
HAL Id: hal-01195839
https://hal.science/hal-01195839

Submitted on 9 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intelligent Ordered XPath for Processing Data Streams
Muath Alrammal, Gaétan Hains, Mohamed Zergaoui

To cite this version:
Muath Alrammal, Gaétan Hains, Mohamed Zergaoui. Intelligent Ordered XPath for Processing Data
Streams. [Research Report] TR-LACL-2008-4, Université Paris-Est, LACL. 2008. �hal-01195839�

https://hal.science/hal-01195839
https://hal.archives-ouvertes.fr

Intelligent Ordered XPath for Processing
Data Streams

Muath ALRAMMAL Gaétan HAINS Mohamed ZERGAOUI

July 2008

TR–LACL–2008–4

Laboratoire d’Algorithmique, Complexité et Logique (LACL)
Département d’Informatique

Université Paris 12 – Val de Marne, Faculté des Science et Technologie
61, Avenue du Général de Gaulle, 94010 Créteil cedex, France

Tel.: (33)(1) 45 17 16 47, Fax: (33)(1) 45 17 66 01

Laboratory of Algorithmics, Complexity and Logic (LACL)
University Paris 12 (Paris Est)

Technical Report TR–LACL–2008–4

M. ALRAMMAL, G. HAINS, M. ZERGAOUI
Intelligent Ordered XPath for Processing Data Streams

c© M. ALRAMMAL, G. HAINS,M. ZERGAOUI July 2008.

Abstract

Data Streaming is a necessary and useful technique to process very large XML documents
but poses serious algorithmic problems, various approaches and algorithms were implemented
to fulfill this purpose. In this article we highlight and categorize the different important works
in this domain. Furthermore, we present the critical parameters which affect the complexity
of the streaming algorithms accompanied with examples. In the end, we propose a new
approach for processing XML data streams using intelligent Ordered XPath that account for
these critical parameters .

1 Introduction

The extensible markup language (XML) [30], has gone from the latest buzzword to an entrenched
e-Business technology in record time. XML is currently being heavily pushed by the industry and
community as the lingua franca for data representation and exchange on the Internet. It provides
a much needed non-proprietary universal format for sharing hierarchical data among different
software systems, and does so in a user-friendly manner. It is a verbose plain-text format, making
it robust, platform-independent and legible to humans without additional tools. This popularity
of XML has created several important applications like information dissemination, processing
of the Scientific data, and real time news. Query Languages like XPath [14] and XQuery [4]
have been proposed for accessing the XML data, which provide a syntax for specifying which
elements and attributes are sought to retrieve specific pieces of a document.
Often, data is very large to fit into limited internal memory and in many cases it needs to be
processed in real time during a single forward sequential scan. In addition, sometimes query
results should be output as soon as they are found, in this case streaming fashion is the best
approach to process the XML Data. The term data streaming is used to describe data items
that are available for reading only once and that are provided in a fixed order determined by the
data source. In the streaming model queries must be known before any data arrive, so queries
can be preprocessed by building machines for query evaluation . Figure 1 illustrates a data
stream processor.

Figure 1: Data Stream Processor.

Due to the recursive nature of XML data, the single sequential forward scan of an XML streams,
also the presence of descendant axes and the predicates in an XPath query, query evaluation
process on XML streams raises different challenges compared to non-streaming environments,
some of them are :

• During evaluation of XPath queries that contain predicates in streaming, we may encounter
data that can be query solutions, before we reach the required data to evaluate the pred-
icates1 in order to decide its satisfaction. Based on that, we need to record information
about the potential answer nodes, as well as, their associated pattern matches to the query
until the relevant data is encountered so that we can determine the predicate satisfaction
and deciding their membership.

1XML data may be processed in several different models, which require different query processing
strategies like LAZY and EAGER

3

• The descendant axis traversal in a query and recursive structure of the XML document
may cause an exponential number of pattern matches of sub-query from a single initial
node.
• The property of the existing XPath expression whose are unordered (predicates and axes)

will increase the number of buffered potential answer nodes before we encounter the re-
quired data to evaluate the predicate to decide its membership. In the worst case the
buffering size will reach the document size.

