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Abstract. Here we aim at justifying rigorously different types of physically relevant diffu-
sive limits for radiative flows. For simplicity, we consider the barotropic situation, and adopt
the so-called P1-approximation of the radiative transfer equation. In the critical functional
framework, we establish the existence of global-in-time strong solutions corresponding to
small enough data, and exhibit uniform estimates with respect to the coefficients of the sys-
tem. Combining with standard compactness arguments, this enables us to justify rigorously
the convergence of the solutions to the expected limit systems.

Our results hold true in the whole space R
n as well as in a periodic box T

n with n ≥ 2.

Keywords: Radiation hydrodynamics, Navier-Stokes system, diffusive limit, critical reg-
ularity, P1-approximation.

1. Introduction

We consider the barotropic version of a model of radiation hydrodynamics. Our main goal
is to provide the rigorous justification of asymptotics that have been investigated formally
and numerically by Lowrie, Morel and Hittinger [15], and mathematically by the second
author and Š. Nečasová in [10, 11, 12] in the finite energy weak solutions framework.

The fluid is described by standard classical fluid mechanics for the mass density ̺ and
the velocity field ~u as functions of the time t ∈ R+ and of the (Eulerian) spatial coordinate
x ∈ Ω where Ω is either the whole space R

n or some periodic box T
n with n ≥ 2.

Radiation acts through some radiative momentum source ~SF which is given by

~SF =
1

c

∫ ∞

0

∫

Sn−1

~ωS d~ω dν,

where c is the light speed.

The radiative source S = S(t, x, ~ω, ν) depends on the direction vector ~ω ∈ Sn−1 (where
Sn−1 denotes the unit sphere of R

n ), and on the frequency ν ≥ 0 of the photons, and is
given by

S = σa
(
B(ν, ̺)− I

)
+ σs

(
Ĩ − I

)
where Ĩ :=

1

|Sn−1|

∫

Sn−1

I d~ω.

The radiative intensity I obeys the transfer equation

(1.1)
1

c
∂tI + ~ω · ∇xI = S in (0, T ) × Ω× Sn−1 × (0,∞).
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In the present paper, as in [7, 8], we make the following simplifying assumptions

(1) Isotropy : the transport coefficients σa and σs are independent of ~ω ;
(2) ‘Gray’ hypothesis : σa and σs are independent of ν ;
(3) ‘P1 hypothesis’ : the averaged radiative intensity I :=

∫∞
0 I dν is given by the

ansatz

(1.2) I = I0 + ~ω · ~I1,
where I0 and ~I1 are independent of ~ω and ν.

Plugging (1.2) in (1.1), and computing the 0th and 1st order momentum with respect to
~ω, we find out the following evolution equations for I0 and I1 (keeping the same notation
B for the distribution function averaged in ν )

(1.3)
1

c
∂tI0 +

1

n
divx~I1 = σa(̺)(B(̺)− I0),

(1.4)
1

c
∂t~I1 +∇xI0 = (σa(̺) + σs(̺))~I1.

Besides, the radiative force is now given by

(1.5) ~SF =

(
σa(̺) + σs(̺)

n

)
~I1.

In order to identify the most relevant asymptotic regimes, we rewrite the equations in
dimensionless form. To this end, introduce some reference hydrodynamical quantities (length,
time, velocity, density, pressure): L̄, T̄ , Ū , ¯̺, p̄, and reference radiative quantities (radiative
intensity, absorption and scattering coefficients and equilibrium function): Ī , σ̄a, σ̄s and B̄.

Let Sr := L̄/T̄ Ū , Ma := Ū/
√
¯̺p̄ and Re := Ū ¯̺L̄/µ̄ be the Strouhal, Mach and Reynolds

numbers corresponding to hydrodynamics. Let also define C := c/Ū , L := L̄σ̄a, Ls := σ̄s/σ̄a,
various dimensionless numbers corresponding to radiation. In all that follows, we assume our
flow to be strongly under-relativistic so that C is large.

