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Multimodal approach to estimate the ocular movements during EEG
recordings: a coupled tensor factorization method*

Bertrand Rivet1, Marc Duda1, Anne Guérin-Dugué1, Christian Jutten1,2 and Pierre Comon1

Abstract— This paper deals with coupled tensor factorization.
A relaxed criterion derived from the advanced coupled matrix-
tensor factorization (ACMTF) proposed by Acar et al. is
described. The proposed relaxed ACMTF (RACMTF) criterion
is based on weaker assumptions that are thus more often
satisfied when dealing with actual data. Numerical simulations
show the benefit of using jointly two data sets when the
underlying factors are highly correlated, especially if one of
the modality is less noisy than the other one. The proposed
method is finally applied on actual Gaze&EEG data to estimate
the ocular artifacts into the EEG recordings.

I. INTRODUCTION

Electroencephalography (EEG) is one of the most popular
way to explore the brain activity [1] because it is a non-
invasive technique. However, the recordings contain ocular
artifacts due to the blinks or the eye movements. A classical
way to overcome this problem is to ask the user to not
move his/her eyes during the experiments by proposing a
paradigm which avoids the eye saccades. This leads to very
restrictive experiments far from ecological situations. Indeed,
this constrain excludes many interesting areas of cognitive
sciences related to the visual process such as text reading or
visual scene explorations for which the users have to look
freely on a screen to perform a given task. Consequently,
the EEG recordings can be strongly distorted and the ocular
artifacts must be removed from the EEG recordings before
their analysis.

In order to attenuate electro-ocular (EOG) artifacts, many
algorithms have been proposed in the literature (e.g., [2]).
Among which, one can cite independent component analysis
(ICA) [3], [4] and regression technique [5], [6]. ICA based
methods decompose the EEG signals using spatial filters
into components which maximizes an independence criterion
and then remove the identified components related to EOG
artifacts. Even if ICA is shown to be efficient to remove EOG
artifacts, it has two main drawbacks: it needs a large number
of sensors and the removed components may still contain
some brain activities, leading thus to possibly misinterpre-
tations of the brain waves. On the other hand, regression
based methods require additional EOG channels as artifact
references and they identify scaling factors between the
reference channels and the EEG ones to estimate the ocular
artifacts. This alternative approach needs less EEG sensors
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than the ICA based ones, but the assumption of equal shape
up to a scaling factor between the EOG and the EEG sensors
may not be satisfied since EOG recordings also contain some
brain activities.

In this paper, we propose to tackle the estimation of EOG
artifacts on EEG recordings by a tensor approach using
multimodal data which are synchronously recorded. The
EEG signals are jointly used with some reference signals
on the eye movements recorded by an eye-tracker (ET).
The proposed approach lies thus within the joint or coupled
tensors factorization framework (e.g., [7], [8], [9], [10]).
Compared to [8], [10], which enforce the shared loadings
to be the same between modalities, we propose to relax
theses assumptions by only assuming that some loadings
between modalities are linked (i.e. similar or with similar
properties) and not necessarily the same. Indeed, the equality
assumption is somewhat too restrictive when dealing with
real data, especially with brain signals.

The remainder of this paper is organized as follows.
In Section II, the proposed method is described. Some
numerical experiments and an illustration on real eye-gaze
& EEG data are shown in Section III. Finally, conclusions
and perspectives are in Section IV.

II. MULTIMODAL TENSOR FACTORIZATION

The advanced coupled matrix-tensor factorization
(ACMTF) [10] is recalled in Subsection II-A and the
proposed relaxed model is described in Subsection II-B.

We adopt some standardized notations: Jλ;A,B,CK de-
notes a tensor defined by the sum of rank-one tensors:
Jλ;A,B,CK =

∑
r λrar ◦br ◦cr, where λ = [λ1, . . . , λR]′,

with ·′ the transposition operator, ◦ the tensor product and
xr the rth column of matrix X.