1.1 Preliminaries
• Data Model of XML Streams

An XML document can be seen as a rooted, ordered, labeled tree, where each node cor-
responds to an element, attribute or a value, and the edges represent (direct) element-
subelement or element-value relationships. The streaming XML data is modeled as a
sequence of SAX [5] events extended with the depth of the event. An XML streaming al-
gorithm accepts input XML document as SAX events, these events are: startElement(X)
and endElement(X) which are activated respectively when the opening or closing tag of a
streaming element is encountered and accept the name of the element X as input param-
eter.

• XPath
XPath [14] is a language that describes how to locate specific elements (and attributes,
processing instructions, etc.) in a document, it treats an XML document as a logical
ordered tree. XPath has a particular importance for XML applications since it is a core
component of many XML processing standards such as XSLT [13] or XQuery [4].

textitForward XPath [2] is a fragment of XPath consists of queries that have only child,
attribute, or descendant axes, it has different subfragments based on the manner of com-
puting the predicates. Symmetric predicate is a predicate P if its evaluation on any
document node X is independent of the order of X ′s children, also it is a predicate that
does not contain positional function operators such as position() or last(). Symmetric
XPath is a fragment of Forward XPath consisting, if any, only symmetric predicates, for
example F [N], F [N < B] are symmetric, while F/G[last()] is not. Atomic Predicate can
be called Univariate if it depends on the value of at most one node in the query tree. Based
on that Univariate XPath is a fragment of Forward XPath consisting, if any, only Univari-
ate predicates, for example, F [S > 9] is a Univariate Atomic XPath, while F [S > N] is
not. Furthermore, SubSumption-free XPath are queries that do not contain redundancies.
Some queries can be rewritten to be SubSumption-free by eliminating redundant portions.
They can be considered as subset of queries of Univariate XPath.
In this article we focus on Forward XPath. Figure 1.1 illustrates its grammar. A location
path is a structural pattern composed of sub expressions called step. Each step consists of
an axis (defines the tree-relationship between the selected nodes and the current node), a
node-test (identifies a node within an axis), and zero or more predicates (to further refine
the selected node-set). An absolute location path starts with a ‘/’ or ‘//’ and a relative
location path starts with a ‘./’ or ‘.//’.

Path := GenericPath | GenericPath AttributeStep

| AttributeStep

GenericPath := GenericStep | GenericPath GenericStep

GenericStep := Axis NodeTest | Axis NodeTest ’[’ Predicate ’]’

AttributeStep := ’@’ NodeTest| ’@’ NodeTest ’[’ Predicate ’]’

Axis := ’/’ | ’//’

NodeTest := name | ’*’

Predicate := PredicatePath | PredicatePath CompOp constant

| Predicate ’and’ Predicate

| Predicate ’or’ Predicate

| ’not(’ Predicate ’)’

CompOp := ’=’ | ’!=’ | ’>’ | ’>=’ | ’<’ | ’<=’

PredicatePath := ’.’ GenericPath | ’.’ GenericPath AttributeStep

| AttributeStep

Figure 1.1 Grammar of the Intelligent Forward XPath

4

Matching Nbr. Nodes of Structural Matching
1 A1 B7 C8 K8

2 A2 B7 C8 K8

3 A4 B8 C8 K8

Table 1: Nodes of Structural Matching of Q in D

Our restriction to the downward axes in our XPath fragment is not absolute, we could
cover more general axes than ‘/’, ‘//’ by using rewrite rules as shown in Olteanu paper
[24].

Concerning query evaluation process, usually two principle questions are asked. First,
does our document D match the query Q?, in this case we determine whether there exists
at least one match of Q in D. Second, which part or parts of the D match the Q?,
it means outputting all nodes in an XML data tree D (answer nodes) whose satisfy a
specified twig pattern Q at its result node. Different strategies and streaming algorithms
were implemented for this purpose, we can categorize some of them based on the time
of predicates evaluation in queries. Lazy streaming algorithm evaluates the predicates
only when the closing tags of the streaming elements are encountered. While the Eager
algorithm does that as soon an atom in a predicate is evaluated to true.