Choosing B̄ = Ī , we discover that the evolution of the dimensionless unknowns (still
denoted in the same way) is governed by the following system of equations




Sr ∂t̺+ div (̺~u) = 0,

Sr ∂t(̺~u) + div (̺~u⊗ ~u) + 1
Ma2

∇p− 1
Re

(
div (µ∇~u+t∇~u)+∇(λdiv ~u)

)
= L

(
σa+Lsσs

n

)
~I1,

Sr
C ∂tI0 +

1
n div~I1 = Lσa (B − I0) ,

Sr
C ∂t~I1 +∇I0 = −L (σa + Lsσs) ~I1,

where ̺ = ̺(t, x) ∈ R+ and ~u = ~u(t, x) stand for the density and pressure, respectively,
p = P (ρ) is the pressure, λ = λ(ρ) and µ = µ(ρ) are the viscosity coefficients. The given
functions P, λ and µ are supposed sufficiently smooth, and we make the following strict
ellipticity assumption

ν := λ+ 2µ > 0 and µ > 0.

In our recent work [8], we gave a mathematical justification of the low Mach number asymp-
totics. In the present paper, we investigate another type of physically relevant asymptotic
regimes, which are of diffusive type. They correspond to the case where C is large and all
the other dimensionless numbers, but L and Ls, are of order 1. To make it more concrete,
take

Ma = Sr = Re = 1, C = ε−1, ¯̺ = P ′(¯̺) = B′(¯̺) = σa(¯̺) = σs(¯̺) = 1,
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where ε is a small positive number, bound to tend to 0.

Because we shall focus on small perturbations of the reference density ¯̺ = 1, it is conve-
nient to introduce the new unknown b := B(̺) − B(1). In this context, all the functions of

̺ may be written in terms of b. Setting j0 := I0 − B(1) and ~j1 := ~I1, and using exponents
to emphasize the dependency with respect to ε, we eventually get the following system

(1.6)





∂tb
ε + ~uε · ∇bε + (1 + k1(b

ε))div ~uε = 0,

∂t~u
ε + ~uε · ∇~uε − (1 + k2(b

ε))A~uε + (1 + k3(b
ε))∇bε = L(1+Ls)

n (1 + k4(b
ε))~jε1 ,

ε∂tj
ε
0 +

1
n div~jε1 = L(bε − jε0),

ε∂t~j
ε
1 +∇jε0 = −L(1 + Ls)~j

ε
1 ,

with A := µ∆+(λ+µ)∇div and where k1, k2, k3, k4 are smooth functions vanishing at 0.

2. Formal asymptotics

Let us first present some formal computations so as to exhibit the limit equations we can
get from (1.6) in different types of diffusive asymptotic regimes. We restrict to the case where
the following necessary and sufficient linear stability condition (derived in [7]) is fulfilled

(2.1) nνL > ε

(
2 + Ls

1 + Ls

)
·

Note that (2.1) implies that lim inf Lε−1 > 0 for ε going to 0.

In all that follows, it is assumed that (bε, ~uε, jε0,~j
ε
1) converges to (b, ~u, j0,~j1) in some

suitable space with enough regularity to pass to the limit in the nonlinear terms.

2.1. Case L ≈ ε and Ls → +∞. Denoting by P the L2 orthogonal projector on divergence
free vector fields, we get

(2.2) P~jε1(t) = e−
L

ε
(1+Ls)t P~jε1(0).

Hence P~jε1 tends to ~0 for ε → 0.

2.1.1. Subcase L2Ls → 0. Setting Q := Id−P, we see that the equation for jε0 entails that

Q~jε1 = O(ε). Next, the equation for Q~jε1 implies that ∇jε0 goes to ~0, too, because ε2Ls → 0.
Assuming that j0 decays to 0 at infinity, this yields j0 = 0.

From the equation for ~jε1, we also get

(2.3) −L(1 + Ls)~j
ε
1 = ∇jε0 +O(ε).

Hence ε(1+Ls)~j
ε
1 goes to ~0 and (b, ~u) thus satisfies the barotropic Navier-Stokes equations.

In other words, the radiative effect becomes negligible in the asymptotic L ≈ ε and ε2Ls → 0
with Ls → +∞
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2.1.2. Subcase limε→0L2Ls ∈ (0,+∞). This is the so-called nonequilibrium diffusion regime.

The analysis of the previous paragraph shows that ~jε1 = O(ε) (hence ~j1 = ~0) and that (2.3)
holds true. The new fact is that the equation for jε0 combined with (2.3) implies that

(2.4) ∂tj
ε
0 +

L
ε

(
jε0 − bε

)
− 1

n

L
ε

1

L2Ls
∆jε0 = O(ε).