A. Coupled tensors factorization

Let X (1) and X (2) denote two third-order tensors to be
jointly factorized. Let’s say, without loss of generality, that
these two tensors share some components in the second
and third factors (B and C) while the first one A is
unconstrained. The ACMTF model [10] can then be written
as the following optimization problem

min
θ

2∑
i=1

∥∥X (i) − Jλ(i);A(i),B,CK
∥∥2
F

+ α
∥∥λ(i)

∥∥
1

(1)

s.t. ∀i, ∀r, ‖a(i)r ‖2 = 1, ‖br‖2 = 1, ‖cr‖2 = 1

where ‖ · ‖F , ‖ · ‖2 and ‖ · ‖1 are the Frobenius, `2 and
`1 norms, respectively, α ≥ 0 is a penalty parameter and



θ =
{
{λ(i),A(i)}i,B,C

}
is the set of parameters to be

optimized. In this formulation the `1 norm terms are used to
sparsify the weights λ(i) so that the unshared components
will have weights equal to 0 in one of the data sets while the
shared components will have values different from 0 in both
data sets. Consequently, the shared components br and cr are
assumed to be strictly equal in both data sets. We observed
on Gaze&EEG data that this assumption leads to over-
estimate the number of unshared components: some related
components are estimated as unshared (different) ones while
two components br (and/or cr) are closed. Indeed, the
relationship between the shared components can be more
general than a strict equality: the shared components can
only be similar (in some sense) or with similar properties
(e.g., variations with the same order of magnitude).

B. Relaxed coupled tensors factorization

To overcome the equality constraint of shared components
highlighted in the previous section, we modify the ACMTF
model by relaxing criterion (1) such that the proposed
optimization problem (RACMTF) is now

min
θ

2∑
i=1

∥∥X (i) − Jλ(i);A(i),B(i),C(i)K
∥∥2
F

+ α
∥∥λ(i)

∥∥
1

+
1

2
β

R∑
r=1

∥∥∥∣∣Qb(1)
r

∣∣− ∣∣Qb(2)
r

∣∣∥∥∥2
2

+ γ

R∑
r=1

∥∥c(1)r − c(2)r
∥∥
1

− δ
∥∥λ(1) ∗ λ(2)

∥∥
0̃

(2)

s.t. ∀i, ∀r, ‖a(i)r ‖2 = 1, ‖b(i)
r ‖2 = 1, ‖c(i)r ‖2 = 1

where |x| = [|x1|, · · · , |xI |]′ stands for the element wise
absolute value, ∗ is the Hadamard product, α, β, γ, δ are
four non-negative penalty parameters and ‖x‖0̃ =

∑
i(1 −

exp(−x2i /σ2)) is the smoothed `0 norm [11], with σ a small
enough parameter to approximate the `0 norm, and Q is a
fixed matrix.

The last term in (2) is used to enforce the identification
of the shared components to avoid that similar factors are
estimated with different components by maximizing the
number of common non-zero elements in the weights λ(i);
it contributes to restore uniqueness of both decompositions,
in the case they were not unique if calculated separately.

For the sake of concise notation, the two additional penalty
terms (third and fourth ones) are presented in (2) on factors
B and C respectively, but they obviously may concern any of
the three factors A, B or C. The `1 norm term on c

(i)
r allows

the shared components c
(1)
r and c

(2)
r to have few entries

that are different. Finally, the `2 norm term on b
(i)
r allows

the shared components b
(1)
r and b

(2)
r to have some similar

properties. For instance, if Q is the first or the second order
(numerical) derivative matrix, this term penalizes the shared
components if their derivate values are different in order of
magnitude whatever are their signs using the absolute value.
Thus, with such Q matrices, the main idea is that the shared
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Fig. 1. Influence of penalization terms in the proposed RACMTF (2)
criterion on the accuracy of the factorization. The mean plus/minus the
standard deviation of average correlation coefficient ρ̄ (3) are plotted vs.
the correlation coefficient between the two data sets.

components should have the same kind of variations, but for
instance one factor in one modality can increase while the
other factor in the other modality is decreasing. Finally, one
can also express the similarity of the factor using a `1 norm,
instead of the `2 norm. It is worth noting that such kind of
penalizations can also be rewritten in a Bayesian way [12].