• Recursion In XML Data
Recursion occurs frequently in XML data in practice [11], where some elements with the
same name are nested on the same path in the data tree. In [2], they define it as the
recursion depth of an XML data tree D w.r.t the query node q in Q, denoted by rq, as
the length of the longest sequence of nodes e1, ..., er in D, such that (1) all the nodes lie
on the same path (root-to-leaf), and (2) all the nodes match structurally the sub-pattern
(q). To facilitate and clarify the meaning of Recursion, figure 2 illustrates the depth of
document D w.r.t the query Q //A//B[.//C]/K

Figure 2: Recursion depth of D w.r.t Q.

where the single line edges represents child (‘/’), the double line edges represents de-
scendant(‘//’), single dashed line represents [./node()], double dashed line represents
[.//node()] and the result node which is in this example the shaded node K. It is ob-
vious from figure 2 that node C is not on the main path, this is why we do not consider it
as a rq. If we have a look at table 1 clearly, both nodes A and B satisfy the definition of
rq. Actually, rA = 3 represented by (A1, A2, A4), while rB = 2 represented by (B7, B8)
In our example, figure 2 the used XPath expression can be considered a simple one, for
more complex XPath expression, see figure 3, it benefits from the grammar of figure 1.1.
Moreover our Query is unordered (axes and predicate position), because node C in Q can
be before node K or after.

• Document Depth
The depth of a document is the length of the longest root to leaf path in the tree repre-
senting the document dD. In our example in figure 2, document depth is the path from
root node A1 to the leaf node K8

5

2 Related Work

Large amount of work has been conducted to process XML documents in streaming fashion.
The different approaches to evaluate XPath queries on XML data streams can be categorized by
the subset of XPath they support. In fact, most of them are automata based (XPush [19], XSQ
[25], SPEX [23], XMLTK [1]) or parse trees ([10],[3],[2],[17]). All of them support a particular
fragment of XPath called Forward XPath as it is defined in section 1.1 , other works use a sub-
fragment of Forward XPath. YFilter [19], XMLTK [1] and X-Scan [20] support XPath queries
containing the child and descendant-or-self axes and wildcards using finite state automata.

In [19] authors seek to process efficiently large number of XPath expressions with many
predicates per query on a stream XML data. Therefore, they propose to lazily construct a
single deterministic pushdown automata (a special deterministic stack machine) which is called
”XPush Machine” for a given XPath filters, the input is a series of SAX events and the output
is a set of filters that match the processed document. The used fragment of XPath is Forward
XPath. Note that, the memory requirement for this technique is manageable and the cost of
laziness is recovered later. An application example for this work is XML Message Brokers.
AFilter[7] is an adaptable XPath query evaluation approach that needs a base memory require-
ment which is linear in query and data size. If more memory is provided to AFilter, it uses the
remaining main memory for a caching approach to evaluate queries faster than with only the
base memory. AFilter is mainly based on a lazy DFA and it supports wildcard, but does not
support predicate filters. Similar to XPush [19], it is designed to evaluate a large set of queries.

The approach presented in TurboXPath[22] discusses how to handle the child and descendant
or- self axes, predicates (including functions and arithmetics) and wildcards in XQuery using
TurboXPath. The input query is translated into a set of parse trees. Whenever a matching of a
parse tree is found within the data stream, the relevant data is stored in form of a tuple that is
afterward evaluated to check whether predicate- and join conditions are fulfilled. The output is
constructed out of those tuples the conditions of which have been evaluated to true. The used
XPath fragment is a Forward XPath (child, descendant, self, axes, any node test (*), functions,
arithmetic and structural predicates). Furthermore, it supports parent and ancestor axes. Im-
portant feature of TurboXpath, it avoids the translation of query into a finite state automata
like [23] which might degrade the query performance in scenarios where several independent
queries are executed in parallel over different XML Stream. Another distinguishing feature its
capability to process query trees constructed of several concatenated path returning tuples as
result.

[2] builds a parse tree as well, it supports the parent and the ancestor axis in addition to
that Forward XPath axis. This parse tree is used to ‘predict’ the next matching nodes and the
level in which they have to occur, for example, consider the query //C/D and a matching of C
in level 3. Then the next interesting matching would be a node D in level 4.

XSQ [25] and SPEX [23] propose a method for evaluating XPath queries over streaming data
to handle closers, aggregation and multiple predicates. Their method is designed based on hier-
archical arrangement of push-down transducers augmented with buffers. Automata is extended
by actions attached to states, extended by a buffer to evaluate XPath queries. The main idea
is that a nondeterministic push-down transducer (PDT) is generated for each location step in
an XPath query, and these PDTs are combined into a hierarchical pushdown transducer in the
form of a binary tree. In fact XSQ might buffer multiple physical copies of a potential answer
nodes, because buffering space size is measured by the maximum of physical copies of a poten-
tial answer nodes buffered at the same time during the running time, therefore, it might has a
higher cost, particularly with very deep recursion. The Considered fragment of XPath is XPath
1.0 including(closures, aggregations, and multiple predicates) except reverse axes and position
functions (such as position() and last()). This technique eagerly evaluates queries and it is fully
implemented thus give us the possibility to compare our algorithms with it.

