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Abstract

In this report we present the first experimental results to support our proposal [1] as an
attempt to optimize stream processing for XML data. A core prototype called O-Search
was implemented to have a concrete understanding for the complexity of stream-querying
algorithms i, with respect to different structures of XML documents (wide, depth, various
size). Space and time measurements are applied to state the possible performance gains from
the use of meta data to orient searching in stream XML data.

1 Introduction

The extensible markup language (XML) [8], has gone from the latest buzzword to an entrenched
e-Business technology in record time. XML is currently being heavily pushed by industry and
developers as the lingua franca for data representation and exchange on the Internet. It provides
a much needed non-proprietary universal format for sharing hierarchical data among different
software systems, and does so in a user-friendly manner. It is a verbose plain-text format,
making it robust, platform-independent and legible to humans without additional tools. This
popularity of XML has created several important applications like information dissemination,
processing of scientific data, and real time news. Query languages like XPath [4] and XQuery
[2] have been proposed for accessing the XML data, which provide a syntax for specifying which
elements and attributes are sought to retrieve specific pieces of a document.
Often, data is very large to fit into limited internal memory and in many cases it needs to be
processed in real time during a single forward sequential scan. In addition, sometimes query
results should be output as soon as they are found, in this case streaming fashion is the best
approach to process the XML Data. The term data streaming is used to describe data items
that are available for reading only once and that are provided in a fixed order determined by the
data source. In the streaming model queries must be known before any data arrive, so queries
can be preprocessed by building machines for query evaluation.

Concerning query evaluation process, usually two operations can be requested. First, does
our document D match the query Q? In this case we determine whether there exists at least
one match of Q in D this is called stream-filtering. Second, which part or parts of the document
D match the query Q? It implies outputting all nodes in an XML data tree D (answer nodes)
which satisfy a specified twig pattern Q at its result node stream-querying. Different strategies
and streaming algorithms were implemented for this purpose, we can categorize some of them
based on the time of predicate evaluations in queries. A Lazy streaming algorithm evaluates
the predicates 1 only when the closing tags of the streaming elements are encountered. While
an Eager algorithm does that as soon an atom in a predicate is evaluated to true [5].

In our first technical report [1] we surveyed different approaches used to evaluate XPath ex-
pressions over XML data streams. Furthermore, we estimated the streamable XPath fragments
for the various streaming algorithms. In addition, we introduced variant examples to explain the
critical complexity parameters of the streaming algorithms, like query evaluation strategy, the
XPath expression (recursion) and the structure of the target XML document. Based on those
observations, the notion of Oriented XPath for processing efficiently large XML data streams
was proposed as an attempt to optimize for these critical performance parameters.
In this technical report we present the first experimental results to support our proposal in [1].

The rest of the report is organized as follows: in section 2 we introduce the core of our
prototypeO-Search. Section 3 is a detailed presentation of our experiments with all necessary
details to allow their reproduction on a different architecture of with similar source code. Finally,
in section 4 we analyze the results and evaluate the consequences for our proposed Oriented
XPath scheme.

1An XPath predicate is contained with-in square brackets [], and comes after the parent element of
what will be tested. It filters a node-set with respect to an axis to produce a new node-set.
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2 Prototype O-Search

We developed the core of a prototype called O-Search to have better understanding for the
complexity of stream-querying algorithms in practice, with respect to different structures of
XML documents (wide, depth, various size). The evaluation technique used in our prototype is
Lazy. Figure 1 shows the current structure of O-Search.

Figure 1: Architecture of O-Search.

O-Search will become our intermediate prototype for stream-querying of XML Data. It is
implemented using the functional language Ocaml 2 [6]. We have currently implemented the
basic search functions necessary for realizing XPath queries. To explain figure 1 we start in the
input that is a simplified XML file which has the abstract syntax as in figure 2.

type token =
StartDocument of string
| StartElement of string * (string * string) list
| EndElement of string
| Text of string
| EndDocument of string ;;

Figure 2: Abstract Syntax

An example of the concrete syntax for figure 2 is figure 3(a). Notice that 3(b) is its XML
tree model. There are basically two types of nodes in the XML tree model:

• Element nodes: these correspond to tags in XML documents, and correspond to StartEle-
ment token in our concrete syntax, for example StartElement("A",[]). An attribute list
is associated (optionally) with tags in the XML document , therefore it is associated with
StartElement tokens in our concrete syntax, for example StartElement("B",[("attr","2")]).
Note that, the attribute list is not nested(an attribute can not have any sub-elements), not
repeatable (tow same-name attributes can not occur under one element) and unordered
(attributes of an element can freely interchange their occurrences location under element).
These constraints are standard to XML.