Now, if we assume that
L
ε
→ κ

nν
and L2Ls →

m

ν2
,

for some m ∈ (0,+∞) and κ > 1 (see (2.1)), then (b, ~u) satisfies the following compressible
Navier-Stokes equations coupled with a parabolic equation

(2.5)





∂tb+ ~u · ∇b+ (1 + k1(b))div ~u = 0,

∂t~u+ ~u · ∇~u− (1 + k2(b))A~u+ (1 + k3(b))∇b+ 1
n(1 + k4(b))∇j0 = ~0,

∂tj0 +
κ
nν

(
j0 − b− ν2

nm∆j0
)
= 0.

2.1.3. Subcase L2Ls → +∞. We still have ~jε1 = O(ε), (2.3) and thus (2.4) holds true. Now,
as L2Ls → +∞ and L ≈ ε, the r.h.s. of (2.4) tends to 0. Therefore, if we assume as
before that L/ε → κ/(nν) then we find out that (b, ~u, j0) satisfies the following degenerate
nonequilibrium diffusion system

(2.6)





∂tb+ ~u · ∇b+ (1 + k1(b))div ~u = 0,

∂t~u+ ~u · ∇~u− (1 + k2(b))A~u+ (1 + k3(b))∇b+ 1
n(1 + k4(b))∇j0 = ~0,

∂tj0 +
κ
nν (j0 − b) = 0.

2.2. Case ε ≪ L ≪ 1. Recall that we have (2.3) while the equation for jε0 implies that

(2.7) div~jε1 = nL(bε − jε0) +O(ε).

Hence Q~j1 = 0 (as L → 0), and

(2.8) ∆jε0 + nL2(1 + Ls)(b
ε − jε0) = O(ε) +O(εL(1 + Ls)).

Subcase L2Ls → 0. Then (2.8) implies that ∆j0 = 0 and thus j0 ≡ 0 (if one assumes that
j0 → 0 at ∞). Consequently, (2.3) implies that the radiative force in the velocity equation
tends to 0 when ε goes to 0. Therefore (b, ~u) just satisfies the classical compressible Navier-
Stokes equation.

Subcase ν2L2Ls → m ∈ (0,+∞). We have ~j1 = ~0, and Relations (2.3), (2.8) imply that
(b, ~u, j0) fulfills the following Navier-Stokes-Poisson system

(2.9)





∂tb+ ~u · ∇b+ (1 + k1(b))div ~u = 0,

∂t~u+ ~u · ∇~u− (1 + k2(b))A~u+ (1 + k3(b))∇b+ 1
n(1 + k4(b))∇j0 = ~0,

−ν2∆j0 +mn(j0 − b) = 0.

Subcase L2Ls → +∞. Then (2.8) implies that j0 = b. Combining with (2.3), we thus find out
that (b, ~u) fulfills the following compressible Navier-Stokes equation with modified pressure
law

(2.10)

{
∂tb+ ~u · ∇b+ (1 + k1(b))div ~u = 0,

∂t~u+ ~u · ∇~u− (1 + k2(b))A~u+
(
1 + 1

n + k3(b) +
1
nk4(b)

)
∇b = ~0.
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2.3. Case νL → ℓ ∈ (0,+∞).

Subcase ν2L2Ls → m ∈ [0,+∞). Passing to the limit in (2.8) gives

(2.11) −ν2∆j0 + n(ℓ2 +m)(j0 − b) = 0.

So we get System (2.9) for (b, j0, ~u) with the last equation replaced by (2.11).

Subcase Ls → +∞. Exactly as in the case L → 0, we get j0 = b, ~j1 = ~0, and (b, ~u) satisfies
(2.10).

2.4. Case L → +∞. Relation (2.3) implies that ~j1 = 0, and thus, according to (2.7), we
have j0 = b. Therefore (2.3) implies that

L(1 + Ls)~j
ε
1 → ∇b,

and (b, ~u) thus satisfies (2.10).