The approach presented in [10] uses a structure which resembles a parse tree with stacks attached

6

to each node. These stacks are used to store XML nodes that are solutions to the parse tree
nodes subquery (or to store XML nodes that are candidates for a solution in case of predicate
filters).

In [9] authors aim to achieve polynomial time complexity in both data and query size for eval-
uating XPath queries on streaming data, based on that, they propose ViteX System that is
composed of four modules: 1. XPath Parser, it takes an XPath query Q as input and generates
a tree representation of the query. 2. The TwigM builder, which constructs a TwigM machine
according to the input query tree. 3. The SAX parser that takes an XML stream and outputs
a sequence of SAX events. 4. As SAX events stream in, TwigM changes its state according
to the current state and the input event, then it computes a set of XML fragments as solu-
tions to Q. The idea is using an Encoding Technique, TwigM uses a compact data structure
to encode patterns matches rather than storing them explicitly which is a memory advantage.
After that, it computes query solution by probing the compact data structure in Lazy fashion
without computing pattern matches. Notice that it supports queries with AND operator only.
The used fragment of XPath is a Sub-fragment of Forward XPath {/, //, ∗, []}. TwigM achieves
a complexity of Polynomial time O(|D||Q|(|Q| + dD.B) where B is the size of the candidate
solutions. While for non-recursive dataset2 TwigM has the complexity of O(|D||Q|). It has the
same case like XSQ, because sometimes it might buffer multiple physical copies of a potential
answer node at the same running time.

[31] introduce a streaming XPath algorithm (QuickXScan), it evaluates XPath expression with
predicates by one sequential Scan of XML data, it is based on the principles similar to that
of attribute grammars. QuickXScan support the following forward axes: child, descendant,
attribute, self and self-or descendant and the parent axes by transformation into forward axis
[24]. Authors, model an XPath query with a query tree. In structural join based algorithms,
there is a nice solution of using compact stacks to represent a possibly combinatorial explosive
number of matching path instantiations with linear complexity like [21], therefore, QuickXScan
extends the idea of compact stacks in a technique called matching grid, which is used also in
[27]. Again query representation can be considered as the best feature of this technique because
it represents complex queries using a query tree, together with a set of variables and evaluation
rules associated with each query node. Notice that in their paper they do not address the issue
of streaming output.

In [8] they present a model of data processing in an information systems exchange environ-
ment, it consists of a simple and general encoding scheme for servers, and streaming query
processing algorithms on encoded XML stream for data receivers with constrained computing
abilities ”binary encoding”. The target XPath is a subset of Forward XPath that include: child,
descendant, predicate and name tests. The EXPedite query processor takes an encoded XML
stream and an encoded XPath query as input, and outputs the encoded fragment in the XML
stream that matches the query. The idea of the query processing algorithm is taken from differ-
ent proposed techniques [15], [18] for efficient query evaluation based on XML node labels for
XML data stored in the database , in other words, the used algorithm evaluates queries based
on XML labels ¡start, end, depth¿. For the time being, EXPedite encoder support only XML
elements and character data, and the query processor support Twig queries

In [6] a SAX Based approach is introduced to evaluate the XPath queries that support all axes of
Core XPath. Starting from the XPath query, this approach generates a stack of automata that
uses the SAX stream as input and generates the result of the query as an output SAX stream.
Each input query is translated into an automaton that consists of only four different types of
transitions. The small size of the generated automata allows for a fast evaluation of the input
XML data stream within a small amount of memory. Note that their system supports the sib-
ling axes, whereas other approaches like (XMLTK [1], AFilter [7], XPush [19], XSQ [25], SPEX
[23]) are limited to the parent-child and ancestor-descendant axes. They have implemented a
prototype called XPA. The query processor decomposes and normalizes each XPath query, such

2There are no nodes of a certain type can be nested in another nodes of the same type.

7

XMark Book TreeBank
Structure Wide Semi deep+ narrow deep

and Shallow and recursive and recursive
Data Size 113M 12M 82M
Nbr. of nodes 1666K 114K 2437K
Max./Avg Depth 12/5.5 22/19.4 36/7.6

Table 2: Different Dataset Structures

that the resulting path queries contain only three different types of axes, and then converts them
into lean XPath automata for which a stack of active states is stored. The input SAX event
stream is converted into a binary SAX event stream that serves as input of the XPath automata.

