to [START_REF] Lasry | Mean field games[END_REF]. Note that the pair pz, ρq satisfies 

¡f t z ¡ ∆z V pt, xq ¤ Dz σ ¢ δF δm px, mptqqpρptqq b in r0, T s ¢ T d , f t ρ ¡ ∆ρ ¡ divpρV q ¡ σdivpmΓDz cq 0 in r0, T s ¢ T d ρp0q σρ 0 , zpT q σ ¢ δG δm px, mpT qqpρpTqq z T in T d .
Our goal is to show that ( 47) and ( 48) hold for z and ρ respectively. Without loss of generality we can assume that σ is positive, since otherwise ρ 0.

Step 2: Use of the monotonicity condition. We note that

d dt ˆTd zpt, xqρpt, xqdx ¡σ ˆTd δF δm px, mptqq ρptq ¨ bptq % ρpt, xqdx ¡σ ˆTd Dzpt, xq ¤ Γpt, xqDzpt, xq $ mpt, xqdx ¡ σ ˆTd Dzpt, xq ¤ cpt, xqdx.
Using the monotonicity of F and G and dividing by σ, we have:

ˆT 0 ˆTd Γpt, xqDzpt, xq ¤ Dzpt, xqmpt, xqdxdt ¤ ¡ ˆTd δG δm px, mpT qqpρpTqq z T pxq $ ρpT, xqdx ˆTd zp0, xqρ 0 pxqdx ¡ ˆT 0 ˆTd bpt, xqρpt, xq Dzpt, xq ¤ cpt, xq ¨dxdt ¤ sup tr0,T s }ρptq} pX n 1 q I }z T } X n 1 }b} ¨ sup tr0,T s
}zpt, ¤q} X n 1 }ρ 0 } pX n 1 q I }c} ẅhere we have set }b} sup tr0,T s }bpt, ¤q} X n 1 , }c} : sup tr0,T s }cptq} pXnq I. Using assumption [START_REF] Ladyženskaja | N Linear and quasilinear equations of parabolic type[END_REF] on Γ, we get:

ˆT 0 ˆTd |Γpt, xqDzpt, xq| 2 mpt, xqdx ¤ C ¢ sup tr0,T s }ρptq} pX n 1 q I }z T } X n 1 }b} ¨ sup tr0,T s }zptq} X n 1 }ρ 0 } pX n 1 q I }c} ¨. ( 51 
)
Second step: Duality technique. Next we use a duality technique for checking the regularity of ρ. Let τ p0, T s, ξ X n 1 and w be the solution to the backward equation 

¡ f t w ¡ ∆w V pt, xq ¤ Dw 0 in r0, τ s ¢ T d , wpτ q ξ in T d . (52) 
¤ }wp0q} X n 1 }ρ 0 } pX n 1 q I sup tr0,T s }Dwpt, ¤q} Xn }c} ¢ˆT 0 ˆTd |Dwpt, xq| 2 mpt, xqdxdt 1{2 ¢ˆT 0 ˆTd |Γpt, xqDzpt, xq| 2 mpt, xqdxdt 1{2 ¤ C }ξ} X n 1 }ρ 0 } pX n 1 q I sup tr0,T s }Dwpt, ¤q} Xn }c} }Dw} V ¢ˆT 0 ˆTd |Γpt, xqDzpt, xq| 2 mpt, xqdxdt 1{2 '
. Using ( 51) and ( 53) we obtain therefore ˆTd

ξpxqρpτ, xqdx ¤ C}ξ} X n 1 }ρ 0 } pX n 1 q I }c} sup tr0,T s }ρptq} 1{2 pX n 1 q I }z T } 1{2 X n 1 }b} 1{2 ¨ sup tr0,T s }zpt, ¤q} 1{2 X n 1 }ρ 0 } 1{2 pX n 1 q I }c} 1{2 ¨&.
Taking the supremum over ξ with }ξ} Xn 1 ¤ 1 and over τ r0, T s yields to

sup tr0,T s }ρptq} pX n 1 q I ¤ C }ρ 0 } pX n 1 q I }c} sup tr0,T s }ρptq} 1{2 pX n 1 q I }z T } 1{2 X n 1 }b} 1{2 ¨ sup tr0,T s }zpt, ¤q} 1{2 X n 1 }ρ 0 } 1{2 pX n 1 q I }c} 1{2 ¨&.
Rearranging and using the definition of M in (57), we obtain

sup tr0,T s }ρptq} pX n 1 q I ¤ C M sup tr0,T s }zpt, ¤q} 1{2 X n 1 }ρ 0 } 1{2 pX n 1 q I }c} 1{2 ¨&. (55) 
We can use the same kind of argument to obtain the regularity of ρ with respect to the time variable: integrating (54) in time and using the Hölder estimate in [START_REF] Mckean | Propagation of chaos for a class of non linear parabolic equations[END_REF] 

¤ Cpτ ¡ tq 1 2 }ξ} X n 1 sup tr0,T s }ρptq} pX n 1 q I pτ ¡ tq 1{2 }Dw} V ¢ˆT 0 ˆTd |Γps, xqDzps, xq| 2 mps, xqdxds 1{2 pτ ¡ tq sup tr0,T s }wpt, ¤q} X n 1 }cptq}.
Plugging ( 55) into (51), we get that the root of the left-hand side in (51) satisfies the same bound as the left-hand side in [START_REF] Méléard | Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models[END_REF]. Therefore, ˆTd

ξpxq ρpτ, xq ¡ ρpt, xq ¨dx ¤ Cpτ ¡ tq 1 2 }ξ} X n 1 M sup tr0,T s }zpt, ¤q} 1{2 X n 1 }ρ 0 } 1{2 pX n 1 q I }c} 1{2 ¨&.
Dividing by pτ ¡ tq 1{2 and taking the supremum over ξ yields

sup t$t I }ρpt I q ¡ ρptq} pX n 1 q I |t ¡ t I | 1 2 ¤ C M sup tr0,T s }zpt, ¤q} 1{2 X n 1 }ρ 0 } 1{2 pX n 1 q I }c} 1{2 ¨' . ( 56 
)
Third step: Estimate of z. In view of the equation satisfied by z, we have, by Lemma 3.3,

sup tr0,T s }zpt, ¤q} n 2 α sup t$t I }zpt I , ¤q ¡ zpt, ¤q} n 2 α |t I ¡ t| 1 2 ¤ Cσ sup tr0,T s δF δm
x, mptq ¨pρptqq bpt, ¤q

n 1 α δG δm x, mpT q ¨pρpT qq z T n 2 α & ,
where C depends on sup tr0,T s }V pt, ¤q} n 1 α . Assumptions (HF1(n+1)) and (HG1(n+2)) on F and G and the fact that σ r0, 1s imply that the right-hand side of the previous inequality is bounded above by

C sup tr0,T s }ρptq} pX n 1 q I }b} }ρpTq} pX n 2 q I }z T } X n 2 '
.

Estimate (55) on ρ then implies (since }ρpTq} pX n 2 q I ¤ }ρpTq} pX n 1 q I):

sup tr0,T s }zpt, ¤q} n 2 α sup t$t I }zpt I , ¤q ¡ zpt, ¤q} n 2 α |t I ¡ t| 1 2 ¤ C M sup tr0,T s }zpt, ¤q} 1{2 X n 1 }ρ 0 } 1{2 pX n 1 q I }c} 1{2 ¨' .
Rearranging we obtain [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF]. Plugging this estimate into ( 55) and ( 56) then gives [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF].

We now discuss the existence and uniqueness of the solution for general data.

Given n ¥ 2, z T X n 2 , ρ 0 X I n , b L V pr0, T s, X n q, c L V pr0
, T s, rpX n q I s d q, we define a solution to (45) to be a pair pz, ρq C 0 pr0, T s, X n 2 ¢ pX n q I q that satisfies (45) in the sense of distribution.

Here is our main estimate on system [START_REF] Lacker | A general characterization of the mean field limit for stochastic differential games[END_REF].

Lemma 3.5. Let n ¥ 0. Assume that (HF1(n+1)) and (HG1(n+2)) hold, that V C 0 pr0, T s, X n 1 q and that M : }z T } X n 2 }ρ 0 } pX n 1 q I sup trt 0 ,T s p}bpt, ¤q} X n 1 }cptq} pXnq Iq V. ( 57 
)
Then there exists a unique solution pz, ρq of (45) with initial condition ρpt 0 q ρ 0 . This solution satisfies sup

trt 0 ,T s }pzpt, ¤q, ρptqq} X n 2 ¢pX n 1 q I ¤ CM,
where the constant C depends on n, T , sup tr0,T s }V pt, ¤q} X n 1 , the constant C in [START_REF] Ladyženskaja | N Linear and quasilinear equations of parabolic type[END_REF], F and

G.

Moreover this solution is stable in the following sense: assume that

• the data V k , m k , Γ k and ρ k 0 converge to V , m, Γ and ρ 0 respectively in the spaces C 0 pr0, T s¢ T d , R d q, C 0 prt 0 , T s, PpT d qq, C 1 pr0, T s ¢ T d , R d q and pX n 1 q I ,
• the perturbations pb k q, pc k q and z k T converge to b, c and z T , uniformly in time, in X n 1 , in rpX n q I s d and in X n 2 respectively. Suppose also that the M k (defined by [START_REF] Mischler | A new approach to quantitative propagation of chaos for drift, diffusion and jump processes[END_REF] for the pb k q, pc k q, z k T and ρ k 0 ) are bounded above by M 1 and that the sup tr0,T s }V k pt, ¤q} X n 1 are uniformly bounded. Then the corresponding solutions pz k , ρ k q converge to the solution pz, ρq of (45) in C 0 prt 0 , T s, C n 2 α pT d q ¢ pC n 1 α pT d qq I q.

Proof. By Lemma 3.4, existence of a solution holds for smooth data. We now address the case where the data are not smooth (so that M cannot be zero). We smoothen m, Γ, b, c, z T and ρ 0 into m k , Γ k , pb k q, pc k q, z k T and ρ k 0 in such a way that the corresponding M k is bounded by 2M and m k is a smooth density bounded above and below by positive constants. Let pz k , ρ k q be a classical solution to [START_REF] Lacker | A general characterization of the mean field limit for stochastic differential games[END_REF] as given by Lemma 3.4. Using the linearity of the equation, estimates [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF], [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF] imply that pz k , ρ k q is a Cauchy sequence in C 0 pr0, T s, C n 2 α pT d q ¢ C n α pT d qq I q and therefore converges in that space to some limit pz, ρq. Moreover pz, ρq still satisfies the estimates ( 47), [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF]. By (HF1(n+1)) and (HG1(n+2)), p δF δm p¤, m k qpρ k qq converges uniformly in time to p δF δm p¤, mqpρqq while p δG δm p¤, m k qpρ k qq converges to p δG δm p¤, mqpρqq. Therefore pz, ρq is a weak solution to [START_REF] Lacker | A general characterization of the mean field limit for stochastic differential games[END_REF]. Note also that any solution of (45) satisfies estimates ( 47), [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF], so that uniqueness holds by linearity of the problem.

Differentiability of U with respect to the measure

In this section we show that the map U has a derivative with respect to m. To do so, we linearize the MFG system [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF]. Let us fix pt 0 , m 0 q r0, T s ¢ PpT d q and let pm, uq be the solution to the MFG system [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] with initial condition mpt 0 q m 0 . Recall that, by definition, U pt 0 , x, m 0 q upt 0 , xq.

For any µ 0 in a suitable space, we consider the solution pv, µq to the linearized system 

Our aim is to prove that U is of class C 1 with respect to m with vpt 0 , xq ˆTd δU δm pt 0 , x, m 0 , yqµ 0 pyqdy.

Let us start by showing that the linearized system (58) has a solution and give estimates on this solution.

Proposition 3.6. Assume that (HF1(n+1)) and (HG1(n+2)) hold for some n ¥ 0.

(i) Let m 0 be a smooth density bounded below by a positive constant and let µ 0 be smooth map on T d . Then there exists a unique solution pv, µq C 1 α{2,2 α ¢C 1 α{2,2 α to system [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF]. (ii) If m 0 PpT d q and µ 0 pC n 1 α q I , there is a unique solution pv, µq of (58) (in the sense given in section 3.3) and this solution satisfies

sup trt 0 ,T s 2 }vpt, ¤q} n 2 α }µptq} ¡pn 1 αq @ ¤ C}µ 0 } ¡pn 1 αq ,
where the constant C depends on n, T , H, F and G (but not on pt 0 , m 0 q). (iii) The solution is stable in the following sense: assume that the triplet pt k 0 , m k 0 , µ k 0 q converges to pt 0 , m 0 , µ 0 q in r0, T s ¢ PpT d q ¢ pC n 1 α q I . Then the corresponding solutions pv k , µ k q to (58) (where pu k , m k q solves (38) with initial condition m k pt k 0 q m k 0 ) converge to the solution pv, µq in C 0 prt 0 , T s, C n 2 α pT d q ¢ pC n 1 α pT d qq I q. Proof. It is a straightforward application of Lemmata 3.4 and 3.5 respectively, with V pt, xq D p Hpx, Dupt, xqq, Γpt, xq D 2 pp Hpx, Dupt, xqq and z T b c 0. Note that V satisfies the condition that D V belongs to C 0 pr0, T s, C n 1 α pT d qq in view of Proposition 3.1. Corollary 3.7. Under the assumptions of Proposition 3.6, there exists, for any pt 0 , m 0 q, a C n 2 α pT d q ¢ C n 1 α pT d q map px, yq Þ Ñ Kpt 0 , x, m 0 , yq such that, for any µ 0 pC n 1 α pT d qq I , the v component of the solution of (58) is given by

vpt 0 , xq xKpt 0 , x, m 0 , ¤q, µ 0 y C n 1 α pT d q,pC n 1 α pT d qq I. ( 59 
)
Moreover }Kpt 0 , ¤, m 0 , ¤q} pn 2 α,n 1 αq ¤ C n and K and its derivatives in px, yq are continuous on r0, T s ¢ T d ¢ PpT d q ¢ T d . Proof. For N d with | | ¤ n 1 and y T d , let pv p q p¤, ¤, yq, µ p q p¤, ¤, yqq be the solution to [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] with initial condition µ 0 D δ y (the ¡th derivative of the Dirac mass at y). Note that µ 0 pC n 1 α pT d qq I . We set Kpt 0 , x, m 0 , yq : v p0q pt 0 , x, yq.

Let us check that f y 1 Kpt 0 , x, m 0 , yq ¡v pe 1 q pt 0 , x, yq where e 1 p1, 0, . . . , 0q. Indeed, since ¡1 pδ y e 1 ¡δ y q converges to ¡D e 1 δy in pC n 1 α q I while, by linearity, the map ¡1 pKp¤, ¤, m 0 , y e 1 q¡Kp¤, ¤, m 0 , yqq is the first component of the solution of (58) with initial condition ¡1 pδ y e 1 q ¡ δ y q, this map must converge by stability (point (iii) in Proposition 3.6) to the first component of the solution with initial condition ¡D e 1 δ y , which is ¡v pe 1 q p¤, ¤, yq. This proves our claim.

One can then check in the same way by induction that, for | | ¤ n 1, D y Kpt 0 , x, m 0 , yq : p¡1q | | v p q pt 0 , x, yq. Finally, if | | ¤ n 1, point (ii) in Proposition 3.6 combined with the linearity of system [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] implies that K p q pt 0 , ¤, m 0 , yq ¡ K p q pt 0 , ¤, m 0 , y I q

n 2 α ¤ C}D δ y ¡ D δ y I} ¡pn 1 αq ¤ C}δ y ¡ δ y I} ¡α ¤ C|y ¡ y I | α .
Therefore Kpt 0 , ¤, m 0 , ¤q belongs to C n 2 α ¢ C n 1 α . Continuity of K and its derivatives in pt 0 , m 0 q follows from point (iii) in Proposition 3.6.

We now show that K is indeed the derivative of U with respect to m.

Proposition 3.8. Assume that (HF1(n+1)) and (HG1(n+2)) hold for some n ¥ 0. Fix t 0 r0, T s, m 0 , m0 PpT d q. Let pu, mq and pû, mq be the solution of the MFG system [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] starting from pt 0 , m 0 q and pt 0 , m0 q respectively and let pv, µq be the solution to [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] with initial condition pt 0 , m0 ¡ m 0 q. Then sup trt 0 ,T s 2 }ûpt, ¤q ¡ upt, ¤q ¡ vpt, ¤q} n 2 α } mpt, ¤q ¡ mpt, ¤q ¡ µpt, ¤q} ¡pn 1 αq @ ¤ Cd 2 1 pm 0 , m0 q.

As a straightforward consequence, we obtain the differentiability of U with respect to the measure: Corollary 3.9. Under the assumption of Proposition 3.8, the map U is of class C 1 (in the sense of Definition 2.1) with δU δm pt 0 , x, m 0 , yq Kpt 0 , x, m 0 , yq, whose regularity is given by Corollary 3.7. Moreover,

U pt 0 , ¤, m0 q ¡ U pt 0 , ¤, m 0 q ¡ ˆTd δU δm pt 0 , ¤, m 0 , yqdp m0 ¡ m 0 qpyq n 2 α ¤ Cd 2 1 pm 0 , m0 q.
Remark 3.10. Let us recall that the derivative δU {δm is defined up to an additive constant and that our normalization condition is ˆTd δU δm pt 0 , x, m 0 , yqdm 0 pyq 0.

Let us check that we have indeed ˆTd Kpt, x, m 0 , yqdm 0 pyq 0.

(

) 60 
For this let us chose µ 0 m 0 in [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF]. Since, by normalization condition, δF δm pt, mptqqpmptqq 0, for any t r0, T s, and δG δm pt, mpT qqpmpTqq 0, it is clear that the solution to ( 58) is just pv, µq p0, mq. So, by ( 59), ( 60) holds.

Proof of Proposition 3.8. Let us set z : û ¡ u ¡ v and ρ : m ¡ m ¡ µ. The proof consists in estimating the pair pz, ρq, which satisfies: ¢ δG δm px, s mpT q p1 ¡ sqmpT q, yq ¡ δG δm px, mpT q, yq dp mpT q ¡ mpT qqpyqds.

We apply Lemma 3.5 to get (recalling the notation X n C n α pT d q):

sup trt 0 ,T s }pzptq, ρptqq} X n 2 ¢pX n 1 q I ¤ C }z T } X n 2 }ρ 0 } pX n 1 q I sup trt 0 ,T s p}bptq} X n 1 }cptq} pXnq Iq ' .
It remains to estimate the various quantities in the right-hand side. We have

sup tr0,T s }bptq} X n 1 ¤ sup tr0,T s }A} X n 1 sup tr0,T s }B} X n 1 ,
where, sup

tr0,T s }A} X n 1 ¤ C sup tr0,T s }û ¡ u} 2 X n 2 ¤ Cd 2
1 pm 0 , m0 q according to Proposition 3.2. To estimate B and }z T } X n 2 , we argue in the same way:

}z T } X n 2 sup tr0,T s }B} X n 1 ¤ Cd 2 1 pm 0 , m0 q,
where we have used as above Proposition 3.2 now combined with assumptions (HF1(n+1))

and (HG1(n+2)) which imply (e.g., for F ) that, for any

m 1 , m 2 PpT d q, ˆTd ¢ δF δm p¤, m 1 , yq ¡ δF δm p¤, m 2 , yq dpm 1 ¡ m 2 qpyq X n 1 ¤ d 1 pm 1 , m 2 q D y δF δm p¤, m 1 , ¤q ¡ D y δF δm p¤, m 2 , ¤q X n 1 ¢L V ¤ Cd 2 1 pm 1 , m 2 q.
Finally, sup This completes the proof.

Proof of Theorem 2.8

Proof of Theorem 2.8 (existence). We check in a first step that the map U defined by ( 39) is a solution of the first order master equation. Let us first assume that m 0 C 1 pT d q, with m 0 ¡ 0. Let t 0 ¡ 0, pu, mq be the solution of the MFG system (38) starting from m 0 at time t 0 . Then

U pt 0 h, x, m 0 q ¡ U pt 0 , x, m 0 q h U pt 0 h, x, m 0 q ¡ U pt 0 h, x, mpt 0 hqq h U pt 0 h, x, mpt 0 hqq ¡ U pt 0 , x, m 0 q h .
Let us set m s p1 ¡ sqmpt 0 q smpt 0 hq. Note that, by the equation satisfied by m and the regularity of U given by Corollary 3.9, U t 0 h, x, mpt 0 hq ¨¡ U t 0 h, x, mpt 0 q ˆ1 0 ˆTd δU δm pt 0 h, x, m s , yqpmpt 0 h, yq ¡ mpt 0 , yqq dyds We can then divide by h to obtain, using the continuity of D m U and its smoothness with respect to the space variables:

ˆ1 0 ˆTd ˆt0 h t 0 δU δm pt 0 h, x,
lim hÑ0 U pt 0 h, x, mpt 0 hqq ¡ U pt 0 h, x, m 0 q h ˆTd ¡ div y rD m U s pt 0 , x, m 0 , yq ¡ D m U pt 0 , x, m 0 , yq ¤ D p H y, Dupt 0 , yq ¨© m 0 pyq dy.
On the other hand, for h ¡ 0, U pt 0 h, x, mpt 0 hqq ¡ U pt 0 , x, m 0 q upt 0 h, xq ¡ upt 0 , xq hf t upt 0 , xq ophq, since u is smooth, so that lim hÑ0 U pt 0 h, x, mpt 0 hqq ¡ U pt 0 , x, m 0 q h f t upt 0 , xq.

Therefore f t U pt 0 , x, m 0 q exists and, using the equation satisfied by u, is equal to f t U pt 0 , x, m 0 q ¡ ˆTd div y rD m U s pt 0 , x, m 0 , yqm 0 pyqdy ˆTd

D m U pt 0 , x, m 0 , yq ¤ D p H x, D x U pt 0 , y, m 0 q ¨m0 pyqdy ¡ ∆ x U pt 0 , x, m 0 q H x, D x U pt 0 , x, m 0 q ¨¡ F px, m 0 q. ( 61 
)
This means that U has a continuous time derivative at any point pt 0 , x, m 0 q where m 0 C 1 pT d q with m 0 ¡ 0 and satisfies [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF] at such a point. By continuity of the right-hand side of (61), U has a time derivative everywhere and (28) holds at any point.

Next we turn to the uniqueness part of the Theorem: Proof of Theorem 2.8 (uniqueness). In order to prove the uniqueness of the solution for the master equation, we explicitly show that the solutions of the MFG system [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] coincide with the characteristics of the master equation. Let V be another solution to the master equation. The main point is that, by the definition of a solution, D 2

x,y δV δm is bounded, and therefore D x V is Lipschitz continuous with respect to the measure variable.

Let us fix pt 0 , m 0 q. In view of the Lipschitz continuity of D x V , one can easily uniquely solve in C 0 pr0, T s, PpT d qq the Fokker-Planck equation:

4 f t m ¡ ∆ m ¡ div mD p Hpx, D x V pt, x, mqq ¨ 0 in rt 0 , T s ¢ T d mpt 0 q m 0 in T d .
Then let us set ũpt, xq V pt, x, mptqq. By the regularity properties of V , ũ is at least of class

C 1,2 with f t ũpt, xq f t V pt, x, mptqq d δV δm pt, x, mptq, ¤q, f t mptq h C 2 ,pC 2 q I f t V pt, x, mptqq d δV δm pt, x, mptq, ¤q, ∆ m divp mD p H x, D x V pt, x, mq ¨hC 2 ,pC 2 q I f t V pt, x, mptqq ˆTd div y rD m V s pt, x, mptq, yq d mptqpyq ¡ ˆTd D m V pt, x, mptq, yq ¤ D p Hpy, D x V pt, y, mqq d mptqpyq.
Recalling that V satisfies the master equation, we obtain:

f t ũpt, xq ¡∆ x V pt, x, mptqq H x, D x V pt, x, mptqq ¨¡ F px, mptqq ¡∆ũpt, xq Hpx, Dũpt, xqq ¡ F px, mptqq
with terminal condition ũpT, xq V pT, x, mpT qq Gpx, mpT qq. Therefore the pair pũ, mq is a solution of the MFG system [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF]. As the solution of this system is unique, we get that V pt 0 , x, m 0 q U pt 0 , x, m 0 q.

Lipschitz continuity of δU δm with respect to m

We later need the Lipschitz continuity of the derivative of U with respect to the measure.

Proposition 3.11. Let us assume that (HF1(n+1)) and (HG1(n+2)) hold for some n ¥ 2.

Then

sup tr0,T s sup m 1 $m 2 pd 1 pm 1 , m 2 qq ¡1 δU δm pt, ¤, m 1 , ¤q ¡ δU δm pt, ¤, m 2 , ¤q pn 2 α,n αq V,
where C depends on n, F , G, H and T .

Proof. By continuity of δU δm in the measure argument (see Corollaries 3.9 and 3.7), we can assume without loss of generality that m 1 0 and m 2 0 are two smooth, positive densities. Let µ 0 C V pT d q. We consider pu 1 , m 1 q and pu 2 , m 2 q the classical solutions to the MFG system (38) associated with the initial condition pt 0 , m 1 0 q and pt 0 , m 2 0 q respectively and pv 1 , µ 1 q and pv 2 , µ 2 q the associated classical solutions to [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] with µ 1 pt 0 , ¤q µ 2 pt 0 , ¤q µ 0 .

Let us set pz, ρq : pv 1 ¡ v 2 , µ 1 ¡ µ 2 q. We first write an equation for pz, ρq. 

¡f t z ¡ ∆z H I 1 Dz F I 1 p¤, ρq b f t ρ ¡ ∆ρ ¡ divpρH I 1 q ¡ divpm 1 H P 1 Dzq ¡ divpcq 0 zpT q G I 1 pρpTqq z T , mpt 0 q 0 where bpt, xq : F I 1 x, µ 2 ptq ¨¡ F I 2 x, µ 2 ptq ¨¡ pH I 1 ¡ H I 2 qDv 2 $ pt, xq, cpt, xq : µ 2 pt, xqpH I 1 ¡ H I 2 qpt, xq pm 1 H P 1 ¡ m 2 H P 2 qDv 2 $ pt, xq, z T pxq : G I 1 pµ 2 pTqq ¡ G I
2 pµ 2 pTqq. We apply Lemma 3.5 with V H I 1 . Recalling the notation X n C n α pT d q, it says that, under assumptions (HF1(n+1)) and (HG1(n+2)),

sup trt 0 ,T s }zpt, ¤q} X n 2 ¤ C }z T } X n 2 sup tr0,T s }bpt, ¤q} X n 1 }cpt, ¤q} pXnq I ¨%.
Let us estimate the various terms in the right-hand side:

}z T } X n 2 ¤ ˆTd ¡ δG δm p0, ¤, m 1 pTq, yq ¡ δG δm p0, ¤, m 2 pTq, yq © µ 2 pT, yqdy n 2 α ¤ δG δm p0, ¤, m 1 pTq, ¤q ¡ δG δm p0, ¤, m 2 pTq, ¤q pn 2 α,n 1 αq }µ 2 pTq} ¡pn 1 αq ¤ Cd 1 pm 1 0 , m 2 0 q }µ 0 } ¡pn 1 αq
where we have used Proposition 3.6-(ii) in the last inequality. Moreover, we have }bpt, ¤q}

X n 1 ¤ F I 1 ¤, µ 2 ptq ¨¡ F I 2 ¤, µ 2 ptq ¨ X n 1 H I 1 ¡ H I 2 ¨pt, ¤qDv 2 pt, ¤q X n 1 ,
where the first term can be estimated as z T :

F I 1 ¤, µ 2 ptq ¨¡ F I 2 ¤, µ 2 ptq ¨ X n 1 ¤ Cd 1 pm 1 0 , m 2 0 q}µ 0 } ¡pn 1 αq .
The second one is bounded by

H I 1 ¡ H I 2 ¨pt, ¤qDv 2 pt, ¤q X n 1 D p H ¤, Du 1 pt, ¤q ¨¡ D p Hp¤, Du 2 pt, ¤qq ¨Dv 2 pt, ¤q n 1 α ¤ }pu 1 ¡ u 2 qpt, ¤q} n 2 α }v 2 pt, ¤q} n 2 α ¤ Cd 1 pm 1 0 , m 2 0 q }µ 0 } ¡pn 1 αq ,
where the last inequality comes from Proposition 3.2 and Proposition 3.6 thanks to assumptions (HF1(n+1)) and (HG1(n+2)). Finally, by a similar argument,

}cptq} ¡pn αq sup }φ} n α ¤1 ˆTd φpxq µ 2 H I 1 ¡ H I 2 ¨ pm 1 ¡ m 2 qH P 1 m 2 pH P 1 ¡ H P 2 qDv 2 ¨%pt, xqdx ¤ sup }φ} n α ¤1 φpH I 1 ¡ H I 2 qpt, ¤q n α }µ 2 pt, ¤q} ¡pn αq d 1 m 1 ptq, m 2 ptq ¨sup }φ} 1 ¤1 φ H P 1 Dv 2 ¨pt, ¤q 1 sup }φ} 0 ¤1 φpH P 1 ¡ H P 2 qpt, ¤qDv 2 pt, ¤q 0 ¤ C pu 1 ¡ u 2 qpt, ¤q n α }µ 0 } ¡pn αq Cd 1 m 1 ptq, m 2 ptq ¨}v 2 pt, ¤q} 2 C u 1 ¡ u 2 ¨pt, ¤q 1 }v 2 pt, ¤q} 1 ¤ Cd 1 pm 1 0 , m 2 0 q}µ 0 } ¡pn αq .
This shows that sup

trt 0 ,T s }zpt, ¤q} n 2 α ¤ Cd 1 pm 1 0 , m 2 0 q}µ 0 } ¡pn αq .
As zpt 0 , xq ˆTd ¢ δU δm pt 0 , x, m 1 0 , yq ¡ δU δm pt 0 , x, m 2 0 , yq µ 0 pyqdy, we have proved sup

m 1 $m 2 pd 1 pm 1 , m 2 qq ¡1 δU δm pt 0 , ¤, m 1 , ¤q ¡ δU δm pt 0 , ¤, m 2 , ¤q pn 2 α,n αq ¤ C,
where the supremum is taken over smooth densities. The map δU δm being continuous, we can remove the restriction of the measures m 1 and m 2 by approximation to get the full result.

Link with the optimal control of Fokker-Planck equation

We now explain that, when F and G derive from potentials functions F and G, the space derivative D x U is nothing but the derivative with respect to the measure of the solution U of a Hamilton-Jacobi equation stated in the space of measures. The fact that the mean field game system can be viewed as a necessary condition for an optimal transport of the Kolmogorov equation goes back to Lasry and Lions [START_REF] Lasry | Mean field games[END_REF]. As explained by Lions [START_REF] Lions | [END_REF], one can also write the value function of this optimal control problem, which turns out to be a Hamilton-Jacobi equation in the space of measure. The (directional) derivative with respect to the measure of the value function is then (at least formally) the solution of the master equation. This is rigorously derived, for short horizon and first order (in space and measure) master equation by Gangbo and Swiech [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF]. We show here that this holds true for the master equation without common noise.

Let us assume that F and G derive from C 1 potential maps F : PpT d q Ñ R and G : PpT d q Ñ R:

F px, mq δF δm px, mq, Gpx, mq δG δm px, mq.

Note for later use that the monotonicity of F and G implies the convexity of F and G.

Theorem 3.12. Under the assumptions of Theorem 2.8, let U be the solution to the master equation [START_REF] Huggett | The risk-free rate in heterogeneous-agent incomplete-insurance economies[END_REF] and suppose that (62) holds. Then the Hamilton-Jacobi-Bellmann equation 

D m Upt, x, mq D x U pt, x, mq dpt, x, mq r0, T s ¢ T d ¢ PpT d q. ( 64 
)
We represent the solution U of (63) as the value function of an optimal control problem: for an initial condition pt 0 , m 0 q r0, T s ¢ PpT d q, let Upt 0 , m 0 q : inf pm,αq

ˆT t 0 ˆT d H ¦ px, αpt, xqq mpt, dxq & dt ˆT t 0 F mptq ¨dt G mpT q ¨(65)
(where H ¦ is the convex conjugate of H with respect to the second variable) under the constraint that m C 0 pr0, T s, PpT d qq, α is a bounded and Borel measurable function from r0, T s ¢ T d into R d and the pair pm, αq satisfies in the sense of distribution:

f t m ¡ ∆m ¡ div αm ¨ 0 in r0, T s ¢ T d , mpt 0 q m 0 in T d . (66) 
Of course, (66) is understood as the Fokker-Planck equation describing the flow of measures generated on the torus by the SDE dZ t ¡αpt, Z t qdt dB t , t r0, T s, which is is known to be uniquely solvable in the weak sense. Notice that, throughout the subsection, we shall use, as in (65), the notation mpt, dxq to denote the integral on the torus with respect to the (time-dependent) measure mptq.

The following characterization of the optimal path for U is due to Lasry and Lions [START_REF] Lasry | Mean field games[END_REF]:

Proposition 3.13. For an initial position pt 0 , m 0 q r0, T s ¢ PpT d q, let pu, mq be the solution of the MFG system [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF]. Then pm, αq pm, D p Hp¤, Dup¤, ¤qqq is a minimizer for Upt 0 , m 0 q.

Proof. For a function m C 0 pr0, T s, 

f t m ¡ ∆ m ¡ div α m¨ 0 in r0, T s ¢ T d , mpt 0 q m 0 in T d . As, for any m I PpT d q, α I R d , H ¦ px, α I q sup pR d α I ¤ p ¡ Hpx, pq ¨,
we have, by convexity of F and G, Jp m, αq

¥ ˆT t 0 ˆT d αpt, xq ¤ Dupt, xq ¡ H x, Dupt, xq ¨% mpt, dxq & dt ˆT t 0 F mptq ¨ F ¤, mptq ¨ mptq ¡ mptq ¨%dt G mpT q ¨ G ¤, mpT qq mpT q ¡ mpT q Jpm, αq ˆT t 0 ˆT d Dupt, xq ¤ αpt, xq mpt, dxq ¡ αpt, xqmpt, dxq ¨¡ H x, Dupt, xq ¨ m ¡ m¨p t, dxq % & dt ˆT t 0 F ¤, mptq ¨p m ¡ mqptqdt G ¤, mpT q ¨ mpT q ¡ mpT q ¨. because αpt, xq ¤ Dupt, xq ¡ H x, Dupt, xq ¨ H ¦ x, αpt, xq ¨.
Using the equation satisfied by pm, wq and p m, ŵq we have

ˆT t 0 ˆT d Dupt, xq ¤ αpt, xq mpt, dxq ¡ αpt, xqmpt, dxq ¨&dt ¡ ˆT d upt, xqp m ¡ mqpt, dxq & T 0 ˆT 0 ˆT d pf t u ∆uqpt, xq m ¡ m ¨pt, dxq & dt ¡G ¤, mpT q ¨ mpT q ¡ mpT q ¨ ˆT 0 ˆT d ¡ H x, Dupt, xq ¨¡ F x, mptq ¨© m ¡ mqpt, dxq
Proof of Theorem 3.12. First step. Let us first check that U, defined by (65), is C1 with respect to m and satisfies δU δm pt, x, mq U pt, x, mq ¡ ˆTd U pt, y, mqdmpyq dpt, x, mq r0, T s ¢ T d ¢ PpT d q. (67)

Assume for a while that (67) holds true. Then, taking the derivative with respect to x on both sides shows [START_REF] Sznitman | Topics in propagation of chaos[END_REF].

We now prove (67). Let m 0 , m0 be two initial measures, pu, mq and pû, mq be the solutions of the MFG system [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] with initial conditions pt 0 , m 0 q and pt 0 , m0 q respectively. Let also pv, µq be the solution of the linearized system [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] with initial condition pt 0 , m0 ¡ m 0 q. Let us recall that, according to Proposition 3.8, we have

sup trt 0 ,T s 2 }û ¡ u ¡ v} n 2 α } m ¡ m ¡ µ} ¡pn 1 αq @ ¤ Cd 2 1 pm 0 , m0 q (68)
while Proposition 3.2 and Proposition 3.6 imply that sup tr0,T s 2 }û ¡ u} n 2 α }µ} ¡pn 1 αq @ ¤ Cd 1 pm 0 , m0 q.

Our aim is to show that

Upt 0 , m0 q ¡ Upt 0 , m 0 q ¡ ˆTd U pt 0 , x, m 0 qdp m0 ¡ m 0 qpxq O d 2 1 pm 0 , m0 q ¨. (69) 
Indeed, if (69) holds true, then U is a derivative of U and, by convention [START_REF] Feng | A comparison principle for Hamilton?Jacobi equations related to controlled gradient flows in infinite dimensions[END_REF], proves (67).