To make a long story short, the above formal computations pointed out five types of
asymptotic regimes. They are governed by

(1) The ordinary compressible Navier-Stokes equations with null radiation (if L → 0 and
L2Ls → 0);

(2) The compressible Navier-Stokes equation with an extra pressure term see (2.10) (equi-
librium diffusion regime corresponding to ε ≪ L and L2Ls → +∞, or L → +∞);

(3) The Navier-Stokes-Poisson equations (2.9) (or (2.11)) (case ε ≪ L . 1 and ν2L2Ls →
m ∈ (0,+∞));

(4) The compressible Navier-Stokes equations coupled with a parabolic equation (2.5)
(nonequilibrium diffusion regime L ≈ ε and ν2LsL2 → m ∈ (0,+∞));

(5) The compressible Navier-Stokes equations coupled with a damped equation (2.6)
(degenerate nonequilibrium diffusion regime L ≈ ε and LsL2 → +∞).

The rest of the paper is devoted to justifying rigorously the last four asymptotics globally
in time in the framework of small solutions with critical regularity. In the next section, we
introduce a few notations that will be needed to define our functional framework, and give
an overview of the strategy. Section 4 is devoted to a fine analysis of the linearized equations
(1.6) about (0,~0, 0,~0), which turns out to be essentially the key to proving global results and
justifying the diffusive asymptotics we have in mind. The next three sections are devoted to
the rigorous justification of the nonequilibrium diffusion regime L ≈ ε and LsL2 & 1, the
equilibrium diffusion regime L → +∞ and of the Poisson type diffusion regime (ε ≪ L . 1
and ν2L2Ls → m ∈ (0,+∞)). In all of those sections, we establish a global-in-time existence
result for the expected limit system, and for (1.6) supplemented with uniform estimates (for
coefficients L and Ls satisfying the assumptions of the studied regime), and eventually
show the convergence of the solutions of (1.6) to those of the expected limit system. Some
estimates, of independent interest, for the solutions to a class of linear ODEs corresponding
to the linearized equations of (1.6) in the Fourier space are postponed in the appendix.

3. Functional framework and overview of the method

The functional framework we shall work in is modeled on the linearized equations cor-
responding to (1.6), and is thus the same as in our first paper [7] devoted to the global
well-posedness issue in critical regularity spaces for small perturbations of a stable constant
state. The key to proving asymptotic results however, is to prescribe norms depending on
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the parameters ε, L and Ls, so as to get optimal uniform estimates, enabling our justifying
rigorously the different diffusive asymptotics exhibited above.

Let us first very briefly recall the definition of homogeneous Besov spaces Ḃs
2,1 (the reader

is referred to [1], Chap. 2 for more details). For simplicity, we focus on the R
n case (adapting

the construction to the torus being quite straightforward). Fix some smooth radial bump
function χ : Rn → [0, 1] with χ ≡ 1 on B(0, 1/2) and χ ≡ 0 outside B(0, 1), nonincreasing
with respect to the radial variable. Let ϕ(ξ) := χ(ξ/2) − χ(ξ). The elementary spectral
cut-off operator entering in the Littlewood-Paley decomposition is defined by

∆̇ju := ϕ(2−jD)u = F−1(ϕ(2−jD)Fu), j ∈ Z

where we denote by F the standard Fourier transform in R
n.

For any s ∈ R, the homogeneous Besov space Ḃs
2,1 is the set of tempered distributions u

so that

‖u‖Ḃs
2,1

:=
∑

j∈Z
2js‖∆̇ju‖L2 < ∞,

and

(3.1) lim
λ→+∞

χ(λD)u = 0 in L∞.

As pointed out in [7], scaling considerations that neglect low order terms of System (1.6)

suggest that critical regularity is Ḃ
n
2
−1

2,1 for ~u0, j0,0 and ~j1,0, and Ḃ
n
2

2,1 for b0. However, to
handle lower order terms, one has to make additional assumptions for the low frequencies. To
this end, it is convenient to introduce the following notation (where η stands for a positive
parameter)

‖u‖ℓ,η
Ḃs

2,1

:=
∑

2k≤2η

2ks‖∆̇ku‖L2 and ‖u‖h,η
Ḃs

2,1

:=
∑

2k≥η/2

2ks‖∆̇ku‖L2 ,

and also

uℓ,η :=
∑

2k≤η

∆̇ku and uh,η :=
∑

2k>η

∆̇ku.

Note that ‖uℓ,η‖Ḃs
2,1

≤ C‖u‖ℓ,η
Ḃs

2,1

and ‖uh,η‖Ḃs
2,1

≤ C‖u‖h,η
Ḃs

2,1

. Because the Littlewood-Paley

decomposition is not quite orthogonal, it is important to allow for a small overlap in the
above definition of norms.