• Text nodes: these correspond to data values in XML document, and correspond to Text
token in our concrete syntax, for example Text("Any text").

2Ocaml is a language of the ML family. It is well adapted to tree processing and its optimizing compiler
ocamlopt produces fast executables
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Figure 3: XML Tree Model.

To read the input file(input channel), we implemented a lexer named tokenOfCharStream.
It reads the input file line by line as a stream of characters and generates a token for each line,
see the function below:

val tokenOfCharStream:
char Stream.t -> token Stream.t = <fun>

The token generated by the lexer will be used by the processing function for matching and
processing purposes. After each match the lexer is called repeatedly to generate another token.
An example of this function is:

val getSubStreamsForElement:
string ->in channel -> string -> unit = <fun>

were the input arguments are:

• string: our query.
• in channel: the input file.
• string: the name of the output file.

val getSubStreamsForElement calls recursively many other internals functions to generate the
result as stream of tokens then call recursively the function:

val stringOfToken:
token -> string = <fun>

to convert each token in the stream to string and sent it to the output channel.

3 Experimental Results

3.1 Experimental Setup

In this section we explain the experimental setup needed of the performance measurements using
our prototype.

3.1.1 Data sets

To conduct the performance measurements, we implemented two types of synthetic data sets.
These data sets are described below:

1. Wide tree data set: shallow structure, that does not include recursive elements. To
generate the Wide tree data set, we use the following function

val generateWideTree :
string -> int -> in channel = <fun>

where:
• string: is the output file name which will contain the wide tree data set.
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• int: is the number of the shallow sub-trees in the wide tree data set. Queries will
refer to each sub-tree’s ”token rank”, see figure 4.

To know the total number of the tokens generated in our wide tree data set that was used
for the performance tests, we use the following equation:

Tree/Data set size(tokens)= (n ∗ 10) + 4

where:
• n: is the loop number. It is proportional to the tree data set width

• 10: is the number of tokens generated in each sub-tree.
• 4: is a constant number that represents:

1- StartDocument ("Doc 1")
2- StartElement("root", [])
3- EndElement("root")
4- EndDocument("Doc1")

Figure 4 is an example of wide tree data with the following size:

Tree/Data set size(tokens)= (100000 ∗ 10) + 4

Figure 4: Wide tree data set

2. Deep tree data set: narrow deep structure. To generate the deep tree data set, we use
the following function:

val generateDeepTree :
string -> int -> in channel = <fun>

where:
• string: is the output file name which will contain the deep tree data set.
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• int: is the loop depth of the deep tree data set. Queries will refer to ”token rank” in
this tree data set, see figure 5.

To know the total number of tokens generated in our deep tree data set that was used for
the performance tests, we use the following equation:

Tree/Data set size(tokens)= ((n ∗ 6) + (n ∗ 4)) + 4

where:
• n: is the loop number. It is proportional to the depth tree data set.

• 6: is the number of tokens(StartElement and Text) that are generated in each
recursion.

• 4: is the number of tokens(EndElement ) that are generated in each recursion.
• 4: is a constant number that represents:

1- StartDocument ("Doc 1")
2- StartElement("root", [])
3- EndElement("root")
4- EndDocument("Doc1")

Figure 5 is an example of deep tree data set with the following size:

Tree/Data set size(tokens)= ((100000 ∗ 6) + (100000 ∗ 4)) + 4

Figure 5: Deep tree data set

3.1.2 Test machine

Experiments were performed using a MacBook with the following technical specifications:
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Processor name Intel Core 2 Duo
Processor speed 2.4 GHz
Memory 4 GB.
OS Mac OSX Version 10.5.5.