Second step. We now turn to the proof of (69). Since pu, mq and pû, mq are optimal in Upt 0 , m 0 q and Upt 0 , m0 q respectively, we have Upt 0 , m0 q ¡ Upt 0 , m 0 q

ˆT t 0 ¢ˆT d H ¦ x, D p Hpx, Dûpt, xqq ¨mpt, dxq ¡ ˆTd H ¦ x, D p Hpx, Dupt, xqq ¨mpt, dxq dt ˆT t 0 ¡ F mptq ¨¡ F mptq ¨©dt G mpT q ¨¡ G mpT q ¨.
Note that, by (68), where we have used the properties of the Fenchel conjugate in the last equality, while

ˆT t 0 ¢ˆT d H ¦ ¡ x, D p H x, Dûpt, xq ¨© mpt, dxq ¡ ˆTd H ¦ ¡ x, D p H x, Dupt, xq ¨©mpt, dxq dt ˆT t 0 ¢ˆT d H ¦ ¡ x, D p H x, Dupt, xq ¨©µpt, dxq ˆTd D q H ¦ ¡ x, D p H x, Dupt, xq ¨© ¤ D 2 pp H x, Dupt, xq ¨Dvpt, xq $ mpt, dxq dt O d 2 1 pm 0 , m0 q ˆT t 0 ¢ˆT d ¡ Dupt, xq ¤ D p H x,
ˆT t 0 F mptq ¨¡ F mptq ¨%dt G mpT q ¨¡ G mpT q ˆT t 0 ¢ˆT d F x, mptq ¨µpt, dxq ¨dt ˆTd G x, mpT q ¨µpT, dxq O d 2 1 pm 0 , m0 q ¨.
Recalling the equation satisfied by u and µ, we have Putting the last three identities together, we obtain

d
Upt 0 , m0 q ¡ Upt 0 , m 0 q ¡ ˆT t 0 ¢ d dt ˆTd upt, xqµpt, dxq dt ˆTd G x, mpT q ¨µpT, dxq O d 2 1 pm 0 , m0 q ˆTd upt 0 , xqµpt 0 , dxq O d 2 1 pm 0 , m0 q ¨ ˆTd U pt 0 , x, m 0 qdp m0 ¡ m 0 qpxq O d 2 1 pm 0 , m0 q ¨.
This completes the proof of (67).

Third step. Next we show that U is a classical solution to the Hamilton-Jacobi equation [START_REF] Schmeidler | Equilibrium points of nonatomic games[END_REF].

Let us fix pt 0 , m 0 q r0, T q ¢ PpT d q, where m 0 has a smooth, positive density. Let also pu, mq be the solution of the MFG system [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] with initial condition pt 0 , m 0 q. Proposition 3.13 states that pm, D p Hp¤, Dup¤, ¤qqq is a minimizer for Upt 0 , m 0 q. By standard dynamic programming principle, we have therefore, for any h p0, T ¡ t 0 q, Upt 0 , m 0 q

ˆt0 h t 0 ˆTd H ¦ ¡ x, D p H x, Dupt, xq ¨©mpt, xqdxdt ˆt0 h t 0 F mptq ¨dt Upt 0 h, mpt 0 hqq. (70) 
Now we note that

Upt 0 h, m 0 q ¡ Upt 0 , m 0 q h Upt 0 h, m 0 q ¡ Upt 0 h, mpt 0 hqq h Upt 0 h, mpt 0 hqq ¡ Upt 0 , m 0 q h . (71) 
We can handle the first term in the right-hand side of (71) by using the fact that U is C 1 with respect to m. Letting m s,h : p1 ¡ sqm 0 smpt 0 hq), we have:

U t 0 h, mpt 0 hq ¨¡ U t 0 h, m 0 ˆ1 0 ˆTd δU δm t 0 h, m s,h , y ¨d mpt 0 hq ¡ m 0 ¨pyqds ¡ ˆ1 0 ˆTd ˆt0 h t 0 D m U t 0 h, m s,h , y ¨¤ ¡ Dmpt, yq D p H y, Dupt, yq ¨mpt, yq © dtdyds.
Dividing by h, letting h Ñ 0 and rearranging gives lim hÑ0 Upt 0 h, mpt 0 hqq ¡ Upt 0 h, m 0 q h ˆTd div rD m Us pt 0 , m 0 , yqdm 0 pyq ¡ ˆTd D m Upt 0 , m 0 , yq ¤ D p H y, Dupt 0 , yq ¨dm 0 pyq.

To handle the second term in the right-hand side of (71), we use (70) and get

lim hÑ0 Upt 0 h, mpt 0 hqq ¡ Upt 0 , m 0 q h ¡ ˆTd H ¦ x, D p Hpx, Dupt 0 , xqq ¨dm 0 pxq ¡ Fpm 0 q. As Dupt 0 , xq D x U pt 0 , x, m 0 q D m Upt 0 , m 0 , xq, we have ¡ H ¦ x, D p H x, Dupt, xq ¨¨¡ D m Upt 0 , m 0 , xq ¤ D p H y, Dupt 0 , yq ¡H ¦ x, D p H x, D m Upt 0 , m 0 , xq ¨¨ D m Upt 0 , m 0 , xq ¤ D p H x, D m Upt 0 , m 0 , xq H x, D m Upt 0 , m 0 , xq ¨.
Collecting the above equalities, we obtain therefore

lim hÑ0 Upt 0 h, m 0 q ¡ Upt 0 , m 0 q h ¡ ˆTd div rD m Us pt 0 , m 0 , yqdm 0 pyq ˆTd H x, D m Upt 0 , m 0 , xq ¨dm 0 pxq ¡ Fpm 0 q.
As the right-hand side of the above equality is continuous in all variables, this shows that U is continuously derivable with respect to t and satisfies [START_REF] Schmeidler | Equilibrium points of nonatomic games[END_REF].

Last step. We finally check that U is the unique classical solution to [START_REF] Schmeidler | Equilibrium points of nonatomic games[END_REF]. For this we use the standard comparison argument. Let V be another classical solution and assume that V $ U. 

MFG system with a common noise

The main purpose of the two next sections is to show that the same approach as the one developed in the previous section may be implemented in the case when the whole system is forced by a so-called 'common noise'. Such a common noise is sometimes referred to as a 'systemic noise', see for instance Lions' lectures at the Collège de France.

Thinking of a game with a finite number of players, the common noise describes some noise that affects all the players in the same way, so that the dynamics of one given particle reads2 dX t ¡D p HpX t , Du t pX t qqdt c

2dB t 2βdW t , t r0, T s, ( 72 
)
where β is a nonnegative parameter, B and W are two independent d-dimensional Wiener processes, B standing for the same idiosyncratic noise as in the previous section and W now standing for the so-called common noise. Throughout the section, we use the standard convention from the theory of stochastic processes that consists in indicating the time parameter as an index in random functions.

As we shall see next, the effect of the common noise is to randomize the MFG equilibria so that, with the same notations as above, pm t q t¥0 becomes a random flow of measures. Precisely, it reads as the flow of conditional marginal measures of pX t q tr0,T s given the realization of W . In order to distinguish things properly, we shall refer the situation discussed in the previous section to as the 'deterministic' or 'first-order' case. In this way, we point out that, without common noise, equilibria are completely deterministic. Compared to the notation of the introduction or of section 2, we let the level of common noise β be equal to 1 throughout the section: this is without loss of generality and simplifies (a little) the notation. This section is specifically devoted to the analysis of the MFG system in the presence of the common noise (see [START_REF] Bardi | Explicit solutions of some linear-quadratic mean field games[END_REF]). Using a continuation like argument (instead of the classical strategy based on the Schauder fixed point theorem), we investigate existence and uniqueness of a solution. On the model of the first-order case, we also investigate the linearized system. The derivation of the master equation is deferred to the next section. The use of the continuation method in the analysis of MFG systems is a new point, which is directly inspired from the analysis of finite dimensional forward-backward systems: Its application is here made possible thanks to the monotonicity assumption required on F and G.

As already mentioned, we assume without loss of generality that β 1 throughout this section.

Stochastic Fokker-Planck/Hamilton-Jacobi-Bellman System

The major difficulty for handling MFG with a common noise is that the system made of the Fokker-Planck and Hamilton-Jacobi-Bellman equations in [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] becomes stochastic. Its general form has been already discussed in [START_REF] Carmona | The master equation for large population equilibriums[END_REF]. Both the forward and the backward equations become stochastic as both the equilibrium pm t q 0¤t¤T and the value function pu t q 0¤t¤T depend upon the realization of the common noise W . Unfortunately, the stochastic system does not consist of a simple randomization of the coefficients: In order to ensure that the value function u t at time t depends upon the past before t in the realization of pW s q 0¤s¤T , the backward equation incorporates an additional correction term which is reminiscent of the theory of finite-dimensional backward stochastic differential equations.

The Fokker-Planck equation satisfied by pm t q tr0,T s reads

d t m t 2∆m t div m t D p Hpm t , Du t q ¨$dt ¡ c 2divpm t dW t ¨, t r0, T s. (73) 
The value function u is sought as the solution of the stochastic HJB equation:

d t u t 2 ¡2∆u t Hpx, Du t q ¡ F px, m t q ¡ c 2divpv t q @ dt v t ¤ dW t , (74) 
where, at any time t, v t is a random function of x with values in R d . Once again, we emphasize that the term v t ¤ dW t °d i1 v i t dW i t permits to guarantee that pu t q 0¤t¤T is adapted with respect to the filtration generated by the common noise. The extra term ¡ c 2divpv t q may be explained by the so-called Itô-Wentzell formula, which is the chain rule for random fields applied to random processes, see for instance [START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF]. It permits to cancel out the bracket that arises in the application of the Itô-Wentzell formula3 to pu t pX t qq tr0,T s , with pX t q 0¤t¤T as in (72). Indeed, when expanding the infinitesimal variation of pu t pX t qq tr0,T s , the martingale term contained in u t conspires with the martingale term contained in X and generates an additional bracket term. This additional bracket term is precisely c 2divpv t qpX t q; it thus cancels out with the term ¡ c 2divpv t qpX t q that appears in the dynamics of u t . For the sake of completeness, we provide a rough version of the computations that enter the definition of this additional bracket. When expanding the difference u t dt pX t dt q ¡ u t pX t q, for t r0, T s and an infinitesimal variation dt, the martingale structure in (74) induces a term of the form v t pX t dt qpW t dt ¡W t q. By standard Itô's formula, it looks like

v t pX t dt q W t dt ¡ W t d i1 v i t pX t dt q W i t dt ¡ W i t ¨ d i1 v i t pX t qdW i t c 2 d i1 fv i t fx i pX t qdt, (75) 
the last term matching precisely the divergence term (up to the sign) that appears in (74).

As in the deterministic case, our aim is to define U by means of the same formula as in [START_REF] Kolokoltsov | Nonlinear Markov processes and kinetic equations[END_REF], that is U p0, x, m 0 q is the value at point x of the value function taken at time 0 when the population is initialized with the distribution m 0 . In order to proceed, the idea is to reduce the equations by taking advantage of the additive structure of the common noise. The point is to make the (formal) change of variable ũt pxq u t px c 2W t q, mt pxq m t px c 2W t q, x T d , t r0, T s.

The second definition makes sense when m t is a density, which is the case in the analysis because of the smoothing effect of the noise. A more rigorous way to define mt is to let it be the push-forward of m t by the shift

T d x Þ Ñ x ¡ c 2W t T d .
Pay attention that such a definition is completely licit as m t reads as a conditional measure given the common noise. As the conditioning consists in freezing the common noise, the shift x Þ Ñ x ¡ c 2W t may be seen as a 'deterministic' mapping.

The main feature is that mt is the conditional law of the process pX t ¡ c 2W t q tr0,T s given the common noise. Since

d X t ¡ c 2W t ¨ ¡D p H X t ¡ c 2W t c 2W t , Du t pX t ¡ c 2W t c 2W t q ¨dt c 2dB t , t r0, T s.
we get that p mt q tr0,T s should satisfy

d t mt 2 ∆ mt div mt D p Hp¤ c 2W t , Dũ t q ¨@dt 2 ∆ mt div mt D p Ht p¤, Dũ t q ¨@dt, (76) 
where we have denoted Ht px, pq Hpx c 2W t , pq. This reads as the standard Fokker-Planck equation but in a random medium. Such a computation may be recovered by applying the Itô-Wentzell formula to pm t px c 2W t qq tr0,T s , provided that each m t be smooth enough in space. Quite remarkably, p mq tr0,T s is of absolutely continuous variation in time, which has a clear meaning when p mt q tr0,T s is seen as a process with values in a set of smooth functions; when p mt q tr0,T s is seen as a process with values in PpT d q, the process pxϕ, mt yq tr0,T s (x¤, ¤y standing for the duality bracket) is indeed of absolutely continuous variation.

Similarly, we can apply (at least formally) Itô-Wentzell formula to pu t px c 2W t qq tr0,T s in order to express the dynamics of pũ t q tr0,T s .

d t ũt 2 ¡∆ũ t H ¤ c 2W t , Dũ t ¨¡ F ¤ c 2W t , m t ¨@dt ṽt dW t , 2 ¡∆ũ t Ht p¤, Dũ t q ¡ Ft p¤, m t q @ dt ṽt dW t , t r0, T s, (77) 
where Ft px, mq F px c 2W t , mq, for a new representation term ṽt pxq v t px c 2W t q, the boundary condition writing ũT p¤q Gp¤, m T q with Gpx, mq Gpx c 2W T , mq. In such a way, we completely avoid any discussion about the smoothness of ṽ. Pay attention that there is no way to get rid of the stochastic integral as it permits to ensure that ũt remains adapted with respect to the observation up until time t.

Below, we shall investigate the system (76)-(77) directly. It is only in the next section, see Subsection 5.5, that we make the connection with the original formulation (73)-(74) and then complete the proof of Corollary 2.12. The reason is that it suffices to define the solution of the master equation by letting U p0, x, m 0 q be the value of ũ0 pxq with m 0 as initial distribution. Notice indeed that ũ0 pxq is expected to match ũ0 pxq u 0 px ¡ c 2W 0 q u 0 pxq. Of course, the same strategy may be applied at any time t r0, T s by investigating pũ s px c 2pW s ¡W t qqq srt,T s .

With these notations, the monotonicity assumption takes the form:

Lemma 4.1. Let m and m I be two elements of PpT d q. For some t r0, T s and for some realization of the noise, denote by m and mI the push-forwards of m and m I by the mapping

T d x Þ Ñ x ¡ c 2W t T d .
Then, for the given realization of pW s q sr0,T s , ˆTd Ft px, mq ¡ Ft px, m I q ¨dp m ¡ mI q ¥ 0, ˆTd Gpx, mq ¡ Gpx, m I q ¨dp m ¡ mI q ¥ 0.

Proof. The proof consists of a straightforward change of variable.

Remark 4.2. Below, we shall use quite systematically, without recalling it, the notation tilde in order to denote the new coefficients and the new solutions after the random change of variable

x Þ Ñ x c 2W t .

Probabilistic Set-Up

Throughout the section, we shall use the probabilistic space pΩ, A, Pq equipped with two independent d-dimensional Brownian motions pB t q t¥0 and pW t q t¥0 . The probability space is assumed to be complete. We then denote by pF t q t¥0 the completion of the filtration generated by pW t q t¥0 . When needed, we shall also use the filtration generated by pB t q t¥0 .

Given an initial distribution m 0 PpT d q, we consider the system d t mt 2 ∆ mt div mt D p Ht p¤, Dũ t q ¨@dt, d t ũt

2 ¡∆ũ t Ht p¤, Dũ t q ¡ Ft p¤, m t q @ dt d Mt , (78) 
with the initial condition m0 m 0 and the terminal boundary condition ũT Gp¤, m T q, with Gpx, m T q Gpx c 2W T , m T q. The solution pũ t q tr0,T s is seen as an pF t q tr0,T s -adapted process with paths in the space C 0 pr0, T s, C n pT d qq, where n is a large enough integer (see the precise statements below). The process p mt q tr0,T s reads as an pF t q tr0,T s -adapted process with paths in the space C 0 pr0, T s, PpT d qq, PpT d q being equipped with the 1-Wasserstein metric d 1 . We shall look for solutions satisfying

sup tr0,T s }ũ t } n α ¨ L V pΩ, A, Pq, (79) 
for some α p0, 1q.

The process p Mt q tr0,T s is seen as an pF t q tr0,T s -adapted process with paths in the space C 0 pr0, T s, C n¡2 pT d qq, such that, for any x T d , p Mt pxqq tr0,T s is an pF t q tr0,T s martingale. It is required to satisfy sup

tr0,T s } Mt } n¡2 α ¨ L V pΩ, A, Pq. (80) 
Notice that, for our purpose, there is no need to discuss of the representation of the martingale as a stochastic integral.

Solvability of the Stochastic FP/HJB System

The objective is to discuss the existence and uniqueness of a classical solution to such the system (78) under the same assumptions as in the deterministic case. Theorem 4.3 below covers Theorem 2.9 in Section 2: Then, there exists a unique solution p mt , ũt , Mt q tr0,T s to (78), with the prescribed initial condition m0 m 0 , satisfying (79) and (80). It satisfies sup tr0,T s p}ũ t } n α } Mt } n α¡2 q L V pΩ, A, Pq.

Moreover, we can find a constant C such that, for any two initial conditions m 0 and m I 0 in PpT d q, we have

sup tr0,T s d 2 1 p mt , mI t q }ũ t ¡ ũI t } 2 n α ¨¤ Cd 2 1 pm 0 , m I 0 q P ¡ a.e.,
where p m, ũ, M q and p mI , ũI , M I q denote the solutions to (78) with m 0 and m I 0 as initial conditions.

Theorem 4.3 is the analogue of Propositions 3.1 and 3.2 in the deterministic setting, except that we do not discuss the time regularity of the solutions (which, as well known in the theory of finite dimensional BSDEs, may be a rather difficult question).

The strategy of proof relies on the so-called continuation method. We emphasize that, differently from the standard argument that is used in the deterministic case, we will not make use of Schauder's theorem to establish the existence of a solution. The reason is that, in order to apply Schauder's theorem, we would need a compactness criterion on the space on which the equilibrium is defined, namely L V pΩ, A, P; C 0 pr0, T s, PpT d qqq. As already noticed in the earlier paper [START_REF] Carmona | Probabilistic analysis of mean field games with a common noise[END_REF], this would ask for a careful (and certainly complicated) discussion on the choice of Ω and then on the behavior of the solution to (78) with respect to the topology put on Ω.

Here the idea is as follows. Given two parameters pϑ, q r0, 1s 2 , we shall first have a look at the parameterized system:

d t mt 2 ∆ mt div mt ϑD p Ht p¤, Dũ t q b t ¨$@ dt, d t ũt 2 ¡∆ũ t ϑ Ht p¤, Dũ t q ¡ Ft p¤, m t q f t @ dt d Mt , (81) 
with the initial condition m0 m 0 and the terminal boundary condition ũT Gp¤, m T q g T , where ppb t , f t q tr0,T s , g T q is some input.

In the above equation, there are two extreme regimes: when ϑ 0 and the input is arbitrary, the equation is known to be explicitly solvable; when ϑ 1 and the input is set equal to 0, the above equation fits the original one. This is our precise purpose to prove first, by a standard contraction argument, that the equation is solvable when ϑ 1 and 0 and then to propagate existence and uniqueness from the case pϑ, q p1, 0q to the case pϑ, q p1, 1q by means of a continuation argument.

Throughout the analysis, the assumption of Theorem 4.3 is in force. Generally speaking, the inputs pb t q tr0,T s and pf t q tr0,T s are pF t q tr0,T s adapted processes with paths in the space C 0 pr0, T s, rC 1 pT d qs d q and C 0 pr0, T s, C n¡1 pT d qq respectively. Similarly, g T is an F T -measurable random variable with realizations in C n α pT d q. We shall require that sup tr0,T s

}b t } 1 , sup tr0,T s }f t } n¡1 α , }g T } n α are bounded (in L V pΩ, A, Pq).
It is worth mentioning that, whenever ϕ : r0, T s ¢ T d Ñ R is a continuous mapping such that ϕpt, ¤q C α pT d q for any t r0, T s, the mapping r0, T s t Þ Ñ }ϕpt, ¤q} α is lower semicontinuous and, thus, the mapping r0, T s t Þ Ñ sup sr0,ts }ϕpt, ¤q} α is continuous. In particular, whenever pf t q tr0,T s is a process with paths in C 0 pr0, T s, C k pT d qq, for some k ¥ 0, the quantity sup tr0,T s }f t } k α is a random variable, equal to sup tr0,T sQ }f t } k α , and the process psup sr0,ts }f s } k α q tr0,T s has continuous paths. As a byproduct,

essup ωΩ sup tr0,T s }f t } k α sup tr0,T s essup ωΩ }f t } k α .

Case ϑ 0

We start with the following simple lemma: Lemma 4.4. Assume that ϑ 0. Then, with the same type of inputs as above, (81) has a unique solution p mt , ũt , Mt q tr0,T s , with the prescribed initial condition. It satisfies (79) and (80). Moreover, there exists a constant C, only depending on n and T , such that

essup ωΩ sup tr0,T s }ũ t } n α ¤ C essup ωΩ }g T } n α essup ωΩ sup tr0,T s }f t } n¡1 α ¨, (82) 
Proof of Lemma 4.4. When ϑ 0, the forward equation simply reads

d t mt 2 ∆ mt div mt b t $@
dt, t r0, T s with initial condition m 0 . This is a standard Kolmogorov equation (with random coefficient) which is pathwise solvable. By standard estimates, we have

essup ωΩ sup s$t d 1 p ms , ms q |s ¡ t| 1 2 ¤ essup ωΩ }b} V .
As ϑ 0, the backward equation in (81) has the form:

d t ũt 2 ¡∆ũ t f t @
dt d Mt , t r0, T s, with the terminal boundary condition ũT g T . Although the equation is infinite-dimensional, it may be solved in a quite straightforward way. Taking the conditional expectation given s r0, T s in the above equation, we indeed get that any solution should satisfy (provided we can exchange differentiation and conditional expectation):

d t E ũt |F s $ 2 ¡∆E ũt |F s $ E f t |F s $@
dt, t rs, T s, which suggests to let ũs pxq E ūs pxq|F s

$

, ūs pxq P T ¡s g T pxq ¡

ˆT s P t¡s f t pxqdt, s r0, T s, x T d , (83) 
where P denotes the heat semigroup (but associated with the Laplace operator ∆ instead of p1{2q∆). For any s r0, T s and x T d , the conditional expectation is uniquely defined up to a negligible event under P. We claim that, for any s r0, T s, we can find a version of the conditional expectation in such a way that the process r0, T s s Þ Ñ pT d x Þ Ñ ũs pxqq reads as a progressivelymeasurable random variable with values in C 0 pr0, T s, C 0 pT d qq. By the representation formula (83), we indeed have that, P almost surely, ū is jointly continuous in time and space. Making use of Lemma 4.6 below, we deduce that the realizations of r0, T s s Þ Ñ pT d x Þ Ñ ũs pxqq belong to C 0 pr0, T s, C 0 pT d qq, the mapping r0, T s ¢ Ω ps, ωq Þ Ñ pT d x Þ Ñ pũ s pωqqpxqq being measurable with respect to the progressive σ-field

P 2 A Bpr0, T sq A : dt r0, T s, A pr0, ts ¢ Ωq Bpr0, tsq F t @ . (84) 
By the maximum principle, we can find a constant C, depending on T and d only, such that

essup ωΩ sup sr0,T s }ũ s } 0 ¤ essup ωΩ sup sr0,T s }ū s } 0 ¤ C essup ωΩ }g T } 0 essup ωΩ sup 0¤s¤T }f s } 0 ¨.
More generally, taking the representation formula (83) at two different x, x I T d and then making the difference, we get

essup ωΩ sup sr0,T s }ũ s } α ¤ C essup ωΩ }g T } α essup ωΩ sup sr0,T s }f s } α ¨.
We now proceed with the derivatives of higher order. Generally speaking, there are two ways to differentiate the representation formula (83). The first one is to say that, for any k t1, . . . , n ¡ 1u,

D k x ūs pxq P T ¡s D k g T ¨pxq ¡ ˆT s P t¡s D k x f t ¨pxqdt, ps, xq r0, T s ¢ T d , (85) 59 
which may be established by a standard induction argument. The second way is to make use of the regularization property of the heat kernel in order to go one step further, namely, for any k t1, . . . , nu, D k

x ūs pxq P T ¡s D k g T ¨pxq ¡

ˆT s DP t¡s D k¡1 x f t ¨pxqdt,

P T ¡s D k g T ¨pxq ¡ ˆT ¡s 0 DP t D k¡1 x f t s ¨pxqdt, ps, xq r0, T s ¢ T d , (86) 
where DP t¡s stands for the derivative of the heat semigroup. Equation ( 86) is easily derived from (85). It permits to handle the fact that f is pn ¡ 1q-times differentiable only.

Recalling that |DP t ϕ| ¤ ct ¡1{2 }ϕ} V for any bounded Borel function ϕ : T d Ñ R and for some c ¥ 1 independent of ϕ and of t r0, T s, we deduce that, for any k t1, . . . , nu, the mapping r0,

T s ¢ T d ps, xq Þ Ñ D k
x ūs pxq is continuous. Moreover, we can find a constant C such that, for any s r0, T s,

essup ωΩ }ū s } k α ¤ essup ωΩ }g T } k α C ˆT s 1 c t ¡ s essup ωΩ }f t } k α¡1 dt. (87) 
In particular, invoking once again Lemma 4.6 below, we can find a version of the conditional expectation in the representation formula ũs pxq Erū s pxq|F s s such that ũ has paths in C 0 pr0, T s, C n pT d qq. For any k t1, . . . , nu, D k

x ũ is progressively-measurable and, for all ps, xq r0, T s ¢ T d , it holds that D k x ũs pxq ErD k x ūs pxq|F s s. Using (87), we have, for any k t1, . . . , nu,

essup ωΩ sup sr0,T s }ũ s } k α ¤ C essup ωΩ }g T } k α essup ωΩ sup sr0,T s }f s } k α¡1 ¨.
Now that ũ has been constructed, it remains to reconstruct the martingale part p Mt q 0¤t¤T in the backward equation of the system (81) (with ϑ 0 therein). Since ũ has trajectories in C 0 pr0, T s, C n α pT d qq, n ¥ 2, we can let:

Mt pxq ũt pxq ¡ ũ0 pxq ˆt 0 ∆ũ s pxqds ¡ ˆt 0 f s pxqds, t r0, T s, x T d .
It is then clear that M has trajectories in C 0 pr0, T s, C n¡2 pT d qq and that

essup ωΩ sup tr0,T s Mt n α¡2
V.

It thus remains to prove that, for each x T d , the process p Mt pxqq 0¤t¤T is a martingale (starting from 0). Clearly, it has continuous and pF t q 0¤t¤T -adapted paths. Taking the conditional expectation given F t , we deduce that

E MT pxq ¡ Mt pxq|F t $ E g T pxq ¡ ūt pxq ¡ ˆT t f s pxqds ˆT t ∆ū s pxqds § § F t & 0,
the second equality following from (83). This shows that Mt pxq Er MT pxq|F t s, so that the process p Mt pxqq 0¤t¤T is a martingale, as required.

Remark 4.5. Notice that, alternatively to (82), we also have, by Doob's inequality,

E sup tr0,T s }ũ t } 2 n α $ ¤ CE }g T } 2 n α sup tr0,T s }f t } 2 n α¡1 $ . ( 88 
)
Lemma 4.6. Consider a random field U : r0, T s¢T d Ñ R, with continuous paths (in the variable pt, xq r0, T s ¢ T d ), such that essup ωΩ }U} 0 V. Then, we can find a version of the random field r0,

T s ¢ T d pt, xq Þ Ñ ErUpt, xq|F t s such that r0, T s t Þ Ñ pT d x Þ Ñ ErUpt, xq|F t
sq is a progressively-measurable random variable with values in C 0 pr0, T s, C 0 pT d qq, the progressive σ-field P being defined in (84).

More generally, if, for some k ¥ 1, the paths of U are k-times differentiable in the space variable, the derivatives up to the order k having jointly continuous (in pt, xq) paths and satisfying

essup ωΩ sup tr0,T s }Upt, ¤q} k V,
then we can find a version of the random field r0, T s ¢ T d pt, xq Þ Ñ ErUpt, xq|F t s that is progressively-measurable and that has paths in C 0 pr0, T s, C k pT d qq, the derivative of order i writing r0, T s ¢ T d pt, xq Þ Ñ ErD i

x Upt, xq|F t s.

Proof. First step. We first prove the first part of the statement (existence of a progressivelymeasurable version with continuous paths). Existence of a differentiable version will be handled next. A key fact in the proof is that, the filtration pF t q tr0,T s being generated by pW t q tr0,T s , any martingale with respect to pF t q tr0,T s admits a continuous version.

Throughout the proof, we denote by w the (pathwise) modulus of continuity of U on the compact set r0, T s ¢ T d , namely: wpδq sup Since essup ωΩ }U} 0 V, we have, for any δ ¡ 0, essup ωΩ wpδq V. By Doob's inequality, we have that, for any integer p ¥ 1, dε ¡ 0,

P ¡ sup sr0,T s E w ¡ 1 p © |F s % ¥ ε © ¤ ε ¡1 E w ¡ 1 p ©% ,
the right-hand side converging to 0 as p tends to V, thanks to Lebesgue's dominated convergence theorem. Therefore, by a standard application of Borel-Cantelli Lemma, we can find an increasing sequence of integers pa p q p¥1 such that the sequence psup sr0,T s Erwp1{a p q|F s sq p¥1 converges to 0 with probability 1.

We now come back to the original problem. For any pt, xq r0, T s ¢ T d , we let Vpt, xq ErUpt, xq|F t s.

The difficulty comes from the fact that each Vpt, xq is uniquely defined up to a negligible set.

The objective is thus to choose each of these negligible sets in a relevant way.

Denoting by T a dense countable subset of r0, T s and by X a dense countable subset of T d , we can find a negligible event N A such that, outside N , the process r0, T s s Þ Ñ ErUpt, xq|F s s has a continuous version for any t T and x X . Modifying the set N if necessary, we have, outside N , for any integer p ¥ 1, any t, t I T and x, x I X , with |t ¡

t I | |x ¡ x I | ¤ 1{a p , sup sr0,T s § § ErUpt, xq|F s s ¡ ErUpt I , x I q|F s s § § ¤ sup sr0,T s E w 1 a p ¨|F s $
, the right-hand side converging to 0 as p tends to V. Therefore, by a uniform continuity extension argument, it is thus possible to extend continuously, outside N , the mapping 

T ¢ X pt, xq Þ Ñ pr0, T s s Þ Ñ ErUpt,
¥ 1, dx, x I T d , |x ¡ x I | ¤ 1 a p ñ sup sr0,T s § § ErUps, xq|F s s ¡ ErUps, x I q|F s s § § ¤ sup sr0,T s E w 1 a p ¨|F s $
, which says that, for each realization outside N , the functions pT d x Þ Ñ ErUps, xq|F s sq sr0,T s are equicontinuous. Together with the continuity in s, we deduce that, outside N , the function r0, T s s Þ Ñ pT d x Þ Ñ ErUps, xq|F s sq C 0 pT d q is continuous. On N , we can arbitrarily let V 0, which is licit since N has zero probability. Progressive-measurability is then easily checked (the fact that V is arbitrarily defined on N does not matter since the filtration is complete). Second step. We now handle the second part of the statement (existence of a C k version).

By a straightforward induction argument, it suffices to treat the case k 1. By the first step, we already know that the random field r0, T s ¢ T d pt, xq Þ Ñ ErD x upt, xq|F t s has a continuous version. In particular, for any unit vector e R d , it makes sense to consider the mapping

T d ¢ R ¦ px, hq Þ Ñ 1 h ¡ E Upt, x heq|F t $ ¡ E Upt, xq|F t $ © ¡ E xD x Upt, xq, ey|F t $ .
Notice that we can find an event of probability 1, on which § § §

1 h ¡ E Upt, x heq|F t $ ¡ E Upt, xq|F t $ © ¡ E xD x Upt, xq, ey|F t $ § § § § § § § E ˆ1 0 e D x Upt, x λheq ¡ D x Upt, xq, e i dλ|F t & § § § § § § § § ˆ1 0 ¡ E d D x Upt, x λheq, e h |F t % ¡ E d D x Upt, xq, e h |F t %© dλ § § § § , (89) 
where we used the fact the mapping r0, T s ¢ T d pt, xq Þ Ñ ErD x upt, xq|F t s has continuous paths in order to guarantee the integrability of the integrand in the third line. By continuity of the paths again, the right hand side tends to 0 with h (uniformly in t and x).

Instead of (82), we will sometimes make use of the following:

Lemma 4.7. We can find a constant C such that, whenever ϑ 0, any solution to (81) satisfies: dk t1, . . . , nu,

ˆT t essup ωΩ }ũ s } k α c s ¡ t ds ¤ C ¢ essup ωΩ }g T } k α ˆT t essup ωΩ }f s } k α¡1 ds .
Proof. Assume that we have a solution to (81). Then, making use of (87) in the proof of Lemma 4.4, we have that, for all k t1, . . . , nu and all s r0, T s,

essup ωΩ }ũ s } k α ¤ C ¢ essup ωΩ }g T } k α ˆT s essup ωΩ }f r } k α¡1 c r ¡ s dr . ( 90 
)
Dividing by c s ¡ t for a given t r0, T s, integrating from t to T and modifying the value of C if necessary, we deduce that

ˆT t essup ωΩ }ũ s } k α c s ¡ t ds ¤ C ¢ essup ωΩ }g T } k α ˆT t ds ˆT s essup ωΩ }f r } k α¡1 c s ¡ t c r ¡ s dr C essup ωΩ }g T } k α ˆT t essup ωΩ }f r } k α¡1 ¢ˆr t 1 c s ¡ t c r ¡ s ds dr ' ,
the last line following from Fubini's theorem. The result easily follows.

Following (88), we shall use the following variant of Lemma 4.7:

Lemma 4.8. For p t1, 2u, we can find a constant C such that, whenever ϑ 0, any solution to (81) satisfies, for all t r0, T s: dk t1, . . . , nu,

E ˆT t }ũ s } p k α c s ¡ t ds|F t & ¤ CE }g T } p k α ˆT s }f r } p k α¡1 dr § § F t & .
Proof. The proof goes along the same lines as that of Lemma 4.7. We start with the following variant of (87), that holds, for any s r0, T s,

}ũ s } p k α ¤ CE }g T } p k α ˆT s }f r } p k α¡1 c r ¡ s dr § § F s & . (91) 
Therefore, for any 0 ¤ t ¤ s ¤ T , we get

E }ũ s } p k α |F t $ ¤ CE }g T } p k α ˆT s }f r } p k α¡1 c r ¡ s dr § § F t & .
Dividing by c s ¡ t and integrating in s, we get

E ¢ˆT t }ũ s } p k α c s ¡ t ds |F t & ¤ CE }g T } p k α ˆT t }f r } p k α¡1 ¢ˆr t 1 c r ¡ s c s ¡ t ds dr|F t &
Therefore,

E ¢ˆT t }ũ s } p k α c s ¡ t ds |F t & ¤ CE }g T } p k α ˆT t }f r } p k α¡1 dr|F t

A priori estimates

In the previous paragraph, we handled the case ϑ 0. In order to handle the more general case when pϑ, q r0, 1s 2 , we shall use the following a priori regularity estimate: Lemma 4.9. Let pb 0 t q tr0,T s and pf 0 t q tr0,T s be pF t q tr0,T s adapted processes with paths in the space C 0 pr0, T s, C 1 pT d , R d qq and C 0 pr0, T s, C n¡1 pT d qq and g T be an F T -measurable random variable with values in C n pT d q, such that

essup ωΩ sup tr0,T s }b 0 t } 1 , essup ωΩ sup tr0,T s }f 0 t } n α¡1 , essup ωΩ }g 0 T } n α ¤ C,
for some constant C ¥ 0. Then, for any k t0, . . . , nu, we can find two constants λ k and Λ k , depending upon C, such that, denoting by B the cylinder:

B : 3 w C 0 pr0, T s, C n pT d qq : dk t0, . . . , nu, dt r0, T s, }w t } k α ¤ Λ k exp λ k pT ¡ tq ¨A,
it holds that, for any integer N ¥ 1, any family of adapted processes p mi , ũi q i1,...,N with paths in C 0 pr0, T s, PpT d qq ¢ B, any families pa i q i1,...,N r0, 1s N and pb i q i1,...,N r0, 1s N with a 1 ¤ ¤ ¤ a N ¤ 2 and b 1 ¤ ¤ ¤ b N ¤ 2, and any input pf t q tr0,T s and g T of the form

f t N i1 a i Ht p¤, Dũ i t q ¡ b i Ft p¤, mi t q $ f 0 t , g T N i1 b i Gp¤, mi T q g 0 T ,
any solution p m, ũq to (81) for some ϑ, r0, 1s has paths in C 0 pr0, T s,

PpT d qq ¢ B, that is essup ωΩ }ũ t } k α ¤ Λ k exp λ k pT ¡ tq ¨, t r0, T s.
Proof. Consider the source term in the backward equation in (81):

ϕ t : ϑ Ht p¤, Dũ t q ¡ Ft p¤, mt q N i1 a i
Ht p¤, Dũ i t q ¡ b i Ft p¤, mi t q $ f 0 t .