In some places, we will have to specify also the behavior for the middle frequencies, by
considering for given 0 < η < η′,

‖u‖m,η,η′

Ḃs
2,1

:=
∑

η≤2k≤η′

2ks‖∆̇ku‖L2 .

Broadly speaking, our strategy to justify the different types of diffusive limits is as follows:

• Step 1: We prove ‘uniform estimates’ for the global solutions to (1.6), uniform mean-
ing that we want a bound independent of ε, but the norm itself may depend ‘in a
nice way’ of the parameters ε, L and Ls.

• Step 2: We show that the limit system is globally well-posed in the small data case.
• Step 3: We take advantage of estimates of Step 1 to exhibit weak compactness prop-
erties. Combining with the uniqueness result of Step 2, this allows to conclude to the
convergence of the whole family of solutions of (1.6) to those of the limit system.
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The most technical part is step 1, as it requires a fine analysis of the linearized equations of
(1.6) about 0 that keeps track of the coefficients L, Ls and ε. Schematically, in the Fourier
space, one has to resort to different types of estimates for low, medium and high frequen-
cies. The low frequency analysis is carried out by considering approximate eigenmodes of
the system, that are constructed by a perturbative method from the (explicit) eigenmodes
corresponding to null frequency. A part of the difficulty is that the ‘fluid modes’ are of para-
bolic type, hence the corresponding eigenvalues tend quadratically to 0 when the frequency
size tends to 0 while the radiative modes are expected to be exponentially damped. The
high frequency analysis is inspired by the corresponding one for the barotropic Navier-Stokes
equations, after noticing that coupling between radiative and fluid unknowns occurs only
through 0 order terms, and thus tend to be negligible for very high frequencies. Last but not
least, medium frequency regime has to be looked at with the greatest care, as the low and
high frequency regimes need not overlap. There is no general strategy for handling them,
apart from guessing approximate eigenmodes of the system.

4. Uniform estimates for the linearized equations

In order to reduce the study to the case where the total viscosity ν := λ+2µ is 1, and to
get a symmetric first order system for the radiative unknowns, let us set

(4.1)
(
b, ~u, j0, ~j1

)
(t, x) := (bε, ~uε,

√
n jε0,~j

ε
1)(νt, νx).

Then (bε, ~uε, jε0 ,
~jε1) satisfies (1.6) if and only if (b, ~u, j0,~j1) satisfies

(4.2)





∂tb+ ~u · ∇b+ (1 + k1(b))div ~u = 0,

∂t~u+ ~u · ∇~u− (1 + k2(b))Ã~u+ (1 + k3(b))∇b = L̃M
n (1 + k4(b))~j1,

ε∂tj0 +
1√
n
div~j1 = L̃(b−√

n j0),

ε∂t~j1 +
1√
n
∇j0 = −L̃M~j1,

with

(4.3) M := 1 + Ls, L̃ := νL and Ã := ν−1A.

The corresponding linearized system reads

(4.4)





∂tb+ div ~u = f,

∂t~u− Ã~u+∇b− L̃M
n
~j1 = ~g,

ε∂tj0 +
1√
n
div~j1 + L̃(j0 −

√
n b) = 0,

ε∂t~j1 +
1√
n
∇j0 + L̃M~j1 = ~0.

On one hand, the coupling between the incompressible part of ~u and ~j1 that is P~u and P~j1
where P stands for the projector on divergence-free vector-fields is obvious as

(4.5) ∂tP~u− µ

ν
∆P~u =

L̃M
n

P~j1,

and

P~j1(t) = e−
L̃Mt

ε P~j1(0),
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hence in any functional space X we have

(4.6) L̃M‖P~j1‖L1(X) ≤ ε‖P~j1(0)‖X .

On the other hand, the coupling between b, d := Λ−1div ~u, j0 and j1 := Λ−1div~j1 (where

Λs := (−∆)s/2 ) is quite complicated: in Fourier variables, we have

(4.7)
d

dt




b̂

d̂

ĵ0
ĵ1


+




0 ρ 0 0

−ρ ρ2 0 − L̃M
n

−
√
nL̃
ε 0 L̃

ε
ρ

ε
√
n

0 0 − ρ
ε
√
n

L̃M
ε







b̂

d̂

ĵ0
ĵ1


 =




0
0
0
0


 ·

The analysis that has been performed in [7] pointed out the following necessary and sufficient
stability condition

(4.8) L̃ >
ε

n
(1 +M−1).