Table 1: Specifications of the test machine

3.1.3 Test measurements

• Time: to measure execution time, we use the following function Sys.time();;. This
function exists in the module Sys3 of Ocaml. It has a type:unit -> float, and it returns
the processor time (in seconds) used by the program since the beginning of execution. To
return the time of generating (for example) a wide tree data set, we use the following code:

let temp=ref (Sys.time()) ;;

generateWideTree "inputFile.txt" n ;;

print_float (Sys.time()-. !temp);;

print_string " Second\n"; temp:=Sys.time();;

To return the total time of a specific test (for example: getSubStreamsForElement), we
use the following code:

let temp=ref (Sys.time());;

getSubStreamsForElement <token name>(generateDeepTree "inputFile.txt" <Data set token rank>) "outputFile.txt" ;;

print_float (Sys.time()-. !temp);

print_string " Second\n"; temp:=Sys.time();;

• Memory: We measure the maximum depth of the running time stack (caching) using the
following function:

val getMaxDepth: unit -> int = <fun>
getMaxDepth();;

this function returns an integer which indicates the maximum instantaneous number of
tokens in the stack.

3.1.4 Queries

We used the following processing function: getSubStreamsForElement . Our tests have the
following form:
getSubStreamsForElement<Token name> (generateWideTree "inputFile,txt"<data set token rank>) "outputFile,txt";;

where Token name can have the following values:
• A1: return the sub-tree of the element which exists at the beginning of the tree data set.

• A<token rank/2>: return the sub-tree of the element which exists in the middle of the
tree data set.

• A<Data set token rank>: return the sub-tree of the element which exists at the end of
the tree data set.

Furthermore, we use Positive and Negative queries, where:

• Positive: is a query that does not return an empty result.

• Negative: is a query that does return an empty result. We use negative queries with the two
types of the tree data sets (Wide and Deep) as a reference for performance measurement.

Note that, O-Search support other processing functions, for example:
getSubStreamsForAttributeName<Token name>(generateWideTree "inputFile,txt" <Data set token rank>) "outputFile,txt" ;;

getSubStreamsForAttributeValue<Token name>(generateWideTree "inputFile,txt"<Data set token rank>) "outputFile,txt";;

getSubStreamsForTextEqual<Token name >(generateWideTree "inputFile,txt"<Data set token rank>) "outputFile,txt" ;;

3Sys: portable system calls.
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Test type Token name Data set Input tree T(total) T(data set) T(total-data set) Stack max. depth
token rank size(tokens) In second In second In second In (tokens)

y1 A1 100000 1000004 2,42 0,61 1,81 3
y1 A50000 100000 1000004 2,41 0,61 1,8 3
y1 A100000 100000 1000004 2,42 0,61 1,81 3
y2 A1 500000 5000004 12,42 3,12 9,3 3
y2 A250000 500000 5000004 12,41 3,12 9,29 3
y2 A500000 500000 5000004 12,49 3,12 9,36 3
y3 A1 1000000 10000004 24,89 6,24 18,65 3
y3 A500000 1000000 10000004 24,92 6,24 18,67 3
y3 A1000000 1000000 10000004 26,17 6,24 19,92 3

Table 2: Wide tree data set - time and memory tests

3.1.5 Compiler

To test the execution time, we compile the CAML file using ocamlopt: the Objective Caml high-
performance native-code compiler. Generated code is almost 10 times faster than generated code
by ocamlc.
To test the memory consumption, we use ocamlc which compiles CAML source files to byte-code
object files and links these object files to produce standalone bytecode executable files. These
executable files are then run by the bytecode interpreter ocamlrun. For memory tests, it is
recommended to use ocamlc because it is more accurate than ocamlopt [7].

3.2 Results

This section details our measurements for (time/space) for the following data sets (Wide tree/Deep
tree) for positive queries. Those tests are then repeated for negative queries.

3.2.1 Wide tree data set (Positive queries)

We performed two tests using this data set, they are:

1. Time test
To explain this test, we start in explaining table 2 that includes all the information needed:
• Query:

getSubStreamsForElement

<Token name>

(generateWideTree "inputFile,txt" <Data set token rank> "outputFile,txt");;

• Test type: table 2 contains three tests, they are y1, y2, and y3. In fact, we change
the value of Token query rank with each test.

• Token name: the token name we search.
• Data set token rank: the rank of token of sub-tree, for better understanding see

figure 4.
• Input tree size(tokens): the total number of tokens generated in our wide tree

data set.
• T(total): the processor time in seconds since the beginning of the execution to

generate the tree data set and answer the query.
• T(data set): the processor time in seconds since the beginning of the execution to

generate the tree data set.
• T(total-data set): the processor time in seconds since the beginning of the execution

to answer the query.
• Stack max. depth (token)): is the maximum depth of the running time stack.