Then, for any k t1, . . . , nu, we can find a constant C k and a continuous non-decreasing function Φ k , independent of p mi , ũi q, i 1, . . . , N , and of p m, ũq (but depending on the inputs pb 0 t q tr0,T s , pf 0 t q tr0,T s and g T ), such that

}ϕ t } k α¡1 ¤ C k 1 Φ k ¡ }ũ t } k α¡1 max i1,...,N }ũ i t } k α¡1 © }ũ t } k α max i1,...,N }ũ i t } k α % . (92) 
When k 1, the above bound holds true with Φ 1 0: It then follows from (HF1(n-1)) and from the fact that H (or equivalently Ht ) is globally Lipschitz in px, pq (uniformly in t if dealing with Ht instead of H). When k t2, . . . , nu, it follows from the standard Faà di Bruno formula for the higher-order derivatives of the composition of two functions (together with the fact that D p H is globally bounded and that the higher-order derivatives of H are locally bounded). Faà di Bruno's formula says that each Φ k may be chosen as a polynomial function. Therefore, by (92) and by (90) in the proof of Lemma 4.7 (choosing the constant , so that, collecting the two last inequalities (and allowing the constant C k to increase from line to line),

C k such that }g 0 T } k α sup mPpT d q }Gp¤, mq} k α ¤ C k ), we deduce that essup ωΩ }ũ t } k α ¤ C k 1 essup ωΩ sup sr0,T s Φ k ¡ }ũ s } k α¡1 max i1,...,N }ũ i s } k α¡1 © ˆT t 1 c s ¡ t
essup ωΩ }ũ t } k α ¤ C k 1 essup ωΩ sup sr0,T s Φ k ¡ }ũ s } k α¡1 max i1,...,N }ũ i s } k α¡1 © ˆT t ¡ essup ωΩ }ũ s } k α essup ωΩ max i1,...,N }ũ i s } k α c s ¡ t © ds & ¤ C k 1 essup ωΩ sup sr0,T s Φ k ¡ }ũ s } k α¡1 max i1,...,N }ũ i s } k α¡1 © ˆT t ¡ essup ωΩ }ũ s } k α essup ωΩ max i1,...,N sup rrs,T s }ũ i r } k α c s ¡ t © ds & . (93) 
Now, notice that the last term in the above right-hand side may be rewritten ˆT t essup ωΩ max i1,...,N sup rrs,T s }ũ i r } k α c s ¡ t ds ˆT ¡t 0 essup ωΩ max i1,...,N sup rrt s,T s }ũ i r } k α c s ds, which is clearly non-increasing in t. Returning to (93), this permits to apply Gronwall's lemma, from which we get:

essup ωΩ }ũ t } k α ¤ C k 1 essup ωΩ sup sr0,T s Φ k ¡ }ũ s } k α¡1 max i1,...,N }ũ i s } k α¡1 © ˆT t essup ωΩ max i1,...,N sup rrs,T s }ũ i r } k α c s ¡ t ds & . (94) 
In particular, if, for any s r0, T s and any i t1, . . . , N u, essup ωΩ }ũ i s } k α ¤ Λ k exppλ k pT ¡sqq, then, for all t r0, T s,

ˆT t essup ωΩ max i1,...,N sup rrs,T s }ũ i r } k α c s ¡ t ds ¤ Λ k ˆT t exppλ k pT ¡ sqq c s ¡ t ds ¤ Λ k exppλ k pT ¡ tqq ˆT ¡t 0 expp¡λ k sq c s ds, (95) 
the passage from the first to the second line following from a change of variable. Write now

Λ k exppλ k pT ¡ tqq ˆT ¡t 0 expp¡λ k sq c s ds Λ k exppλ k pT ¡ tqq ˆV 0 expp¡λ k sq c s ds ¡ Λ k ˆ V T ¡t expp¡λ k ps ¡ pT ¡ tqq c s ds Λ k exppλ k pT ¡ tqq ˆV 0 expp¡λ k sq c s ds ¡ Λ k ˆ V 0 expp¡λ k sq c T ¡ t s ds ¤ Λ k exppλ k pT ¡ tqq ˆV 0 expp¡λ k sq c s ds ¡ Λ k ˆ V 0 expp¡λ k sq c T s ds,
and deduce, from (94) and ( 95), that we can find two constants γ 1 pλ k q and γ 2 pλ k q that tend to 0 as

λ k tend to V such that essup ωΩ }ũ t } k α ¤ C k 1 essup ωΩ essup sr0,T s Φ k }ũ s } k α¡1 max i1,...,N }ũ i s } k α¡1 ¨¡ Λ k γ 1 pλ k q γ 2 pλ k qΛ k exp λ k pT ¡ tq ¨&. Choosing λ k first such that γ 2 pλ k qC k ¤ 1 and then Λ k such that 1 essup ωΩ essup sr0,T s Φ k }ũ s } k α¡1 max i1,...,N }ũ i s } k α¡1 ¨¤ γ 1 pλ k qΛ k ,
we finally get that

essup ωΩ }ũ t } k α ¤ Λ k exp λ k pT ¡ tq ¨.
The proof is easily completed by induction.

Case pϑ, q p1, 0q

Using a standard contraction argument, we are going to prove: Proposition 4.10. Given some adapted inputs pb t q tr0,T s , pf t q tr0,T s and g T satisfying

essup ωΩ sup tr0,T s }b t } 1 , essup ωΩ sup tr0,T s }f t } n α¡1 , essup ωΩ }g T } n α V,
the system (81), with ϑ 1 and 0, admits a unique adapted solution p mt , ũt q tr0,T s , with paths in C 0 pr0, T s, PpT d qq ¢ C 0 pr0, T s, C n pT d qq. It satisfies

essup ωΩ sup tr0,T s }ũ t } n α V.
Proof. Actually, the only difficulty is to solve the backward equation. Once the backward equation has been solved, the forward equation may be solved by means of Lemma 4.4.

In order to solve the backward equation, we make use of the Picard fixed point theorem.

Given an pF t q tr0,T s adapted process pũ t q tr0,T s , with paths in C 0 pr0, T s, C n pT d qq and satisfying essup ωΩ sup tr0,T s }ũ t } n α V, we denote by pũ I t q tr0,T s the solution to the backward equation in (81), with ϑ 0 and with pf t q tr0,T s replaced by pf t H t p¤, Dũ t qq tr0,T s . By Lemma 4.4, the process pũ I t q tr0,T s belongs to C 0 pr0, T s, C n pT d qq and satisfies essup ωΩ sup tr0,T s }ũ I t } n α V.

This defines a mapping (with obvious domain and codomain) Ψ : pũ t q tr0,T s Þ Ñ pũ I t q tr0,T s .

The point is to exhibit a norm for which it is a contraction.

Given two adapted datas pũ i t q tr0,T s , i 1, 2, with paths in C 0 pr0, T s, C n pT d qq and with essup ωΩ sup tr0,T s }ũ i t } n α V, i 1, 2, we call pũ I,i t q tr0,T s , i 1, 2, the images by Ψ. By Lemma 4.9 (with N 1, a 1 1 and b 1 0), we can find constants pλ k , Λ k q k1,...,n such that the cylinder

B 3 w C 0 pr0, T s, C n pT d qq : dk t0, . . . , nu, dt r0, T s, }w t } k α ¤ Λ k exp λ k pT ¡ tq ¨A,
is stable by Ψ. We shall prove that Ψ is a contraction on B.

We let wt ũ1

t ¡ ũ2 t and wI t ũI,1 t ¡ ũI,2 t , for t r0, T s. We notice that ¡d wI t ∆ wI

t ¡ x Ṽt , D wt y $ dt ¡ d Ñt ,
with the terminal boundary condition wI T 0. Above, p Ñt q tr0,T s is a process with paths in C 0 pr0, T s, C n¡2 pT d qq and, for any x T d , p Ñt pxqq tr0,T s is a martingale. Moreover, p Ṽt q tr0,T s is given by Ṽt pxq ˆ1 0 D p Ht x, rDũ 1 pxq p1 ¡ rqDũ 2 pxq ¨dr.

We can find a constant C such that, for any ũ1 , ũ2 B,

sup tr0,T s } Ṽt } n α¡1 ¤ C.
Therefore, for any ũ1 , ũ2 B, for any k t0, . . . , n ¡ 1u dt r0, T s, }x Ṽt , D wt y} k α ¤ C} wt } k 1 α , w : ũ1 ¡ ũ2 . Now, following (90), we deduce that, for any k t1, . . . , nu,

essup ωΩ } wI t } k α ¤ C ˆT t essup ωΩ } ws } k α c s ¡ t ds, (96) 
so that, for any µ ¡ 0,

ˆT 0 essup ωΩ } wI t } k α exppµtqdt ¤ C ˆT 0 essup ωΩ } ws } k α ¢ˆs 0 exppµtq c s ¡ t dt ds ¤ ¢ C ˆ V 0 expp¡µsq c s ds ˆT 0 essup ωΩ } ws } k α exppµsqds.
Choosing µ large enough, we easily deduce that Ψ has at most one fixed point in B. Moreover, letting ũ0 0 and defining by induction ũi 1 Ψpũ i q, i N, we easily deduce that, for µ large enough, for any i, j N,

ˆT 0 essup ωΩ }ũ i j t ¡ ũi t } n α exppµtqdt ¤ C 2 i , so that (modifying the value of C) ˆT 0 essup ωΩ }ũ i j t ¡ ũi t } n α dt ¤ C 2 i .
Therefore, by definition of B and by (96), we deduce that, for any ε ¡ 0, di N, sup

jN essup ωΩ sup tr0,T s }ũ i j t ¡ ũi t } n α ¤ C c ε C 2 i c ε ,
from which we deduce that the sequence pũ i q iN converges in L V pΩ, C 0 pr0, T s, C n pT d qqq. The limit is in B and is a fixed point of Ψ.

Actually, by Lemma 4.9 (with N 1 and a 1 b 1 0), any fixed point must be in B, so that Ψ has a unique fixed point in the whole space.

Stability estimates

Lemma 4.11. Consider two sets of inputs pb, f, gq and pb I , f I , g I q to (81), when driven by two parameters ϑ, r0, 1s. Assume that p m, ũq and p mI , ũI q are associated solutions (with adapted paths that take values in C 0 pr0, T s, PpT d qq ¢ C 0 pr0, T s, C n pT d qq) that satisfy the conclusions of Lemma 4.9 with respect to some vectors of constants Λ pΛ 1 , . . . , Λ n q and λ pλ 1 , . . . , λ n q.

Then, we can find a constant C ¥ 1, depending on the inputs and the outputs through Λ and λ only, such that, provided that

essup ωΩ sup tr0,T s }b t } 1 ¤ 1 C it holds that E sup tr0,T s }ũ t ¡ ũI t } 2 n α d 2 1 p mt , mI t q $ ¤ C 3 d 2 1 pm 0 , m I 0 q E sup tr0,T s }b t ¡ b I t } 2 0 sup tr0,T s }f t ¡ f I t } 2 n α¡1 }g T ¡ g I T } 2 n α $ A .
Remark 4.12. The precise knowledge of Λ and λ is crucial in order to make use of the convexity assumption of the Hamiltonian.

The proof relies on the following stochastic integration by parts formula: Lemma 4.13. Let pm t q tr0,T s be an adapted process with paths in C 0 pr0, T s, for some adapted process pβ t q 0¤t¤T with paths in C 0 pr0, T s, rC 0 pT d qs d q. (Notice, by separability of C n pT d q, that the above holds true, P almost surely, for any smooth test function ϕ C n pT d q.) Let pu t q tr0,T s be an adapted process with paths in C 0 pr0, T s, C n pT d qq such that, for any x T d , d t u t pxq γ t pxqdt dM t pxq, t r0, T s, where pγ t q tr0,T s and pM t q tr0,T s are adapted processes with paths in C 0 pr0, T s, C 0 pT d qq and, for any x T d , pM t pxqq tr0,T s is a martingale.

Assume that

essup ωΩ sup 0¤t¤T }u t } n }β t } 0 }γ t } 0 }M t } 0 ¨ V. (97) 
Then, the process Proof. Although slightly technical, the proof is quite standard. Given two reals s t in r0, T s, we consider a mesh s r 0 r 1 ¤ ¤ ¤ r N t of the interval rs, ts. Then,

ˆTd u t pxqdm t pxq ¡ ˆTd u s pxqdm s pxq N ¡1 i0 ˆT d u r i 1 pxqdm r i 1 pxq ¡ ˆTd u r i pxqdm r i pxq & N ¡1 i0 ˆT d u r i 1 pxqdm r i 1 pxq ¡ ˆTd u r i 1 pxqdm r i pxq & N ¡1 i0 ˆT d u r i 1 pxqdm r i pxq ¡ ˆTd u r i pxqdm r i pxq & N ¡1 i0 ˆri 1 r i 4ˆT d ∆u r i 1 pxq ¡ xβ r pxq, Du r i 1 pxqy $ dm r pxq B dr N ¡1 i0 ˆTd 4ˆr i 1 r i γ r pxqdr M r i 1 pxq ¡ M r i pxq B dm r i pxq. (98) 
By conditional Fubini's theorem and by (97),

E N ¡1 i0 ˆTd 2 M t i 1 pxq ¡ M t i pxq @ dm t i pxq|F s & N ¡1 i0 ˆTd 2 E M t i 1 pxq ¡ M t i pxq|F s $@ dm t i pxq 0, so that E S N |F s $ 0,
where we have let

S N : ˆTd u t pxqdm t pxq ¡ ˆTd u s pxqdm s pxq ¡ N ¡1 i0 ˆri 1 r i 4ˆT d ∆u r i 1 pxq ¡ xβ r pxq, Du r i 1 pxqy $ dm r pxq B dr ¡ N ¡1 i0 ˆTd 4ˆr i 1 r i γ r pxqdr B dm r i pxq.
Now, we notice that the sequence pS N q N ¥1 converges pointwise to S V : ˆTd u t pxqdm t pxq ¡ ˆTd u s pxqdm s pxq ¡ As the sequence pS N q N ¥1 is bounded in L V pΩ, A, Pq, it is straightforward to deduce that, P almost surely, E

S V |F s $ lim N ÑV E S N |F s $ 0.
We Ht p¤, Dũ I t q ¡ Ht p¤, Dũ t q ¨dp mI t ¡ mt q ¡ ˆTd Ft p¤, m I t q ¡ Ft p¤, m t q ¨dp mI t ¡ mt q ˆTd f I

t ¡ f t ¨d mI t ¡ mt ¨Bdt dM t ,
where pM t q tr0,T s is a martingale, with the terminal boundary condition

ˆTd ũI T ¡ ũT ¨dp mI T ¡ mT q ˆTd Gp¤, m I T q ¡ Gp¤, m T q ¨dp mI T ¡ mT q ˆTd g I T ¡ g T ¨dp mI T ¡ mT q.
Making use of the convexity and monotonicity assumptions and taking the expectation, we can find a constant c ¡ 0, depending on the inputs and the outputs through Λ and λ only, such that

ϑcE ˆT 0 ˆT d |Dũ I t ¡ Dũ t | 2 d mt mI t ¨&dt ¤ }u I 0 ¡ u 0 } 1 d 1 p m0 , mI 0 q E }g I T ¡ g T } 1 d 1 p mT , mI T q $ E ˆT 0 }b I t ¡ b t } 0 }ũ I t ¡ ũt } 1 dt E ˆT 0 }xb t , Dũ I t ¡ Dũ t y} 1 }f I t ¡ f t } 1 ¨d1 p mt , mI t qdt. ( 99 
)
We now implement the same strategy as in the proof of Proposition 3.2 in the deterministic case. Following [START_REF] Krusell | Income and wealth heterogeneity in the macroeconomy[END_REF], we get that there exists a constant C, depending upon T , the Lipschitz constant of D p H and the parameters Λ and λ, such that sup tr0,T s

d 1 p mI t , mt q ¤ C ¢ d 1 p mI 0 , m0 q sup tr0,T s }b I t ¡ b t } 0 ϑ ˆT 0 ˆT d |Dũ I s ¡ Dũ s |d ms mI s ¨&ds , (100) 
which holds pathwise.

Taking the square and the expectation and then plugging (99), we deduce that, for any small η ¡ 0 and for a possibly new value of C,

E sup t d 2 1 p mt , mI t q $ ¤ C 3 η ¡1 d 2 1 pm 0 , m I 0 q ηE sup tr0,T s }ũ t ¡ ũI t } 2 1 $ η ¡1 essup ωΩ sup tr0,T s }b t } 1 E sup tr0,T s }ũ t ¡ ũI t } 2 2 $ η ¡1 E sup tr0,T s }b t ¡ b I t } 2 0 sup tr0,T s }f t ¡ f I t } 2 1 }g T ¡ g I T } 2 1 $ A . ( 101 
)
Following the deterministic case, we let wt ũt ¡ ũI t , for t r0, T s, so that

¡ d wt ∆ wt ¡ ϑx Ṽt , D wt y R1 t ¡ f t ¡ f I t ¨$dt ¡ d Ñt , (102) 
with the terminal boundary condition wT RT g I T ¡g T . Above, p Ñt q tr0,T s is a process with paths in C 0 pr0, T s, C 0 pT d qq, with essup ωΩ sup tr0,T s } Ñt } 0 V, and, for any x T d , p Ñt pxqq tr0,T s is a martingale. Moreover, the coefficients p Ṽt q tr0,T s , p R1 t q tr0,T s and RT are given by Ṽt pxq RT pxq ˆ1 0 δG δm px, r mT p1 ¡ rq mI T q mT ¡ mI T ¨dr.

Following the deterministic case, we have sup

tr0,T s } R1 t } n α¡1 } RT } n α ¤ C sup tr0,T s d 1 p mt , mI t q. (103) 
Moreover, recalling that the outputs ũ and ũI are assumed to satisfy the conclusion of Lemma 4.9, we deduce that sup

tr0,T s } Ṽt } n α¡1 ¤ C.
In particular, for any k t0, . . . , n ¡ 1u dt r0, T s, }x Ṽt , D wt y} k α ¤ C} wt } k 1 α . Now, following (91) and implementing (103), we get, for any t r0, T s,

} wt } k α ¤ E }g T ¡ g I T } k α ˆT t } ws } k α c s ¡ t ds sup sr0,T s }f s ¡ f I s } k α¡1 sup sr0,T s d 1 p ms , mI s q |F t & ¤ CE }g T ¡ g I T } k α ˆT t } ws } k α ds sup sr0,T s }f s ¡ f I s } k α¡1 sup sr0,T s d 1 p ms , mI s q |F t
the second line following from Lemma 4.8 (with p 1). By Doob's inequality, we deduce that

E sup srt,T s } ws } 2 k α $ ¤ E }g T ¡ g I T } k α ˆT t } ws } 2 k α ds sup sr0,T s }f s ¡ f I s } 2 k α¡1 sup sr0,T s d 2 1 p ms , mI s q & .
By Gronwall's lemma, we deduce that, for any k t1, . . . , nu,

E sup tr0,T s } wt } 2 k α $ ¤ CE }g T ¡ g I T } 2 k α sup tr0,T s }f t ¡ f I t } 2 k α¡1 sup tr0,T s d 2 1 p mt , mI t q % . (104) 
We finally go back to (101). Choosing η small enough and assuming that essup ωΩ }b t } 1 is also small enough, we finally obtain (modifying the constant C):

E sup tr0,T s }ũ t ¡ ũI t } 2 n α d 2 1 p mt , mI t q ¨$ ¤ C 3 d 2 1 pm 0 , m I 0 q E sup tr0,T s }b t ¡ b I t } 2 0 sup tr0,T s }f t ¡ f I t } 2 n α¡1 }g T ¡ g I T } 2 n α $ A
, which completes the proof.

Proof of Theorem 4.3

We now end up the proof of Theorem 4.3. First step. We first notice that the L 2 stability estimate in the statement is a direct consequence of Lemma 4.9 (in order to bound the solutions) and of Lemma 4.11 (in order to get the stability estimate itself), provided that existence and uniqueness hold true.

Second step (a)

. We now prove that, given an initial condition m 0 PpT d q, the system (78) is uniquely solvable.

The strategy consists in increasing inductively the value of , step by step, from 0 to 1, and to prove, at each step, that existence and uniqueness hold true. At each step of the induction, the strategy relies on a fixed point argument. It works as follows. Given some r0, 1q, we assume that, for any input pf, gq in a certain class, we can (uniquely) solve (in the same sense as in the statement of Theorem 4.3)

d t mt 2 ∆ mt div mt D p Ht p¤, Dũ t q $@ dt, d t ũt 2 ¡∆ũ t Ht p¤, Dũ t q ¡ Ft p¤, m t q f t @ dt d Mt , (105) 
with m0 m 0 as initial condition and ũT Gp¤, m T q g T as boundary condition. Then, the objective is to prove that the same holds true for replaced by , for ¡ 0 small enough (independent of ). Freezing an input p f , ḡq in the admissible class, the point is to show that the mapping

Φ : p mt q tr0,T s Þ Ñ 5 f t ¡ Ft p¤, m t q ft ¨tr0,T s g T Gp¤, m T q ḡT C Þ Ñ p mI t q tr0,T s ,
is a contraction on the space of adapted processes p mt q tr0,T s with paths in C 0 pr0, T s, PpT d qq,

where the last output is given as the forward component of the solution of the system (105).

The value of being given, we assume that the input p f , ḡq is of the form

ft ¡ N i1 b i Ft p¤, m i t q, ḡT N i1 b i Gp¤, m i T q, (106) 
where N ¥ 1, b 1 , . . . , b N ¥ 0, with b 1 ¤ ¤ ¤ b N ¤ 2, and p mi q i1,...,N (or equivalently pm i q i1,...,N ) is a family of N adapted processes with paths in C 0 pr0, T s, PpT d qq.

The input pp ft q tr0,T s , ḡT q being given, we consider two adapted processes p mp1q t q tr0,T s and p mp2q t q tr0,T s with paths in C 0 pr0, T s, PpT d qq (or equivalently pm p1q t q tr0,T s and pm p2q t q tr0,T s without the push-forwards by each of the mappings pT

d x Þ Ñ x ¡ c 2W t T d q tr0,T s , cf. Remark 4.2),
and we let

f piq t ¡ Ft ¤, m piq t ¨ ft , t r0, T s; g piq T ¡ G ¤, m piq T ¨ ḡT ; i 1, 2.
and mpiIq Φ mpiq ¨, i 1, 2. Second step (b). By Lemma 4.9, we can find positive constants pλ k q k0,...,n and pΛ k q k0,...,n such that, whenever p mt , ũt q tr0,T s solves (105) with respect to an input pp ft q tr0,T s , ḡT q of the same type as in (106), then dk t0, . . . , nu, dt r0, T s,

essup ωΩ }ũ t } k α ¤ Λ k exp λ k pT ¡ tq ¨.
It is worth mentioning that the values of pλ k q k0,...,n and pΛ k q k0,...,n are somehow universal in the sense that they depend neither on nor on the precise shape of the inputs p f , ḡq when taken in the class (106). In particular, any output p mI t q tr0,T s of the mapping Φ must satisfy the same bound.

Second step (c). We apply Lemma 4.11 with b b I 0, pf t , f I t q 0¤t¤T p f p1q t , f p2q

t q 0¤t¤T and pg T , g I T q pḡ p1q T , ḡp2q

T q. We deduce that

E sup tr0,T s d 2 1 p mp1Iq t , mp2Iq t q $ ¤ 2 C 3 E sup tr0,T s } Ft p¤, m p1q t q ¡ Ft p¤, m p2q t q} 2 n α¡1 } GT p¤, m p1q T q ¡ GT p¤, m p2q T q} 2 n α $ A
, the constant C being independent of and of the precise shape of the input p f , ḡq in the class (106). Up to a modification of C, we deduce that

E sup tr0,T s d 2 1 p mp1Iq t , mp2Iq t q $ ¤ 2 CE sup tr0,T s d 2 1 p mp1q t , mp2q t q $ ,
which shows that Φ is a contraction on the space L 2 pΩ, A, P; C 0 pr0, T s, PpT d qqq, when is small enough (independently of and of p f , ḡq in the class (106)). By Picard fixed point theorem, we deduce that the system (105) is solvable when is replaced by ε (and for the same input p f , ḡq in the class (106)). By Lemma 4.9 and Proposition 4.11, the solution must be unique.

Third step. We finally establish the L V version of the stability estimates. The trick is to derive the L V estimate from the L 2 version of the stability estimates, which seems rather surprising at first sight but which is quite standard in the theory of backward SDEs.

The starting point is to notice that the expectation in the proof of the L 2 version permits to get rid of the martingale part when applying Itô's formula in the proof of Lemma 4.11 (see for instance (99)). Actually, it would suffice to use the conditional expectation given F 0 in order to get rid of it, which means that the L 2 estimate may be written as

E sup tr0,T s d 2 1 p mt , mI t q }ũ t ¡ ũI t } 2 n α ¨|F 0 $ ¤ Cd 2 1 pm 0 , m I 0 q,
which holds P almost surely. Of course, when m 0 and m I 0 are deterministic the above conditional bound does not say anything more in comparison with the original one: When m 0 and m I 0 are deterministic, the σ-field F 0 contains no information and is almost surely trivial. Actually, the inequality is especially meaningful when the initial time 0 is replaced by another time t p0, T s, in which case the initial conditions become mt and mI t and are thus random. The trick is thus to say that the same inequality as above holds with any time t r0, T s as initial condition instead of 0. This proves that

E sup srt,T s d 2 1 p ms , mI s q }ũ s ¡ ũI s } 2 n α ¨|F t $ ¤ Cd 2 1 pm t , m I t q. Since }ũ t ¡ ũI t } n α is F t -measurable, we deduce that }ũ t ¡ ũI t } n α ¤ Cd 1 pm t , m I t q.
Plugging the above bound in (100), we deduce that (modifying C if necessary) sup tr0,T s

d 1 pm t , m I t q ¤ Cd 1 pm 0 , m I 0 q.
Collecting the two last bounds, the proof is easily completed.

Linearization

Assumption. Throughout the paragraph, α stands for a Hölder exponent in p0, 1q.

The purpose here is to follow Subsection 3.3 and to discuss the following linearized version of the system (78):

d t zt 2 ¡∆z t x Ṽt p¤q, Dz t y ¡ δ Ft δm p¤, m t qpρ t q f 0 t @ dt d Mt , f t ρt ¡ ∆ρ t ¡ div ρt Ṽt ¨¡ div mt Γ t Dz t b0 t ¨ 0, (107) 
with a boundary condition of the form

zT δ G δm p¤, m T qpρ t q g0 T ,
where p Mt q tr0,T s is the so-called martingale part of the backward equation, that is p Mt q tr0,T s is an pF t q tr0,T s -adapted process with paths in the space C 0 pr0, T s, C 0 pT d qq, such that, for any x T d , p Mt pxqq tr0,T s is an pF t q tr0,T s martingale. Remark 4.14. Above, we used the same convention as in Remark 4.2. For pρ t q tr0,T s with paths in C 0 pr0, T s, pC k pT d qq I q for some k ¥ 0, we let pρ t q tr0,T s be the distributional-valued random function with paths in C 0 pr0, T s, pC k pT d qq I q defined by xϕ, ρ t y C k pT d q,pC k pT d qq I xϕp¤ c 2W t q, ρt y C k pT d q,pC k pT d qq I.

Generally speaking, the framework is the same as that used in Subsection 3.3, namely we can find a constant C ¥ 1 such that: 1. The initial condition ρ0 ρ 0 takes values in pC n α I pT d qq I , for some α I p0, αq, and, unless it is explicitly stated, it is deterministic.

2. p Ṽt q tr0,T s is an adapted process with paths in C 0 pr0, T s,

C n pT d , R d qq, with essup ωΩ sup tr0,T s } Ṽt } n α ¤ C.
3. p mt q tr0,T s is an adapted process with paths in C 0 pr0, T s, PpT d qq.

4. pΓ t q tr0,T s is an adapted process with paths in C 0 pr0, T s, rC 1 pT d qs d¢d q such that, with prob-

ability 1, sup tr0,T s }Γ t } 1 ¤ C, dpt, xq r0, T s ¢ T d , C ¡1 I d ¤ Γ t pxq ¤ CI d .
5. p b0 t q tr0,T s is an adapted process with paths in C 0 pr0, T s, rpC n α¡1 pT d qq I s d q, and p f 0 t q tr0,T s is an adapted process with paths in C 0 pr0, T s, C n pT d qq, with

essup ωΩ sup tr0,T s } b0 t } ¡pn α I ¡1q } f 0 t } n α ¨ V.

g0

T is an F T -measurable random variable with values in C n 1 pT d q, with essup ωΩ }g 0 T } n 1 α V.

Here is the analogue of Lemma 3.5:

Theorem 4.15. Under the assumption (1-6) right above and (HF1(n)) and (HG1(n+1)),

for n ¥ 2 and β pα I , αq, the system (107) admits a unique solution pρ, z, M q, adapted with respect to the filtration pF t q tr0,T s , with paths in the space C 0 pr0, T s, pC n β pT d qq I ¢ C n 1 β pT d q ¢ C n β pT d qq and with essup ω sup tr0,T s p}ρ t } ¡pn βq }z t } n 1 β } Mt } n¡1 β q V. It satisfies

essup ωΩ sup tr0,T s }ρ t } ¡pn α I q }z t } n 1 α } Mt } n α¡1 ¨ V.
The proof imitates that one of Theorem 4.3 and relies on a continuation argument. For a parameter ϑ r0, 1s, we consider the system

d t zt 2 ¡∆z t x Ṽt p¤q, Dz t y ¡ ϑ δ Ft δm p¤, m t qpρ t q f 0 t @ dt d Mt , f t ρt ¡ ∆ρ t ¡ div ρt Ṽt ¨¡ div ϑ mt Γ t Dz t b0 t ¨ 0, (108) 
with the boundary conditions

ρ0 ρ 0 , zT ϑ δ G δm p¤, m T qpρ T q g0 T . (109) 
As above the goal is to prove, by increasing step by step the value of ϑ, that the system (108), with the boundary condition (109), has a unique solution for any ϑ r0, 1s. Following the discussion after Theorem 4.3, notice that, whenever pb t q tr0,T s is a process with paths in C 0 pr0, T s, C ¡pn βq pT d qq, for some β pα I , αq, the quantity sup tr0,T s }b t } ¡pn α I q is a random variable, equal to sup tr0,T sQ }b t } ¡pn α I q . Moreover, essup ωΩ sup tr0,T s }b t } ¡pn α I q sup tr0,T s essup ωΩ }b t } ¡pn α I q .

Below, we often omit the process p Mt q tr0,T s when denoting a solution, namely we often write pρ t , zt q tr0,T s instead of pρ t , zt , Mt q tr0,T s so that the backward component is understood implicitly. We feel that the rule is quite clear now: In a systematic way, the martingale component has two degrees of regularity less than pz t q tr0,T s .

Throughout the subsection, we assume that the assumption of Theorem 4.15 is in force.

Case ϑ 0

We start with the case ϑ 0: Lemma 4.16. Assume that ϑ 0 in the system (108) with the boundary condition (109). Then, for any β pα I , αq, there is a unique solution pρ, zq, adapted with respect to pF t q tr0,T s , with paths in C 0 pr0, T s, pC n β pT d qq I ¢C n 1 β pT d qqq and with essup ω sup tr0,T s p}ρ t } ¡pn βq }z t } n 1 β q V. Moreover, we can find a constant C I , only depending upon C, the bounds in (HF1(n)) and (HG1(n+1)), T and d, such that essup ωΩ sup tr0,T s }ρ t } ¡pn α I q ¤ C I }ρ 0 } ¡pn α I q essup ωΩ sup tr0,T s

} b0 t } ¡pn α I ¡1q ¨, essup ωΩ sup tr0,T s }z t } n 1 α ¤ C I essup ωΩ }g 0 T } n 1 α essup ωΩ sup tr0,T s } f 0 t } n α ¨.
Proof. When ϑ 0, there is no nonlinearity in the equation and it simply reads

piq d t zt 2 ¡∆z t x Ṽt p¤q, Dz t y f 0 t @ dt d Mt , piiq f t ρt ¡ ∆ρ t ¡ div ρt Ṽt ¨¡ div b0 t ¨ 0, (110) 
with the boundary condition ρ0 ρ 0 and zT g0

T . First step. Let us first consider the forward equation (110-(ii)). We notice that, whenever ρ 0 and p b0 t q tr0,T s are smooth in the space variable, the forward equation may be solved pathwise in (111)

Whenever ρ 0 and p b0 t q tr0,T s are not smooth but take values in pC n α I pT d qq I and pC n α I ¡1 pT d qq I only, we can mollify them by a standard convolution argument. Denoting the mollified sequences by pρ N 0 q N ¥1 and pp b0,N t q tr0,T s q N ¥1 , it is standard to check that, for any β pα I , αq, P almost surely, lim

N Ñ V }ρ N 0 ¡ ρ 0 } ¡pn βq sup tr0,T s } b0,N t ¡ bt } ¡pn¡1 βq ¨ 0, (112) 
from which, together with (111), we deduce that, P almost surely, the sequence ppρ N t q tr0,T s q N ¥1 is Cauchy in the space Cpr0, T s, pC n β pT d qq I q, where each pρ N t q tr0,T s denotes the solution of the forward equation (110-(ii)) with inputs pρ N 0 , p b0,N t q tr0,T s q. With probability 1 under P, the limit of the Cauchy sequence belongs to Cpr0, T s, pC n β pT d qq I q and satisfies (111). Pathwise, it solves the forward equation.

Note that the duality techniques of Lemma 3.5 are valid for any solution pρ t q tr0,T s of the forward equation in (110-(ii)), with paths in C 0 pr0, T s, pC n β pT d qq I q. This proves uniqueness to the forward equation.

Finally, it is plain that the solution is adapted with respect to the filtration pF t q tr0,T s . The reason is that the solutions are constructed as limits of Cauchy sequences, which may be shown to be adapted by means of a Duhamel type formula.

Second step. For the backward component of (110), we can adapt Proposition 4.10: the solution is adapted, has paths in C 0 pr0, T s, C n 1 β pT d qq, for any β pα I , αq, and, following (82), it satisfies:

essup ωΩ sup 0¤t¤T }z t } n 1 α ¤ C I essup ωΩ }g 0 T } n 1 α essup ωΩ sup tr0,T s } f 0 t } n α ¨,
which completes the proof.

Stability argument

The purpose is now to increase ϑ step by step in order to prove that ( 108)-( 109) has a unique solution.

We start with the following consequence of Lemma 4.16:

Lemma 4.17. Given some ϑ r0, 1s, an initial condition ρ0 in pC n α I pT d qq I , a set of coefficients p Ṽt , mt , Γ t q tr0,T s as in points 2, 3 and 4 of the introduction of Subsection 4.4 and a set of inputs pp b0 t , f 0 t q tr0,T s , g0 T q as in points 5 and 6 of the introduction of Subsection 4.4, consider a solution pρ t , zt q tr0,T s of the system (108) with the boundary condition (109), the solution being adapted with respect to the filtration pF t q tr0,T s , having paths in the space C 0 pr0, T s, pC n β pT d qq I q¢ C 0 pr0, T s, C n 1 β pT d qq, for some β pα I , αq, and satisfying essup ωΩ sup tr0,T s p}ρ t } ¡pn βq }z t } n 1 β q V. Then, essup ωΩ sup tr0,T s }ρ t } ¡pn α I q }z t } n 1 α % V.

Proof. Given a solution pρ t , zt q tr0,T s as in the statement, we let b0

t b0 t ϑ mt Γ t Dz t , f 0 t f 0 t ¡ ϑ δ Ft δm p¤, m t qpρ t q, t r0, T s ; ĝ0 T g0 T ϑ δ G
δm p¤, m T qpρ T q Taking benefit from the assumption (HF1(n)), we can check that p b0 t q tr0,T s , p f 0 t q tr0,T s and ĝ0

T satisfy the same assumptions as p b0 t q tr0,T s , p f 0 t q tr0,T s and g0

T in the introduction of Subsection 4.4. The result then follows from Lemma 4.16.

The strategy now relies on a new stability argument, which is the analog of Lemma 4.11: Proposition 4.18. Given some ϑ r0, 1s, two initial conditions ρ0 and ρI 0 in pC n α I pT d qq I , two sets of coefficients p Ṽt , mt , Γ t q tr0,T s and p Ṽ I t , mI t , Γ I t q tr0,T s as in points 2, 3 and 4 of the introduction of Subsection 4.4 and two sets of inputs pp b0 t , f 0 t q tr0,T s , g0

T q and pp b0I t , f 0I t q tr0,T s , g0I T q as in points 5 and 6 of the introduction of Subsection 4.4, consider two solutions pρ t , zt q tr0,T s and pρ I t , zI t q tr0,T s of the system (108) with the boundary condition (109), both being adapted with respect to the filtration pF t q tr0,T s , having paths in the space C 0 pr0, T s, pC n β pT d qq I q ¢ C 0 pr0, T s, C n 1 β pT d qq, for some β pα I , αq, and satisfying

essup ωΩ sup tr0,T s }ρ t } ¡pn βq }z t } n 1 β }ρ I t } ¡pn βq }z I t } n 1 β ¨ V.
Then, it holds that Proof. First step. The first step is to make use of a duality argument. We start with the case when ρ0 , ρI 0 , b0 and b0I are smooth. Letting b0 t , for t r0, T s, we notice that pρ t q tr0,T s and pρ I t q tr0,T s solve the linear equation (ii) in (110) with p b0 t q tr0,T s and p b0I t q tr0,T s replaced by p b0 t q tr0,T s and p b0I t q tr0,T s respectively. By Lemma 4.16 with p b0 t q tr0,T s in (110) equal to p b0 t q tr0,T s and with n in the statement of Lemma 4.16 replaced by n ¡ 1, we deduce that pρ t q tr0,T s and pρ I t q tr0,T s have bounded paths in C 0 pr0, T s, pC n¡1 β pT d qq I q, for the same β pα I , αq as in the statement of Proposition 4. [START_REF] Carmona | Forward-Backward Stochastic Differential Equations and Controlled McKean Vlasov Dynamics[END_REF].