So we shall make this assumption in all that follows. Of course one also has to keep in mind
that M > 1, a consequence of M := 1+Ls. For notational simplicity, we shall simply denote

L̃ by L in the following computations.

4.1. Estimates for small ρ. In order to prove estimates in the case 0 ≤ ρ ≤ C1 (with

C1 ≥
√
1 + n−1 ), we shall use that (4.7) enters in the class of ODEs that has been considered

in the Appendix. Indeed, it corresponds to (A.3) with

(4.9) ς =
L̃M
n

, η =

√
nL̃
ε

, β =
L̃
ε
, α =

1

ε
√
n
, γ =

L̃M
ε

·

4.1.1. The case L & 1 and LεM & 1. We shall follow the first approach proposed in
Appendix A. It corresponds to the following matrices A0, A1, A2 and B1

A0 =




0 0 0 0
0 0 0 0
0 0 L

ε 0

0 0 0 LM
ε


 , A1 =




0 1 0 0
−1− 1

n 0 0 0

0 0 0 1+ε2√
nε

0 0 − 1√
n ε

0


 ,

B1 = −




0 0 0 ε
n

0 0 1
n3/2 0

0
√
n 0 0

1
ε 0 0 0


 and A2 =




0 0 0 0
0 1 0 − ε

n
0 0 0 0
0 0 0 0


 ·

Therefore we set

(4.10) P :=




0 0 0 ε2

nLM
0 0 ε

n3/2L 0

0 − ε
√
n

L 0 0
− 1

LM 0 0 0


 ,
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which corresponds to the change of unknowns

(4.11)




b̂

d̂

ĵ0

ĵ1


 :=




1 0 0 ε2

nLMρ
− ε

nLρ 1 ε
n3/2Lρ

ε
n

−√
n −

√
n ε
L ρ 1 − ε2√

nLρ

− 1
LMρ 0 0 1







b̂

d̂

ĵ0
ĵ1


 ·

According to (A.8), working with (â, d̂, ĵ0, ĵ1) or (b̂, d̂, ĵ0, ĵ1) is equivalent whenever

(4.12) ρ . Lmin(ε−1,M).

Let us first compute the matrices PB1, [P,A1] and A3 appearing in (A.2)

PB1 =
ε

nL




−M−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 M−1


 ,

[P,A1] =
1

L




0 0 − ε(1+M−1)

n3/2 0

0 0 0 1+ε2(1+M−1(n+1))
n2

1+ε2(1+M(1+n))
ε
√
nM 0 0 0

0 −1−M−1 0 0




,

A3 =
1

n




0 ε2

L2 0 ε3

nL2M2

ε
LM − (1+n−1)ε2

L2M2 0 ε
L√n

− ε2

L2n3/2 0

0 0 0 ε(1+ε2)√
n(LM)2

0 0 − ε
L2

√
n

0




·

Because L & 1, we thus have |A3| . ε
L · Hence, up to a O(ερ3/L) term, the equations for

(b̂, d̂) read

d

dt

(
b̂

d̂

)
+ ρ

(
0 1

−1− n−1 0

)(
b̂

d̂

)
+ ρ2

(
− ε

nLM 0
0 1− ε

nL

)(
b̂

d̂

)

= ρ2

(
ε(1+M−1)

n3/2L 0

0 ε
n − 1+ε2(1+M−1(n+1))

n2L

)(
ĵ0

ĵ1

)
·

In order to estimate (b̂, d̂), we just follow the method of Appendix B, which requires Condition
(4.8) and

(4.13) ρ ≤
√
1 + n−1

1− (1−M−1)ε
nL

·

Keeping (4.12) in mind and noticing that

ν̃ = 1− ε

nL(1 +M−1),

is of order 1 for small ε, we thus conclude that if

(4.14) ρ ≤
√

1 + n−1 and ρ . Lmin(ε−1,M),
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then

(4.15) |(b̂, d̂)(t)| + ρ2
∫ t

0
|(b̂, d̂)| dτ . |(b̂, d̂)(0)|

+ ρ2
∫ t

0

(
ε

L|̂j0|+
(
ε+

1

L
)
|̂j1|
)
dτ +

ερ3

L

∫ t

0
|(b̂, d̂, ĵ0, ĵ1)| dτ.