Figure 6 represents three tests to measure the execution time in the wide tree data set. Test
y1 uses a 1M token document, y2 a 5M token document and y3 a 10M token document. We
noticed that test y1 is steady linear at 1,81 seconds irrespective of the data set token rank.
Also, test y2 is almost steady linear at 9,3 seconds. While test y3 is almost steady linear
at 18,7 seconds with a slight increasing particularly at the point (A1000000 - 1000000).
Therefore, we conclude that execution time is independent of the data set token rank in
the wide tree data set. We observe directly proportional to the input tree size: curves y2,
y3 are multiples of y1 in this proportion.
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Figure 6: Wide tree data set - Time

2. Memory test
To explain this test, we start in explaining table 2 that includes all the information needed:
• Query:

getSubStreamsForElement

<Token name>

(generateWideTree "inputFile,txt" <Data set token rank> "outputFile,txt");;

Figure 7: Wide tree data set - Memory.

Figure 7 represents three tests to measure the memory allocated to answer our query in
the wide tree data set. Tests y1,y2 and y3 have the same value for the maximum number
of tokens in the running stack which is 3 due to the symmetry of all sub-trees in the wide
tree data set. Therefore, we conclude that the stack max. depth(tokens) is independent
of the data set token rank in the wide tree data set.
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Test type Token name Data set Input tree T(total) T(data set) T(total-data set) Stack max. depth
token rank size(tokens) In second In second In second In (tokens)

y1 A1 1000 10004 5,73 0,01 5,72 3999
y1 A500 1000 10004 0,82 0,01 0,81 2003
y1 A1000 1000 10004 0,03 0,01 0,02 3
y2 A1 5000 50004 223,37 0,04 223,33 19999
y2 A2500 5000 50004 41,47 1 0,04 41,43 10003
y2 A5000 5000 50004 0,12 0,04 0,08 3
y3 A1 10000 100004 1193,32 0,07 1193,26 39999
y3 A5000 10000 100004 232,42 0,07 232,35 20003
y3 A10000 10000 100004 0,23 0,07 0,16 3

Table 3: Deep tree data set - time and memory tests

3.2.2 Deep tree data set (Positive queries)

We performed two tests using this data set, they are:

1. Time
The terms used in table 3 are the same as table 2.

Figure 8: Deep tree data set - Time.

Figure 8 represents three tests to measure the execution time in the deep tree data set.
We noticed that execution time increases with the increasing of the data set token rank
and the decreasing of token name’s value (see section 3.1.4) due to increasing the to-
kens those correspond the query which increase the execution time. More precisely, in
test y1 the relationship between the execution time(y) and data set token rank (x) is
y = (2.2712−0.0022∗x)2. In test y2 the relation is: y = (14.5450−0.0029∗x)2. While for
the test y3 it is: y = (33.8034− 0.0034 ∗ x)2. Therefore, we conclude that execution time
is negative-quadratic proportional to the data set token rank in the deep tree data set.
The time-rank relationship should normally be negative-linear and its quadratic behavior
in our tests is due to a naive list implementation of one primitive. This will be changed
in a future version and does not affect our conclusion in section 4.

2. Memory
The terms used in table 3 are the same as table 2.

Figure 9 represents three tests to measure the memory allocated to answer our query in
the deep tree data set. We noticed that increasing the data set token rank and decreasing
the value of query name will increase the value of stack max. depth(tokens). Furthermore,
our evaluation technique is lazy 4, therefore we are obliged to buffer the whole subtree. In

4Lazy streaming algorithm evaluates the predicates only when the closing tags of the streaming ele-
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Figure 9: Deep tree data set - Memory.

Test type Token name Data set Input tree T(total) T(data set) T(total-data set) Stack max. depth
token rank size(tokens) In second In second In second In (tokens)

y1 A1000001 1000000 10000004 25,16 6,69 18,47 0
y1 A5000001 5000000 50000004 131,87 34,84 97,02 0
y1 A10000001 10000000 100000004 263,97 67,68 196,29 0

Table 4: Wide tree data set - time and memory tests (negative queries)

test y1 the relationship between the memory usage (y) and data set token rank (x) is as
the following y = −4∗x+4003. In test y2 the relation is: y = −4∗x+20003. While for the
test y3 it is: y = −4 ∗ x + 40003.. Therefore, we conclude that stack max. depth(tokens)
is inverse-linearly related to the data set token rank in the wide tree data set, and linear
proportional to the document size.