E sup tr0,T s }z t ¡ zI t } 2 n 1 α sup tr0,T s }ρ t ¡ ρI t } 2 ¡pn α I q & ¤ C I 4 }ρ 0 ¡ ρI 0 } 2 ¡pn α I q E sup tr0,T s } b0 t ¡ b0I t } 2 ¡pn α I ¡1q sup tr0,T s } f 0 t ¡ f 0I t } 2 n α }g 0 T ¡ g0I T } 2 n 1 α sup tr0,T s 3 }z I t } 2 n 1 α }ρ I t } 2 ¡pn α I q ¨ } Ṽt ¡ Ṽ I t } 2 n α rd 1 pm t , m I t qs 2 }Γ t ¡ Γ I t } 2
With a suitable adaptation of Lemma 4.13 and with the same kind of notations as in Subsection 3.3, this permits to expand the infinitesimal variation of the duality bracket xz t ¡ zI t , ρt ¡ ρI t y Xn,X I n , with X n C n β pT d q. We compute

d t d zt ¡ zI t , ρt ¡ ρI t h Xn,X I n 3 ¡ e Dpz t ¡ zI t q, ρI t Ṽt ¡ Ṽ I t ¨iXn,X I n e Dz I t , Ṽt ¡ Ṽ I t ¨ ρt ¡ ρI t ¨iXn,X I n A dt 3e f 0 t ¡ f 0I t , ρt ¡ ρI t i Xn,X I n dt ¡ e D zt ¡ zI t ¨, b0 t ¡ b0I t i X n¡1 ,X I n¡1 A dt ¡ ϑ 3e δ Ft δm p¤, m t q ρ t ¡ ρ I t ¨, ρt ¡ ρI t i Xn,X I n e δ Ft δm p¤, m t q ¡ δ Ft δm p¤, m I t q ¨ ρ I t ¨, ρt ¡ ρI t i Xn,X I n A dt ¡ ϑ 3e D zt ¡ zI t ¨, mt Γ t D zt ¡ zI t ¨iXn,X I n e D zt ¡ zI t ¨, mt Γ t ¡ mI t Γ I t ¨Dz I t i Xn,X I n A dt d t M t ,
where pM t q 0¤t¤T is a martingale and where we applied Remark 4.14 to define pρ t q tr0,T s and pρ I t q tr0,T s . An important fact in the proof is that the martingale part in (110) has continuous paths in C 0 pr0, T s, C n¡1 β pT d qq, which permits to give a sense to the duality bracket (in x) with pρ t ¡ ρI t q tr0,T s , since pρ t ¡ ρI t q tr0,T s is here assumed to have continuous paths in C 0 pr0, T s, pC n¡1 β pT d qq I q. Similarly, the duality bracket of pz t ¡ zI t q tr0,T s with the Laplacian of pρ t ¡ ρI t q tr0,T s makes sense and, conversely, the duality bracket of pρ t q tr0,T s with the Laplacian of pz t ¡ zI t q tr0,T s makes sense as well, the two of them canceling with one another.

Of course, the goal is to relax the smoothness assumption made on ρ0 , ρI 0 , b0 and b0I . Although it was pretty straightforward to do in the deterministic case, it is more difficult here because of the additional martingale term. As already mentioned, the martingale term is defined as a duality bracket between a path with values in C 0 pr0, T s, C n¡1 β pT d qq and a path with values in C 0 pr0, T s, C ¡pn¡1 βq pT d qq. Of course, the problem is that this is no more true in the general case that pρ t ¡ ρI t q tr0,T s has paths in C 0 pr0, T s, C ¡pn¡1 βq pT d qq. In order to circumvent the difficulty, a way is to take first the expectation in order to cancel the martingale part and then to relax the smoothness conditions. Taking the expectation in the above formula, we get (in the mollified setting):

d dt E d zt ¡ zI t , ρt ¡ ρI t h Xn,X I n $ 3 ¡E e Dpz t ¡ zI t q, ρI t Ṽt ¡ Ṽ I t ¨iXn,X I n % E e Dz I t , Ṽt ¡ Ṽ I t ¨ ρt ¡ ρI t ¨iXn,X I n %A 3 E e f 0 t ¡ f 0I t , ρt ¡ ρI t i Xn,X I n % ¡ E e D zt ¡ zI t ¨, b0 t ¡ b0I t i X n¡1 ,X I n¡1 %A ¡ ϑ 3 E e δ Ft δm p¤, m t q ρ t ¡ ρ I t ¨, ρt ¡ ρI t i Xn,X I n % (113) E e δ Ft δm p¤, m t q ¡ δ Ft δm p¤, m I t q ¨ ρ I t ¨, ρt ¡ ρI t i Xn,X I n %A ¡ ϑ 3 E e D zt ¡ zI t ¨, mt Γ t D zt ¡ zI t ¨iXn,X I n % E e D zt ¡ zI t ¨, mt Γ t ¡ mI t Γ I t ¨Dz I t i Xn,X I n %A .
Whenever ρ0 , ρI 0 , b0 and b0I are not smooth (and thus just satisfy the assumption in the statement of Proposition 4.18), we can mollify them in the same way as in the first step of Lemma 4.16. We call pρ N 0 q p¥1 , pρ I,N 0 q p¥1 , p b0,N t q p¥1 and p b0I,N t q p¥1 the mollifying sequences. For any β I pα I , αq and P almost surely, the two sequences respectively converge to ρ0 and ρI 0 in norm }¤} ¡pn β I q and the two last ones respectively converge to b0 t and b0I

t in norm }¤} ¡pn¡1 β I q , uniformly in t r0, T s. With pρ t , zt q tr0,T s and pρ I t , zI t q tr0,T s the original solutions given by the statement of Proposition 4.18, we denote, for each N ¥ 1, by pρ N t , zN t q tr0,T s and pρ I,N t , zI,N t q tr0,T s the respective solutions to (110), but with p b0 t , f 0 t , g0

T q tr0,T s respectively replaced by

¡ b0,N t b0,N t ϑ mt Γ t Dz t , f 0 t f 0 t ¡ ϑ δF δm p¤, m t qpρ t q, ĝ0 T g0 T ϑ δG δm p¤, m T qpρ T q © tr0,T s , and ¡ b0I,N t b0I,N t ϑ mI t Γ I t Dz I t , f 0I t f 0I t ¡ ϑ δF δm p¤, m I t qpρ I t q, ĝ0I T g0I T ϑ δG δm p¤, m I T qpρ I T q © tr0,T s
.

By linearity of (110) and by Lemma 4.16, we have that pρ N t q N ¥1 and pρ I,N t q N ¥1 converge to ρt and ρI t in norm } ¤ } ¡pn βq , uniformly in t r0, T s, and that pz N t q N ¥1 and pz I,N t q N ¥1 converge to zt and zI t in norm } ¤ } n 1 β , uniformly in t r0, T s. Then, we may write down the analogue of (113) for any mollified solution pρ N t , zN t q N ¥1 (pay attention that the formulation of (113) for the mollified solutions is slightly different since the mollified solutions only satisfy an approximating version of (108)). Following (112), we can pass to the limit under the symbol E. By Lemma 4.16, we can easily exchange the almost sure convergence and the symbol E, proving that the identity (113) holds true under the standing assumption on ρ0 , ρ0I , p b0 t q tr0,T s and p b0I t q tr0,T s .

Using the convexity of Γ and the monotonicity of F , we deduce that

E d zT ¡ zI T , ρT ¡ ρI T h Xn,pXnq I % C ¡1 ϑE ˆT t ¢ˆT d § § D zs ¡ zI s ¨ § § 2 d ms ds & ¤ E d z0 ¡ zI 0 , ρ0 ¡ ρI 0 h Xn,X I n $ C I E ˆT t Θ ¡ }ρ s ¡ ρI s } ¡pn α I q }z s ¡ zI s } n 1 α © ds & ,
where

Θ : }ρ 0 ¡ ρ0 } ¡pn α I q }g 0 T ¡ g0I T } n 1 α sup sr0,T s } f 0 s ¡ f 0I s } n α } b0 s ¡ b0I s } ¡pn α I ¡1q }z I s } n 1 α }ρ I s } ¡pn α I q ¨ } Ṽs ¡ Ṽ I s } n α d 1 pm s , m I s q }Γ s ¡ Γ I s } 0 ¨%.
Recalling that

xz T ¡ zI T , ρT ¡ ρI T y Xn,X I n ϑ e δ G δm p¤, m T qpρ T ¡ ρ I T q, ρT ¡ ρI T i Xn,X I n ϑ e δ G δm p¤, m T q ¡ δ G δm p¤, m I T q ¨pρ I T q, ρT ¡ ρI T i Xn,X I n xg 0 T ¡ g0I T , ρT ¡ ρI T y Xn,X I n ¥ ¡C I Θ}ρ T ¡ ρI T } ¡pn α I q ,
where we have used the monotonicity of G to deduce the second line, we thus get

ϑE ˆT 0 ¢ˆT d § § D zs ¡ zI s ¨ § § 2 d ms ds & ¤ C I E Θ ¢ }z 0 ¡ zI 0 } n 1 α }ρ T ¡ ρI T } ¡pn α I q ˆT 0 }ρ s ¡ ρI s } ¡pn α I q }z s ¡ zI s } n 1 α ¨ds & . ( 114 
)
Second step. As a second step, we follow the strategy used in the deterministic case in order to estimate p}ρ t ¡ ρI t } ¡pn α I q q tr0,T s in terms of ´T 0 p ´Td |D zs ¡ zI s ¨|2 d ms qds in the left-hand side of (114).

We use again a duality argument. Given ξ C n α pT d q and τ r0, T s, we consider the solution p wt q tr0,τ s , with paths in C 0 pr0, τ s, C n β pT d qq, to the backward PDE:

f t wt 2 ¡∆ wt x Ṽt p¤q, D wt y @ , (115) 
with the terminal boundary condition wτ ξ. Pay attention that the solution is not adapted.

It satisfies (see the proof in the last step below), with probability 1, dt r0, τ s, } wt } n α I ¤ C I }ξ} n α I, dt r0, τ q, } wt } n 1 α I ¤ C I c τ ¡ t }ξ} n α I.

(116)

Then, letting X ¡ n C n α I pT d q and following the end of the proof of Lemma 3.5, we have

d t x wt , ρt ¡ ρI t y X ¡ n ,pX ¡ n q I ¡ e D wt , b0 t ¡ b0I t i X ¡ n¡1 ,pX ¡ n¡1 q I dt e D wt , p Ṽ I t ¡ Ṽt qρ I t i X ¡ n ,pX ¡ n q I dt ¡ ϑ e D wt , mt Γ t D zt ¡ zI t ¨iX ¡ n ,pX ¡ n q I dt ¡ ϑ e D wt , p mt Γ t ¡ mI t Γ I t qDz I t i X ¡ n ,pX ¡ n q I dt, so that xξ, ρτ ¡ ρI τ y X ¡ n ,pX ¡ n q I ¤ C I }ξ} n α I Θ ϑ ˆτ 0 ¢ˆT d § § Dpz s ¡ zI s q § § 2 d ms 1{2 ds & .
Therefore,

}ρ τ ¡ ρI τ } ¡pn α I q ¤ C I Θ ϑ ¢ˆT 0 ˆRd § § Dpz s ¡ zI s q § § 2 d ms 1{2 ds & . ( 117 
)
Plugging ( 117) into (114), we obtain

ϑE ˆT 0 ¢ˆT d § § D zs ¡ zI s ¨ § § 2 d ms ds & ¤ C I E Θ ¡ Θ sup tr0,T s }z t ¡ zI t } n 1 α ©% . (118) 
Therefore,

E sup tr0,T s }ρ t ¡ ρI t } 2 ¡pn α I q % ¤ C I E Θ ¡ Θ sup tr0,T s }z t ¡ zI t } n 1 α ©% . ( 119 
)
Third step. We now combine the two first steps to get an estimate of p}z t ¡ zI t } n 1 α q tr0,T s .

Following the proof of (104) on the linear equation (102) and using the assumptions (HF1(n)) and (HG1(n+1)), we get that

E sup tr0,T s }z t ¡ zI t } 2 n 1 α $ ¤ E Θ 2 }ρ T ¡ ρI T } 2 ¡pn α I q ˆT 0 }ρ s ¡ ρI s } 2 ¡pn α I q ds & . (120) 
By (119), we easily complete the proof. It just remains to prove (116). The first line follows from Lemma 3.3. The second line may be proved as follows. Following (96), we have, with probability 1,

dt r0, τ q, } wt } n 1 α I ¤ C I ¢ }ξ} n α I c τ ¡ t ˆτ t } ws } n 1 α I c s ¡ t ds . ( 121 
)
Integrating and allowing the constant C I to increase from line to line, we have, for all t r0, τ q,

ˆτ t } ws } n 1 α I c s ¡ t ds ¤ C I }ξ} n α I ˆτ t 1 c τ ¡ s c s ¡ t ds ˆτ t } wr } n 1 α I ¢ˆr t 1 c r ¡ s c s ¡ t ds dr & ¤ C I }ξ} n α I ˆτ t } wr } n 1 α Idr & .
Plugging the above estimate into (121), we get that

dt r0, τ q, c τ ¡ t} wt } n 1 α I ¤ C I ¢ }ξ} n α I ˆτ t c τ ¡ r} wr } n 1 α Idr , which yields, by Gronwall's lemma, dt r0, τ q, } wt } n 1 α I ¤ C I c τ ¡ t }ξ} n α I,
which is the required bound.

A priori estimate

A typical example of application of Proposition 4.18 is to choose: ρI 0 0, p b0I , f 0I , g0I q p0, 0, 0q, Ṽ Ṽ I , Γ Γ I , in which case ρI , zI ¨ p0, 0q.

Then, Proposition 4.18 provides an a priori L 2 estimate of the solutions to (107). (Pay attention that the constant C in the statement depends upon the smoothness assumptions satisfied by Ṽ .) The following corollary shows that the L 2 bound can be turned into an L V bound. It reads as extension of Lemma 4.16 to the case when ϑ may be non zero:

Corollary 4.19. Given ϑ r0, 1s, an initial condition ρ0 in pC n α I pT d qq I and a set of inputs pp b0

t , f 0 t q tr0,T s , g0 T q as in points 1-6 in the introduction of Subsection 4.4, consider an adapted solution pρ t , zt q tr0,T s of the system (108)-( 109), with paths in the space C 0 pr0, T s, pC n β pT d qq I q¢ C 0 pr0, T s, C n 1 β pT d qq for some β pα I , αq, such that

essup ωΩ sup tr0,T s ¡ }z t } n 1 β }ρ t } ¡pn βq © V.
Then, we can find a constant C I , only depending upon C, T , d, α and α I , such that

essup ωΩ sup tr0,T s ¡ }z t } n 1 α }ρ t } ¡pn α I q © ¤ C I ¢ }ρ 0 } ¡pn α I q essup ωΩ }g 0 T } n 1 α sup tr0,T s ¡ } f 0 t } n α } b0 t } ¡pn α I ¡1q ©% . ( 122 
)
For another initial condition ρI 0 in pC n α I pT d qq I and another set of inputs pp b0I t , f 0I t q tr0,T s , g0,I T q as in points 1-6 in the introduction of Subsection 4.4, consider an adapted solution pρ I t , zI t q tr0,T s of the system (108)-( 109), with paths in the space C 0 pr0, T s, pC n β pT d qq I q ¢ C 0 pr0, T s, C n 1 β pT d qq for the same β pα I , αq as above, such that,

essup ωΩ sup tr0,T s ¡ }z I t } n 1 β }ρ I t } ¡pn βq © V.
Then, we can find a constant C I , only depending upon C, T , d, α and α I and on }ρ 0 } ¡pn α I q }ρ I 0 } ¡pn α I q essup ωΩ }g 0

T } n 1 α }g 0I T } n 1 α $ essup ωΩ sup tr0,T s } f 0 t } n α } f 0I t } n α } b0 t } ¡pn α I ¡1q } b0I t } ¡pn α I ¡1q % , such that essup ωΩ sup tr0,T s }z t ¡ zI t } 2 n 1 α }ρ t ¡ ρI t } 2 ¡pn α I q % ¤ C I 4 }ρ 0 ¡ ρI 0 } 2 ¡pn α I q essup ωΩ ¢ }g 0 T ¡ g0I T } 2 n 1 α sup tr0,T s } b0 t ¡ b0I t } 2 ¡pn α I ¡1q } f 0 t ¡ f 0I t } 2 n α % essup ωΩ sup tr0,T s } Ṽt ¡ Ṽ I t } 2 n α d 2 1 pm t , m I t q }Γ t ¡ Γ I t } 2 0 % B . ( 123 
)
Proof. We start with the proof of (122).

First step. The proof relies on the same trick as that used in the third step of the proof of Theorem 4.3. In the statement of Proposition 4.18, the initial conditions ρ0 and ρI 0 are assumed to be deterministic. It can be checked that the same argument holds when both are random and the expectation is replaced by a conditional expectation given the initial condition. More generally, given some time t r0, T s, we may see the pair pρ s , zs q srt,T s as the solution of the system (108) with the boundary condition ( 109), but on the interval rt, T s instead of r0, T s. In particular, when ρI 0 0, p b0I , f 0I , g0I q p0, 0, 0q, Ṽ Ṽ I , Γ Γ I (in which case pρ I , zI q p0, 0q), we get

E sup srt,T s ¡ }z s } 2 n 1 α }ρ s } 2 ¡pn α I q © § § F t & ¤ C I }ρ t } 2 ¡pn α I q E Θ 2 |F t $ %
, where we have let

Θ sup srt,T s } b0 s } ¡pn α I ¡1q sup srt,T s } f 0 s } n α }g 0 T } n 1 α .
Second step. We now prove the estimate on ρ. From the first step, we deduce that

}z t } 2 n 1 α ¤ C I }ρ t } 2 ¡pn α I q E Θ 2 |F t $ % ¤ C I }ρ t } 2 ¡pn α I q essup ωΩ Θ 2 % (124)
The above inequality holds true for any t r0, T s, P almost surely. By continuity of both sides, we can exchange the 'P almost sure' and the 'for all t r0, T s'. Now we can use the same duality trick as in the proof of Proposition 4.18. With the same notations as in ( 115) and ( 116), we have dt r0, τ s, } wt } n α I ¤ C I }ξ} n α I.

Then, we have

d wτ , ρτ h X ¡ n ,pX ¡ n q I ¤ d w0 , ρ0 h X ¡ n ,pX ¡ n q I ˆτ 0 }D ws } n α I ¡1 } b0 s } ¡pn α I ¡1q }z s } n α ¨ds ¤ C I }ξ} n α I ¢ }ρ 0 } ¡pn α I q ˆτ 0 }ρ s } ¡pn α I q essup ωΩ Θ % ds ,
from which we deduce, by Gronwall's lemma, that }ρ τ } ¡pn α I q ¤ C I ¡ }ρ 0 } ¡pn α I q sup tr0,T s

essup ωΩ Θ © ,
and thus

essup ωΩ sup tr0,T s }ρ t } ¡pn α I q ¤ C I ¡ }ρ 0 } ¡pn α I q essup ωΩ Θ © . (125) 
By ( 124) and (125), we easily get a bound for z.

Last step. It then remains to prove (123). By means of the first step, we have bounds for

essup ωΩ sup tr0,T s ¡ }z t } n 1 α }z I t } n 1 α }ρ t } ¡pn α I q }ρ I t } ¡pn α I q © .
Plugging the bound into the stability estimate in Proposition 4.18, we may proceed in the same way as in the two first steps in order to complete the proof.

Proof of Theorem 4.15

We now complete the proof of Theorem 4.15. It suffices to prove Proposition 4.20. There is an ε ¡ 0 such that if, for some ϑ r0, 1q and β pα I , αq, for any initial condition ρ0 in pC n α I pT d qq I and any input pp b0 t q tr0,T s , p f 0 t q tr0,T s , g0 T q as in the introduction of Subsection 4.4, the system (108)-( 109) has a unique solution pρ t , zt q tr0,T s with paths in C 0 pr0, T s, pC n β pT d qq I q¢C 0 pr0, T s, C n 1 β pT d qq such that essup ω sup tr0,T s p}ρ t } ¡pn βq }z t } n 1 β q V, pρ t , zt q tr0,T s also satisfying essup ω sup tr0,T s p}ρ t } ¡pn α I q }z t } n 1 α q V, then unique solvability also holds with ϑ replaced by ϑ ε, for the same class of initial conditions and of inputs and in the same space; moreover, solutions also lie (almost surely) in a bounded subset of the space L V pr0, T s, pC pn α I q pT d qq I q ¢ L V pr0, T s, C n 1 α pT d qq.

Proof. Given ϑ r0, 1q in the statement, ε ¡ 0, an initial condition ρ0 pC n α I pT d qq I , an input pp b0 t q tr0,T s , p f 0 t q tr0,T s , g0 T q satisfying the prescription described in the introduction of Subsection 4.4 and an adapted process pρ t , zt q tr0,T s (ρ having ρ0 as initial condition) with paths in C 0 pr0, T s, pC n β pT d qq I q ¢ C 0 pr0, T s, C n 1 β pT d qq such that

essup ωΩ sup tr0,T s }ρ t } ¡pn α I q }z t } n 1 α ¨ V, (126) 
we call Φ ε pρ, zq the pair pρ I t , zI t q 0¤t¤T solving the system (108) with respect to the initial condition ρ0 and to the input: b0I

t ε mt Γ t Dz t b0 t , f 0I t ¡ε δ Ft δm p¤, m t qpρ t q f 0 t , g0I T ε δ G δm p¤, m T qpρ T q g0 T .
By assumption, it satisfies

essup ωΩ sup tr0,T s }ρ I t } ¡pn α I q }z I t } n 1 α ¨ V, By Corollary 4.19, essup ωΩ sup tr0,T s }z I t } n 1 α }ρ I t } ¡pn α I q ¤ C I }ρ 0 } ¡pn α I q c ε essup ωΩ sup tr0,T s }ρ t } ¡pn α I q }z t } n 1 α ¨ essup ωΩ sup tr0,T s } b0 t } ¡pn α I ¡1q } f 0 t } n α ¨ }g 0 T } n 1 α % &
, where c is a constant, which only depends on the constant C appearing in points 1-6 in introduction of Subsection 4.4 and on the bounds appearing in (HF1(n)) and (HG1(n+1)).

In particular, if

essup ωΩ sup tr0,T s }z t } n 1 α }ρ t } ¡pn α I q ¨(127) ¤ 2C I ¢ }ρ 0 } ¡pn α I q essup ωΩ }g 0 T } n 1 α sup tr0,T s } b0 t } ¡pn α I ¡1q } f 0 t } n α

¨%

, and 2C I cε ¤ 1, then

essup ωΩ sup tr0,T s }z I t } n 1 α }ρ I t } ¡pn α I q ¤ 2C I ¢ }ρ 0 } ¡pn α I q essup ωΩ }g 0 T } n 1 α sup tr0,T s } b0 t } ¡pn α I ¡1q } f 0 t } n α ¨% ,
so that the set of pairs pρ, zq that satisfy (126) and ( 127) is stable by Φ ε for ε small enough. Now, given two pairs pρ 1 t , z1 t q tr0,T s and pρ 2 t , z2 t q tr0,T s satisfying (127), we let pρ 1I t , z1I t q tr0,T s and pρ 2I t , z2I t q tr0,T s be their respective images by Φ ε . We deduce from Proposition 4.18 that

E sup tr0,T s }z 1I t ¡ z2I t } 2 n 1 α sup tr0,T s }ρ 1I t ¡ ρ2I t } 2 ¡pn α I q % ¤ C I ε 2 E sup tr0,T s }z 1 t ¡ z2 t } 2 n 1 α sup tr0,T s }ρ 1 t ¡ ρ2 t } 2 ¡pn α I q % ,
for a possibly new value of the constant C I , but still independent of ϑ and ε. Therefore, for C I ε 2

1 and 2C I cε ¤ 1, Φ ε is a contraction on the set of adapted processes pρ t , zt q tr0,T s having paths in C 0 pr0, T s, pC n β pT d qq I q ¢ C 0 pr0, T s, C n 1 β pT d qq and satisfying (127) (and thus (126) as well), which forms a closed subset of the Banach space C 0 pr0, T s, pC n β pT d qq I q ¢ C 0 pr0, T s, C n β pT d qq.

By Picard fixed point theorem, we deduce that Φ ε has a unique fixed point satisfying (127). The fixed point solves (108)-( 109), with ϑ replaced by ϑ ε.

Consider now another solution to (108)-( 109) with ϑ replaced by ϑ ε, with paths in a bounded subset of C 0 pr0, T s, pC n β pT d qq I q¢C 0 pr0, T s, C n 1 β pT d qq. By Proposition 4.18, it must coincide with the solution we just constructed.

The second-order master equation

Taking benefit of the analysis performed in the previous section on the unique solvability of the MFG system, we are now ready to define and investigate the solution of the master equation.

The principle is the same as in the first-order case: the forward component of the MFG system has to be seen as the characteristics of the master equation. The regularity of the solution of the master equation is then investigated through the tangent process that solves the linearized MFG system. As in the previous section, the level of common noise β is set to 1 throughout this section. This is without loss of generality and this makes the notation a little bit simpler.

Construction of the Solution

Assumption. Throughout the paragraph, we assume that the assumption of Theorem 4.3 is in force, with α p0, 1q.

For any initial distribution m 0 PpT d q, the system (78) admits a unique solution so that, following the analysis performed in the deterministic setting, we may let

U p0, x, m 0 q ũ0 pxq, x T d .
The initialization is here performed at time 0, but, of course, there is no difficulty in replacing 0 by any arbitrary time t 0 r0, T s, in which case the system (78) rewrites d t mt 2 ∆ mt div mt D p Ht 0 ,t p¤, Dũ t q ¨@dt, d t ũt 2 ¡∆ũ t Ht 0 ,t p¤, Dũ t q ¡ Ft 0 ,t p¤, m t 0 ,t q @ dt d Mt ,

with the initial condition mt 0 m 0 and the terminal boundary condition ũT Gt 0 p¤, m t 0 ,T q, under the prescription that

m t 0 ,t id c 2pW t ¡ W t 0 q ¨U mt , Ft 0 ,t px, µq F x c 2pW t ¡ W t 0 q, µ ¨, Gt 0 px, µq G x c 2pW T ¡ W t 0 q, µ ¨, Ht 0 ,t px, pq H x c 2pW t ¡ W t 0 q, p ¨, x T d , p R d , µ PpT d q. (129) 
It is then possible to let

U pt 0 , x, m 0 q ũt 0 pxq, x T d .
We shall often use the following important fact:

Lemma 5.1. Given an initial condition pt 0 , m 0 q r0, T s ¢ PpT d q, denote by p mt , ũt q trt 0 ,T s the solution of (128) with the prescription (129) and with mt 0 m 0 as initial condition. Call m t 0 ,t the image of mt by the random mapping

T d x Þ Ñ x c 2pW t ¡ W t 0 q that is m t 0 ,t rid c 2pW t ¡ W t 0 qsU mt .
Then, for any t 0 h rt 0 , T s, P almost surely,

ũt 0 h pxq U t 0 h, x c 2pW t 0 h ¡ W t 0 q, m t 0 ,t 0 h ¨, x T d .
Proof. Given t 0 and h as above, we let

mt id c 2 W t 0 h ¡ W t 0 ¨$U mt , ūt pxq ũt x ¡ c 2 W t 0 h ¡ W t 0 ¨$, t rt 0 h, T s, x T d .
We claim that p mt , ūt q trt 0 h,T s is a solution of ( 128)-( 129), with t 0 replaced by t 0 h and with m t 0 ,t 0 h as initial condition.

The proof is as follows. We start with a preliminary remark. For t rt 0 h, T s,

id c 2 W t ¡ W t 0 h ¨$U mt id c 2 W t ¡ W t 0 ¨$U mt m t 0 ,t . (130) 
We now prove that the pair p mt , ūt q t 0 h¤t¤T solves the forward equation in (128). To this end, denote by pX t 0 ,t q trt 0 ,T s the solution of the SDE dX t 0 ,t ¡D p Ht 0 ,t X t 0 ,t , Dũ t pX t 0 ,t q ¨dt c 2dB t , t rt 0 , T s, the initial condition X t 0 ,t 0 having m 0 as distribution. (Notice that the equation is well-posed as

Dũ is known to be Lipschitz in space.) Then, the process p Xt X t 0 ,t c 2pW t 0 h ¡W t 0 qq trt 0 h,T s has p mt pid c 2pW t 0 h ¡ W t 0 qqU mt q trt 0 h,T s as marginal conditional distributions (given pW t q tr0,T s ). The process satisfies the SDE

d Xt ¡D p Ht 0 ,t ¡ Xt ¡ c 2pW t 0 h ¡ W t 0 q, Dũ t Xt ¡ c 2pW t 0 h ¡ W t 0 q ¨©dt c 2dB t ¡D p Ht 0 h,t ¡ Xt , Dū t Xt ¨©dt c 2dB t ,
which is enough to check that the forward equation holds true, with mt 0 h m t 0 ,t 0 h as initial condition, see (130). We now have

d t ūt ¡∆ū t 2 Ht 0 ,t p¤, Dũ t q ¡ Ft 0 ,t p¤, m t 0 ,t q @ ¤ ¡ c 2pW t 0 h ¡ W t 0 q ¨$dt d Mt ¤ ¡ c 2pW t 0 h ¡ W t 0 q ¡∆ū t 2 Ht 0 h,t p¤, Dū t q ¡ Ft 0 h,t p¤, m t 0 ,t q @$ dt d Mt ¤ ¡ c 2pW t 0 h ¡ W t 0 q ¨.
Now, (130) says that m t 0 ,t reads rid c 2 W t ¡ W t 0 h ¨sU mt , where p mt q t 0 h¤t¤T is the current forward component. This matches exactly the prescription on the backward equation in ( 128) and (129).

If m t 0 ,t 0 h was deterministic, we would have, by definition of U , U pt 0 h, x, m t 0 ,t 0 h q ūt 0 h pxq, x T d , and thus, by definition of ūt 0 h , ũt

0 h pxq U t 0 h, x c 2pW t 0 h ¡ W t 0 q, m t 0 ,t 0 h ¨, x T d . (131) 
Although the result is indeed correct, the argument is false as m t 0 ,t 0 h is random.

To prove (131), we proceed as follows. By compactness of PpT d q, we can find, for any ε, a family of N disjoint Borel subsets A 1 , . . . , A N PpT d q, each of them being of diameter less than ε, that covers PpT d q.

For each i t1, . . . , N u, we may find µ i A i . We then denote by p mi t , ûi t q trt 0 h,T s the solution of (128)-(129), with t 0 replaced by t 0 h and with µ i as initial condition. We let mt

N i1 mi t 1 A i m t 0 ,t 0 h ¨, ût N i1 ûi t 1 A i m t 0 ,t 0 h ¨.
Since the events tm t 0 ,t 0 h A i u, for each i 1, . . . , N , are independent of the Brownian motion pW t ¡ W t 0 h q trt 0 h,T s , the process p mt , ût q trt 0 h,T s is a solution of (128)-(129), with t 0 replaced by t 0 h and with mt 0 ,t 0 h as initial condition. With an obvious generalization of Theorem 4.3 to cases when the initial conditions are random, we deduce that

E }ū t 0 h ¡ ût 0 h } 2 n α $ ¤ CE d 2 1 p mt 0 h , mt 0 h q $ C N i1 E 1 A i m t 0 ,t 0 h ¨d2 1 pm t 0 ,t 0 h , µ i q $ .
Obviously, the right-hand side is less than Cε 2 . The trick is then to say that ûi t 0 h reads U pt 0 h, ¤, µ i q. Therefore,

N i1 E 1 A i m t 0 ,t 0 h ¨}ū t 0 h ¡ U pt 0 h, ¤, µ i q} 2 n α $ ¤ Cε 2 .
Using the Lipschitz property of U pt 0 h, ¤, ¤q in the measure argument (see Theorem 4.3), we

deduce that

E ūt 0 h ¡ U t 0 h, ¤, m t 0 ,t 0 h ¨ 2 n α % ¤ Cε 2 .
Letting ε tend to 0, we complete the proof.

Corollary 5.2. For any α I p0, αq, we can find a constant C such that, for any t 0 r0, T s, h r0, T ¡ t 0 s, and m 0 PpT d q,

U pt 0 h, ¤, m 0 q ¡ U pt 0 , ¤, m 0 q n α I ¤ Ch pα¡α I q{2 .
Proof. Using the backward equation in (128), we have that ũt 0 p¤q E P h ũt 0 h p¤q ¡ ˆt0 h t 0 P s¡t 0 Ht 0 ,t p¤, Dũ s q ¡ Ft 0 ,t p¤, m t 0 ,s q ¨ds & .

Therefore,

ũt 0 p¤q ¡ E ũt 0 h p¤q ¨ E P h ¡ id ¨ũ t 0 h p¤q ¡ ˆt0 h t 0 P s¡t 0 Ht 0 ,t p¤, Dũ s q ¡ Ft 0 ,t p¤, m t 0 ,s q ¨ds & . So that }ũ t 0 ¡ E ũt 0 h ¨}n α I ¤ E P h ¡ id ¨ũ t 0 h n α I % C ˆt0 h t 0 ps ¡ t 0 q ¡1{2 Ht 0 ,t p¤, Dũ s q ¡ Ft 0 ,t p¤, m t 0 ,s q n α I ¡1 ds.
It is well checked that

E P h ¡ id ¨ũ t 0 h n α I % ¤ Ch pα¡α I q{2 E ũt 0 h n α % ¤ Ch pα¡α I q{2 ,
the last line following from Lemma 4.9. Now, by Lemma 5.1,

E ũt 0 h $ E U t 0 h, ¤ c 2pW t 0 h ¡ W t 0 q, m t 0 ,t 0 h ¨$ E U t 0 h, ¤ c 2pW t 0 h ¡ W t 0 q, m t 0 ,t 0 h ¨¡ U t 0 h, ¤, m 0 ¨$ U t 0 h, ¤, m 0 ¨,
where, by Theorem 4.3, it holds that

E U t 0 h, ¤ c 2pW t 0 h ¡ W t 0 q, m t 0 ,t 0 h ¨¡ U t 0 h, ¤, m 0 ¨$ n α I ¤ CE |d 1 pm t 0 ,t 0 h , m 0 q| $ E U t 0 h, ¤ c 2pW t 0 h ¡ W t 0 q, m 0 ¨¡ U t 0 h, ¤, m 0 ¨ n α I % ,
which is less than Ch pα¡α I q{2 .

First-order Differentiability

Assumption. Throughout the paragraph, we assume that F , G and H satisfy ( 26) and ( 27) in Subsection 2.3 and that, for some integer n ¥ 2 and some α p0, 1q, (HF1(n)) and

(HG1(n+1)) hold true.

The purpose is here to follow Subsection 3.4 in order to establish the differentiability of U with respect to the argument m 0 . The analysis is performed at t 0 fixed, so that, without any loss of generality, t 0 can be chosen as t 0 0.

The initial distribution m 0 PpT d q being given, we call p m, ũq the solution of the system (78) with m 0 as initial distribution. Following [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF], the strategy is to investigate the linearized system (of the same type as (107)):

d t zt 2 ¡∆z t xD p Ht p¤, Dũ t q, Dz t y ¡ δ Ft δm p¤, m t qpρ t q @ dt d Mt , f t ρt ¡ ∆ρ t ¡ div ρt D p Ht p¤, Dũ t q ¨¡ div mt D 2 pp Ht p¤, Dũ t qDz t ¨ 0, (132) 
with a boundary condition of the form zT δ G δm p¤, m T qpρ T q.

As explained later on, the initial condition of the forward equation will be chosen in an appropriate way. In that framework, we shall repeatedly apply the results from Subsection 4.4 with Ṽt p¤q D p Ht p¤, Dũ t q, Γ t D 2 pp Ht p¤, Dũ t q, t r0, T s,

which motivates the following lemma:

Lemma 5.3. There exists a constant C such that, for any initial condition m 0 PpT d q, the processes p Ṽt q tr0,T s and pΓ t q tr0,T s in (133) satisfy points 2 and 4 in the introduction of Subsection 4.4.

Proof. By Theorem 4.3 and Lemma 4.9, we can find a constant C such that any solution p mt , ũt q tr0,T s to (78) satisfies, independently of the initial condition m 0 ,

essup ωΩ sup tr0,T s }ũ t } n 1 α ¤ C.
In particular, allowing the constant C to increase from line to line, it must hold that essup ωΩ sup tr0,T s

D p Ht p¤, Dũ t ¨ n α ¤ C.
Moreover, implementing the local coercivity condition [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF], we deduce that (assuming C ¥ 1), with probability 1, for all t r0, T s,

}Γ t } 1 ¤ C ; dx T d , C ¡1 I d ¤ Γ t pxq ¤ CI d ,
which completes the proof.

Given y T d and a d-tuple t0, . . . , nu d such that | | °n i1 i ¤ n, we call T d x Þ Ñ v p q px, m 0 , yq R the value at time 0 of the backward component of the solution to (132) when the forward component is initialized with the distribution p¡1q | | D δ y . Clearly, D δ y pC n α I pT d qq I for any α I p0, 1q, so that, by Theorem 4.15, v p q p¤, m 0 , yq belongs to C n α pT d q. (Recall that, for a test function ϕ

C n pT d q, pD δ y qϕ p¡1q | | D y 1 1 ...y d d ϕpyq.
) Similarly, we may denote by pρ ,y t , z ,y t q tr0,T s the solution of (132) with ρ ,y 0 p¡1q | | D δ y as initial condition. For simplicity, we omit m 0 in the notation. We then have z ,y 0 v p q p¤, m 0 , yq.

We then claim Lemma 5.4. Let m 0 PpT d q. Then, with the same notation as above, we have, for any α I p0, αq and any d-tuple t0, . . . , nu

d such that | | ¤ n, lim T d hÑ0 essup ωΩ sup tr0,T s ¡ ρ ,y h t ¡ ρ ,y t ¡pn α I q z ,y h t ¡ z ,y t n 1 α © 0. (135) 
Moreover, for any t0, . . . , n ¡ 1u d with | | ¤ n ¡ 1 and any i t1, . . . , du,

lim Rzt0uhÑ0 essup ωΩ sup tr0,T s ¡ 1 h ρ ,y he i t ¡ ρ ,y t ¨¡ ρ e i ,y t ¡pn α I q 1 h z ,y he i t ¡ z ,y t ¨¡ z e i ,y t n 1 α © 0,
where e i denotes the i th vector of the canonical basis and e i is understood as p e i q j j δ j i , for j t1, . . . , du, δ j i denoting the Kronecker symbol.