To optimize the criterion (2), we used a conjugated gradi-
ent descent [13] after converting the constraints to quadratic
penalties and substituting the `1 norm with a differentiable
approximation (‖x‖1 ' ‖x‖1̃ =

∑
i

√
x2i + ε, for small

enough ε) as done in [10] and the same trick is applied for
the absolute value (|xi| '

√
x2i + ε).

III. EXPERIMENTS

To assess the efficiency of the proposed relaxed ACMTF
model (2), first numerical simulations are performed (Sec-
tion III-A) and then it is applied on actual Gaze&EEG data
(Section III-B).

A. Numerical simulations

In each case, we consider the influence of a single
relaxation term in the RACMTF criterion (2), i.e. only β
or γ is non zero. In other words, we have generated data
such that only the second factors B(i) or the third ones
C(i) are shared, respectively, while the two other ones are
unconstrained. The number of components R is fixed and
equal to 2. The unconstrained factors are randomly generated
using a standard normal distribution. The shared factors are
drawn independently from a standard normal distribution for
each r, such that the correlation coefficient ρ

(
x
(1)
r ,x

(2)
r

)
=



x̃
(1)′

r x̃
(2)
r (with x̃

(1)
r the factor x

(1)
r divided by its `2 norm)

between component factors x(i)
r of X(i) is fixed. All weights

λ(i) are equal to one. Finally tensors X (i) are obtained by
X (i) = Jλ(i);A(i),B(i),C(i)K + N (i), where entries of the
noise tensors N (i) are drawn from a zero mean normal
distribution with standard deviation σ(i), which is different
for each tensor (σ(1) = .01 and σ(2) = .1, i.e. 1% and 10%
of noise, respectively). This means that the second data set
is more noisy than the first one which often happended when
one uses several modalities. For each numerical experiments,
100 configurations are randomly drawn and the results are
plotted in Fig. 1. The accuracy of the estimated factors X (2)

(i.e. of the more noisy tensor) is assessed by the average
correlation coefficients ρ̄(x̂

(2)
r ,x

(2)
r ) between the estimated

factors x̂
(2)
r and the actual ones x

(2)
r

ρ̄(x̂(2)
r ,x(2)

r ) =
1

R

R∑
r=1

x̂
(2)′

r x
(2)
r

‖x̂(2)
r ‖2‖x(2)

r ‖2
. (3)

The closer to one, the better the results.
In the first experiment (Fig. 1(a)), the influence of the

`1 norm term is investigated (i.e. β = 0). As one can see,
the more correlated the two data sets are, the better the
factorization is. Without coupled factorizations, the mean
accuracy of the factorization X (1) and X (2) are equal to
.99 and .25, respectively. And the accuracy of the coupled
factorization of the less noisy tensor X (1) (ρ̄ = .99) is almost
independent of the correlation between the two tensors.
Finally, with highly correlated factors c

(1)
r and c

(2)
r , the

accuracy of the factorization of the more noisy tensor X (2)

is close to the accuracy of the less noisy one X (1) showing
the advantage of using coupled factorization compared to
individual ones.

In the second experiment (Fig. 1(b), 1(c) and 1(d)), the
influence of the `2 norm term is investigated (i.e. γ = 0)
for several matrices Q, the identity matrix I, the first order
derivate one Q1 and the second order derivate one Q2,
respectively. As in the previous experiment, one can see
the advantage of considering coupled factorization instead of
individual ones when dealing with correlated factors: for all
three cases, the higher the correlation, the better the accuracy.
Although, one can see that the more explicit the coupling
represents the signals by themselves, the higher and hence
the better the accuracy. Indeed, for a given correlation of
the shared factors, the accuracy increases when using the
first (Fig. 1(c)) instead of the second derivatives (Fig. 1(d))
and the increase becomes even more pronounced when the
signals themselves are coupled (Fig. 1(b)) instead of their
first derivates (Fig. 1(c)).