3.2.3 Wide tree data set (Negative queries)

We performed two tests using this data set, they are:

1. Time
Terms in table 4 have the same meaning as table 2.

Figure 10 represents a test to measure the execution time in the wide tree data set using
negative queries. We noticed that execution time increases with the increasing of the data
set token rank due to the increasing of matching processes. More precisely, in test y1 the
relationship between the execution time(y) and data set token rank (x) is as the following
y = 0, 00001977 ∗ x− 1.8196. The importance of this test is to compare the measurements
between wide tree data set and deep tree data set using negative queries.

ments are encountered.
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Figure 10: Wide tree data set - Time (negative queries).

2. Memory
Terms in table 4 have the same meaning as table 2 Figure 11 represents a test to measure

Figure 11: Wide tree data set - Memory (negative queries).

the maximum depth of the running stack (in tokens) to answer our negative query in
the wide tree data set. We notice that the increasing the data set token rank does not
affect the stack max. depth because our query is negative so we do not need to cache any
element. We conclude that stack max. depth (tokens) is independent of the data set token
rank in the wide tree data set.

3.2.4 Deep tree data set (Negative queries)

We performed two tests using this data set, they are:

1. Time
Terms in table 5 have the same meaning as table 2.

Figure 12 represents a test to measure the execution time in the deep tree data set
using negative queries. We noticed that execution time increases with the increasing of
the data set token rank due to the increasing of matching processes. More precisely,
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Test type Token name Data set Input tree T(total) T(data set) T(total-data set) Stack max. depth
token rank size(tokens) In second In second In second In(tokens)

y1 A1000001 1000000 10000004 24,79 6,73 18,06 0
y1 A5000001 5000000 50000004 129,17 34,66 94,51 0
y1 A10000001 10000000 100000004 260,4 68,69 191,71 0

Table 5: Deep tree data set - time and memory tests (negative queries)

in test y1 the relationship between the execution time(y) and data set token rank (x)
y = 0.000019 ∗ x − 1.55737704918. Comparing the two linear equations to measure the
execution time between both deep/Wide tree data sets using negative query indicates that
deep tree data set has a better time performance than wide tree data set.

Figure 12: Deep tree data set - Time (negative queries).

2. Memory
Terms in table 5 have the same meaning as table 2.
Figure 13 represents a test to measure the maximum depth of the running stack (in tokens)

to answer our negative query in the deep tree data set. We notice that the increasing the
data set token rank does not affect the stack max. depth because our query is negative
so we do not need to cache any element. We conclude that stack max. depth (tokens) is
independent of the data set token rank in the deep tree data set.
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Figure 13: Deep tree data set - Memory (negative queries).

4 The oriented search proposal: evaluation of possible perfor-
mance gains

4.1 Concept definition: a basic query example

This report supports our proposal for a new approach to the optimization of XML data stream
querying. Our concept is to rely on the structure of the document, the information it con-
tains, and Oriented XPath: forward XPath augmented with meta-data for orienting the search
as described below. The idea if to first learn from past queries to ”guess” in advance those
parts of the document that contain the information to be found. This information may also
be explicitly provided by the user of a querying interface, for example one may want to search
a large documents knowing that the information sought is located in the second half of the
document. Whatever the source of metadata (and this will be the subject of future research)
we plan to use it to direct search closer/faster stream-scanning to those parts of the document
where stream-querying is to be applied using Lazy query evaluation.

The purpose of learning from past queries could be to provide us in the metadata with the
exact element e in document D that matches the query root. The oriented XPath expression
including the new meta data: could be for example a query together with a Dewey path for
orientation of search.
In this case, the syntax of metadata could be as follows:

<A4 order=”2.2.1.1” subTreeSize=”4”... /A>

In this example, the attribute order provides us with the path from the root to nodeA4 (Dewey
Path), while the attribute subTreeSize gives the size of the subtree of the node A4 (see figure
14).
To support Oriented XPath queries, the order information of nodes must be captured by the
schema to process these queries efficiently. Figure 14 illustrates the information order of docu-
ment D (ordered axes).