In particular, the function rT d s 2 px, yq Þ Ñ v p0q px, m 0 , yq is n-times differentiable with respect to y and, for any t0, . . . , nu d with | | ¤ n, the derivative D y v p0q p¤, m 0 , yq : T d x Þ Ñ D y v p0q px, m 0 , yq belongs to C n 1 α pT d q and writes D y v p0q px, m 0 , yq v p q px, m 0 , yq, px, yq T d .

Moreover, sup

m 0 PpT d q sup yT d }D y v p0q p¤, m 0 , yq} n 1 α V. Proof. By Corollary 4.19 (with α α and α I α I for some α I p0, αq), we can find a constant C such that, for all y T d , for all m 0 PpT d q and all t0, . . . , nu d with | | ¤ n,

essup ωΩ sup tr0,T s }z ,y t } n 1 α }ρ ,y t } ¡pn α I q ¨¤ C.
In particular, }v p q p¤, m 0 , yq} n 1 α ¤ C.
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Now, we make use of Proposition 4.18. We know that, for any α I p0, 1q,

lim hÑ0 D δ y h ¡ D δ y ¡pn α I q 0.
Therefore, for α I α, Corollary 4.19 (with α I α I α and α α) gives (135). This yields lim hÑ0 v p q p¤, m 0 , y hq ¡ v p q p¤, m 0 , yq n 1 α 0, proving that the mapping T d y Þ Ñ v p q p¤, m 0 , yq C n 1 α pT d q is continuous.

Similarly, for | | ¤ n ¡ 1 and i t1, . . . , du,

lim Rzt0uhÑ0 1 h D δ y he i ¡ D δ y ¨ D e i δ y ¡pn α I q 0, or equivalently, lim Rzt0uhÑ0 1 h p¡1q | | D δ y he i ¡ p¡1q | | D δ y ¨¡ p¡1q | e i | D e i δ y ¡pn α I q 0,
As a byproduct, we get lim Rzt0uhÑ0 1 h v p q p¤, m 0 , y he i q ¡ v p q p¤, m 0 , yq $ ¡ v p e i q p¤, m 0 , yq

n 1 α 0,
which proves, by induction, that D y v p0q px, m 0 , yq v p q px, m 0 , yq, x, y T d .

This completes the proof.

Now, we prove

Lemma 5.5. Given a finite signed measure µ on T d , the solution z to (132) with µ as initial condition reads, when taken at time 0, z0 : R d x Þ Ñ z0 pxq ˆTd v p0q px, m 0 , yqdµpyq.

Proof. By compactness of the torus, we can find, for a given ε ¡ 0, a covering pU i q 1¤i¤N of T d , made of disjoint Borel subsets, such that each U i , i 1, . . . , N , has a diameter less than ε.

Choosing, for each i t1, . . . , N u, y i U i , we then let

µ ε N i1 µ U i qδ y i .
Then, for any ϕ

C 1 pT d q, with }ϕ} 1 ¤ 1, we have § § § § ˆTd ϕpyqd µ ¡ µ ε ¨pyq § § § § § § § § N i1 ˆUi ϕpyq ¡ ϕpy i q ¨dµpyq § § § § ¤ C}µ}ε,
where we have denoted by }µ} the total mass of µ.

Therefore, by Proposition 4.18,

z0 ¡ N i1 ˆUi v p0q p¤, m 0 , y i qdµpyq n 1 α ¤ C}µ}ε,
where we have used the fact that, by linearity, the value at time 0 of the backward component of the solution to (132), when the forward component is initialized with µ ε , reads

N i1
µpU i qv p0q p¤, m 0 , y i q N i1 ˆUi v p0q p¤, m 0 , y i qdµpyq.

By smoothness of v p0q in y, we easily deduce that z0 ¡ ˆTd v p0q p¤, m 0 , yqdµpyq

n 1 α ¤ C}µ}ε.
The result follows by letting ε tend to 0.

On the model of Corollary 3.9, we now claim Proposition 5.6. Given two initial conditions m 0 , m I 0 PpT d q, we denote by p mt , ũt q tr0,T s and p mI t , ũI t q tr0,T s the respective solutions of (78) with m 0 and m I 0 as initial conditions and by pρ t , zt q tr0,T s the solution of (132) with m I 0 ¡ m 0 as initial condition, so that we can let δ ρt mI t ¡ mt ¡ ρt , δz t ũI t ¡ ũt ¡ zt , t r0, T s. Then, for any α I p0, αq, we can find a constant C, independent of m 0 and m I 0 , such that essup ωΩ sup 0¤t¤T }δρ t } ¡pn α I q }δz t } n 1 α ¨¤ Cd 2 1 pm 0 , m I 0 q.

In particular,

U p0, ¤, m I 0 q ¡ U p0, ¤, m 0 q ¡ ˆTd v p0q px, m 0 , yqd m I 0 ¡ m 0 qpyq n 1 α ¤ Cd 2 1 pm 0 , m I 0 q,
and, thus, for any x T d , the mapping PpT d q m Þ Ñ U p0, x, mq is differentiable with respect to m and the derivative reads, for any m PpT d q, δU δm p0, x, m, yq v p0q px, m, yq, y T d .

The normalization condition holds: ˆTd v p0q px, m, yqdmpyq 0.

The proof is the same as in the deterministic case (see Remark 3.10).

Proof. We have

d t δz t ¨ 2 ¡∆ δz t ¨ xD p Ht p¤, Dũ t q, D δz t ¨y ¡ δ Ft δm p¤, m t q δρ t ¨ ft @ dt d Mt , f t δ ρt ¨¡ ∆ δ ρt ¨¡ div δ ρt ¨Dp Ht p¤, Dũ t q $ ¡ div mt D 2 pp Ht p¤, Dũ t q Dδz t ¨ bt $ 0,
with a boundary condition of the form

δz T δ G δm p¤, m T q δρ T ¨ gT ,
where bt mI t D p Ht p¤, Dũ I t q ¡ D p Ht p¤, Dũ t q ¨¡ mt D 2 pp Ht p¤, Dũ t q Dũ I t ¡ Dũ t ft Ht p¤, Dũ I t q ¡ Ht p¤,

Dũ t q ¡ d D p Ht p¤, Dũ t q, Dũ I t ¡ Dũ t h ¡ ¡ Ft p¤, m I t q ¡ Ft p¤, m t q ¡ δ Ft δm p¤, m t q m I t ¡ m t ¨©, gT Gp¤, m I T q ¡ Gp¤, m T q ¡ δ G δm p¤, m T q m I T ¡ m T ¨. Now, bt mI t ¡ mt ¨ D p Ht p¤, Dũ I t q ¡ D p Ht p¤, Dũ t q ¨ mt ˆ1 0 D 2 pp Ht ¤, λDũ I t p1 ¡ λqDũ t ¨¡ D 2 pp Ht p¤, Dũ t q % Dũ I t ¡ Dũ t ¨dλ mI t ¡ mt ¨ˆ1 0 D 2 pp Ht ¤, λDũ I t p1 ¡ λqDũ t ¨ Dũ I t ¡ Dũ t ¨dλ mt ˆ1 0 ˆ1 0 λD 3 ppp Ht ¤, λsDũ I t p1 ¡ λ λp1 ¡ sqqDũ t ¨ Dũ I t ¡ Dũ t ¨2 dλds, ft ˆ1 0 d D p Ht p¤, λDũ I t p1 ¡ λqDũ t q ¡ D p Ht p¤, Dũ t q, Dũ I t ¡ Dũ t h dλ ¡ ˆ1 0 ¡ δ Ft δm ¤, λm I t p1 ¡ λqm t ¨¡ δ Ft δm p¤, m t q © m I t ¡ m t ¨dλ ˆ1 0 ˆ1 0 λ d D 2 pp Ht ¤, λsDũ I t p1 ¡ λ λp1 ¡ sqqDũ t ¨ Dũ I t ¡ Dũ t ¨, Dũ I t ¡ Dũ t h dλds ¡ ˆ1 0 ¡ δ Ft δm ¤, λm I t p1 ¡ λqm t ¨¡ δ Ft δm p¤, m t q © m I t ¡ m t ¨dλ, gT ˆ1 0 ¡ δ G δm ¤, λm I T p1 ¡ λqm T ¨¡ δ G δm p¤, m T q © m I T ¡ m T ¨dλ.
By Lemma 4.9, we have a universal bound for

essup ωΩ sup tr0,T s }ũ t } n 1 α }ũ I t } n 1 α ¨.
We deduce that

} bt } ¡1 ¤ C ¡ d 1 mI t , mt ¨}ũ I t ¡ ũt } 2 }ũ I t ¡ ũt } 2 1 © , } ft } n α ¤ C ¡ }ũ I t ¡ ũt } 2 n 1 α d 2 1 mI t , mt ¨©, }g T } n 1 α ¤ Cd 2 1 mI T , mT ¨.
Therefore, by Theorem 4.3, we deduce that

essup ωΩ sup 0¤t¤T } bt } ¡1 essup ωΩ sup 0¤t¤T } ft } n α essup ωΩ }g T } n 1 α ¤ Cd 2 1 m I 0 , m 0 ¨.
By Corollary 4.19, we get the first of the two inequalities in the statement. We deduce that

U p0, ¤, m I 0 q ¡ U p0, ¤, m 0 q ¡ z0 n 1 α ¤ Cd 2 1 pm 0 , m I 0 q.
By Lemma 5.5, we complete the proof.

Proposition 5.7. For any α I p0, αq, we can find a constant C such that, for any m 0 , m I 0 PpT d q, any y, y I T d and any index t0, . . . , nu d with | | ¤ n, denoting by p mt , ũt q tr0,T s and p mI t , ũI t q tr0,T s the respective solutions of (78), and then pρ t , zt q tr0,T s and pρ I t , zI t q tr0,T s the corresponding solutions of (132) when driven by two initial conditions p¡1q | | D δ y and p¡1q | | D δ y I, it holds that

essup ωΩ sup tr0,T s }z t ¡ zI t } n 1 α sup tr0,T s }ρ t ¡ ρI t } ¡pn α I q & ¤ C ¡ d 1 pm 0 , m I 0 q |y ¡ y I | α I © .
In particular,

dy, y I T d , D y δU δm p0, ¤, m 0 , yq ¡ D y δU δm p0, ¤, m I 0 , y I q n 1 α ¤ C ¡ d 1 pm 0 , m I 0 q |y ¡ y I | α I © .
Proof. Given two initial conditions m 0 and m I 0 , we call p mt , ũt q tr0,T s and p mI t , ũI t q tr0,T s the respective solutions of (78). With p mt , ũt q tr0,T s and p mI t , ũI t q tr0,T s , we associate the solutions pρ t , zt q tr0,T s and pρ I t , zI t q tr0,T s of ( 132 In order to prove the first estimate, we can apply Corollary 4.19 with Ṽt D p Hp¤, Dũ t q, Ṽ I t D p Hp¤, Dũ I t q, Γ t D 2 pp Ht p¤, Dũ t q, Γ I t D 2 pp Ht p¤, Dũ I t q, so that, following the proof of Proposition 5.6,

} Ṽt ¡ Ṽ I t } n α }Γ t ¡ Γ I t } 0 ¤ C}ũ t ¡ ũI t } n 1 α .
Now, the first estimate in the statement follows from the combination of Theorem 4. Proof. Given two probability measures m, m I PpT d q, we know from Proposition 5.6 that, for any t r0, T s,

U t, ¤, m I ¨¡ U t, ¤, m ¨ ˆTd δU δm t, ¤, m, y ¨d m I ¡ m ¨pyq O d 2 1 pm, m I q ¨, (136) 
the equality holding true in C n 1 α pT d q and the Landau notation Op¤q being uniform in t 0 and m (the constant C in the statement of Proposition 5.6 being explicitly quantified by means of Proposition 4.18, related to the stability of solutions to the linear equation).

By Proposition 5.7, the set of functions prT d s 2 px, yq Þ Ñ pδU{δmqpt, x, m, yqq tr0,T s is relatively compact in C n 1 α I pT d q ¢ C n α I pT d q, for any α I p0, αq. Any limit Φ : rT d s 2 Ñ R obtained by letting t tend to t 0 in (136) must satisfy (use Corollary 5.2 to pass to the limit in the left-hand side):

U t 0 , ¤, m I ¨¡ U t 0 , ¤, m ¨ ˆTd Φ ¤, y ¨d m I ¡ m ¨pyq O d 2 1 pm, m I q ¨,
the equality holding true in C 0 pT d q. This proves that, for any x T d ,

ˆTd δU δm t 0 , x, m, y ¨d m I ¡ m ¨pyq ˆTd Φ x, y ¨d m I ¡ m ¨pyq.
Choosing m I as the solution at time h of the Fokker-Planck equation

f t m t ¡divpbm t q, t ¥ 0,
for a smooth field b and with m 0 m as initial condition, and then letting h tend to 0, we deduce that ˆTd

D m U t 0 , x, m, y ¨¤ bpyqdmpyq ˆTd D y Φ x, y ¨¤ bpyqdmpyq.
When m has full support, this proves that Φpx, yq δU δm t 0 , x, m, y ¨ cpxq, x, y T d .

Since both sides have a zero integral in y with respect to m, cpxq must be zero.

When the support of m does not cover T d , we can approximate m by a sequence pm n q n¥1 of measures with full supports. By Proposition 5.7, we know that, for any α I p0, αq,

lim nÑV sup tr0,T s δU δm t, ¤, m n , ¤ ¨¡ δU δm t, ¤, m, ¤ ¨ n 1 α I ,α I 0, so that, in C n 1 α I pT d q ¢ C α I pT d q, lim tÑt 0 δU δm t, ¤, m, ¤ ¨ lim nÑV lim tÑt 0 δU δm t, ¤, m n , ¤ ¨ δU δm t 0 , ¤, m, ¤ ¨.
We easily complete the proof when | | 0. Since the set of functions prT d s 2 px, yq Þ Ñ pD y δU {δmqpt, x, m, yqq tr0,T s is relatively compact in C n 1 α I pT d q ¢ C α I pT d q, any limit as t tends to t 0 must coincide with the derivative of index in y of the limit of rT d s 2 px, yq Þ Ñ rδU{δmspt, x, m, yq as t tends to t 0 .

Second-order Differentiability

Assumption. Throughout the paragraph, we assume that F , G and H satisfy ( 26) and [START_REF] Gangbo | Metric viscosity solutions of Hamilton-Jacobi equations depending on local slopes[END_REF] in Subsection 2.3 and that, for some integer n ¥ 2 and some α p0, 1q, (HF2(n)) and

(HG2(n+1)) hold true.

In order to complete the analysis of the master equation, we need to investigate the secondorder differentiability in the direction of the measure, on the same model as for the first-order derivatives.

As for the first order, the idea is to write the second-order derivative of U in the direction m as the initial value of the backward component of a linearized system of the type (107), which is referred next to as the second-order linearized system. Basically, the second-order linearized system is obtained by differentiating one step more the first-order linearized system (132). Recalling that (132) has the form

d t zt 2 ¡∆z t xD p Ht p¤, Dũ t q, Dz t y ¡ δ Ft δm p¤, m t qpρ t q @ dt d Mt , f t ρt ¡ ∆ρ t ¡ div ρt D p Ht p¤, Dũ t q ¨¡ div mt D 2 pp Ht p¤, Dũ t qDz t ¨ 0, (137) 
with the boundary condition zT δ G δm p¤, m T qpρ T q, the procedure is to differentiate the pair pρ t , zt q tr0,T s with respect to the initial condition m 0 of p mt , ũt q tr0,T s , the initial condition of pρ t , zt q tr0,T s being kept frozen.

Above, p mt , ũt q 0¤t¤T is indeed chosen as the solution of the system (78), for a given initial distribution m 0 PpT d q, and pρ t , zt q tr0,T s as the solution of the system (137) with an initial condition ρ 0 pC n α I pT d qq I , for some α I α. Implicitly, the initial condition ρ 0 is understood as some m I 0 ¡ m 0 for another m I 0 PpT d q, in which case we know from Proposition 5.6 that pρ t , zt q tr0,T s reads as the derivative, at ε 0, of the solution to (78) when initialized with the measure m 0 εpm I 0 ¡ m 0 q. However, following the strategy used in the analysis of the first-order derivatives of U , it is much more convenient, in order to investigate the second-order derivatives of U , to distinguish the initial condition of pρ t q tr0,T s from the direction m I 0 ¡ m 0 used to differentiate the system (78). This says that, in (137), we should allow pρ t , zt q tr0,T s to be driven by an arbitrary initial condition ρ 0 pC n α I pT d qq I . Now, when (137) is driven by an arbitrary initial condition ρ 0 and m 0 is perturbed in the direction m I 0 ¡m 0 for another m I 0 PpT d q (that is m 0 is changed into m 0 εpm I 0 ¡m 0 q for some small ε), the system obtained by differentiating (137) (at ε 0) takes the form

d t zp2q t 3 ¡∆z p2q t d D p Ht p¤, Dũ t q, Dz p2q t h ¡ δ Ft δm p¤, m t qpρ p2q t q d D 2 pp Ht p¤, Dũ t q, Dz t Df m ũt h ¡ δ 2 Ft δm 2 p¤, m t qpρ t , f m m t q A dt d Mt , f t ρp2q t ¡ ∆ρ p2q t ¡ div ¡ ρp2q t D p Ht p¤, Dũ t q © ¡ div ¡ mt D 2 pp Ht p¤, Dũ t qDz p2q t © ¡ div ¡ ρt D 2 pp Ht p¤, Dũ t qDf m ũt © ¡ div ¡ f m mt D 2 pp Ht p¤, Dũ t qDz t © ¡ div ¡ mt D 3 ppp Ht p¤, Dũ t qDz t Df m ũt © 0, (138) 
with a terminal boundary condition of the form zp2q

T δ G δm p¤, m T q ρ p2q T ¨ δ 2 G δm 2 p¤, m T qpρ T , f m m T q
, where we have denoted by pf m mt , f m ũt q tr0,T s the derivative of p mt , ũt q tr0,T s when the initial condition is differentiated in the direction m I 0 ¡ m 0 at point m 0 , for another m I 0 PpT d q. In 96 (138), the pair pρ p2q t , zp2q

t q tr0,T s is then understood as the derivative of the solution pρ t , zt q tr0,T s to (137). Now, using the same philosophy as in the analysis of the first-order derivatives, we can choose freely the initial condition ρ 0 . Generally speaking, we will choose ρ 0 p¡1q | | D δ y , for some multi-index t0, . . . , n ¡ 1u d with | | ¤ n ¡ 1 and some y T d . Since ρ 0 is expected to be insensitive to any perturbation that could apply to m 0 , it then makes sense to let ρ p2q 0 0. As said above, the initial condition f m m 0 of pf m mt q 0¤t¤T is expected to have the form m I 0 ¡ m 0 for another probability measure m I 0 PpT d q. Anyhow, by the same linearity argument as in the analysis of the first-order derivative, we can start with the case when f m m 0 is the derivative of a Dirac mass, namely f m m 0 p¡1q |k| D k δ ζ , for another multi-index k t0, . . . , n ¡ 1u d , and another ζ T d , in which case pf m mt , f m ũt q 0¤t¤T is another solution to (137), but with f m m 0 p¡1q |k| D k δ ζ as initial condition. Given these initial conditions, we then let v p ,kq ¤, m 0 , y, ζ ¨ zp2q 0 , provided that (138) has a unique solution.

In order to check that existence and uniqueness hold true, we may proceed as follows. The system (138) is of the type (107), with

Ṽt D p Ht p¤, Dũ t q, Γ t D 2 pp Ht p¤, Dũ t q, b0 t ρt D 2 pp Ht p¤, Dũ t qDf m ũt f m mt D 2 pp Ht p¤, Dũ t qDz t mt D 3 ppp Ht p¤, Dũ t qDz t Df m ũt , f 0 t d D 2 pp Ht p¤, Dũ t q, Dz t Df m ũt h ¡ δ 2 Ft δm 2 p¤, m t qpρ t , f m m t q, g0 T δ 2 G δm 2 p¤, m T qpρ T , f m m T q. ( 139 
)
Recall from Theorem 4.3 and Lemma 4.9 on the one hand and from Corollary 4.19 on the other hand that we can find a constant C (the value of which is allowed to increase from line to line), independent of m 0 , y, ζ, and k, such that 

essup ωΩ sup tr0,T s }ũ t } n 1 α ¤ C, essup ωΩ sup tr0,T s }z t } n 1 α }f m ũt } n 1 α }ρ t } ¡pn α I q }f m mt } ¡pn α I q ¨% ¤ C. (140) 
I q ¤ C. (142) 
On the model of Lemma 5.4, we claim:

Lemma 5.9. The function rT d s 2 px, y, ζq Þ Ñ v p0,0q px, m 0 , y, ζq admits continuous crossed derivatives in py, ζq, up to the order n ¡ 1 in y and to the order n ¡ 1 in ζ, the derivative 

D y D k ζ v p0,0q p¤, m 0 , y, ζq : T d x Þ Ñ D y D k ζ v p0,0q px, m 0 , y, ζq, for | |, |k| ¤ n ¡ 1, belonging to C n 1 α pT d
k,ζ t ¡ zk,ζ I t } n 1 α sup tr0,T s }ρ k,ζ t ¡ ρk,ζ I t } ¡pn α I ¡1q & ¤ C|ζ ¡ ζ I | α I , essup ωΩ sup tr0,T s }z ,y t ¡ z ,y I t } n 1 α sup tr0,T s }ρ ,y t ¡ ρ ,y I t } ¡pn α I ¡1q & ¤ C|y ¡ y I | α I . (143) 
Denote now by p b ,k,y,ζ t q tr0,T s the process p b0 t q tr0,T s in (139) when pρ t , zt q tr0,T s stands for the process pρ ,y t , z ,y t q tr0,T s and pf m mt , f m ũt q tr0,T s is replaced by pρ k,ζ t , zk,ζ t q tr0,T s . Define in a similar way p f ,k,y,ζ t q tr0,T s and g ,k,y,ζ T . Then, combining (143) with (140) and (141)

essup ω g ,k,y I ,ζ I T ¡ g ,k,y,ζ T n 1 α sup tr0,T s ¡ b ,k,y I ,ζ I t ¡ b ,k,y,ζ t ¡pn α I ¡1q f ,k,y I ,ζ I t ¡ f ,k,y,ζ t n α ©% ¤ C |y ¡ y I | α I |z ¡ z I | α I ¨.
By Proposition 4.18, we deduce that v p ,kq p¤, m 0 , y, ζq ¡ v p ,kq p¤, m 0 , y I , ζ I q

n 1 α ¤ C |y ¡ y I | α I |ζ ¡ ζ I | α I ¨, (144) 
which provides the last claim in the statement (the L V bound following from (142)). Now, by Lemma v p ,kq p¤, m 0 , y, ζ he j q ¡ v p ,kq p¤, m 0 , y, ζq ¨¡ v p ,k e j q p¤, m 0 , y, ζq Similarly, we can prove that D y v p0,kq px, m 0 , y, ζq v p ,kq px, m 0 , y, ζq, x, y, ζ T d .

Together with the continuity property (144), we complete the proof.

We claim that Proposition 5.10. We can find a constant C such that, for any m 0 , m I 0 PpT d q, any y, y

I , ζ T d , any multi-indices , k with | |, |k| ¤ n ¡ 1, v p ,kq p¤, m 0 , y, ζq ¡ v p ,kq p¤, m I 0 , y, ζq n 1 α ¤ Cd 1 pm 0 , m I 0 q.
Proof. The proof consists of a new application of Proposition 4.18. Given

• the solutions p mt , ũt q tr0,T s and p mI t , ũI t q tr0,T s to (78) with m0 m 0 and mI 0 m I 0 as respective initial conditions,

• the solutions pf m mt , f m ũt q tr0,T s and pf m mI t , f m ũI t q tr0,T s to (137), with p mt , ũt q tr0,T s and p mI t , ũI t q tr0,T s as respective input and f m m0 f m mI 0 p¡1q |k| D k δ ζ as initial condition, for some multi-index k with |k| ¤ n ¡ 1 and for some ζ T d , • the solutions pρ t , zt q tr0,T s and pρ I t , zI t q tr0,T s to (137), with p mt , ũt q tr0,T s and p mI t , ũI t q tr0,T s as respective input and p¡1q | | D δ y as initial condition, for some multi-index with | | ¤ n ¡ 1 and for some y T d ,

• the solutions pρ p2q t , zp2q

t q tr0,T s and pρ p2qI t , zp2qI

t q tr0,T s to the second-order linearized system (138) with p mt , ũt , ρt , zt , f m mt , f m ũt q tr0,T s and p mI t , ũI t , ρI t , zI t , f m mI t , f m ũI t q tr0,T s as respective input and with 0 as initial condition.

Notice from (134) that z0 v p q p¤, m 0 , yq and zI 0 v p q p¤, m I 0 , yq.

With each of p mt , ũt , ρt , zt , f m mt , f m ũt q tr0,T s and p mI 

} Ṽt ¡ Ṽ I t } n α }Γ t ¡ Γ I t } 0 }b 0 t ¡ b 0 I t } ¡pn α I ¡1q }f 0 t ¡ f 0I t } n α }g 0 T ¡ g 0I T } n 1 α ¤ C ¡ }ũ t ¡ ũI t } n 1 α }z t ¡ zI t } n 1 α }f m ũt ¡ f m ũI t } n 1 α d 1 p mt , mt I q }ρ t ¡ ρI t } ¡pn α I ¡1q }f m mt ¡ f m mI t } ¡pn α I ¡1q © .
By Propositions 4.18 and 5.7 (applied with both n and n ¡ 1), we complete the proof.

On the model of Lemma 5.5, we have Lemma 5.11. Given a finite measure µ on T d , the solution zp2q to (132), with 0 as initial condition, when p mt q 0¤t¤T is initialized with m 0 , pρ t q 0¤t¤T is initialized with p¡1q | | D δ y , for | | ¤ n ¡ 1 and y T d , and pf m mt q 0¤t¤T is initialized with µ, reads, when taken at time 0, zp2q 0 : R d x Þ Ñ zp2q 0 pxq ˆTd v p ,0q px, m 0 , y, ζqdµpζq.

Now,

Proposition 5.12. We can find a constant C such that, for any multi-index with | | ¤ n ¡ 1, any m 0 , m I 0 PpT d q and any y T d , v p q p¤, m I 0 , yq ¡ v p q p¤, m 0 , yq ¡ ˆTd v p ,0q p¤, m 0 , y, ζqd m I 0 ¡ m 0 qpζq n 1 α ¤ Cd 2 1 pm 0 , m I 0 q.

Proof. We follow the lines of the proof of Proposition 5.6. Given two initial conditions m 0 , m I 0 PpT d q, we consider

• the solutions p mt , ũt q tr0,T s and p mI t , ũI t q tr0,T s to (78) with m0 m 0 and mI 0 m I 0 as respective initial conditions,

• the solution pf m mt , f m ũt q tr0,T s to (132), when driven by the input p mt , ũt q tr0,T s and by the initial condition f m m0 m I 0 ¡ m 0 , • the solutions pρ t , zt q tr0,T s and pρ I t , zI t q tr0,T s to (137), with p mt , ũt q tr0,T s and p mI t , ũI t q tr0,T s as respective input and p¡1q | | D δ y as initial condition, for some multi-index with | | ¤ n ¡ 1 and for some y T d , • the solution pρ p2q t , zp2q

t q tr0,T s to (138) with p mt , ũt , ρt , zt , f m mt , f m ũt q tr0,T s as input and 0 as initial condition. 

¡ ¡ δ Ft δm p¤, m I t qpρ I t q ¡ δ Ft δm p¤, m t qpρ I t q ¡ δ 2 Ft δm 2 p¤, m t qpρ t , f m m t q © , gT δ G δm p¤, m I T qpρ I T q ¡ δ G δm p¤, m T qpρ I T q ¡ δ 2
G δm 2 p¤, m T qpρ T , f m m T q, and where p Mt q tr0,T s is a square integrable martingale as in (107). 

ρ I t ¡ ρ t ¨ ¡ δ Ft δm p¤, m I t qpρ t q ¡ δ Ft δm p¤, m t qpρ t q ¡ δ 2 Ft δm 2 p¤, m t qpρ t , f m m t q Similarly, gT ¡ δ G δm p¤, m I T q ¡ δ G δm p¤, m T q © ρ I T ¡ ρ T ¨ ¡ δ G δm p¤, m I t qpρ T q ¡ δ G δm p¤, m t qpρ T q ¡ δ 2 G δm 2 p¤, m T qpρ T , f m m T q © .
Applying Theorem 4.3, Lemma 4.9, Propositions 5.6 and 5.7 and ( 140) and (141) and using the same kind of Taylor expansion as in the proof of Proposition 5.6, we deduce that :

essup ωΩ sup tr0,T s } bt } ¡pn α I ¡1q } ft } n α }g T } n 1 α % ¤ Cd 2 1 pm 0 , m I 0 q.
By Proposition 4.18, we complete the proof.

We thus deduce:

Proposition 5.13. For any x T d , the function PpT d q m Þ Ñ U p0, x, mq is twice differentiable in the direction m and the second-order derivatives read, for any m PpT d q δ 2 U δm 2 p0, x, m, y, y I q v p0,0q px, m, y, y I q, y, y I T d . In particular, for any α I p0, αq, t r0, T s and m PpT d q, the function rδ 2 U {δm 2 sp0, ¤, m, ¤, ¤q belongs to C n 1 α I pT d q ¢ C n¡1 α I pT d q ¢ C n¡1 α I pT d q and the mapping

PpT d q m Þ Ñ δ 2 U
δm 2 p0, ¤, m, ¤, ¤q C n 1 α I pT d q ¢ C n¡1 α I pT d q ¢ C n¡1 α I pT d q is continuous (with respect to d 1 ). The derivatives in y and y I read:

D y D k y I δ 2 U
δm 2 p0, x, m, y, y I q v p ,kq px, m, y, y I q, y, y I T d , |k|, | | ¤ n ¡ 1. Proof. By Proposition 5.12, we indeed know that, for any multi-index with | | ¤ n ¡ 1 and any x, y T d , the mapping PpT d q m Þ Ñ D y rδU{δmsp0, x, m, yq is differentiable with respect to m, the derivative writing, for any m PpT d q, δ δm D y δU δm % p0, x, m, y, y I q v p ,0q p0, x, m, y, y I q, y, y I T d .

By Lemma 5.9, rδ{δmsrD y rδU{δmssp0, x, m, y, y I q is n ¡ 1 times differentiable with respect to y I and, together with Proposition 5.10, the derivatives are continuous in all the parameters.

Making use of Schwarz' Lemma 2.4, the proof is easily completed. 

Proof of Theorem 2.11

We now prove Theorem 2.11. Of course the key point is to prove that U , as constructed in the previous, subsection is a solution of the master equation [START_REF] Huang | An Invariance Principle in Large Population Stochastic Dynamic Games[END_REF].

Regularity Properties of the Solution

The regularity properties of U follow from Subsections 5.1, 5.2 and 5.3, see in particular Propositions 5.13 and 5.14 (pay attention that, in the statements of Theorem 2.11 and of Proposition 5.13, the indices of regularity in y and y I are not exactly the same).

Derivation of the Master Equation

We now have all the necessary ingredients in order to derive the master equation satisfied by U . The first point is to recall that, whenever the forward component p mt q trt 0 ,T s in ( 128) is initialized with m 0 PpT d q at time t 0 , then U pt 0 , x, m 0 q ũt 0 pxq, x T d , pũ t q trt 0 ,T s denoting the backward component in (128). Moreover, by Lemma 5.1, for any h rT ¡ t 0 s, ũt 0 h pxq U t 0 h, x c 2pW t 0 h ¡ W t 0 q, m t 0 ,t 0 h ¨, x T d , where m t 0 ,t the image of mt by the random mapping

T d x Þ Ñ x c 2pW t ¡ W t 0 q that is m t 0 ,t rid c 2pW t ¡ W t 0 qsU mt .
In particular, we can write U pt 0 h, x, m 0 q ¡ U pt 0 , x, m 0 q

h E U t 0 h, x c 2pW t 0 h ¡ W t 0 q, m t 0 ,t 0 h ¨$ ¡ U pt 0 , x, m 0 q h U pt 0 h, x, m 0 q ¡ E U t 0 h, x c 2pW t 0 h ¡ W t 0 q, m t 0 ,t 0 h ¨$ h Erũ t 0 h pxqs ¡ ũt 0 pxq h U pt 0 h, x, m 0 q ¡ E U t 0 h, x c 2pW t 0 h ¡ W t 0 q, m t 0 ,t 0 h ¨$ h . (145) 
We start with the first term in the right-hand side of (145). Following (83), we deduce from the backward equation in (128) that, for any x T d ,

d t E ũt x ¨¨$ E 2 ¡∆ũ t Ht 0 ,t p¤, Dũ t q ¡ Ft 0 ,t p¤, m t 0 ,t q @ pxq % dt,
where the coefficients Ft 0 ,t and Ht 0 ,t are given by (129). In particular, thanks to the regularity property in Corollary 5.2, we deduce that lim h×0 Erũ t 0 h pxqs ¡ ũt 0 pxq h ¡∆ x U pt 0 , m 0 , xq H x, D x U pt 0 , m 0 , xq ¨¡ F x, m 0 ¨. (146) In order to pass to the limit in the last term in (145), we need a specific form of Itô's formula. The precise version is given in Lemma 5.15 below. Applied to the current setting, with

β t p¤q D p H ¤, D x U pt, ¤, m t 0 ,t q ¨, it says that lim h×0 1 h E U t 0 h, x c 2pW t 0 h ¡ W t 0 q, m t 0 ,t 0 h ¨¡ U t 0 h, x, m 0 ¨% ∆ x U pt 0 , x, m 0 q 2 ˆTd div y D m U $ t 0 ,
x, m 0 , y ¨dm 0 pyq ¡ ˆTd D m U t 0 , x, m 0 , y ¨Dp H y, DU pt 0 , y, m 0 q ¨dm 0 pyq

2 ˆTd div x D m U $ t 0 , x, m 0 , y ¨dm 0 pyq ˆrT d s 2
Tr D 2 mm U t 0 , x, m 0 , y, y I ¨%dm 0 pyqdm 0 py I q.

(147)

From ( 146) and (147), we deduce that, for any px, m 0 q T d ¢ PpT d q, the mapping r0, T s t Þ Ñ U pt, x, m 0 q is right-differentiable and, for any t 0 r0, T q,

lim h×0 U pt 0 h, x, m 0 q ¡ U pt 0 , x, m 0 q h ¡2∆ x U pt 0 , x, m 0 q H x, D x U pt 0 , x, m 0 q ¨¡ F x, m 0 ¡ 2 ˆTd div y D m U $ t 0 ,
x, m 0 , y ¨dm 0 pyq ˆTd D m U t 0 , x, m 0 , y ¨Dp H y, DU pt 0 , y, m 0 q ¨dm 0 pyq ¡ 2 ˆTd div x D m U $ t 0 , x, m 0 , y ¨dm 0 pyq ¡ ˆrT d s 2 Tr D 2 mm U t 0 , x, m 0 , y, y I ¨%dm 0 pyqdm 0 py I q.

Since the right-hand side is continuous in pt 0 , x, m 0 q, we deduce that U is continuously differentiable in time and satisfies the master equation [START_REF] Huang | An Invariance Principle in Large Population Stochastic Dynamic Games[END_REF].

Uniqueness

It now remains to prove uniqueness. Considering a solution V to the master equation [START_REF] Huang | An Invariance Principle in Large Population Stochastic Dynamic Games[END_REF] along the lines of Definition 2.10, the strategy is to expand

ũI t V t, x c 2W t , m I t ¨, t r0, T s,
where, for a given initial condition m 0 PpT d q, m I t is the image of mI t by the mapping

T d x Þ Ñ x c
2W t , p mI t q tr0,T s denoting the solution of the Fokker-Planck equation

d t mI t 3 ∆ mI t div mI t D p Ht ¤, D x V pt, x c 2W t , mI t q ¨¨A dt,
which reads, for almost every realization of pW t q tr0,T s , as the flow of conditional marginal distributions (given pW t q tr0,T s ) of the McKean-Vlasov process

dX t ¡D p Ht X t , D x V pt, x c 2W t , LpX t |Wqq ¨dt c 2dB t , t r0, T s, (148) 
X 0 having m 0 as distribution. Notice that the above equation is uniquely solvable since D x V is Lipschitz continuous in the space and measure arguments (by the simple fact that D 2 x V and D m D x V are continuous functions on a compact set). We refer to [START_REF] Sznitman | Topics in propagation of chaos[END_REF] for standard solvability results for McKean-Vlasov SDEs (which may be easily extended to the current setting).

Of course, the key point is to prove that the pair p mI t , ũI t q tr0,T s solves the same forwardbackward system (78) as p mt , ũt q tr0,T s , in which case it will follow that V p0, x, m 0 q ũI 0 ũ0 U p0, x, m 0 q. (The same argument may be repeated for any other initial condition with another initial time.)