B. Illustration on actual data

The Gaze&EEG data comes from experiment in visual
search where participants had to search a target from a set
of distractors [14]. Sixty four active electrodes (BrainProd-
uctsGmbH) were mounted on an EEG cap (BrainCapTM)
placed on the scalp in compliance with the International 10-
20 system. To be compatible with the EEG acquisition, eye
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Fig. 2. Gaze (left plots) and EEG (right plots) signals, all trials are stacked
on the same plot.

movements were recorded by a remote binocular infrared
eye tracker EyeLink 1000 (SR Research) to track the gaze
of each eye while the observer was looking at stimuli. The
EyeLink system was used in the Pupil-Corneal Reflection
tracking mode. For the both acquisition devices, the sampling
frequency was 1000Hz. Off-line, EEG signals and gaze
samples were synchronized using hardware triggers signals
sent in parallel to the EEG recorder and the eye tracker, along
the experiment.

From these data, two tensors (space × time × trials) are
build synchronized on the beginning of the saccades: each
tensor is the concatenation in the third dimension of the
matrices which each column is the vector of channel signals
at a given time. X (1) and X (2) are related to the EEG signals
and the eye-Gaze signals (Fig. 2), respectively. In addition
to the proposed RACMTF criterion (2), we add an extra `1
norm penalty term on the spatial factors of Gaze signals,
a
(2)
r , to enforce the identification of horizontal and vertical

eye movements separately. For this experiment, the matrix Q
was equal to Q1, so that the first derivative of the temporal
shapes of EEG and Gaze signals should be correlated. The
result of the coupled factorization is shown in Fig. 3. We have
arbitrarily fixed R = 5. As one can see three (resp. two)
significant EEG (resp. Gaze) factors have been identified,
which two of them are coupled with the Gaze ones. And
two of the factors (the last two ones) are unnecessary for the
factorization. The second factor is clearly related to vertical
eye movements as shown by the first order factor â

(2)
2 and

confirmed by the spatial map of â(1)2 . On the other hand, the
same analysis of the third spatial factors â(1)3 and â

(2)
3 allows

us to conclude that these factors are related to the horizontal
eye saccades.

IV. CONCLUSIONS AND PERSPECTIVES

In this article, we proposed a relaxed coupled tensor
factorization criterion called RACMTF based on the pre-
vious ACMTF criterion proposed by Acar et al. [10]. The
constraint of equality of the shared factors is replaced by
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Fig. 3. Illustration of the coupled factorization of EEG tensor (Fig. 3(a))
and Gaze one (Fig. 3(b)). Each estimated factor is multiplied by the related
λ̂
(i)
r to show its significance into the tensor. Each column is related to a

mode of the tensor (A(i), B(i) and C(i) from left to right) and each row is
a factor r. In the first mode of the Gaze tensor, the two spatial dimensions
are Left-Right (L-R) and Up-Down (U-D) channels.

a weaker assumption: the shared factors only need to be
similar in some sense. Two kinds of similarity have been
proposed, either on the factors themselves or either on their
first or second order derivatives. The coupled factorization
has been shown to improve the accuracy of the estimated
factors compared to the one achieved by individual factoriza-
tion. Numerical experiments shown that the accuracy of the
factorization is mainly due to the less noisy input tensor when
dealing with highly correlated factors. On actual Gaze&EEG
data, the proposed method is shown to recover the horizontal
and vertical eye movement, even if the final estimation is
sensitive to the initialization of the descent algorithm. Future
works will consider other extensions such as synchronization
issue (i.e. delays between trials) or time warping.
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