In [17] authors propose two Algorithms to evaluate XPath over streams, algorithms accept XML
Document as a stream of SAX events. Start and end element events are activated when the
opening and closing tag of the streaming elements are arrived. Streaming algorithms are cat-
egorized into two classes, based on when they evaluate the predicate in the queries: 1. Lazy
Streaming Algorithm (LQ), evaluation is occurred at the closing tag of the streaming element.
2. Eager Streaming Algorithm(EQ), evaluation is occurred if an atom in the predicate is evalu-
ated to true. The used fragment of XPath called Univariate XPath, see section (1.1). The goal
of both algorithms is to prove that Univariate XPath can be efficiently evaluated in O(|D||Q|)
time in the streaming environment and to show that algorithms are not only time-efficient but
also space-efficient. Based on their experiments, both LQ and EQ algorithms show very similar
time performance in practice. In non recursive cases, LQ and TwigM has the same buffering
space costs, as well as, EQ and XSQ has the same case. EQ achieve the optimal buffering space
performance, therefore it can be considered as the best performance representation between
algorithms in the state of the art of their paper.
In comparison to all these approaches, we introduce the notion of an ordered and oriented For-
ward XPath taking in our consideration that attribute axis it can not be handled in a way
similar to the child axis.

3 Motivations and Objectives

3.1 Complexity

Usually, the caching space costs of stream-querying algorithms depend on the number of elements
cached in the run-time stack(s). It is bounded by the maximum document depth dD when
queries do not involve *-nodes or the same name nodes and does not exceed (|Q|.dD) in the
worst case. Also time performance of stream querying algorithms can be measured by the
following Tp = tall− tinput− toutput, where tall is the total running time, tinput is the reading time
usually from the disk into memory also parsing the XML document, and toutput is the taken
time to output the result nodes from the memory to the disk. In practice complexity depends
on the following :

• Structure of XML Document data
Documents may have different structures, for instance, shallow XML documents (Wide)
that does not include recursive elements. In this case the cashing space costs of the stream-
querying algorithm is almost negligible. An example for this type of XML document is
XMark [28] which is a famous benchmark dataset that allows users and developers to gain
insights into the characteristics of their XML repositories. See table 2 which indicates the
maximum depth of this dataset that reaches 12(not deep), and it has a large data size
113M.

While others are semi deep and recursive like Book dataset [16], actually it is a synthetic
dataset, generated using IBM’s XML generator, based on real DTD from W3C XQuery
use case. As we can see from table 2, it has a size of 12 M which is not enormous and
a maximum depth that reaches 22 which is quite deep enough comparison to its size.

8

It includes only one recursive element named section . In fact, different sections node
can be nested on the same path in the data tree, therefore this kind of dataset(semi
deep and recursive) increase the buffering space and processing time. We can find also
document with narrow deep structure, an example TreeBank [29], here one can recognize
the structure of the document from the Maximum depth in table 2, it is 36, moreover,
the average depth which is 7.8 indicates that this document is narrow. The existence of
these properties in the document will increase of costs of the stream-querying algorithms
significantly .
• The XPath Expression (recursion).

Simple XPath expressions may not require huge buffering space size, see figure 2, while the
existence of descendant axis ‘//’, the wildcard * or the same name node in the expression
will enormously increase the buffering space size and processing time particularly with deep
and recursion XML document because we will be forced to buffer large number of potential
answer nodes, an example of this XPath Expression type is //A[./B//*]//*[./A]/K see
figure 3. We call this extension Complex XPath.

Figure 3: Complex XPath

• Query Evaluation Strategy.
The used methodology to evaluate the XPath expression may affect the buffering space
size and processing time. For example, let us consider that we have the document D and
the query Q //A[./F]/C figure 4. In Lazy approach, B = n or in other words B = |D|
since the predicate of A is not evaluated until ¡/Ai¿ arrives. In this case all nodes starting
from C1 to Cn have to be buffered, which will increase the buffering size remarkably. While
in Eager approach B = 0 because the predicates of A is evaluated to be true the moment
element ¡F¿ arrives. Thus, each ¡Ci¿ can be flushed as a query result the moment it arrives
and does not need to be buffered at all. Obviously this will improve the buffering space
performance.