The strategy consists of a suitable application of Lemma 5.15 below. Given 0 ¤ t ¤ t h ¤ T , we have to expand the difference

E V t h, x c 2W t h , m I t h ¨|F t $ ¡ V t, x c 2W t , m I t E V t h, x c 2W t h , m I t h ¨|F t $ ¡ V t h, x c 2W t , m I t ¨ V t h, x c 2W t , m I t ¨¡ V t, x c 2W t , m I t S 1 t,h S 2 t,h . (149) 
By Lemma 5.15 below, with 

β t p¤q D p H ¤, D x V pt, ¤, m I t q ¨, t r0, T s, it holds that S 1 t,h h ∆ x V t, x c 2W t , m I t ¨ 2 ˆTd div y D m V $ t, x c 2W t , m I t , y ¨dm I t pyq ¡ ˆTd D m V t, x c 2W t , m I t , y ¨¤ D p H y, D x V pt, y, m I t q ¨dm I t pyq 2 ˆTd div x D m V $ t,
where pε s,t q s,trt 0 ,T s:s¤t is a family of real-valued random variables such that lim h×0 sup s,trt 0 ,T s:|s¡t|¤h

E |ε s,t | $ 0.
Expand now S 2 t,h in (149) at the first order in t and use the fact that f t V is uniformly continuous on the compact set r0, T s ¢ T d ¢ P 2 pT d q. Combining (149), (150) and the master PDE [START_REF] Huang | An Invariance Principle in Large Population Stochastic Dynamic Games[END_REF] satisfied by V , we deduce that

E V t h, x c 2W t h , m I t h ¨|F t $ ¡ V t, x c 2W t , m I t ¡h ∆ x V t, x c 2W t , m I t ¨¡ H x c 2W t , D x V pt, x c 2W t , m I t q ¨ F x c 2W t , m I t ¨ ε t,t h % .
Considering a partition t t 0 t 1 ¤ ¤ ¤ t N T of rt, T s of step size h, the above identity yields

E G x c 2W T , m I T ¨¡ V t, x c 2W t , m I t ¨|F t $ ¡h N ¡1 i0 ∆ x V t i , x c 2W t i , m I t i ¨¡ H x c 2W t i , D x V pt i , x c 2W t i , m I t i q ¨ F x c 2W t i , m I t i ¨% h N ¡1 i0 E ε t i ,t i h |F t $ .
Since lim sup h×0 sup r,sr0,T s:|r¡s|¤h 

E § § E ε r,s |F t $ § § % ¤
the proof just consisting in bounding |η s,t | by w γ phq, where w γ stands for the pathwise modulus of continuity of pγ t q tr0,T s , which satisfies, thanks to (151) and Lebesgue's dominated convergence theorem, lim h×0

Erw γ phqs 0. Therefore, allowing for a modification of the random variables ε t i ,t i h , for i 0, . . . , N ¡ 1, we deduce that

E G x c 2W T , m I T ¨¡ V t, x c 2W t , m I t ¨|F t $ ¡ ˆT t ∆ x V s, x c 2W s , m I s ¨¡ H x c 2W s , D x V ps, x c 2W s , m I s q ¨ F x c 2W s , m I s ¨%ds h N ¡1 i0 ε t i ,t i h .
Letting, for any x T d , M I

t pxq V t, x c 2W t , m I t ¨ ˆt 0 ∆ x V s, x c 2W s , m I s ¨¡ H x c 2W s , D x V ps, x c 2W s , m I s q ¨ F x c 2W s , m I s ¨%ds,
we deduce that

E M I T pxq ¡ M I t pxq|F t $ h N ¡1 i0 ε t i ,t i h .
Now, letting h tend to 0, we deduce that p M I t pxqq tr0,T s is a martingale. Thanks to the regularity properties of V and its derivatives, it is bounded. Letting ṽt pxq V pt, x c 2W t , m I t q, t r0, T s, we finally notice that ṽt pxq GT px, m I T q ˆT t ∆ x ṽs pxq ¡ Hs x, Dṽ s pxq ¨ F px, m I s q $ ds ¡ M I T ¡ M I t ¨pxq, t r0, T s, which proves that p mI t , ṽt , M I t q tr0,T s solves (78).

Tailor-made Itô's Formula

Let U be a function satisfying the same assumption as in Definition 2.10 and, for a given t 0 r0, T s, p mt q trt 0 ,T s be an adapted process with paths in C 0 prt 0 , T s, PpT d qq such that, with probability 1, for any smooth test function ϕ C n pT d q,

d t ˆT d ϕpxqd mt pxq & 4ˆT d ∆ϕpxq ¡ xβ t x c 2pW t ¡ W t 0 q ¨, Dϕpxqy $ d mt pxq B dt, t rt 0 , T s, (153) 
for some adapted process pβ t q trt 0 ,T s , with paths in C 0 prt 0 , T s, rC 0 pT d qs d q, such that essup ωΩ sup trt 0 ,T s }β t } 0 V, so that, by Lebesgue's dominated convergence theorem,

lim hÑ0 E sup s,tr0,T s,|t¡s|¤h }β s ¡ β t } 0 $ 0.
In other words, p mt q trt 0 ,T s stands for the flow of conditional marginal laws of pX t q trt 0 ,T s given F T , where pX t q trt 0 ,T s solves the stochastic differential equation:

dX t ¡β t X t c 2pW t ¡ W t 0 q ¨dt c
2dB t , t rt 0 , T s, X t 0 being distributed according to m t 0 conditional on F T . In particular, there exists a deterministic constant C such that, with probability 1, for all t 0 ¤ t ¤ t h ¤ T ,

d 1 p mt h , mt q ¤ C c h.
Given some t rt 0 , T s, we denote by m t p¤ Þ Ñ ¤ c 2pW t ¡ W t 0 qqU mt the push-forward of mt by the application T d x Þ Ñ x W t ¡ W t 0 T d (so that m t 0 mt 0 ).

We then have the local Itô-Taylor expansion: Lemma 5.15. Under the above assumption, we can find a family of real-valued random variables pε s,t q s,trt 0 ,T s:s¤t such that lim h×0 sup s,trt 0 ,T s:|s¡t|¤h

E |ε s,t | $ 0,
and, for any t rt 0 , T s,

1 h E U t h, x c 2pW t h ¡ W t 0 q, m t h ¨¡ U t h, x c 2pW t h ¡ W t 0 q, m t ¨|F t $ % ∆ x U t, x c 2pW t ¡ W t 0 q, m t ¨ 2 ˆTd div y D m U $ t, x c 2pW t ¡ W t 0 q, m t , y ¨dm t pyq ¡ ˆTd D m U t, x c 2pW t ¡ W t 0 q, m t , y ¨¤ β t pyqdm t pyq 2 ˆTd div x D m U $ t, x c 2pW t ¡ W t 0 q, m t , y ¨dm t pyq ˆrT d s 2 Tr D 2 mm U % t, x c
2pW t ¡ W t 0 q, m t , y, y I ¨dm t pyqdm t py I q ε t,t h .

Proof. Without any loss of generality, we assume that t 0 0. Moreover, throughout the analysis, we shall use the following variant of (152): For two random processes pγ t q tr0,T s and pγ I t q tr0,T s , with paths in C 0 pr0, T s, C 0 pEqq and C 0 pr0, T s, F q respectively, where E is a compact metric space Now, for given t r0, T q and h p0, T ¡ts, we let δ h W t W t h ¡W t and δ h m t m t,t h ¡m t . By Taylor-Lagrange's formula, we can find some random variable λ with values in r0, 1s 5 such that 5 The fact that λ is a random variable may be justified as follows. Given a continuous mapping ϕ from T d ¢ PpT d q into R and two random variables pX, mq and pX I , m I q with values in pR d , PpT d qq such that the mapping r0, 1s c Þ Ñ ϕpcX I p1 ¡ cqX, cm I p1 ¡ cqmq vanishes at least once, the quantity λ inftc r0, 1s : ϕpcX I p1 ¡ cqX, cm I p1 ¡ cqmq 0u defines a random variable since tλ ¡ cu nNzt0u c 1 Qr0,cs tϕpc I X I p1 ¡ c I qX, c I m I p1 ¡ c I qmqϕpX, mq ¡ 1{nu.

U t h, x c 2W t h , m t h ¨¡ U t h, x c 2W t , m t c 2D x U t h, x c 2W t , m t ¨¤ δ h W t ˆTd δU δm t h, x c 2W t , m t , y ¨d δ h m t ¨pyq D 2 x U t h, x c 2W t c 2λδ h W t , m t λδ h m t ¨¤ pδ h W t q 2 c 2 ˆTd D x δU δm t h, x c 2W t c 2λδ h W t , m t λδ h m t , y ¨¤ δ h W t d δ h m t ¨pyq 1 2 ˆrT d s 2 δ 2 U δm 2 t h, x c 2W t c 2λδ h W t , m t λδ h m t , y, y I ¨d δ h m t ¨pyqd δ h m t ¨py I q T 1 h T 2 h T 3 h T 4 h T 5 h , (155) 
where we used the dot "¤" to denote the inner product in Euclidean spaces. Part of the analysis relies on the following decomposition. Given a bounded and Borel measurable function ϕ : 

T d Ñ R,
ˆrT d s 2 ϕ y c 2δ h W t , y I c 2δ h W t ¨¡ ϕ y c 2δ h W t , y I ¡ ϕ y, y I c 2δ h W t ¨
ϕpy, y I q % dm t pyqdm t py I q.

We now proceed with the analysis of (155). We start with T 

Turn now to T 3 h in (155). Using again (154), it is quite clear that

1 h E T 3 h |F t $ ∆ x U pt, x c 2W t , m t q ε t,t h . (163) 
We now handle T 4 h . Following (156), we write

T 4 h c 2 ˆTd D x δU δm t h, x c 2W t c 2λδ h W t , m t λδ h m t , y c 2W t h ¤ δ h W t % d mt h ¡ mt ¨pyq c 2 ˆTd D x δU δm t h, x c 2W t c 2λδ h W t , m t λδ h m t , y c 2δ h W t ¡ D x δU δm t h, x c 2W t c 2λδ h W t , m t λδ h m t , y ¨% ¤ δ h W t dm t pyq T 4,1 h T 4,2 h .
Making use of the forward Fokker-Planck equation for p mt q trt 0 ,T s as in the proof of (162), we

get that 1 h E T 4,1 h |F t $ ε t,t h .
Now, by Taylor-Lagrange's formula, we can find another r0, 1s-valued random variable λ I such that

T 4,2 h 2 ˆTd D y D x δU δm t h, x c 2W t c 2λδ h W t , m t λδ h m t , y c 2λ I δ h W t ¤ pδ h W t q 2 % dm t pyq.
And, then,

1 h E T 4 h |F t $ 1 h E T 4,2 h |F t $ ε t,t h 2 ˆTd div y D x δU δm $ t, x c 2W t , m t , y ¨dm t pyq ε t,t h 2 ˆTd div x D y δU δm $ t, x c 2W t , m t , y ¨dm t pyq ε t,t h . (164) 
It finally remains to handle T 5 h . Thanks to (157), we write

T 5 h 1 2 ˆrT d s 2 δ 2 U δm 2 t h, x c 2W t c 2λδ h W t , m t λδ h m t , y c 2W t h , y I c 2W t h d mt h ¡ mt ¨pyqd mt h ¡ mt ¨py I q 1 2 ˆrT d s 2 δ 2 U δm 2 t h, x c 2W t c 2λδ h W t , m t λδ h m t , y c 2δ h W t , y I c 2W t h ¡ δ 2 U δm 2 t h, x c 2W t c 2λδ h W t , m t λδ h m t , y, y I c 2W t h ¨&dm t pyq d mt h ¡ mt ¨py I q 1 2 ˆrT d s 2 δ 2 U δm 2 t h, x c 2W t c 2λδ h W t , m t λδ h m t , y c 2W t h , y I c 2δ h W t ¡ δ 2 U δm 2 t h, x c 2W t c 2λδ h W t , m t λδ h m t , y c 2W t h , y I ¨&d mt h ¡ mt ¨pyq dm t py I q 1 2 ˆrT d s 2 δ 2 U δm 2 t h, x c 2W t c 2λδ h W t , m t λδ h m t , y c 2δ h W t , y I c 2δ h W t ¡ δ 2 U δm 2 t h, x c 2W t c 2λδ h W t , m t λδ h m t , y c 2δ h W t , y I ¡ δ 2 U δm 2 t h, x c 2λδ h W t , m t λδ h m t , y, y I c 2δ h W t ¨ δ 2 U δm 2 t h, x c 2W t c 2λδ h W t , m t λδ h m t , y, y I ¨&dm t pyqdm t py I q 1 2 T 5,1 h T 5,2 h T 5,3 h T 5,4 h ¨. (165) 
Making use of the Fokker-Planck equation satisfied by p mt q trt 0 ,T s together with the regularity assumptions of δ 2 U {δm 2 in Definition 2.10, it is readily seen that

1 h E T 5,1 h T 5,2 h T 5,3 h |F t $ ε t,t h . (166) 
Focus now on T 5,4 h . With obvious notation, write it under the form

T 5,4 h T 5,4,1 h ¡ T 5,4,2 h ¡ T 5,4,3 h T 5,4,4 h . ( 167 
)
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Performing a second-order Taylor expansion, we get

T 5,4,1 h ˆrT d s 2 δ 2 U δm 2 t h, x c 2W t c 2λδ h W t , m t λδ h m t , y, y I ¨dm t pyqdm t py I q ˆrT d s 2 c 2D y δ 2 U δm 2 t h, x c 2W t c 2λδ h W t , m t λδ h m t , y, y I ¨¤ δ h W t dm t pyqdm t py I q ˆrT d s 2 c 2D y I δ 2 U δm 2 t h, x c 2W t c 2λδ h W t , m t λδ h m t , y, y I ¨¤ δ h W t dm t pyqdm t py I q ˆrT d s 2 D 2 y δ 2 U δm 2 t h, x c 2W t c 2λδ h W t , m t λδ h m t , y, y I ¨¤ δ h W t ¨2 dm t pyqdm t py I q ˆrT d s 2 D 2 y I δ 2 U δm 2 t h, x c 2W t c 2λδ h W t , m t λδ h m t , y, y I ¨¤ δ h W t ¨2 dm t pyqdm t py I q ˆrT d s 2 2D y D y I δ 2 U δm 2 t h, x c 2W t c 2λδ h W t , m t λδ h m t , y, y I ¨¤ δ h W t ¨2 dm t pyqdm t py I q ε t,t h T 5,4,4 h I 1 h I 2 h J 1 h J 2 h J 1,2 h hε t,t h .
Similarly, we get

T 5,4,2 h T 5,4,4 h I 1 h J 1 h hε t,t h , T 5,4,3 h T 5,4,4 h I 2 h J 2 h hε t,t h ,
from which, together with (167), we deduce that

T 5,4 h J 1,2 h hε t,t h , (168) 
and then, with (166),

1 h E T 5 h |F t $ 1 2h E T 5,4 h |F t $ ε t,t h ˆrT d s 2 Tr D y D y I δ 2 U δm 2 t, x c 2W t , m t , y, y I ¨%dm t pyqdm t py I q ε t,t h . (169) 
From ( 155), ( 158), ( 162), ( 163), ( 164) and (169), we deduce that, for some family pη s,t q s,tr0,T s:s¤t that must satisfy (174). With such a decomposition, it holds that Erη t,t h |F t s 0. Therefore, for any t r0, T s and any partition 0 r 0 r 1 r 2 ¤ ¤ ¤ r N t, we have

1 h E U t h, x c 2W t h , m t ¨¡ U t h, x c 2W t , m t ¨|F t $ % ∆ x U pt, x c 2W t , m t q 2 ˆTd div y D m U $ t, x c 2W t , m t , y ¨dm t pyq ¡ ˆTd D m U t, x c 2W t , m t , y ¨¤ β t pyqdm t pyq 2 ˆTd div x D m U $ t, x c 2W t ,
N ¡1 i0 ¡ U pr i 1 , x, m r i 1 q ¡ E U pr i 1 , x, m r i 1 q|F r i $ © N ¡1 i0 c 2 ¢ˆT d D y δU δm pr i , x, m r i , yqdm r i pyq ¤ W r i 1 ¡ W r i ¨ η r i ,r i 1 & , with the property that E η r i ,r i 1 |F r i $ 0, E |η r i ,r i 1 | 2 $ ¤ π r i ,r i 1 |r i 1 ¡ r i |,
where lim h×0 sup ps,tqr0,Ts 2 :|s¡t|¤h π s,t 0. By a standard computation of conditional expectation, we have that

lim δÑ0 E § § § N ¡1 i0 η r i ,r i 1 §
where δ stands for the mesh of the partition r 0 , r 1 , . . . , r N . As a consequence, the following limit holds true in L 2 :

lim δ×0 N ¡1 i0 ¡ U pr i 1 , x, m r i 1 q ¡ E U pr i 1 , x, m r i 1 q|F r i $ © c 2 ˆt 0 D m U ps, x, m s , yq ¤ dW s .
Together with (173), we deduce that 

d t u t pxq 4 f t U t, x, m t ¨ ˆTd 2div y D m U $ pt, x, m t , yq ¡ D m U pt, x,
F px, m t q ¡ c 2div v t pxq ¨A dt v t pxq ¤ c 2dW t .
Together with (172), this completes the proof of the existence of a solution to (170).

Second step. Uniqueness of the solution. We now prove uniqueness of the solution to (170).

Given a solution pu t , m t q tr0,T s (with some pv t q tr0,T s ) to (170), we let ũt pxq u t px c 2W t q, x T d , mt pid ¡ c 2W t qUm t , t r0, T s. In order to prove uniqueness, it suffices to show that pũ t , mt q tr0,T s is a solution to (171) (for some martingale p Mt q tr0,T s ).

We first investigate the dynamics of p mt q tr0,T s . As in the first step (existence of a solution),

we may apply Itô-Wenztell formula for distribution-valued processes. Indeed, thanks to [43, Theorem 1.1] (with the formal writing p mt pxq m t px c 2W t qq tr0,T s ), we get exactly that p mt q tr0,T s satisfy the first equation in (171).

In order to prove the second equation in (171), we apply Itô-Wentzell formula for real-valued processes to pũ t pxq u t px c 2W t qq tr0,T s , see [START_REF] Krylov | On the Itô-Wentzell formula for distribution-valued processes and related topics[END_REF]Theorem 3.1].

Convergence of the Nash system

In this section, we consider, for an integer N ¥ 2, a classical solution pv N,i q it1,...,N u of the Nash system with a common noise:

¡f t v N,i pt, xq ¡ j ∆ x j v N,i pt, xq ¡ β j,k TrD 2 x j ,x k v N,i pt, xq H x i , D x i v N,i pt, xq ¨ j$i D p H x j , D x j v N,j pt, xq ¨¤ D x j v N,i pt, xq F px i , m N,i x q in r0, T s ¢ pT d q N , v N,i pT, xq Gpx i , m N,i x q in pT d q N , (175) 
where we set, for x px 1 , . . . , x N q pT d q N , m N,i x 1 N ¡ 1 j$i δ x j . Our aim is to prove Theorem 2.13, which says that the solution pv N,i q it1,...,N u converges, in a suitable sense, to the solution of the second order master equation and Theorem 2.15, which claims that the optimal trajectories also converge. Throughout this part we assume that H, F and G satisfy the assumption of Theorem 2.11

with n ¥ 2. This allows us to define U U pt, x, mq the solution of the second order master equation 6 9 9 9 9 9 9 9 9 9 9 8 9 9 9 9 9 9 9 9 9 9 7

¡f t U ¡ p1 βq∆ x U Hpx, D x U q ¡ p1 βq ˆTd div y rD m U s dmpyq ˆTd D m U ¤ D p Hpy, D x U q dmpyq ¡2β ˆTd div x rD m U s dmpyq ¡ β ˆrT d s 2 TrD 2 mm U dmpyqdmpzq F px, mq in p0, T q ¢ T d ¢ PpT d q, U pT, x, mq Gpx, mq in T d ¢ PpT d q, (176) 
where β ¥ 0 is a parameter for the common noise. For α I p0, αq, we have for any pt, xq r0,

T s ¢ T d , m, m I PpT d q }Upt, ¤, mq} n 2 α I δU δm pt, ¤, m, ¤q pn 2 α I ,n 1 α I q δ 2 U δm 2 pt, ¤, m, ¤, ¤q pn 2 α I ,n α I ,n α I q ¤ C 0 , (177) 
and that the mapping

r0, T s ¢ PpT d q pt, mq Þ Ñ δ 2 U δm 2 pt, ¤, m, ¤, ¤q C n 2 α I pT d q ¢ C n α I pT d q % 2 (178) 
is continuous. As already said, a solution of (176) satisfying the above properties has been built in Theorem 2.11. When β 0, one just needs to replace the above assumptions by those of Theorem 2.8, which does not require the second order differentiability of F and G with respect to m.

The main idea for proving the convergence of the pv N,i q it1,...,N u towards the solution U is to use the fact that suitable finite dimensional projections of U are nearly solutions to the Nash equilibrium equation. Actually, as we already alluded to at the end of Section 2, this strategy works under weaker assumptions than that required in the statement of Theorem 2.11. What is really needed is that H and D p H are globally Lipschitz continuous and that the master equation has a classical solution satisfying the conclusion of Theorem 2.11 (or Theorem 2.8 if β 0). In particular, the monotonicity properties of F and G have no role in the proof of the convergence of the N -Nash system. We refer to Remarks 6.5 and 6.7 below and we let the interesting reader reformulate the statements of Theorems 2.13 and 2.15 accordingly.

Finite dimensional projections of U

For N ¥ 2 and i t1, . . . , N u we set

u N,i pt, xq U pt, x i , m N,i x q where x px 1 , . . . , x N q pT d q N , m N,i x 1 N ¡ 1 j$i δ x j .
Note that the u N,i are at least C 2 with respect to the x i variable because so is U . Moreover, f t u N,i exists and is continuous because of the regularity of U . The next statement says that u N,i is actually globally C 2 in the space variables: Proposition 6.1. For any N ¥ 2, i t1, . . . , N u, u N,i is of class C 2 in the space variables, with

D x j u N,i pt, xq 1 N ¡ 1 D m U pt, x i , m N,i x , x j q pj $ iq, D 2 x i ,x j u N,i pt, xq 1 N ¡ 1 D x D m U pt, x i , m N,i x , x j q pj $ iq, D 2 x j ,x j u N,i pt, xq 1 N ¡ 1 D y rD m U s pt, x i , m N,i x , x j q 1 pN ¡ 1q 2 D 2 mm U pt, x i , m N,i x , x j , x j q pj $ iq while, if j $ k, D 2 x j ,x k u N,i pt, xq 1 pN ¡ 1q 2 D 2 mm U pt, x i , m N,i
x , x j , x k q pi, j, k distinctq.

Remark 6.2. If we only assume that U has a first order derivative with respect to m, one can show that, for any N ¥ 2, i t1, . . . , N u, u N,i is of class C 1 in all the variables, with

D x j u N,i pt, xq 1 N ¡ 1 D m U pt, x i , m N,i x , x j q dj $ i,
with a globally Lipschitz continuous space derivative. The proof is the same except that one uses Proposition 7.3 instead of Proposition 7.5.

Proof. For x px j q jt1,...,N u such that x j $ x k for any j $ k, let min j$k |x j ¡ x k |. For v pv j q pR d q N with v i 0 (the value of i t1, . . . , N u being fixed), we consider a smooth vector field φ such that φpxq v j if x Bpx j , {4q, where Bpx j , {4q is the ball of center x j and of radius {4. Then, in view of our assumptions (177) and (178) on U , Propositions 7.5 and 7.6 in Appendix imply that §

§ § § U t, x i , pid φqUm N,i x ¨¡ U t, x i , m N,i x ¨¡ ˆTd D m U t, x i , m N,i x , y ¨¤ φpyq dm N,i x pyq ¡ 1 2 ˆTd D y D m U $ t, x i , m N,i x , y ¨φpyq ¤ φpyq dm N,i x pyq ¡ 1 2 ˆTd ˆTd D 2 mm U t, x i , m N,i
x , y, y I ¨φpyq ¤ φpy I q dm N,i x pyqdm N,i

x py I q § § § § ¤ }φ} 2 L 3 m N,i x ωp}φ} L 3 m N,i x q,
for some modulus ω such that ωpsq Ñ 0 as s Ñ 0 . Therefore, u N,i pt,

x vq ¡ u N,i pt, xq U pid φqUm N,i x ¨¡ U pm N,i x q ˆTd D m U t, x i , m N,i x , y ¨¤ φpyq dm N,i x pyq 1 2 ˆTd D y D m U $ t, x i , m N,i x , y ¨φpyq ¤ φpyqdm N,i x pyq 1 2 ˆTd ˆTd D 2 mm U t, x i , m N,i x , y, z ¨φpyq ¤ φpzqdm N,i x pyqdm N,i x pzq }φ} 2 L 3 pm N,i x q ω }φ} L 3 pm N,i x q 1 N ¡ 1 j$i D m U t, x i , m N,i x , x j ¨¤ v j 1 2pN ¡ 1q j$i D y D m U $ t, x i , m N,i x , x j ¨vj ¤ v j 1 2pN ¡ 1q 2 j ,k$i D 2 mm U t, x i , m N,i x , x j , x k ¨vj ¤ v k |v| 2 ωp|v|q.
This shows that u N,i has a second order expansion at x with respect to the variables px j q j$i and that

D x j u N,i pt, xq 1 N ¡ 1 D m U t, x i , m N,i x , x j ¨pj $ iq, D 2 x j ,x j u N,i pt, xq 1 N ¡ 1 D y D m U $ t, x i , m N,i x , x j ¨ 1 pN ¡ 1q 2 D 2 mm U t, x i , m N,i x , x j , x j ¨pj $ iq while, if j $ k, D 2 x j ,x k u N,i pt, xq 1 pN ¡ 1q 2 D 2 mm U t, x i , m N,i x , x j , x k ¨pi, j, k distinctq.
So far we have proved the existence of first and second order space derivatives of U in the open subset of r0, T s ¢ pT d q N consisting in the points pt, xq pt, x 1 , ¤ ¤ ¤ x N q such that x i $ x j for any i $ j. As D m U , D y rD m U s and D 2 mm U are continuous, these first and second order derivatives can be continuously extended to the whole space r0, T s ¢ pT d q N , and therefore u N,i is C 2 with respect to the space variables in r0, T s ¢ T N d . We now show that pu N,i q it1,...,N u is "almost" a solution to the Nash system (175): Proposition 6.3. One has, for any i t1, . . . , N u, 

¡f t u N,i ¡ j ∆ x j u N,i ¡ β j,k TrD 2 x j ,x k u N,i Hpx i , D x i u N,i q j$i D x j u N,i pt, xq ¤ D p H x j , D x j u N,j pt, xq ¨ F px i , m N,i x q r N,i pt, xq in p0, T q ¢ T N d , u N,i pT, xq Gpx i , m N,i x q in T N d , (179) 
where r N,i C 0 pr0, T s ¢ T d q with }r N,i } V ¤ C N .

Remark 6.4. When β 0, we can require U to have only a first order derivative with respect to the measure, but in this case equation (179) only holds a.e. with r N,i L V still satisfying }r N,i } V ¤ C N .

Proof. As U solves (176), one has at a point pt,

x i , m N,i x q: ¡ f t U ¡ p1 βq∆ x U Hpx i , D x U q ¡ p1 βq ˆTd div y D m U $ t, x i , m N,i x , y ¨dm N,i x pyq ˆTd D m U t, x i , m N,i x , y ¨¤ D p H y, D x U pt, y, m N,i x q ¨dm N,i x pyq ¡ 2β ˆTd div x D m U $ t, x i , m N,i x , y ¨dm N,i x pyq ¡ β ˆTd TrD 2 mm U t, x i , m N,i x , y, z ¨dm N,i x pyqdm N,i x pzq F x i , m N,i x ¨.
So u N,i satisfies:

¡ f t u N,i ¡ p1 βq∆ x i u N,i Hpx i , D x i u N,i q ¡ p1 βq ˆTd div y D m U $ t, x i , m N,i x , y ¨dm N,i x pyq 1 N ¡ 1 j$i D m U t, x i , m N,i x , x j ¨¤ D p H x j , D x U pt, x j , m N,i x q ¡ 2β ˆTd div x D m U $ t, x i , m N,i x , y ¨dm N,i x pyq ¡ β ˆTd TrD 2 mm U t, x i , m N,i x , y, z ¨dm N,i x pyqdm N,i x pzq F px i , m N,i x q.
Note that, by Proposition 6.1,

1 N ¡ 1 D m U t, x i , m N,i x , x j ¨ D x j u N,i pt, xq.
In particular,

}D x j u N,i } V ¤ C N . (180) 
By the Lipschitz continuity of D x U with respect to m, we have

§ § D x U pt, x j , m N,i x q ¡ D x U pt, x j , m N,j x q § § ¤ Cd 1 pm N,i x , m N,j x q ¤ C N ¡ 1 , so that, by Lipschitz continuity of D p H, § § D p H x j , D x U pt, x j , m N,i x q ¨¡ D p H x j , D x j u N,j pt, xq ¨ § § ¤ C N . (181) 
Collecting the above relations, we obtain 1

N ¡ 1 j$i D m U t, x i , m N,i x , x j ¨¤ D p H x j , D x U pt, x j , m N,i x q j$i D x j u N,i pt, xq ¤ D p H x j , D x U pt, x j , m N,i x q j$i D x j u N,i pt, xq ¤ D p H x j , D x j u N,j pt, xq ¨ Op1{N q, 120 
where we used (180) in the last inequality. On the other hand,

N j1 ∆ x j u N,i β N j,k1 TrD 2 x j ,x k u N,i p1 βq∆ x i u N,i p1 βq j$i ∆ x j u N,i 2β j$i TrD 2 x i ,x j u N,i β j$k$i TrD 2 x j ,x k u N,i ,
where, using Proposition 6.1,

j$i ∆ x j u N,i pt, xq ˆTd div y D m U $ t, x i , m N,i x , y ¨dm N,i x pyq 1 N ¡ 1 ˆTd Tr D 2 mm U $ t, x i , m N,i x , y, y ¨dm N,i x pyq j$i TrD 2 x i ,x j u N,i pt, xq ˆTd div x D m U $ t, x i , m N,i x , y ¨dm N,i x pyq j$k$i TrD 2 x j ,x k u N,i pt, xq ˆTd ˆTd Tr D 2 mm U $ t, x i , m N,i x , y, z ¨dm N,i x pyqdm N,i x pzq. Therefore ¡ f t u N,i pt, xq ¡ j ∆ x j u N,i pt, xq ¡ β j,k TrD 2 x j ,x k u N,i pt, xq H x i , D x i u N,i pt, xq ¨ j$i D x j u N,i pt, xq ¤ D p H x j , D x j u N,j pt, xq ¨ 1 N ¡ 1 ˆTd TrD 2 mm U t, x i , m N,i
x , y, y ¨dm N,i

x pyq F px i , m N,i x q Op1{N q, which shows the result.

Remark 6.5. The reader may observe that, in addition to the existence of a classical solution U (to the master equation) satisfying the conclusion of Theorem 2.11, only the global Lipschitz property of D p H is used in the proof, see (181).

Convergence

We now turn to the proof of Theorem 2.13. For this, we consider the solution pv N,i q it1,...,N u of the Nash system (175). By uniqueness of the solution, the pv N,i q it1,...,N u must be symmetrical. By symmetrical, we mean that, for any x px l q lt1,...,N u T N d and for any indices j $ k, if x px l q lt1,...,N u is the N -tuple obtained from x by permuting the j and k vectors (i.e., xl x l for l tj, ku, xj x k , xk x j ), then v N,i pt, xq v N,i pt, xq if i tj, ku, while v N,i pt, xq v N,k pt, xq if i j, which may be reformulated as follows: There exists a function V N : T d ¢ rT d s N ¡1 Ñ R such that, for any x T d , the function rT d s N ¡1 py 1 , . . . , y N ¡1 q Þ Ñ V N px, py 1 , . . . , y N ¡1 qq is invariant under permutation, and di t1, . . . , N u, x rT d s N , v N,i pt, xq V N x i , px 1 , . . . , x i¡1 , x i 1 , . . . , x N q ¨. 121 Note that the pu N,i q it1,...,N u are also symmetrical.

The proof of Theorem 2.13 consists in comparing "optimal trajectories" for v N,i and for u N,i , for any i t1, . . . , N u. For this, let us fix t 0 r0, T q, m 0 PpT d q and let pZ i q it1,...,N u be an i.i.d family of N random variables of law m 0 . We set Z pZ i q it1,...,N u . Let also ppB i t q tr0,T s q it1,...,N u be a family of N independent d-dimensional Brownian Motions which is also independent of pZ i q it1,...,N u and let W be a d-dimensional Brownian Motion independent of the ppB i t q tr0,T s q it1,...,N u and pZ i q it1,...,N u . We consider the systems of SDEs with variables pX t pX i,t q it1,...,N u q tr0,T s and pY t pY i,t q it1,...,N u q tr0,T s (the SDEs being set on R d with periodic coefficients):

4 dX i,t ¡D p H X i,t , D x i u N,i pt, X t q ¨dt c 2dB i t c 2βdW t t rt 0 , T s X i,t 0 Z i , (182) 
and

4 dY i,t ¡D p H Y i,t , D x i v N,i pt, Y t q ¨dt c 2dB i t c 2βdW t t rt 0 , T s Y i,t 0 Z i . (183) 
Note that, since the pu N,i q it1,...,N u are symmetrical, the processes ppX i,t q trt 0 ,T s q it1,...,N u are exchangeable. The same holds for the ppY i,t q trt 0 ,T s q it1,...,N u and, actually, the N R 2d -valued processes ppX i,t , Y i,t q trt 0 ,T s q it1,...,N u are also exchangeable. Theorem 6.6. Under the standing assumptions, we have, for any i t1, . . . , N u,

E sup trt 0 ,T s |Y i,t ¡ X i,t | $ ¤ C N , (184) 
E sup trt 0 ,T s § § u N,i pt, Y t q ¡ v N,i pt, Y t q § § 2 ˆT t 0 |D x i v N,i pt, Y t q ¡ D x i u N,i pt, Y t q| 2 dt & ¤ CN ¡2 , (185) 
and, P almost surely,

1 N N i1 |v N,i pt 0 , Zq ¡ u N,i pt 0 , Zq| ¤ CN ¡1 , ( 186 
)
where C is a (deterministic) constant that does not depend on t 0 , m 0 and N .

Proof of Theorem 6.6. First step. We start with the proof of (185). For simplicity, we work with t 0 0. Let us first introduce new notations:

U N,i t u N,i pt, Y t q, V N,i t v N,i pt, Y t q, DU N,i,j t D x j u N,i pt, Y t q, DV N,i,j t D x j v N,i pt, Y t q, t r0, T s.
Using equation (175) satisfied by the pv N,i q it1,...,N u , we deduce from Itô's formula that, for any i t1, . . . , N u,

dV N,i t f t v N,i pt, Y t q ¡ j D x j v N,i pt, Y t q ¤ D p H Y j,t , D x j v N,i pt, Y t q ¨ j ∆ x j v N,i pt, Y t q β j,k TrD 2 x j ,x k v N,i pt, Y t q % dt c 2 j D x j v N,i pt, Y t qdB j t 2β j D x j v N,i pt, Y t qdW t H Y i,t , D x i v N,i pt, Y t q ¨¡ D x i v N,i pt, Y t q ¤ D p H Y i,t , D x i v N,i pt, Y t q ¡ F Y i,t , m N,i Y t q % dt c 2 j D x j v N,i pt, Y t qdB j t 2β j D x j v N,i pt, Y t qdW t . (187) 
Similarly, as pu N,i q it1,...,N u satisfies (179), we have by standard computation

dU N,i t H Y i,t , D x i u N,i pt, Y t q ¨¡ D x i u N,i pt, Y t q ¤ D p H Y i,t , D x i u N,i pt, Y t q ¡ F Y i,t , m N,i Y t q ¡ r N,i pt, Y t q % dt ¡ j D x j u N,i pt, Y t q ¤ ¡ D p H Y j,t , D x j v N,j pt, Y t q ¨¡ D p H Y j,t , D x j u N,j pt, Y t q ¨©dt c 2 j D x j u N,i pt, Y t q ¤ dB j t 2β j D x j u N,i pt, Y t q ¤ dW t . (188) 
Make the difference between (187) and (188), take the square and apply Itô's formula again:

d U N,i t ¡ V N,i t $ 2 2 U N,i t ¡ V N,i t ¨¤ ¡ H Y i,t , DU N,i,i t ¨¡ H Y i,t , DV N,i,i t ¨© ¡ 2 U N,i t ¡ V N,i t ¨¤ ¡ DU N,i,i t ¤ D p H Y i,t , DU N,i,i t ¨¡ D p H Y i,t , DV N,i,i t ¨$© ¡ 2 U N,i t ¡ V N,i t ¨¤ ¡ DU N,i,i t ¡ DV N,i,i t $ ¤ D p H Y i,t , DV N,i,i t ¨© ¡ 2 U N,i t ¡ V N,i t ¨rN,i pt, Y t q & dt ¡ 2 U N,i t ¡ V N,i t ¨j DU N,i,j t ¤ ¡ D p H Y j,t , DV N,j,j t ¨¡ D p H Y j,t , DU N,j,j t ¨©dt 2 j |DU N,i,j t ¡ DV N,i,j t | 2 2β § § § j DU N,i,j t ¡ DV N,i,j t ¨ § § § 2 & dt c 2 j DU N,i,j t ¡ DV N,i,j t ¨¤ dB j t 2β j DU N,i,j t ¡ DV N,i,j t ¨¤ dW t
Recall now that H and D p H are Lipschitz continuous in the variable p. Recall also that DU N,i,i t D x i U pt, Y i,t , m N,i Y t q is bounded, independently of i, N and t, and that DU N,i,j is zero. By a standard convexity argument, we get

E Z |U N,i t ¡ V N,i t | 2 $ E Z ˆT t |DU N,i,i s ¡ DV N,i,i s | 2 ds & ¤ C N 2 C ˆT t E Z |U N,i s ¡ V N,i s | 2 $ ds 1 2 j E Z ˆT t |DU N,j,j s ¡ DV N,j,j s | 2 ds & .
By Gronwall's Lemma, we finally get (modifying the value of the constant C):

sup tr0,T s E Z |U N,i t ¡ V N,i t | 2 $ E Z ˆT 0 |DU N,i,i s ¡ DV N,i,i s | 2 ds & ¤ C N 2 1 2 j E Z ˆT t |DU N,j,j s ¡ DV N,j,j s | 2 ds & . (190) 
Taking the expectation and using the exchangeability of the processes ppX j,t , Y j,t q trt 0 ,T s q jt1,...,N u , we obtain (185).