Next, we see that the equations for (̂j0, ĵ1) read (omitting the O(ερ3/L) term)

(4.16)
d

dt

(
ĵ0

ĵ1

)
+

(
L
ε + ερ2

nL 0

0 LM
ε + ερ2

nLM

)(
ĵ0

ĵ1

)
+

ρ√
n ε

(
0 1 + ε2

−1 0

)(
ĵ0

ĵ1

)

= ρ2

(
−1+ε2(1+M(1+n))

ε
√
nLM 0

0 1+M−1

L

)(
b̂

d̂

)
·

Therefore, computing

(4.17)
d

dt

(
|̂j0|2 + (1 + ε2)|̂j1|2

)
,

so as to eliminate the term in ρ, we end up with

(4.18) |(̂j0, ĵ1)(t)| +
L
ε

∫ t

0
|̂j0, ĵ1| dτ . |(̂j0, ĵ1)(0)|

+ ρ2
∫ t

0

(( 1

εLM +
ε

L
)
|b̂|+ 1

L|d̂|
)
dτ +

ερ3

L

∫ t

0
|(b̂, d̂, ĵ0, ĵ1)| dτ.

Now, adding up (4.15) and (4.18), we easily conclude that if ε is small enough and

(4.19) Lmin(1, εM) & 1,

then we have

(4.20) |(b̂, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|(b̂, d̂)| dτ +

L
ε

∫ t

0
|(̂j0, ĵ1)| dτ . |(b̂, d̂, ĵ0, ĵ1)(0)|,

whenever 0 ≤ ρ ≤
√
1 + n−1.

Now, resuming to the ĵ1 equation in (4.16), and evaluating the first order term according
to (4.20), we deduce that, in addition

(4.21)
LM
ε

∫ t

0
|̂j1| dτ . |(b̂, d̂, ĵ0, ĵ1)(0)|.

4.1.2. The case ε ≪ L . 1 with εL2L2
s ≫ 1 and L2Ls ≫ 1. If L ≪ 1 then plugging (4.15)

in (4.18) does not allow to get (4.20) any longer. In order to overcome this, we shall follow
the second approach proposed in Appendix A with coefficients defined as in (4.9): we set

P =




0 0 0 ε2

nLM
0 0 ε

n3/2L 0

0 − ε
√
n

L 0 1+ε2√
n(1−M)L

− 1
LM 0 1√

n (1−M)L 0


 ,
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and we thus have, remembering that M− 1 = Ls

(4.22) V =




b̂

d̂

ĵ0

ĵ1


 :=




1 0 0 ε2

nLMρ
− ε

nLρ 1 ε
n3/2Lρ

ε
n

−√
n −

√
nε
L ρ 1 − 1+ε2M√

nLLs
ρ

ρ
LMLs

0 − ρ√
nLsL 1







b̂

d̂

ĵ0
ĵ1


 ·

The determinant of the above matrix is
(
1 +

ε2

nL2
ρ2
)(

1 +
ε2

nL2M2
ρ2
)
− 1 + ε2

nL2L2
s

ρ2,

Hence working with (̂b, d̂, ĵ0, ĵ1) or (b̂, d̂, ĵ0, ĵ1) is equivalent whenever

(4.23) ρ .
L
ε

and ρ ≤
√
nLLs.

Then following the computations of Appendix A, second approach, and setting A3 := (PA0−
A1)P

2 +A2P leads to

(4.24)
d

dt
V + ρ




0 1 0 0
−1− 1

n 0 0 0
0 0 0 0
0 0 0 0


V

+




− ε
nLMρ2 0 0 0
0

(
1− ε

nL
)
ρ2 0 0

0 0 L
ε +

(
ε+ 1+ε2

εLs

) ρ2

nL 0

0 0 0 LM
ε +

(
ε

nLM− 1+ε2

nεLLs

)
ρ2


V

= ρ2




0 0 (1+M−1)ε

n3/2L 0

0 0 0 ε
n − 1+ε2

n2L − ε2(1+n)
n2LM

− 1+ε2

ε
√
nLsL − (n+1)ε√

nL 0 0 0

0 − 1
LLsM 0 0




V

+ ρ3(I + ρP )A3(I + ρP )−1V.