Figure 4: Lazy and Eager Approaches.

Note that B is the size of buffering space, which is measured by the maximum number of
potential answer nodes buffered at a time during the running time. It is clear that Eager

9

strategy has a better buffering space strategy, but both of them do not handle the problem
of descendant axis and the complexity of unordered XPath expressions. Note that figure
4 is an example of a wide dataset.

3.2 Motivation Examples

• Descendant axis Problem
In parse tree approach, an XPath query specifies a twig pattern Q to navigate an XML
Document D. Document size |D| is the number of elements in the D, while query size
is the number of nodes in Q. Query nodes are three types, we have the result node
which specifies the output of the XPath, also axis nodes which are all non-result nodes
on the main path of Q, that means on the path from the root to the result node. Finally,
predicate nodes which are all other nodes. For example let us suppose that we have the
following XPath //A[./E]/B[./F]//C[./G/I and //H]/D[./J], which is illustrated in figure
5.

Figure 5: Twig Pattern of an XPath Query Q.

An important question is the order of the node H, actually in our example node H can be
in different orders, might be before nodes G, I or after, and in a worst case it can be after
node D ,which will increase the complexity (buffer space and processing time) remarkably,
due to the fact that our XPath expression is unordered (axes and predicates position).

• Attributes Order Problem
Another important point is the child and attribute axes. Both axes can not be handled in
a similar way. The reason again relates to elements order. A simple example that prove
the difference between both axes is the following: let us consider that we have the following
XML Documents (f,g), figure 3.2 .

 <C></C>
<C> </C>

XML Document f XML Document g

Figure 3.2 XML Documents

Obviously, in both documents attributes are unordered, just because attribute specifica-
tion markup is unordered, which means, the order of attribute specifications in a start-tag
or empty-element tag is not significant [30]. While it is not the same matter for elements.
The order of elements in an XML document as determined by XML syntax is called doc-
ument order. One can have other types of orders such as alphabetical and numerical,
but document order is determined solely by XML syntax. Both [2] and [17] do not con-
sider this point, they do not treat explicitly the attribute axis @, considering that it can
be handled in a way Similar to the Child Axis. This consideration affects the evaluation

10

process of the XPath over the XML data stream.

• Buffering space size explosion
Launching a complex unordered XPath expression that contain *-nodes and the same
name nodes to search a narrow deep recursive XML Document affects the complexity by
increasing both processing time and buffering space incredibly. In the worst case, it may
result in buffering space size explosion. An example for that is launching complex XPath
expressions to search the dataset Treebank in table 2 using XSQ [25] . Moreover, in our
case, XSQ may report too many path combinations and terminate the searching process.
While using an ordered XPath expression will reduce remarkably the potential answer
nodes which is a very good complexity investment for both time processing and buffering
space size.

4 Aware-Metadata Schema and Ordered XPath

In this paper, we propose the idea of a new approach for processing XML data streams in order
to prepare data to a reasoning task. Our processing relies on the structure of the document, the
information that it contains, and the ordered XPath.

Metadata is data associated with objects which relieves their potential users of having full
advance knowledge of their existence or characteristics. The term ”meta” derives from the Greek
word denoting a nature of a higher order. Information resources must be made visible in a way
that allows people to tell whether the resources are likely to be useful to them. This is no less
important in the online world, and in particular, the World Wide Web. Metadata is a systematic
method for describing resources and thereby improving access to them. If a resource is worth
making available, then it is worth describing it with metadata, so as to maximize the ability to
locate it.

Ordered XPath has been investigated before in relational database. [12] Presents a novel
approach to efficiency evaluate ordered XPath queries in a relational databases. A scheme ex-
tends SUCXENT++ [26] was proposed to support the processing of ordered axes and predicates
while maintaining its original properties, their main focus is on the evaluation of the following,
preceding, following-sibling, and preceding-sibling axes as well as position-based and range pred-
icates.

In this article we define the ordered XPath as the following : it is a language that
treats an XML document as logical ordered tree to locate specific elements (and
attributes, processing instruction, etc... .) considering that it has ordered axes and
predicate position.
To support ordered XPath Queries, the order information of nodes must be captured by the
schema to process these queries efficiently. Figure 6 illustrates the order (ordered axes) of doc-
ument D.