From A1 to A2 pure stream-scanning is applied to reach the specified point in document
D that matches the query root. This process can save caching space as we will see in the
example of section 4.2 The moment we reach the element A4 we stop stream-scanning and start
stream-querying for the whole sub-tree i.e. a complete querying algorithm is applied.
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Figure 14: Document Information Order.

4.2 Performance gains

In this section we present two examples that explain the possible performance gains using Ori-
ented XPath. Example 1: figure 14 represents an XPath expression //A//B[.//C]/K and an
XML document with information order (Dewey Path). Note that we use node numbering for
example A2 to explain the performance gain, in other words, the node that we do not need to
cache or buffer. In our XPath expression the single line edges represents child (‘/’), the double
line edges represents descendant(‘//’), single dashed line represents [./node()], double dashed
line represents [.//node()] and the result node which is in this example the shaded node K. If
XPath is provided with information as follows(start at the axis order 2 of node A) then, the
syntax of XPath expression including the new meta data will be:

//A[@order = ”2”]//B[.//C]/K.

in this case, based on figure 14 we do not need to cache the following nodes: B4, B5, also we do
not need to buffer the node C1 though they would otherwise match the sub-pattern of the query.

Example 2: this example shows the possible gains of time and memory using Oriented
XPath on our synthetic data sets (wide/deep). We assume that metadata can either indicate
one precise subtree or a subset of subtrees where to search.

1. Wide tree data set: figure 15 is a wide tree data set.
Optimization for both time and memory has three scenarios:

• Worst case: we do not have any meta data to orient our search. Therefore there will
be no memory or time saving, see figure 15.

• Average case: meta data orients our query to start searching somewhere after the
middle of the tree data set, see figure 15. Stack consumption being already minimal,
there is no expected saving from the use of meta data here. The saving in processing
time will be proportional here to half of the document size and to the difference
between the time to scan one token vs the time to process one token in query mode.
This difference is not yet measurable in our tests, which is explained because it
should increase with the complexity of query patterns. Our current tests only deal
with elementary queries so scan time is currently almost equal to query processing
time.

• Best case: meta data orients our query to a precise sub-tree that answers the query
15. Stack consumption being already minimal, there is no expected saving from the
use of meta data here. The saving in processing time will be proportional here to the
document size multiplied by (time to scan one token - time to process one token in
query mode).

2. Deep tree data set: figure 16 is a deep tree data set.
Optimization for both time and memory has three scenarios:
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Figure 15: Meta data in the wide tree data set.
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Figure 16: Meta data in the deep tree data set.
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• Worst case: we do not have any meta data to orient our search. Therefore there will
be no memory or time saving, see figure 16.

• Average case: meta data orients our query to start searching somewhere after the
middle-depth of the tree data set, see figure 16. The saving in stack consumption
is here of 50% and an example of saving in time can be found by comparing tests
in Table 3. For example time could be reduced from 223s to 41s when processing a
document of 50004 tokens.

• Best case: meta data orients our query to a precise sub-tree that answers the query 16.
Stack consumption is then almost reduced to 0, almost a 100% saving. The possible
time saving is here also visible in Table 3. For example time could be dramatically
reduced from 223s to 0,08s when processing a document of 50004 tokens.

5 Conclusion

In this report we presented the first experimental results to support our proposal to optimize
stream processing for XML data with the use of meta data to orient search. A core proto-
type called O-Search was implemented to have a concrete understanding for the complexity
of stream-querying algorithms , with respect to different structures of XML documents (wide,
depth, size). measurements have confirmed and quantified the space time complexity of query
processing primitives. Meta data can improve performance parameters in average, can not avoid
the worst case performance but may in favorable cases yield dramatic improvements.

Our concept remains to be evaluated on complex queries and a realistic framework for pro-
viding meta data must be constructed.
Even in the absence of any automated collection of meta data, there are scenarios for which
manually-provided meta data is both realistic and necessary. For example, in situations involv-
ing portable devices with small memory sizes, explicit meta data provided by the user will allow
searches to be performed even though a false negative result is possible. In this case the user
would repeat his search. Our experiments and estimations have shown the gains possible in this
manner, and future research could generalize its applicability to many other situations.
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