Second step. We now derive (184) and (186). We start with (186). Noticing that U N,i

0 ¡ V N,i 0 u N,i p0, Zq ¡ v N,i p0 
, Zq, we deduce, by summing (190) over i t1, . . . , N u, that, with probability 1 under P,

1 N N i1 |u N,i p0, Zq ¡ v N,i p0, Zq| ¤ C N ,
which is exactly (186).

We are now ready to estimate the difference X i,t ¡ Y i,t , for t r0, T s and i t1, . . . , N u. In view of the equation satisfied by the processes pX i,t q tr0,T s and by pY i,t q tr0,T s , we have Proof of Theorem 2.13. For part (i), let us choose m 0 1 and apply (186):

|X i,t ¡ Y i,t | ¤ ˆt 0 § § D p H X i,s , D x i u N,i ps, X s q ¨¡ D p H Y i,s , D x i v N,i ps, Y s q ¨ § § ds ¤ C ˆt 0 |X i,s ¡ Y i,s |ds C ˆT 0 § § DU N,i,i s ¡ DV N,i,i s § § ds.
1 N N i1 § § §U pt 0 , Z i , m N,i Z q ¡ v N,i pt 0 , Zq § § § ¤ CN ¡1 a.e.,
where Z pZ 1 , . . . , Z N q with Z 1 , . . . , Z N i.i.d. random variables with uniform density on T d . The support of Z being pT d q N , we derive from the continuity of U and of the pv N,i q it1,...,N u that the above inequality holds for any x pT d q N :

1

N N i1 § § U pt 0 , x i , m N,i x q ¡ v N,i pt 0 , xq § § ¤ CN ¡1 dx pT d q N .
Then we use the Lipschitz continuity of U with respect to m to replace U pt 0 , x i , m N,i x q by U pt 0 , x i , m N

x q in the above inequality, the additional error term being of order 1{N .

For proving (ii), we use the the Lipschitz continuity of U and a result by Dereich, Scheutzow

and Schottstedt [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF] to deduce that, for d ¥ 3 and for any

x i T d , ˆTdpN¡1q |u N,i pt, xq ¡ U pt, x i , m 0 q| ¹ j$i m 0 pdx j q ˆTdpN¡1q |Upt, x i , m N,i x q ¡ U pt, x i , m 0 q| ¹ j$i m 0 pdx j q ¤ C ˆTdpN¡1q d 1 pm N,i
x , m 0 q ¹ j$i m 0 pdx j q ¤ CN ¡1{d .

If d 2, following Ajtai, Komlos and Tusnády [START_REF] Ajtai | On optimal matchings[END_REF], the right-hand side has to be replaced by N ¡1{2 logpN q. Combining Theorem 6.6 with the above inequality, we obtain therefore, for d ¥ 3, w N,i pt 0 , ¤, m 0 q ¡ U pt 0 , ¤, m 0 q

L 1 pm 0 q ˆTd § § § § § ˆTdpN¡1q
v N,i t, px j q ¨¹ j$i m 0 pdx j q ¡ U pt, x i , m 0 q § § § § § dm 0 px i q ¤ E |v N,i pt, Zq ¡ u N,i pt, Zq| $ ˆTdN |u N,i pt, xq ¡ U pt, x i , m 0 q| N ¹ j1 m 0 pdx j q ¤ CN ¡1 CN ¡1{d ¤ CN ¡1{d .

As above, the right-hand side is N ¡1{2 logpN q if d 2. This shows part (ii) of the theorem. Proof of Corollary 2.14. We fix pt, x 1 , mq r0, T s ¢ T d ¢ PpT d q and assume that there exists v R such that lim sup N Ñ V, x I

1 Ñx 1 , m N,1

x I Ñm § § v N,1 pt, x I q ¡ v § § 0.

Our aim is to show that, if x 1 belongs to the support of m, then v U pt, x 1 , mq. For this we first note, from a standard application of the maximum principle, that the pv N,i q it1,...,N u are uniformly bounded by a constant M (independent of N ).

Fix ¡ 0. By our assumption there exists N 0 ¡ 0 and δ ¡ 0 such that § § v N,1 pt, x I q ¡ v § § ¤ if N ¥ N 0 , d 1 pm N,1 x I , mq ¤ δ and |x 1 ¡ x I 1 | ¤ δ.

(192)

As lim

N Ñ V ˆpT d q N ¡1 d 1 ¡ m N,1 x I , m © N ¹ j2 mpdx I j q 0,
we can also choose N 0 large enough so that

ˆpT d q N ¡1 1 2 d 1p m N,1 x I ,mq¥δ @ N ¹ j2 mpdx I j q ¤ if N ¥ N 0 and |x 1 ¡ x I 1 | ¤ δ.
Then, integrating (192) over pT d q N ¡1 , we obtain § § w N,1 pt, x I 1 q ¡ v § § ¤ M pM 1q if N ¥ N 0 and |x 1 ¡ x I 1 | ¤ δ.

We now integrate this inequality with respect to the measure m on the ball Bpx 1 , δq: ˆBpx 1 ,δq § § w N,1 pt, x I 1 q ¡ v § § dmpx I 1 q ¤ pM 1qm Bpx 1 , δq

¨.
Now Theorem 2.13-(ii) states that w N,1 pt, ¤q converges in L 1 m to U pt, ¤, mq. Thus, letting N Ñ V in the above inequality, we get ˆBpx 1 ,δq § § U pt, x I 1 , mq ¡ v § § dmpx I 1 q ¤ pM 1qm Bpx 1 , δq ¨.

Since U is continuous and x 1 is in the support of m, this last inequality implies that v U pt, x 1 , mq.

Propagation of chaos

We now prove Theorem 2.15. Let us recall the notation. Throughout this part, pv N,i q it1,...,N u is the solution of the Nash system (175) and the ppY i,t q trt 0 ,T s q it1,...,N u are "optimal trajectories" for this system, i.e., solve (183) with Y i,t 0 Z i as initial condition at time t 0 . Our aim is to understand the behavior of the ppY i,t q trt 0 ,T s q it1,...,N u for a large number of players N . For any i t1, . . . , N u, let p Xi,t q trt 0 ,T s be the solution the SDE of McKean-Vlasov type: Proof. The proof is exactly the same as for Theorem 10.2.7 in [START_REF] Rachev | Mass Transportation problems[END_REF] (for the i.i.d. case). In this proof independence is only used twice and, in both cases, one can simply replace the expectation by the conditional expectation.

Proof of Theorem 2.15. The proof is a direct application of Theorem 6.6 combined with the following estimate on the distance between p Xi,t q trt 0 ,T s and the solution pX i,t q trt 0 ,T s of (182):

E sup trt 0 ,T s § § X i,t ¡ Xi,t § § % ¤ CN ¡1{pd 8q . (193) 
Indeed, by the triangle inequality, we have, provided that (193) holds true:

E sup trt 0 ,T s § § Y i,t ¡ Xi,t § § % ¤ E sup trt 0 ,T s § § Y i,t ¡ X i,t § § % E sup trt 0 ,T s § § X i,t ¡ Xi,t § § % ¤ C N ¡1 N ¡1{pd 8q ¨,
where we used (184) to pass from the first to the second line.

It now remains to check (193). For this, we fix i t1, . . . , N u and let ρptq E sup srt 0 ,ts § § X i,s ¡ Xi,s § § %

.

Then, for any s rt 0 , ts, we have § § X i,s ¡ Xi,s § § ¤ ˆs t 0 § § ¡D p H X i,r , D x i u N,i pr, Taking the supremum over s rt 0 , ts and then the expectation, we have, recalling that the random variables pX j,r ¡ Xj,r q jt1,...,N u have the same law: We now provide several basic results on the notion of differentiability on the space of probability measures used in the paper, including a short comparison with the derivative on the set of random variables.

7.1 Link with the derivative on the set of random variables

As a first step, we discuss the connection between the derivative δU {δm in Definition 2.1 and the derivative introduced by Lions in [START_REF] Lions | [END_REF] and used (among others) in [START_REF] Buckdahn | Mean-field stochastic differential equations and associated PDEs[END_REF][START_REF] Chassagneux | Classical solutions to the master equation for large population equilibria[END_REF]. The notion introduced in [START_REF] Lions | [END_REF] consists in lifting up functionals defined on the space of probability measures into functionals defined on the set of random variables. When the underlying probability measures are defined on a (finite dimensional) vector space E (so that the random variables that are distributed along these probability measures also take values in E), this permits to benefit from the standard differential calculus on the Hilbert space formed by the square-integrable random variables with values in E.

Here the setting is slightly different as the probability measures that are considered throughout the article are defined on the torus. Some care is thus needed in the definition of the linear structure underpinning the argument.

7.1.1 First order expansion with respect to torus-valued random variables.

On the torus T d , we may consider the group of translations pτ y q yR d , parameterized by elements x of R d . For any y R d , τ y maps T d into itself. The mapping R d y Þ Ñ τ y p0q being obviously measurable, this permits to define, for any square integrable random variable X L 2 pΩ, A, P; R d q (where pΩ, A, Pq is an atomless probability space), the random variable τ X p0q, which takes values in T d . Given a mapping U : PpT d q Ñ R, we may define its lifted version as Ũ : L 2 pΩ, A, P; R d q X Þ Ñ Ũ p Xq U Lpτ X p0qq ¨, (195) where the argument in the right-hand side denotes the law of τ X p0q (seen as a T d -valued random variable). Quite obviously, Lpτ X p0qq only depends on the law of X. Assume now that the mapping Ũ is continuously Fréchet differentiable on L 2 pΩ, A, P; R d q. What [START_REF] Lions | [END_REF] says is that, for any X L 2 pΩ, A, P; R d q, the Fréchet derivative has the form 

T d y Þ Ñ f µ U LpXq ¨pyq.
As an application we have that, for any random variables X and Y with values in T d , U LpY q ¨¡ U LpXq ¨ Ũ Ŷ ¨¡ Ũ X (

) 198 
The fact that ξ can be chosen in a completely arbitrary way says that the choice of the representatives of X and Y in the above formula does not matter. Of course, this is a consequence of the periodicity structure underpinning the whole analysis. Precisely, for any representatives X and Ȳ (with values in R d ) of X and Y , we can write

U LpY q ¨¡ U LpXq ¨ E ˆ1 0 e f µ U Lpτ λp Ȳ ¡ Xq pXq ¨ τ λp Ȳ ¡ Xq pXq ¨, Ȳ ¡ Xi dλ. (199) 
Formula (199) gives a rule for expanding, along torus-valued random variables, functionals depending on torus-supported probability measures. It is the analogue of the differentiation rule defined in [START_REF] Lions | [END_REF] on the space of probability measures on R d through the differential calculus in L 2 pΩ, A, P; R d q.

In particular, if Ũ is continuously differentiable, with (say) D Ũ being Lipschitz continuous on L 2 pΩ, A, P; R d q, then (with the same notations as in ( 198))

E |D Ũ p Ŷ q ¡ D Ũ p Xq| 2 $ E |D Ũ p Ŷ ξq ¡ D Ũ p Xq| 2 $ ¤ CE | Ŷ ξ ¡ X| 2 $ . ( 200 
)
Now, for two random variables X and Y with values in the torus, one may find a random variable ξ, with values in Z d , such that, pointwise, ξ argmin cZ d |τ c p Ŷ q ¡ X|, the right-hand side being the distance d T d pX, Y q between X and Y on the torus. Put it differently, we may choose ξ such that | Ŷ ξ ¡ X| d T d pX, Y q. Plugged into (200), this shows that the Lipschitz property of D Ũ (on L 2 pΩ, A, P; R d q) reads as a Lipschitz property with respect to torus-valued random variables.

Next, we make the connection between the mapping PpT d q¢T d pm, yq Þ Ñ f µ U pmqpyq R d and the derivative PpT d q ¢ T d pm, yq Þ Ñ rδU{δmspm, yq R d defined in Definition 2.1.

From differentiability along random variables to differentiability in m

Proposition 7.1. Assume that the function U is differentiable in the sense explained in Subsubsection 7.1.1 and thus satisfies the expansion formula (199). Assume moreover that there exists a continuous version of the mapping f µ U :

PpT d q ¢ T d pm, yq Þ Ñ f µ U pm, yq R d .
Then, U is differentiable in the sense of Definition 2.1. Moreover, δU {δm is continuously differentiable with respect to the second variable and D m U pm, yq f µ U pmqpyq, m PpT d q, y T d . Proof. First step. The first step is to prove that, for any m PpT d q, there exists a continuously differentiable map V pm, ¤q : T d y Þ Ñ V pm, yq R such that f µ U pmqpyq D y V pm, yq, y T d .

The strategy is to prove that f µ U pmq : T d Þ Ñ f µ U pmqpyq is orthogonal (in L 2 pT d , dyq) to divergence free vector fields. It suffices to prove that, for any smooth divergence free vector field b : T d Ñ R d , ˆTd xf µ U pmqpyq, bpyqydy 0.

Since f µ U is jointly continuous in pm, yq, it is enough to prove the above identity for any m with a positive smooth density. When m is not smooth, we may indeed approximate it by m ρ, where denotes the convolution and ρ a smooth kernel on R d with full support.
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With such an m and such a b, we consider the ODE (set on R d but driven by periodic coefficients) dX t bpX t q mpX t q dt, t ¥ 0, the initial condition X 0 being r0, 1q d -valued and distributed according to some m PpT d q (identifying m with a probability measure on r0, 1q d ). By periodicity of b and m, pX t q t¥0 generates on T d a flow of probability measures pm t q t¥0 satisfying the Fokker Planck equation f t m t ¡divp b m m t ¨, t ¥ 0, m 0 m.

Since b is divergence free, we get that m t m for all t ¥ 0. Then, for all t ¥ 0, U m t ¨¡ U m 0 ¨ 0, so that, with the same notation as in (195), lim t×0 rp Ũ pX t q ¡ Ũ pX 0 qq{ts 0. Now, choosing Ȳ X t and X X 0 in (199), we get ˆTd xf µ U pmqpyq, bpyqydy 0.

We easily deduce that f µ U pmq reads as a gradient that is f µ U pmqpyq f y V pm, yq.

It is given as a solution of the Poisson equation ∆V pm, yq div y f µ U pmqpyq Of course, V pm, ¤q is uniquely defined up to an additive constant. We can choose it in such a way that ˆTd V pm, yqdmpyq 0.

Using the representation of the solution of the Poisson equation by means of the Poisson kernel, we easily deduce that the function V is jointly continuous.

Second step. The second step of the proof is to check that Definition 2.1 holds true. Let us consider two measures of the form m N X and m N Y , where N N ¦ , X px 1 , . . . , x N q pT d q N is such that x i $ x j and Y py 1 , . . . , y N q pT d q N . Without loss of generality we assume that the indices for Y are such that

d 1 pm N X , m N Y q 1 N N i1 d T d px i , y i q 1 N N i1 |x i ¡ ȳi |, (201) 
where x1 , . . . , xN and ȳ1 , . . . , ȳN are well-chosen representatives, in R d , of the points x 1 , . . . , x N and y 1 , . . . , y N in T d (d T d denoting the distance on the torus). Let X be a random variable such that Pp X xi q 1{N and Ȳ be the random variable defined by Ȳ ȳi if X xi . Then, with the same notations as in (195), P Lpτ X p0qq m N X and P Lpτ Ȳ p0qq m N Y . Thanks to (199), we get

U pm N Y q ¡ U pm N X q ˆ1 0 E e f µ U ¡ L τ λ Ȳ p1¡λq X p0q ¨© τ λ Ȳ p1¡λq X p0q ¨, Ȳ ¡ Xi% dλ
So, if w is a modulus of continuity of the map f µ U on the compact set PpT d q ¢ T d , we obtain by (201):

§ § § § U pm N Y q ¡ U pm N X q ¡ ˆ1 0 E e f µ U m N X ¨ τ λ Ȳ p1¡λq X p0q ¨, Ȳ ¡ Xi% dλ § § § § ¤ E | Ȳ ¡ X| § § sw d 1 pm N X , m N Y q ¨ d 1 pm N X , m N Y qw d 1 pm N X , m N Y q ¨. (202) 
Moreover, since D y V pm, yq f µ U pmqpyq, we have

ˆ1 0 E e f µ U pm N X q τ λ Ȳ p1¡λq X p0q ¨ τ λ Ȳ p1¡λq X ¨, Ȳ ¡ Xi% dλ 1 N N i1 ˆ1 0 d D y V m N X , τ λȳ i p1¡λqx i p0q ¨, ȳi ¡ xi h dλ 1 N N i1 ˆ1 0 d D y V m N X , λȳ i p1 ¡ λqx i ¨, ȳi ¡ xi h dλ,
where we saw D y V pm N X , ¤q as a periodic function defined on the whole R d . Then, 

ˆ1 0 E e f µ U pm N X q τ λ Ȳ p1¡λq X p0q ¨ τ λ Ȳ p1¡λq X ¨, Ȳ ¡ Xi% dλ ˆTd V pm N X , xqdpm N Y ¡ m N X qpxq.
for a function w : R Ñ R that tends to 0 in 0 (w being independent of X and Y ). Above, we used the fact that d 1 pLpXq, LpY qq ¤ Er| X ¡ Ȳ | 2 s 1{2 . Let now Z λ τ λp Ȳ ¡ Xq pXq, for λ r0, 1s, so that Z λ ε τ εp Ȳ ¡ Xq pZ λ q, for 0 ¤ λ ¤ λ ε ¤ 1. Then, pλ εq Ȳ r1 ¡ pλ εqs X and λ Ȳ p1 ¡ λq X are representatives of Z λ ε and Z λ and the distance between both reads § § pλ εq Ȳ r1 ¡ pλ εqs X ¡ λ Ȳ p1 ¡ λq X § § ε| Ȳ ¡ X|. Therefore, by (203),

d dλ U pZ λ q E D y δU δm
LpZ λ q ¨pZ λ q Ȳ ¡ X¨& , λ r0, 1s.

Integrating with respect to λ r0, 1s, we get (199).

Technical remarks on derivatives

Here we collect several results related with the notion of derivative defined in Definition 2. (205)

Fix m PpT d q and let φ L 2 pm, R d q be a vector field. Then Plugging this inequality into (207) shows the result.

We now give conditions under which (205) holds. This proves our claim. Then, for any m PpT d q and any vector field φ L 3 pm, R d q, we have mm U pm, ¤, ¤q} pC 1 q 2 }φ} 3

L 3 m ¤ C 0 }φ} 3 L 3 m .
Putting the above estimates together gives the result.

We complete the section by giving conditions under which inequality (208) holds:

Proposition 7.6. Assume that the mapping PpT d q m Þ Ñ δ 2 U δm 2 pm, ¤, ¤q is continuous from PpT d q into pC 2 pT d qq 2 with a modulus w. Then (208) holds.

Proof. We have U pm I q ¡ U pmq ¨.

∆ x U 2 ˆRd

 2 ¡ ∆ x U ¡ ˆRd div y rD m U s dm Hpx, m, D x U q ¡β ¢ div x rD m U s dm ˆRd div y rD m U s dm ˆR2d Tr D 2 mm U $ dm dm ˆRd D m U ¤ D p Hpy, D x U qdmpyq F px, mq U pT, x, mq Gpx, mq.

f 1 fx 1 1 . . . f d fx d d φ .

 1φ with a Lipschitz constant bounded by 1. Let us recall that this distance metricizes the weak convergence of measures. If m belongs to PpT d q and φ : T d Ñ T d is a Borel map, then φUm denotes the pushforward of m by φ, i.e., the Borel probability measure such that rφUmspAq mpφ ¡1 pAqq for any Borel set A T d . When the probability measure m is absolutely continuous with respect to the Lebesgue measure, we use the same letter m to denote its density. Namely, we write m : T d x Þ Ñ mpxq R . Besides we often consider flows of time dependent measures of the form pmptqq tr0,T s , with mptq PpT d q for any t r0, T s. When, at each time t r0, T s, mptq is absolutely continuous with respect to the Lebesgue measure on T d , we identify mptq with its density and we sometimes denote by m : r0, T s ¢ T d pt, xq Þ Ñ mpt, xq R the collection of the densities. In all the examples considered below, such an m has a time-space continuous version and, implicitly, we identify m with it. If φ : T d Ñ R is sufficiently smooth and p 1 , . . . , d q N d , then D φ stands for the derivative The order of derivation 1 ¤ ¤ ¤ d is denoted by | |. Given e R d , we also denote by f e φ the directional derivative of φ in the direction e. For n N and α p0, 1q, C n α is the set of maps for which D φ is defined and α¡Hölder continuous for any N d with | | ¤ n. We set }φ} n α : | |¤n sup xT d |D φpxq| | |n sup x$x I |D φpxq ¡ D φpx I q| |x ¡ x I | α .

|

  |¤m,| I |¤n }D p , I q ψ} V , and, if moreover the derivatives are Hölder continuous, }ψ} pm α,n αq : }ψ} pm,nq | |m,| I |n sup px,yq$px I ,y I q

  t v ¡ ∆v D p Hpx, Duq ¤ Dv δF δm x, mptq ¨pµptqq f t µ ¡ ∆µ ¡ div µD p Hpx, Duq ¨¡ div mD 2 pp Hpx, DuqDv ¨ 0 vpT, xq δG δm

  , then V pt, xq : D p Hpx, Dupt, xqq and Γpt, xq : D 2 pp Hpx, Dupt, xqq satisfy the conditions of Lemma 3.4.

Theorem 4 . 3 .

 43 Assume that F , G and H satisfy (26) and (27) in Subsection 2.3. Assume moreover that, for some integer n ¥ 2 and some 4 α r0, 1q, (HF1(n-1)) and (HG1(n)) hold true.

x

  ,yT d :|x¡y|¤δ sup s,tr0,T s:|t¡s|¤δ |Ups, xq ¡ Upt, yq|, δ ¡ 0.

¢ˆT d u t pxqdm t pxq ¡ ˆt 0

 0 4ˆT d γ s pxq ∆u s pxq ¡ xβ s pxq, Du s pxqy $

d

  ∆u r pxq ¡ xβ r pxq, Du r pxqy γ r pxq $ dm r pxq B dr.

ˆ1 0 Dp

 0 Ht x, rDũpxq p1 ¡ rqDũ I pxq ¨dr,

  the classical sense. Then, by the same duality technique as in Lemma 3.5 (with the restriction that the role played by n in the statement of Lemma 3.5 is now played by n ¡ 1 and that the coefficients c and b in the statement of Lemma 3.5 are now respectively denoted by b0 and f 0 ), for any β rα I , αs, it holds, P almost surely, that sup tr0,T s }ρ t } ¡pn βq ¤ C I }ρ 0 } ¡pn βq sup tr0,T s } b0 t } ¡pn¡1 βq ¨.

0 ¨A&B,

 0 the constant C I only depending upon C in the introduction of Subsection 4.4, T , d, α and α I .

  ) when driven by two initial conditions p¡1q | | D δ y and p¡1q | | D δ y I. Since | | ¤ n, we have D δ y ¡ D δ y I ¡pn α I q ¤ |y ¡ y I | α I .

3 and Corollary 4. 19 .Proposition 5 . 8 .

 1958 The second estimate is a straightforward consequence of the first one. Propositions 5.6 and 5.7 easily extend to any initial time t 0 r0, T s. Then, for any α I p0, αq, any t 0 r0, T s and m 0 PpT d q lim hÑ0 sup t0,...,nu d ,| |¤n D y δU δm pt 0 h, ¤, m 0 , ¤q ¡ D y δU δm pt 0 , ¤, m 0 , ¤q n 1 α I ,α I 0.

  q and writing D y D k ζ v p0,0q px, m 0 , y, ζq v p ,kq px, m 0 , y, ζq, x, y, ζ T d . Moreover, for α I p0, αq, there exists a constant C such that, for any multi-indices, k with | |, |k| ¤ n ¡ 1, any y, y I , ζ, ζ I T d and any m 0 PpT d q, v p ,kq p¤, m 0 , y, ζq n 1 α ¤ C, v p ,kq p¤, m 0 , y, ζq ¡ v p ,kq p¤, m 0 , y I , ζ I q n 1 α ¤ C |y ¡ y I | α I |ζ ¡ ζ I | α I ¨.Proof. With the same notations as in Lemma 5.4, we denote by pρ k,ζ t , zk,ζ t q tr0,T s the solution to (132) with p¡1q |k| D k δ ζ as initial condition and by pρ ,y t , z ,y t q tr0,T s the solution to (132) with p¡1q | | D δ y as initial condition. By Proposition 5.7 (applied with both n ¡ 1 and n), we have, for any y, y I T d and any ζ, ζ I T d , essup ωΩ sup tr0,T s }z

n 1 α 0 ,

 0 which proves, by induction, thatD k ζ v p ,0q px, m 0 , y, ζq v p ,kq px, m 0 , y, ζq, x, y, ζ T d .

Following Proposition 5 . 8 ,Proposition 5 . 14 .

 58514 we finally claim: Proposition 5.13 easily extend to any initial time t 0 r0, T s. Then, for any α I p0, αq, any t 0 r0, T s and m 0 PpT d qlim hÑ0 sup |k|¤n¡1 sup | |¤n¡1 D y D k y I δ 2 U δm 2 pt 0 h, ¤, m 0 , ¤q ¡ D y D k y I δ 2 Uδm 2 pt 0 , ¤, m 0 , ¤q n 1 α I ,α I ,α I 0.

(

  the distance being denoted by d E ) and F is a metric space (the distance being denoted by d F ), satisfying essup ωΩ sup tr0,T s }γ t } 0 V, it must hold that lim h×0 sup s,tr0,T s:|s¡t|¤h E |η s,t | $ 0, η s,t sup rrs,ts sup x,yE:d E px,yq¤sup rrs,ts d F pγ I r ,γ I s q § § γ r pyq¡γ s pxq § § . (154)

  Gronwall inequality and by (190), we obtain (184).

Remark 6 . 7 .

 67 The reader may observe that, in addition to the existence of a classical solution U (to the master equation) satisfying the conclusion of Theorem 2.11, only the global Lipschitz properties of H and D p H are used in the proof, see (189) and (191).

1 N

 1 X r q ¨ D p H Xi,r , D x U r, Xi,r , m r ¨¨ § § dr ¤ ˆs t 0 § § ¡D p H X i,r , D x U r, X i,r , m N,i Xr ¨¨ D p H Xi,r , D x U r, Xi,r , m N,i Xr ¨¨ § § dr ˆs t 0 § § ¡D p H Xi,r , D x U r, Xi,r , m N,i Xr ¨¨ D p H Xi,r , D x U r, Xi,r , m r ¨¨ § § dr. As px, mq Ñ D x U pt, x, mq is uniformly Lipschitz continuous, we get § § X i,s ¡ Xi,s § § ¤ C ˆs t 0 ¡ |X i,r ¡ Xi,r | d 1 m N,iXr , m N,i ¡ 1 j$i |X j,s ¡ Xj,s |.

1 N

 1 X i,s ¡ Xi,s § § ¤ C ˆs t 0 ¡ |X i,r ¡ Xi,r | ¡ 1 j$i |X j,r ¡ Xj,r | d 1 pm N,iXr , m r q © dr.

ρptq E sup srt 0

 0 ,ts § § X i,s ¡ Xi,s 8q , where we used Lemma 6.8 for the last inequality. Then Gronwall inequality gives (193). 128 7 Appendix

E ˆ1 0 eD 0 eD

 00 Ũ Lpλ Ŷ p1 ¡ λq Xq ¨, Ŷ ¡ Xi dλ.Now, we can write λ Ŷ p1 ¡ λq X X λp Ŷ ¡ Xq Ẑ, with Z τ λp Ŷ ¡ Xq pXq.Noticing that Z is a random variable with values in T d , we deduce thatU LpY q ¨¡ U LpXq ¨ E ˆ1 0 e f µ U Lpτ λp Ŷ ¡ Xq pXqq ¨pτ λp Ŷ ¡ Xq pXqq, Ŷ ¡ Xi dλ.Similarly, for any random variable ξ with values in Z d ,U LpY q ¨¡ U LpXq ¨ Ũ Ŷ ξ¨¡ Ũ X E ˆ1 Ũ X λp Ŷ ξ ¡ Xq ¨, Ŷ ξ ¡ Xi dλ. Now, X λp Ŷ ξ ¡ Xq writes Ẑ ζ,where ζ is a random variable with values in Z d and Ẑ is associated with the T d -valued random variable Z τ λp Ŷ ξ¡ Xq pXq, so that U LpY q ¨¡ U LpXq ¨ E f µ U Lpτ λp Ŷ ξ¡ Xq pXq ¨ τ λp Ŷ ξ¡ Xq pXq ¨, Ŷ ξ ¡ Xi dλ.

1 Proposition 7 . 2 .U

 172 By density of the measures of the form m N X and m N Y and by continuity of V , we deduce from (202) that, for any measure m, mI PpT d q, § § § § U pm I q ¡ U pmq ¡ ˆTd V pm, xqdpm I ¡ mqpxq § § § § ¤ d 1 pm, m I qwpd 1 pm, m I qq,which shows that U is C 1 in the sense of Definition 2.1 with δU δm V .7.1.3 From differentiability in m to differentiability along random variablesWe now discuss the converse to Proposition 7.Assume that U satisfies the assumption of Definition 2.2. Then, U satisfies the differentiability property (199). Moreover, D m U pm, yq f µ U pmqpyq, m PpT d q and y T d .Proof. We are given two random variables X and Y with values in the torus T d . By Definition 2¡ λqLpXq, Y ¨¡ δU δm λLpY q p1 ¡ λqLpXq, X ¨&dλˆ1 0 ˆ1 0 E D y δU δm λLpY q p1 ¡ λqLpXq ¨ λ I Ȳ p1 ¡ λ I q X¨p Ȳ ¡ XqBy uniform continuity of D m U D y rδU{δms on the compact set PpT d q ¢ T d , we deduce that, LpY q ¨¡ U LpXq E D y δU δmLpXq ¨p Xq Ȳ ¡ X¨& Er| X ¡ Ȳ | 2 s 1{2 w Er| X ¡ Ȳ | 2 s 1{2 ¨,

1 . 3 . 7 . 3 .

 1373 The first one is a quantified version of Proposition 2.Proposition Assume that U :T d ¢ PpT d q Ñ R is C 1 , that, for some n N, U p¤,mq and δU δm p¤, m, ¤q are in C n α and in C n α ¢ C 2 respectively, and that there exists a constant C n such that, for any m, m I PpT d q, δU δm p¤, m, ¤q pn α,2q ¤ C n , (204) and U p¤, m I q ¡ U p¤, mq ¡ ˆTd δU δm p¤, m, yqdpm I ¡ mqpyq n α ¤ C n d 2 1 pm, m I q.

U¤ pC n 1q}φ} 2 L 2 2 L 2

 2222 ¤, pid φqUm ¨¡ U p¤, mq ¡ ˆTd D m U p¤, m, yq ¤ φpyq dmpyq n α pmq (206) Below, we give conditions that ensure that (205) holds true. Proof. Using (205) we obtain U ¤, pid φqUm ¨¡ U p¤, mq ¡ ˆTd δU δm p¤, m, yqd pid φqUm ¡ m ¨pyq n α ¤ C n d 2 1 m, pid φqUm ¨¤ C n }φ} pmq .

2 L 2 ¤ C n }φ} 2 L 2 2 L 2 ¤ C n }φ} 2 L 2

 22222222 of δU δm , we obtain, for an t1, ¤ ¤ ¤ , du-valued tuple of length | | ¤ n and for any x T d , (omitting the dependence with respect to m for simplicity):D x δU δm px, yqdmpyq ¡ ˆTd D x D m U px, yq ¤ φpyq dmpyq ˆTd ¢ D x δU δm x, y φpyq ¨¡ D x δU δm px, yq ¡ D x D m U px, yq ¤ φpyq dmpyq ˆ1 0 ˆTd ¢ D x D y δU δm x, y sφpyq ¨¡ D x D m U px, yq ¤ φpyq dmpyqds ˆ1 0 ˆ1 0 ˆTd sD x D y D m U x, y stφpyq ¨φpyq ¤ φpyq dmpyq dsdt ¤ C n }φ} pmq ,where we used (204) in the last line.Coming back to (207), this shows thatD U ¡ ¤, pid φqUm ¨¡ D U p¤, mq ¡ ˆTd D x D m U p¤, yq ¤ φpyq dmpyq V pmq ,which proves (206) but with α 0. The proof of the Hölder estimate goes along the same line: if x, x I T d , then ˆTd D x δU δm px, yqd 2 pid φqUm @ pyq ¡ ˆTd D x δU δm px, yqdmpyq ¡ ˆTd D x D m U px, yq ¤ φpyq dmpyq ¡ D x δU δm px I , yqdmpyq ¡ ˆTd D x D m U px I , yq ¤ φpyq dmpyq ˆTd ¢ D x δU δm x, y φpyq ¨¡ D x δU δm px, yq ¡ D x D m U px, yq ¤ φpyq dmpyq ¡ ˆTd ¢ D x δU δm x I , y φpyq ¨¡ D x δU δm px I , yq ¡ D x D m U px I , yq ¤ φpyq dmpyq ˆ1 0 ˆTd ¢ D x D y δU δm px, y sφpyqq ¡ D x D m U px, yq ¤ φpyq dmpyqds ¡ ˆ1 0 ˆTd ¢ D x D y δU δm px I , y sφpyqq ¡ D x D m U px I , yq ¤ φpyq dmpyqdsˆ1 0 ˆ1 0 ˆTd s ¡ D x D y D m U x, y stφpyq ¡ D x D y D m U x I , y stφpyq ¨©φpyq ¤ φpyq dmpyq dsdt ¤ C n |x ¡ x I | α }φ} pmq .This shows that ˆTd δU δm p¤, m, yqd 2 pid φqUm @ ¡ m % pyq ¡ ˆTd D m U p¤, m, yq ¤ φpyq dmpyq n α pmq .

Proposition 7 . 4 .¤ C n d 2 1

 741 Assume that U : T d ¢ PpT d q Ñ R is C 1 and that, for some n N ¦ , δU δm p¤, m, ¤q pn α,n αqLip n ¢ δU δm ¤ C n .Then, for any m, m I PpT d q, we have U p¤, m I q ¡ U p¤, mq ¡ ˆTd δU δm p¤, m, yqdpm I ¡ mqpyq n α pm, m I q.Proof. We only show the Holder regularity: the L V estimates go along the same line and are simpler. For anyN d with | | ¤ n and any x, x I T d , we have § § § § D x U px, m I q ¡ D x U px, mq ¡ ˆTd D x δU δm px, m, yqdpm I ¡ mqpyq ¡ ¢ D x U px I , m I q ¡ D x U px I , mq ¡ ˆTd D xδU δm px I , m, yqdpm I ¡ mqpyq § p1 ¡ sqm sm I , y ¨¡ D x δU δm px, m, yq ¡ D x δU δm x I , p1 ¡ sqm sm I , y ¨¡ D x δU δm px I , m, yq % dpm I ¡ mqpyq § § § § ds ¤ sup s,y § § § § D y D x δU δm x, p1 ¡ sqm sm I , y ¨¡ D y D x δU δm px, m, yq ¡ D y D x δU δm x I , p1 ¡ sqm sm I , y ¨¡ D y D x δU δm px I , m, yq % § § § § d 1 pm, m I q ¤ Lip n ¢ δU δm |x ¡ x I | α d 2 1 pm, m I q.

Proposition 7 . 5 .

 75 Assume that U : PpT d q Ñ R is C 2 with, for any m, m I PpT d q, § § § § U pm I q ¡ U pmq ¡ ˆTd δU δm pm, yqdpm I ¡ mqpyq ¡ 1 2 ˆTd ˆTd δ 2 U δm 2 pm, y, y I qdpm I ¡ mqpyqdpm I ¡ mqpy I q § § § § ¤ d 2 1 pm, m I qw d 1 pm, m I q ¨,(208)where wptq Ñ 0 as t Ñ 0,

1 2 ˆTd ˆTd δ 2 U

 12 ˆ1 0 ˆTd δU δm p1 ¡ sqm sm I , y ¨dpm I ¡ mqpyq ˆTd δU δm pm, yqdpm I ¡ mqpyqˆ1 0 ˆ1 0 ˆTd s δ 2 Uδm 2 p1 ¡ sτ qm sτ m I , y, y I ¨dpm I ¡ mqpyqdpm I ¡ mqpy I q.Hence § § § § U pm I q ¡ U pmq ¡ ˆTd δU δm pm, yqdpm I ¡ mqpyq ¡ δm 2 pm, y, y I qdpm I ¡ mqpyqdpm I ¡ mqpy I q § § § § ¤ d 1 pm, m I q 2 ˆ1 0 ˆ1 0 s D 2 yy I δ 2 U δm 2 p1 ¡ sτ qm sτ m I , ¤, ¤ ¨¡ D 2 yy I δ 2 U δm 2 pm, ¤, ¤q V dτ ds¤ d 1 pm, m I q 2 w d 1 pm, m I q 2

  Hpx, Du t q ¡ F px, m t q ¡ in rt 0 , T s ¢ T d , d t m t p1 βq∆m t div m t D p Hpm t , Du t q ¨$dt ¡ divpm t

	6 9 9 9 9 9 8 9 9 9 9 9 7	d t u t	2 ¡p1 βq∆u t 2βdivpv t q	@ dt v t ¤ 2βdW t ¨,	2βdW t

  The next statement asserts that δ 2 U δm 2 enjoys the classical symmetries of second order derivatives. pm, y, y I q δ 2 U δm 2 pm, y I , yq, m PpT d q, y, y I T d .