Figure 6: Document Information Order

11

In our state of the art we found many techniques and algorithms to process and evaluate
XPath Expressions over XML Data streams. These techniques vary in the used fragment of
XPath, but all of them use unordered XPath Expression. In section 3.2 we introduced very
important motivations that explain the idea and complexity investment of ordered XPath to
evaluate efficiently the axes and position predicates. Next we will present few examples to
highlight the difference between using an ordered and unordered XPath expressions .

4.1 Ordered vs. Unordered XPath

The purpose of aware-metadata schema is to help us locating the part of XML document we
search by providing information about the structure and the content of this document. Thus we
can profit from the ordered XPath property to efficiently retrieve the required data that corre-
spond to the XPath expression. Comparison examples between both ordered and unordered
XPaths are as follows:
Example 1: let us suppose that we use the dataset TreeBank which is narrow and deep, see
table 2 and the Lazy strategy of figure 4. Though Eager strategy has a better performance on
this example, we use the Lazy one in our example to illustrate the importance of ordered XPath.
By using unordered XPath, the buffering space will be in the worst case B = |D| = 2437. Now
using ordered XPath which is provided in information by user as follows (start after node order
1000 or interesting potential answer nodes are after node order 1000), this will reduce the worst
case of buffering size to be B=1437, such information may be available for a user who can grossly
locate the target of the query, for example ”the section we search in is somewhere after page
number 1000 in the book”. In the same example imagine that ordered XPath was provided in
information as follows (always search to right of the context node), here buffering size can be
reduced remarkably because we will avoid buffering any potential answer node lie to the left of
the context node.
Example 2: in figure 6 if the XPath is provided in information by user as follows(start at the
axis order 2 of node A1, then we do not need to buffer the following nodes: B4, B5, C1 though
they would otherwise match the query. Note that the position of the predicate node C is to the
right(after) of the result node K(predicate position). Thus, we avoid to evaluate the predicate
node C5.

4.2 Advantages of ordered XPath

It is true that sometimes by restricting the query to ordered XPath, our document may not
satisfy the query. In this case relaunching the query with new information is necessary. In the
same time, there are many advantages of ordered XPath that account for the critical complexity
parameters. They are summarized as the following :
(1) XPath complexity : in both cases, simple XPath, see figure 2 or complex XPath see figure
3, the buffering size performance will be improved due to the property of the ordered (axes and
predicates position) of XPath, while it is not the same case for unordered XPath.
(2) XML document structures: ordered XPath can be efficient with the different XML document
structures. For example, the wide dataset like XMark, or the narrow recursive like TreeBank,
as we saw in the examples of section 4.1.
(3) Query evaluation approach: it is as well, efficient with the various used approach of query
evaluation like lazy and eager. In the same example of section 4.1, it is explained how to
avoid the worst case of buffering size with Lazy. Note that Eager approach may has a better
performance. So using ordered XPath with the Eager approach will also result in a better
performance than using it with the Lazy one. Space saving come as we have shown, from
reduced buffering, and for a given strategy Eager/Lazy ordering will decrease time simply by
avoiding unnecessary buffering operations.
We can conclude based on the previous examples, that the efficiency of ordered XPath does not
only improve the buffering space, but also the processing time.

12

5 Conclusion

In this article we presented different approaches related to XPath expression evaluation process
over XML data Stream, we categorized the different works by the sub-set of XPath they support
into main two parts. First, Automata based, like (XPush [19], XSQ [25], SPEX [23], XMLTK
[1]). Second , parse trees like ([10],[3],[2],[17]). Variant examples were introduced to explain
the complexity of streaming algorithms, like query evaluation strategy, the XPath expression
(recursion) and the structure of XML document data. Based on that the notion of the intelligent
ordered XPath for processing efficiently large XML data streams was introduced.

6 Future Work

The process of writing an algorithm for the intelligent ordered XPath is under going, after that,
experiments will be done to compare the performance of our algorithm with stream-querying
systems like [17], XSQ [25] and [9]

7 Acknowledgments

The first author is funded by a doctoral scholarship from INNOVIMAX and a CIFRE scheme
from the French government.

References

[1] I. Avila-Campillo, T. J. Green, A. Gupta, M. Onizuka, D. Raven, and D. Suciu. XMLTK:An XML
Toolkit for Scalable XML Stream Processing. Proceedings of PLANX, (10), October 2002.

[2] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. On the Memory Requirements XPath Evaluation
over XML Streams. PODS., pages 177 – 188, June 2004.

[3] C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fontoura, and V. Josifovski. Streaming
XPath Processing with Forward and Backward Axes. ICDE, pages 455–466, 2003.

[4] S. Boag, M. F. Fernndez, D. Florescu, J. Robie, and J. Simon. XQuery 1.0: An XML Query
Language. January 2007, http://www.w3.org/TR/xquery.

[5] D. Brownell. SAX2. January 2002.

[6] S. Bttcher and R. Steinmetz. Evaluating XPath Queries on XML Data Streams . BNCOD, pages
101–113, 2007.

[7] K. S. Candan, W. Hsiung, S. Chen, J. Tatemura, and D. Agrawal. AFilter: Adaptable XML Filtering
with Prefix-Caching and Suffix-Clustering. VLDB, pages 559 – 570, 2006.

[8] Y. Chen, S. B. Davidson, G. A. Mihaila, and S. Padmanabhan. Expedite : A System for Encoded
XML Processing . CIKM, pages 108–117, 2004.

[9] Y. Chen, S. B. Davidson, and Y. Zheng. ViteX : a Streaming Xpath Processing System. Proceeding
of the 21St international conference on Data Engineering ICDE, pages 1118 – 1119, 2005.

[10] Y. Chen, S. B. Davidson, and Y. Zheng. An Efficient XPath Query Processor for XML Streams.
Proceedings of the 22nd International Conference on Data Engineering ICDE , 2006.

[11] B. Choi. What are real DTDs like? International Workshop on the Web and Databases, 2002.

[12] B. Choi, E. Leonardi, B.-S. Seah, K. G. Widjanarko, and S. S. Bhowmick. Efficient Support for
Ordered XPath Processing in Tree-Unaware Commercial Relational Databases. Springer, 2007.

[13] J. Clark. XSL Transformations XSLT. November 1999, http://www.w3.org/TR/xslt.html.

[14] J. Clark and S. DeRose. XML path language (XPath). November 1991,
http://www.w3.org/TR/xpath.

[15] D. DeHaan, D. Toman, M. P. Consens, and M. T. Ozsu. A Comprehensive XQuery to SQL Trans-
lation using Dynamic Interval Encoding . SIGMOD, 2003.

[16] A. Diaz and D. Lovell. Book : IBM XML Dataset,
http://www.alphaworks.ibm.com/tech/xmlgenerator.

13

[17] G. Gou and R. Chirkova. Efficient Algorithms for Evaluating Xpath over Streams. Proceedings of
the 2007 ACM SIGMOD international conference on Management of data, pages 269 – 280, 2007.

[18] T. Grust. Accelerating XPath Location Steps . Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 109 –120, 2002.

[19] A. K. Gupta and D. Suciu. Stream Processing of XPath Queries with Predicates. SIGMOD, pages
219 – 430, 2003.

[20] Z. Ives, A. Halevy, and D. Weld. An XML Query Engine for Network-Bound Data. VLDB, pages
380 – 402, 2002.

[21] H. Jiang, W. Wang, H. Lu, and J. Yu. Holistic Twig Joins on Indexed XML Documents*. Proceedings
of the 29th VLDB Conference, Berlin, Germany, 2003.

[22] V. Josifovski, M. Fontoura, and A. Barta. ‘Querying XML Streams . pages 197 – 210, 2004.

[23] D. Olteanu, T. Kiesling, and F. Bry. An Evaluation of Regular Path Expressions with Qualifiers
against XML Streams . ICDE, pages 702 – 704.

[24] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking Forward, 2002.

[25] F. Peng and S. S. Chawathe. XPath Queries on Streaming Data . SIGMOD, 2003.

[26] S. Prakash, S. S. Bhowmick, and S. Madria. Efficient Recursive XML Query Processing Using
Relational Database Systems. Data Knowledge Engineering, 2006.

[27] P. Ramanan. Evaluating an XPath Query on a Streaming XML Document. COMAD, India, 2005.

[28] A. Schmidt. Xmark:An XML Benchmark Project, http://monetdb.cwi.nl/xml.

[29] D. Suciu. Treebank:XML data repository, http://www.cs.washington.edu/research/xmldatasets.

[30] W3C. Extensible markup language (xml) 1.0 (third edition). November 2004,
http://www.w3.org/TR/2004/REC-xml.

[31] G. Zhang and Q. Zou. QuickXScan: Efficient Streaming XPath Evaluation. International Conference
on Internet Computing, pages 249–255, 2006.

14