	Lemma 2.4. Assume that	δ 2 U δm 2 is jointly continuous in all the variables. Then
	δ 2 U			
	δm 2 In the same way, if δU δm	is C 1 in the variable y and	δ 2 U δm 2 is also C 1 in the variable y, D y	δ 2 U δm 2

  2 . Since U is C 2 , the mapping U : r0, 1s 2 ps, tq Þ Ñ U pm sµ nνq is twice differentiable and, by standard Schwarz' Theorem, D t D s Ups, tq D s D t Ups, tq, for any ps, tq r0, 1s 2 . Notice that Second step. The proof is the same for the second assertion, except that now we have to consider the mapping U I : r0, 1s ¢T d pt, yq Þ Ñ δU δm pm tµ, yq, for a general probability measure m PpT d q and a general finite signed measure µ on T d , such that µpT d q 0 and m µ is a probability measure. (In particular, m tµ p1 ¡ tqm tpm µq is also a probability measure for any t r0, 1s.) By assumption, U I is C 1 in each variable t and y with D t U I pt, yq ˆTd δ 2 U δm 2 pm tµ, y, y I qdµpy I q, D y U I pt, yq D m U pm tµ, yq.By assumption, D y D t U I is jointly continuous and, by standard Schwarz' Theorem, the mapping D y U I is differentiable in t, with D t D y U I ¨pt, yq D t D m U pm tµ, yq

	In particular, D t U I is C 1 in y and		
	D y D t U I pt, yq ˆTd D y	δ 2 U δm 2 pm tµ, y, y I qµpy I qdy I .
				¨	ˆTd	D y	δ 2 U δm 2 pm tµ, y, y I qµpy I qdy I .
	Integrating in t, this shows that			
	D t D s Ups, tq D s D t Ups, tq	ˆrT d s 2 ˆrT d s 2	δ 2 U δm 2 m sµ tν, y, y I ¨µpyqνpy I qdydy I δ 2 U δm 2 m sµ tν, y I , y ¨µpyqνpy I qdydy I .
	Choosing s t 0, the first claim easily follows.

  Let us first note that, for any m, m I PpT d q, ˆTd pFpx, mq ¡ F px, m I qqdpm ¡ m I qpxq

					δm 2 p¤, m 2 , ¤, ¤q	pn α,n α,n αq
	and call (HF2(n)) (respectively (HG2(n))) the second order regularity conditions on F :
	pHF2pnqq sup mPpT d q mPpT d q £ }Fp¤, mq} n α sup δ 2 F p¤, m, ¤, ¤q δF p¤, m, ¤q δm δm 2 pn α,n α,n αq pn α,n αq Lip n p δ 2 F δm 2 q V.
	and on G:			
	pHG2pnqq sup mPpT d q mPpT d q £ }Gp¤, mq} n α sup δ 2 Gp¤, m, ¤, ¤q δGp¤, m, ¤q δm δm 2 pn α,n α,n αq pn α,n αq Lip n p δ 2 G δm 2 q V.
	Example 2.6. Assume that F is of the form:
		F px, mq ˆRd Φpz, pρ mqpzqqρpx ¡ zqdz,
	where denotes the usual convolution product (in R d ) and where Φ : R 2 Ñ R is a smooth map
	which is nondecreasing with respect to the second variable and ρ is a smooth, even function with
	compact support. Then F satisfies the monotonicity condition (27) as well as the regularity
	conditions (HF1(n)) and (HF2(n)) for any n N.
	Proof. ˆTd	Φpy, ρ mpyqq ¡ Φpy, ρ m I pyqq	$	ρ mpyq ¡ ρ m I pyq ¨dy ¥ 0,
	since ρ is even and Φ is nondecreasing with respect to the second variable. So F is monotone.
	Writing Φ Φpx, θq, the derivatives of F are given by
		δF δm px, m, yq ˆRd	fΦ fθ z, ρ mpzq ¨ρpx ¡ zqρpz ¡ yqdz
	and	δ 2 F δm 2 px, m, y, y I q ˆRd	f 2 Φ fθ 2 z, ρ mpzq ¨ρpz ¡

yqρpz ¡ y I qρpx ¡ zqdz.

  U pt, x, mq ¡ ∆ x U pt, x, mq Hpx, D x U pt, x, mqq ¡ ˆTd div y rD m U s pt, x, m, yq dmpyq ˆTd D m U pt, y, m, yq ¤ D p Hpy, D x U pt, y, mqq dmpyq F px, mq, in r0, T s ¢ T d ¢ PpT d q,

	6 9 9 9 9 9 9 9 9 8	¡f t
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  ¤q are bounded in C n 2 α and C n 2 α ¢ C n 1 α respectively, independently of pt, mq.

	m, yq, being continuous in all the arguments, δU {δm being twice differentiable in y, the derivatives being continuous in all the arguments, • U satisfies the master equation (28). Theorem 2.8. Assume that F , G and H satisfy (26) and (27) in Subsection 2.3, and that (HF1(n+1)) and (HG1(n+2)) hold for some n ¥ 1 and some α p0, 1q. Then the first order master equation (28) has a unique solution. Moreover, U is C 1 (in all variables), δU δm is continuous in all variables and U pt, ¤, mq and δU δm is Lipschitz continuous with respect to the measure variable: δm pt, ¤, m, Finally, δU sup tr0,T s sup m 1 $m 2 pd 1 pm 1 , m 2 qq ¡1 δU δm pt, ¤, m 1 , ¤q ¡ δU δm pt, ¤, m 2 , ¤q pn 2 α,n αq

  ¡ ∆u Hpx, Duq F px, mptqq f t m ¡ ∆m ¡ divpmD p Hpx, Duqq 0 upT, xq Gpx, mpT qq, mpt 0 , ¤q m 0
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  Setting Ht px, pq Hpx c 2W t , pq, Ft px, mq F px c 2W t , mq and Gt px, mq Gpx c2W t , mq and invoking the Itô-Wentzell formula (see Section 4 for a more precise account), the pair pũ t , mt q trt 0 ,T s formally satisfies the system Ht p¤, Dũ t q ¡ Ft p¤, m t q

	6 8 7	d t ũt d t mt	2 ¡∆ũ t @ dt d Mt , 2

  xq z T pxq Beside the time estimate, Lemma 3.3 is a particular case (in the deterministic setting) of Lemma 4.4. So we postpone this part of the proof to section 4.We now prove the time regularity. By Duhamel formula, we have, zpt h, ¤q ¡ zpt, ¤q pP T ¡t¡h ¡ P T ¡t qz T ˆT t h P s¡t¡h ψps, ¤qds ¡

	has a unique solution which satisfies			
	sup tr0,T s	}zpt, ¤q} n α sup t$t I	}zpt I , ¤q ¡ zpt, ¤q} n α |t I ¡ t| 1 2	¤ C	5 }z T } n α sup tr0,T s	}fpt, ¤q} n¡1 α
					ˆT

C

, where C depends on sup tr0,T s }V pt, ¤q} n¡1 α .

Proof

. t P s¡t ψps, ¤qds, where P t is the heat semi-group and ψps, ¤q : V ps, ¤q ¤ Dzps, ¤q ¡ f ps, ¤q. Hence, for 2h ¤ T ¡ t, }zpt h, ¤q ¡ zpt, ¤q} n α ¤ }pP T ¡t¡h ¡ P T ¡t qz T } n α ˆt 2h t }P s¡t ψps, ¤q} n α ds ˆt 2h t h }P s¡t¡h ψps, ¤q} n α ds ˆT t 2h pP s¡t¡h ¡ P s¡t qψps, ¤q n α ds.

  , xqdx ¡σ ˆTd Dwpt, xq ¤ mpt, xqΓpt, xqDzpt, xq cpt, xq ¨dx , (54) we get (recalling that σ p0, 1s) Dwpt, xq ¤ mpt, xqΓpt, xqDzpt, xq cpt, xq ¨dxdt

	ˆTd	
	ξpxqρpτ, xqdx σ ˆTd wp0, xqρ 0 pxqdx ¡ σ	ˆτ 0 ˆTd

Lemma 3.3 

states that sup tr0,T s }wpt, ¤q} n 1 α sup t$t I }wpt I , ¤q ¡ wpt, ¤q} n 1 α |t I ¡ t| 1 where C depends on sup tr0,T s }V pt, ¤q} n α . As d dt ˆTd wpt, xqρpt

  Dv δF δm px, mptqqpµptqq f t µ ¡ ∆µ ¡ divpµD p Hpx, Duqq ¡ divpmD 2 pp Hpx, DuqDvq 0 vpT, xq δG δm px, mpT qqpµpTqq, µpt 0 , ¤q µ 0

	6 9 9 9 8
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¡f t v ¡ ∆v D p Hpx, Duq ¤

  ¡ ∆z D p Hpx, Duq ¤ Dz δF δm px, mptqqpρptqq b f t ρ ¡ ∆ρ ¡ divpρD p Hpx, Duqq ¡ divpmD 2 pp Hpx, DuqDzq ¡ divpcq 0 zpT, xq δG δm px, mpT qqpρpTqq z T pxq, ρpt 0 , ¤q 0, Hpx, sDû p1 ¡ sqDuq ¡ D p Hpx, Duqq ¤ Dpû ¡ uq ds Dupt, ¤q ¨pD û ¡ Duqpt, ¤q

	6 9 9 9 8 9 9 9 7 ¡f t z where			
				bpt, xq Apt, xq Bpt, xq	
	with pD p and Apt, xq ¡ ˆ1 0	
	Bpt, xq	ˆ1 0 ˆTd	¢	δF δm px, s mptq p1 ¡ sqmptq, yq ¡ δF δm px, mptq, yq	dp mptq ¡ mptqqpyqds,
	cptq p m ¡ mqptqD 2 pp H ¤, m ˆ1 0	

¡ D 2 pp H ¤, sDûpt, ¤q p1 ¡ sqDupt, ¤q ¨¡ D 2 pp H ¤, Dupt, ¤qq ¨©pD û ¡ Duqpt, ¤qds (note that cptq is a signed measure) and z T pxq ˆ1 0 ˆTd

  pt 0 h, x, m s , yq ¤ D p H y, Dupt, yq ¨mpt, yq dtdyds.

	ˆ1 0 ˆTd ¡ ˆ1 0 ˆTd ˆt0 h t 0 t 0 ∆ y ˆt0 h δU δm pt 0 h, x, m s , yqmpt, yq dtdyds D y δU

m s , yq ¡ ∆mpt, yq div mpt, yqD p Hpy, Dupt, yqq ¨© dtdyds δm

  To avoid too heavy notation, we set H I 1 pt, xq D p Hpx, Du 1 pt, xqq, H P 1 pt, xq D 2 pp Hpx, Du 1 pt, xqq, F I
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	7

1 px, µq ´Td δF δm px, m 1 , yqµpyqdy, etc... Then pz, ρq satisfies

  PpT d q, UpT, mq Gpmq in PpT d q,

	6 9 9 8 9 9 7	¡f (63)
	has a unique classical solution U and

t Upt, mq ˆTd H py, D m Upt, m, yqq dmpyq ¡ ˆTd div rD m Us pt, m, yqdmpyq Fpmq in r0, T s ¢

  PpT d qq and a bounded and measurable function α from r0, T s ¢ T d into R d , we let

	Jp m, αq :	ˆT t 0 ˆTd

H ¦ x, αpt, xq ¨d mptq ˆT t 0 F mptq ¨dt G mpT q ẅhere m solves

  Dupt, xq ¨¡ F x, mptq ¨%µpt, dxq ¡ ˆTd Dupt, xq ¤ D p H x, Dupt, xq ¨µpt, dxq ¡ ˆTd Dupt, xq ¤

	dt ˆTd ˆTd	upt, xqµpt, dxq
		H x, D 2 pp H x, Dupt, xq ¨Dvpt, xq

% mpt, dxq.

  Vp t, m, ¤q D m Up t, m, ¤q and div rD m Vs p t, m, ¤q div rD m Us p t, m, ¤q. Using the equation satisfied by U and V yields to t 0, a contradiction.

	so that
	D m

To fix the ideas, let us suppose that suppV ¡ Uq is positive. Then, for any ¡ 0 small enough, sup pt,xqp0,Ts¢PpT d q Vpt, mq ¡ Upt, mq logp t T q is positive. Let p t, mq be a maximum point. Note that t T because VpT, ¤q UpT, ¤q. By optimality of p t, mq and regularity of V and U, we have: f t Vp t, mq ¡ f t Up t, mq t 0 and δV δm p t, m, ¤q δU δm p t, m, ¤q,

  Moreover, MT pxq ¡ Mt pxq g T pxq ¡ ũt pxq ˆT t f s pxqds, t r0, T s, x T d . Now, recalling the relationship Er∆ũ s pxq|F t s Er∆ū s pxq|F t s, we get

	ˆT t	∆ũ s pxqds ¡
	ˆT	
	Er	

t ∆ũ s pxqds|F t s Er ˆT t ∆ū s pxqds|F t s.

  xq|F s sq C 0 pr0, T s, Rq to the entire r0, T s ¢ T d . For any pt, xq r0, T s ¢ T d , the value of the extension is a version of the conditional expectation ErUpt, xq|F s s. Outside N , the slice ps, xq Þ Ñ ErUps, xq|F s s is obviously continuous. Moreover, it satisfies, for all p

  PpT d qq such that, with n as in the statement of Theorem 4.3, for any smooth test function ϕ C n pT d q, P almost

	surely,				
	ˆT		&	4ˆT	
	d t	d	ϕpxqdm t pxq	d	∆ϕpxq ¡ xβ t pxq, Dϕpxqy

$ dm t pxq B dt, t r0, T s,

  now switch to Proof of Lemma 4.11. Following the deterministic case, the idea is to use the monotonicity condition. Using the same duality argument as in the deterministic case, we thus compute by means of Lemma 4.13:

	d t	ˆTd	ũI t ¡ ũt	¨d	mI t ¡ mt
		4 ¡ϑ ˆTd		

d Dũ I t ¡ Dũ t , D p Ht p¤, Dũ I t qd mI t ¡ D p Ht p¤, Dũ t qd mt h ¡ ˆTd d Dũ I t ¡ Dũ t , b I t d mI t ¡ b t d mt h ϑ ˆTd

  Since | |, |k| ¤ n ¡ 1, we can apply Corollary 4.19 with n replaced by n ¡ 1 (notice that n ¡ 1 } ¡pn α I ¡1q }f m mt } ¡pn α I ¡1q ¨% ¤ C. From Theorem 4.15, we deduce that, with the prescribed initial conditions, (138) has a unique solution. Moreover, by Corollary 4.19,

		essup ωΩ sup tr0,T s	}z p2q t } n 1 α essup ωΩ sup tr0,T s	}ρ p2q t } ¡pn α
	satisfies the assumption of §5.2), so that
		essup ωΩ	sup tr0,T s	}ρ t (141)
	Therefore, we deduce that	
			essup ωΩ sup tr0,T s	} b0
	Similarly,	essup ωΩ sup tr0,T s	} f 0

t } ¡pn α I ¡1q ¤ C. t } n α essup ωΩ sup tr0,T s }g 0 t } n 1 α ¤ C.

  5.4 (applied with both n and n ¡ 1), we know that, for |k| ¤ n ¡ 2 and j t1, . . . , du,

		lim Rzt0uhÑ0	essup ωΩ	sup tr0,T s ¡ 1 h	1 h zζ he j ,k ρζ he j ,k t t ¡ zζ,k ¡ ρζ,k t ¨¡ t ¨¡ zζ,k e j ρζ,k e j t t n 1 α ¡pn α I ¡1q ©% 0,
	where e j denotes the j th vector of the canonical basis of R d . Therefore, by (140),
	lim Rzt0uhÑ0	essup ωΩ	sup tr0,T s ¡ h h 1 1 1 h	b ,k,y,ζ he j t f ,k,y,ζ he j t ¡ f ,k,y,ζ ¡ b ,k,y,ζ t t ¨¡ f ,k e j ,y,ζ ¨¡ b ,k e j ,y,ζ t t g ,k,y,ζ he j T ¡ g ,k,y,ζ T ¨¡ g ,k e j ,y,ζ T	¡pn α I ¡1q © n α n 1 α ©% 0.
	By Proposition 4.18,		
	lim hÑ0	1 h			

p

  ¡ zt ¡ zp2q t , t r0, T s. Ht p¤, Dũ t q, D δz p2q t ¨y ¡ δ Ft δm p¤, m t q δρ p2q Ht p¤, Dũ I t q ¡ D p Ht p¤, Dũ t q pp Ht p¤, Dũ I t q ¡ mt D 2 pp Ht p¤, Dũ t q m mt D 2 pp Ht p¤, Dũ t qDz t ¡ ρt D 2 pp Ht p¤, Dũ t qDf m ũt ¡ mt D 3 ppp Ht p¤, Dũ t qDz t Df m ũt , ft Ht p¤, Dũ I t q ¡ D p Ht p¤, Dũ t q, Dz I Dũ t q, Dz t Df m ũt

	Then, we let						
			δ	ρp2q t ρI t ¡ ρt ¡ ρp2q	
	We have							
	d t δz p2q t	¨ 2 ¡∆ δz p2q t	¨ xD p t	¨	ft	@ dt d Mt ,
	f t δ ρp2q t ¨¡ ∆ δ	ρp2q t ¨¡ div	δ	ρp2q t ¨Dp Ht p¤, Dũ t q	$ ¡ div	mt D 2 pp Ht p¤, Dũ t q Dδz p2q t	¨ bt	$ 0,
	with a boundary condition of the form	
							δz p2q T δ δm p¤, m T q δρ p2q G T	¨	gT ,
	where							
	bt ρI						© ¡	mI t D 2
									h

t , δz p2q

t zI t t ¡ D p © Dz I t ¡ f d D t h ¡ d D

2

pp Ht p¤,

  ¡ ρt ¨¡D p Ht p¤, Dũ I t q ¡ D p Ht p¤, Dũ t q Dũ I t ¨¡ D p Ht ¤, Dũ t ¨¡ xD 2 pp Ht p¤, Dũ t q, Df m ũt Ht p¤, Dũ I t q ¡ D 2 pp Ht p¤, Dũ t q ¡ D 3 ppp Ht p¤, Dũ t qDf m ũt Ht ¤, Dũ I t ¨¡ D p Ht ¤, Dũ t ¨, Dz I t ¡ Dz t Ht ¤, Dũ I t ¨¡ D p Ht ¤, Dũ t ¨¡ D 2 pp Ht p¤, Dũ t qDf m ũt , Dz t

	Therefore,		
	bt ρI
			h ©
		¡ ¡ ¡ mt mI t D 2 pp Ht p¤, Dũ I t q ¡ mt D 2 pp Ht p¤, Dũ t q mI t ¡ mt ©¡ D 2 pp Ht p¤, Dũ I t q ¡ D 2 pp Ht p¤, Dũ t q © Dz I t ¡ Dz t © Dz t mI t ¡ mt ¡ f m mt © D 2 pp Ht p¤, Dũ t qDz t ¡ D 2 pp © ¨	Dz t ,
	and		
	ft	e	D p i
			e
			D p

t © ρt ¡ D p Ht ¤, i ¡ δ Ft δm p¤, m I t q ¡ δ Ft δm p¤, m t q ©

  Erε t i ,t i h |F t s by ε t i ,t i h itself, allowing for a modification of ε t i ,t i h .Moreover, here and below (cf. the proof of Lemma 5.15), we use the fact that, for a random process pγ t q tr0,T s , with paths in C 0 pr0, T s, Rq, satisfying 0, η s,t1 |s ¡ t| ˆt s pγ r ¡ γ s qdr,

		lim sup h×0	sup r,sr0,T s:|r¡s|¤h	E	|ε r,s | $ 0,
	we can easily replace each essup ωΩ sup tr0,T s	|γ t | V,	(151)
	it must hold that			
	lim h×0	sup s,tr0,T s:|s¡t|¤h		

E |η s,t | $

  it holds that ˆTd ϕpyqd δ h m t ¨pyq ˆTd ϕpyqdm t h pyq ¡ ˆTd ϕpyqdm t pyq In particular, whenever ϕ is a bounded Borel measurable mapping from rT d s 2 into R, it holds that ˆrT d s 2ϕpy, y I qd δ h m t ¨pyqd δ h m t ¨py I q 2W t h , y I ¨d mt h ¡ mt ¨pyqd δ h m t ¨py I q ¡ mt ¨pyqd mt h ¡ mt ¨py I q , y I ¨%d mt h ¡ mt ¨pyqdm t py I q ¨¡ ϕ y, y I c 2W t h ¨%dm t pyqd mt h ¡ mt ¨py I q

	ˆTd ϕ y	c	2W t h ¨d mt h pyq ¡ ˆTd ϕpy	c 2W t qd mt pyq				(156)
	ˆTd ϕ y	c	2W t h	¨d	mt h ¡ mt ¨pyq ˆTd	ϕ y	c	2W t h ¨¡ ϕpy		c	2W t q	%	d mt pyq
	ˆTd ϕ y	c	2W t h	¨d	mt h ¡ mt ¨pyq ˆTd	ϕ y	c	2δ h W t ¨¡ ϕpyq	%	dm t pyq.
	ϕ y ϕ y c ˆrT d s 2 ˆrT d s 2 ϕ y c 2W t h , y I c c 2δ h W t , y I ¨¡ ϕpy, y I q 2W t h ¨d ˆrT d s 2 ˆrT d s 2 ϕ y c 2W t h , y I c 2δ h W t ¨¡ ϕ y mt h (157) c 2W t h ˆrT d s 2 ϕ y c 2δ h W t , y I c 2W t h

%

dm t pyqd δ h m t ¨py I q

  By the PDE satisfied by p mt q trt 0 ,T s , we have 2W t , m t , y ¨dm t pyq ¡ ˆTd D m U t, x c 2W t , m t , y ¨¤ β t pyqdm t pyq ε t,t h , where, as in the statement, pε s,t q 0¤s¤t¤T is a generic notation for denoting a family of random 2W t , m t , y ¨dm t pyq ¡ ˆTd D m U t, x c 2W t , m t , y ¨¤ β t pyqdm t pyq ε t,t h .

	T 2,1 h	ˆt h t ¡ ˆt h ds t ds ˆTd ˆTd ∆ y D y δU δm δU t h, x δm t h, x	c c 2W t , m t , y 2W t , m t , y	c c 2W t h ¨d ms pyq 2W t h ¨¤ β s y	c 2W s ¨d ms pyq.	(160)
	Therefore, taking the conditional expectation, dividing by h and using the fact that m t is the push-forward of mt by the mapping T d x Þ Ñ x c 2W t (pay attention that the measures below
	are m t and not mt ), we can write
		1 h	E	T 2,1 h |F t	$ ˆTd ∆ y	δU δm	t, x	c
	variables that satisfies				lim h×0	sup |t¡s|¤h	E	|ε s,t | $ 0.	(161)
	Here we used the same trick as in (154) to prove (161) (see also (152)). Indeed, by a first
	application of (154), we can write
	T 2,1 h	ˆt h t ¡ ˆt h ds t	ˆTd ds ˆTd ∆ y	δU δm D y δU s, x δm s, x c 2W s , m s , y c 2W s , m s , y	c	2W s ¨d ms pyq c 2W s ¨¤ β s y	c	2W s ¨d ms pyq hε t,t h .
	Then, we can apply (154) once again with
		γ s pxq ˆTd ∆ y ¡ ˆTd D y δU δm δU s, x δm s, x c	2W s , m s , y c 2W s , m s , y	c	2W s ¨d ms pyq c 2W s ¨¤ β s y	c	2W s ¨d ms pyq.
	Using Itô's formula to handle the second term in (159), we get in a similar way
		1 h	E		T 2 h |F t	$ 2 ˆTd ∆ y	δU δm	E t, x T 1 h |F t c	$ 0.	1 h . It is pretty clear that	(158)
	Look at now the term T 2 h . Following (156), write it
			T 2 h ˆTd ˆTd δU δm	t h, x δU δm t h, x c	2W t , m t , y c 2W t , m t , y c δU δm t h, x	2W t h c 2δ h W t ¨d 2W t , m t , y ¨%dm t pyq mt h ¡ mt ¨pyq ¡ c (159)
						T 2,1 h	T 2,2 h .

  m t , y ¨dm t pyq ˆrT d s 2In order to apply Lemma 5.15, we observe that, in pUpt, x, m t qq tr0,T s , the x-dynamics are entirely frozen so that we are led back to the case when U is independent of x. With the same notation as in Lemma 5.15, we then getE U pt h, x, m t h q ¡ U pt h, x, m t q|F t pt, x, m t , yqdm t pyq ¡ ˆTd D m U pt, x, m t , yq ¤ D p H y, Du t pyq ¨dm t pyq ˆrT d s 2 pt, x, m t , y, y I qdm t pyqdm t py I q ε t,t h .Of course, this gives the absolutely continuous part only in the semi-martingale expansion of pUpt, x, m t qq tr0,T s . In order to compute the martingale part, one must revisit the proof of Lemma 5.15. Going back to (155), we know that, in our case, T 1 h , T 3 h and T 4 h are zero (as everything works as if U was independent of x). , denoting by pη s,t q s,tr0,T s:s¤t a family of random variables satisfying

	Tr 2 ˆTd div y D 2 mm U t, x D m U Tr D 2 mm U Nowlim h×0 1 h s,tr0,T s:|s¡t|¤h c sup we can write, by (159) and (160): T 2 h c 2 ¢ˆT Moreover, by (165) and (168) T 5 h η t,t h , E proving that d 2W $ |η s,t | 2 $ 0, U pt h, x, m t h q ¡ E $ U pt h, x, m t h q|F t c 2 ¢ˆT D y δU	(173) (174)

t , m t , y, y I ¨%dm t pyqdm t py I q ε t,t h , which completes the proof. $ $ d D y δU δm pt, x, m t , yqdm t pyq ¤ δ h W t η t,t h δm pt, x, m t , yqdm t pyq ¤ δ h W t η t,t h ,

  m t , yq ¤ D p H t y, Du t pyq ¨%dm t pyq pt, x, m t , y, y I qdm t pyqdm t py I q

	ˆTd ˆTd	
	Tr	D 2 mm U

$ B dt c 2 ¢ˆT d D m U pt, x, m t , yqdm t pyq ¤ dW t . Letting v t pxq ˆTd D m U pt, x, m t , yqdm t pyq, t r0, T s, x T d , and using the master equation satisfied by U , we obtain therefore d t u t pxq 3 ¡2∆u t pxq H x, Du t pxq ¨¡

d

  Xi,t ¡D p H Xi,t , Lp Xi,t |Wq Xi,t 0 Z i .Recall that, for any i t1, . . . , N u, the conditional law Lp Xi,t |Wq is equal to pm t q where pu t , m t q is the solution of the MFG system with common noise given by (128)-(129) (see section 5.4.3). Solvability of the McKean-Vlasov equation may be discussed on the model of (148).Our aim is to show thatE sup trt 0 ,T s § § Y i,t ¡ Xi,t § § % ¤ CN ¡1{pd 8q ,for some C ¡ 0. Before starting the proof of Theorem 2.15, we need to estimate the distance between the empirical measure associated with the p Xi,t q it1,...,N u and m t . For this, let us set Xt p Xi,t q it1,...,N u . As the p Xi,t q are, conditional on W , i.i.d. random variables with law m t , we have by a variant of a result due to Horowitz and Karandikar (see for instance Rashev and Rüschendorf[START_REF] Rachev | Mass Transportation problems[END_REF], Theorem 10.2.1):

	Lemma 6.8.	E	sup trt 0 ,T s	d 1	¡ m N,i Xt	, m t
						©	dt	c	2dB i t	2βdW t ,

¡

Xi,t , D x U pt, ©% ¤ CN ¡1{pd 8q .

  D Ũ p Xq f µ U Lp Xq ¨p Xq, P almost surely, U pLp Xqq : R d y Þ Ñ f µ U pLp Xqqpyq R d u L 2 pR d , Lp Xqq. This relationship is fundamental. Another key observation is that, for any random variables X and Ỹ with values in R d and ξ with values in Z d , it holds that which is, by the simple fact that τ X ξ p0q τ X p0q, also equal to Consider now a random variable X from Ω with values into T d . With X, we may associate the random variable X, with values in r0, 1q d , given (pointwise) as the only representative of X in r0, 1q d . We observe that the law of X is uniquely determined by the law of X and that for any Borel function h : T d Ñ R, ErhpXqs Er ĥp Xqs, where ĥ is the identification of h as a function from r0, 1q d to R. Xq f µ U Lp Xq ¨p Xq, P almost surely. Moreover, from (197), we also have, for any random variable ξ with values in Z d , D Ũ p X ξq f µ U Lp Xq ¨p Xq, P almost surely. Since f µ U pLp Xqqp¤q is in L 2 pR d , Lp Xqq and X takes values in r0, 1q d , we can identify f µ U pLp Xqqp¤q with a function in L 2 pT d , LpXqq. Without any ambiguity, we may denote this function (up to a choice of a version) by

	Then, we deduce from (196) that					
				D Ũ p						
												(196)
	for a mapping t	f µ lim εÑ0	1 ε	Ũ X ξ ε	Ỹ	¨¡ Ũ	X¨% E	d	D Ũ X	ξ¨, Ỹ h %	,
			lim εÑ0	1 ε	Ũ X ε	Ỹ	¨¡ Ũ	X¨% E	d D Ũ	X¨, Ỹ h %	,
	proving that										
						D Ũ	X¨	D Ũ X	ξ¨.	(197)
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  § § § § U pid φqUm ¨¡ U pmq ¡ ˆTd D m U pm, yq ¤ φpyq dmpyq ¡ 1 2 ˆTd D y D m U pm, yqφpyq ¤ φpyq dmpyq ¡ 1We argue as in Proposition 7.3: by our assumption, we have §§ § § U pid φqUm ¨¡ U pmq ¡ ˆTd D m U pm, yqφpyq ¤ φpyq Op|φpyq| 3 q Op|φpyq| 3 q § § dmpyq ¤ D 2 y D m U V ˆTd |φpyq| 3 dmpyq ¤ C 0 }φ} 3 pm, y, zqφpyq ¤ φpzq O |φpyq| 2 |φpzq| |φpyq||φpzq| 2 ¨ dmpyqdmpzq ˆTd ˆTd mm U pm, y, zqφpyq ¤ φpzq O |φpyq| 2 |φpzq| |φpyq||φpzq| 2 ¨dmpyqdmpzq,

	δU δm pm, yqd ¡ 2 pid φqUm ¡ 2 pid φqUm @ ¡ m © pyq @ ¡ m © pyqd ¡ 2 pid φqUm @ ¡ m © pzq δm 2 pm, y, zqd δ 2 U 1 m, pid φqUm ¡ 1 2 ˆTd ˆTd ¤ d 2 ¨w d 1 pm, pid φqUmq ¨¤ }φ} 2 L 3 m wp}φ} L 3 m q.	§ § § §
	Now		
	ˆTd ˆTd δU δm pm, yqd ¢ δU δm pm, y φpyqq ¡ δU 2 pid φqUm @ ¡ m δm pm, yq % pyq ˆTd ¢ D y δU δm pm, yq ¤ φpyq 1 2 D 2	dmpyq
				dmpyq,
	where	ˆTd	§ § L 3 m .
	Moreover,		
	ˆTd ˆTd ˆTd ˆTd δ 2 U δm 2 pm, y, zqd ¢ δ 2 U δm 2 m, y φpyq, z φpzq 2 pid φqUm @ ¡ m % pyqd ¨¡ δ 2 U δm 2 m, y φpyq, z 2 pid φqUm @ ¡ m % pzq ¨¡ δ 2 U δm 2 pm, y, z φpzqq
	ˆTd ˆTd δm 2 where ¢ δ 2 U D 2 y,z	δ 2 U δm 2 pm, y, zq	dmpyqdmpzq
			ˆTd	§ § §O	¡ |φpyq| 2 |φpzq| |φpyq||φpzq| 2 © § § §dmpyqdmpzq
				¤ sup
				2 ˆTd ˆTd	D 2	§ § § §
		¤ }φ} 2 L 3 m wp}φ} L 3 m q,

mm U pm, y, y I qφpyq ¤ φpy I q dmpyqdmpy I q where the modulus w depends on w and on C 0 . 136 Proof.

y δU δm pm, yqφpyq ¤ φpyq Op|φpyq| 3 q dmpyq ˆTd ¢ D m U pm, yq ¤ φpyq 1 2 D y ¢ D 2 m }D 2

In order to emphasize the random nature of the functions u and m, the time variable is now indicated as an index, as often done in the theory of stochastic processes.

f t ρ ¡ ∆ρ ¡ divpρV q ¡ divpmΓDz cq 0 in r0, T s ¢ T d ρp0q ρ 0 in T d .Again by Schauder estimates ρ is bounded in C 1 β{2,2 β for bounded ρ. Setting Tpρq : ρ defines the continuous and compact map T : X Ñ X.

¤ C}ξ} n 1 α ,(53)

&dt.This proves that Jp m, αq ¥ Jpm, αq and shows the optimality of pm, αq.

pm 0 , m0 q ¨,

Equation (72) is set on R d but the solution may be canonically mapped onto T d since the coefficients are periodic: When the process pXtq tr0,T s is initialized with a probability measure on T d , the dynamics on the torus are independent of the representative in R d of the initial condition.

In the application of Itô-Wentzell formula, ut is seen as a (random) periodic function from R d to R.

In most of the analysis, α is assumed to be (strictly) positive, except in this statement where it may be zero.Including the case α 0 allows for a larger range of application of the uniqueness property.

&, which completes the proof.

&,

& 0,

&dλdλ I , where X and Ȳ are R d -valued random variables that represent the T d -valued random variables X and Y , while D y rδU{δmspm, ¤q is seen as a periodic function from R d into R d¢d .

Acknowledgement: The first author was partially supported by the ANR (Agence Nationale de la Recherche) projects ANR-12-BS01-0008-01 and ANR-14-ACHN-0030-01.

Proof of Corollary 2.12

We are now ready to come back to the well-posedness of the stochastic MFG system 6 8 7 d t u t 2 ¡2∆u t Hpx, Du t q ¡ F px, m t q ¡ c 2divpv t q @ dt v t ¤ c 2dW t , d t m t 2∆m t div m t D p Hpx, Du t q ¨$dt ¡ c

For simplicity of notation, we prove the existence and uniqueness of the solution for t 0 0.

First step. Existence of a solution. We start with the solution pũ t , mt , Mt q tr0,T s to the system 6 8

where Ht px, pq Hpx c 2W t , pq, Ft px, mq F px c 2W t , mq and Gpx, mq Gpx c

2W T , mq.

The existence and uniqueness of a solution pũ t , mt , Mt q tr0,T s to (171) is ensured by Theorem 4.3. Given such a solution, we let

, T s, and claim that the pair pu t , m t q tr0,T s thus defined satisfies (170) (for a suitable pv t q tr0,T s ).

The dynamics satisfied by pm t q tr0,T s are given by the so-called Itô-Wentzell formula for distributed-valued processes, see [43, Theorem 1.1], the proof of which works as follows: for any test function φ C 3 pT d q and any z R d , we have ´Td φpxqdm t pxq ´Td φpx c 2W t qd mt pxq; expanding the variation of p ´Td φpx zqd mt pxqq tr0,T s by means of the Fokker-Planck equation satisfied by p mt q tr0,T s and then replacing z by c

2W t , we then obtain the semi-martingale expansion of p ´Td φpx c 2W t qd mt pxqq tr0,T s by applying the standard Itô-Wentzell formula.

Once again we refer to [43, Theorem 1.1] for a complete account.

Applying [START_REF] Krylov | On the Itô-Wentzell formula for distribution-valued processes and related topics[END_REF]Theorem 1.1] to our framework (with the formal writing pm t pxq mt px ¡ c 2W t qq tr0,T s ), this shows exactly that pm t q tr0,T s solves

Next we consider the equation satisfied by pu t q tr0,T s . Generally speaking, the strategy is similar. Intuitively, it consists in applying Itô-Wenztell formula again, but to pu t pxq ũt px ¡ c 2W t qq tr0,T s . Anyhow, in order to apply Itô-Wentzell formula, we need first to identify the martingale part in pũ t pxqq tr0,T s (namely p Mt pxqq tr0,T s ). Recalling from Lemma 5.1 the formula ũt pxq U t, x c 2W t , m t ¨, t r0, T s, we understand that the martingale part of pũ t pxqq tr0,T s should be given by the first-order expansion of the above right-hand side (using an appropriate version of Itô's formula for functionals defined on r0, T s ¢ T d ¢ PpT d q). For our purpose, it is simpler to express u t pxq in terms of U directly: u t pxq U t, x, m t ¨, t r0, T s.

The trick is then to expand the above right-hand side by taking benefit from the master equation satisfied by U and from the tailor-made Itô's formula given in Lemma 5.15.