Let us bound A3 in order to determinate for which values of ρ the last term in (4.24) is
indeed negligible. Just writing that |A3| ≤ |P |2(|P | |A0|+ |A1|) + |A2| |P | using the explicit
values of A0, A1 and A2 and

(4.25) |P | . 1

L max

(
ε,

1

Ls

)
,

does not provide an accurate enough bound for A3. Hence one has to go to further compu-
tations. Now, we get

PA0P
2 =




0 ε2

nL2Ls
0 ε

n2L2

(
1+ε2

L2
s

− ε2

M2

)

1+ε2

n2L2MLs
0 1

n5/2L2

(
1+ε2

L2
s

− ε2
)

0

0 − (1+ε2)M√
nL2L2

s
0 (1+ε2)M

n3/2εLsL2

(
ε2

M2 − 1+ε2

L2
s

)

− ε(1+ε2)
nL2ML2

s
0 ε

n3/2LsL2

(
ε2 − 1+ε2

L2
s

)
0




,
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A2P =




0 0 0 0
ε

nLM 0 ε
n3/2L 0

0 0 0 0
0 0 0 0


 and A1P

2 =




0 − ε2

nL2 0 − ε(1+ε2)
nL2Ls

(1+n−1)ε2

nL2M2 0 (1+n−1)ε2

n3/2L2LsM
0 0 0 0
0 0 0 0


 ·

Hence, given that ε ≪ L . 1 and that Ls ≈ M in the regime that we are considering, one
may conclude that

(4.26) |A3| . max

(
ε

L ,
1

L2Ls
,

1

εL2L2
s

)
·

Note that we still have ν̃ → 1 for ε → 0. Hence applying the method of the appendix to

handle (b̂, d̂), we find out that if (4.8), (4.13) and (4.23) are fulfilled then

|(b̂, d̂)(t)| + ρ2
∫ t

0
|(b̂, d̂)| dτ . |(b̂, d̂)(0)| + ρ2

∫ t

0

(
ε

L|̂j0|+
1

L|̂j1|
)
dτ

+ρ3max

(
ε

L ,
1

L2Ls
,

1

εL2L2
s

)∫ t

0
|V | dτ.

As regards the radiative modes, we have

|̂j0(t)|+
(L
ε
+
(
ε+

1 + ε2

εLs

) ρ2

nL

)∫ t

0
|̂j0| dτ ≤ |̂j0(0)| +Cρ2

∫ t

0

(
1

εLLs
+

ε

L

)
|b̂| dτ

+Cρ3max

(
ε

L ,
1

L2Ls
,

1

εL2L2
s

)∫ t

0
|V | dτ,

|̂j1(t)|+
(LM

ε
+
( ε

nLM − 1 + ε2

nεLLs

)
ρ2
)∫ t

0
|̂j1| dτ ≤ |̂j1(0)| + C

ρ2

LLsM

∫ t

0
|d̂| dτ

+Cρ3max

(
ε

L ,
1

L2Ls
,

1

εL2L2
s

)∫ t

0
|V | dτ.

From the above three inequalities, we get for any A ∈ (0, 1]

|(b̂, d̂)(t)| +A|̂j0(t)|+ |̂j1(t)|+ ρ2
∫ t

0
|(b̂, d̂)| dτ +A

L
ε

∫ t

0
|̂j0| dτ +

LLs

ε

∫ t

0
|̂j1| dτ

. |(b̂, d̂)(0)| +A|̂j0(0)|+ |̂j1(0)| + ρ2
∫ t

0

(
ε

L|̂j0|+
1

L|̂j1|
)
dτ +Aρ2

∫ t

0

(
1

εLLs
+

ε

L

)
|b̂| dτ

+
ρ2

LL2
s

∫ t

0
|d̂| dτ + ρ3 max

(
ε

L ,
1

L2Ls
,

1

εL2L2
s

)∫ t

0
|V | dτ.

Now, we notice that taking A = c0 min(1, εLLs) for a sufficiently small constant c0 allows
to absorb all the terms of the r.h.s. (but the data) by the l.h.s. provided we have 0 ≤ ρ ≤√
1 + n−1

(4.27) ε ≪ L . 1, εL2L2
s ≫ 1 and L2Ls ≫ 1.

We thus conclude that for all 0 ≤ ρ ≤
√
1 + n−1, we have

(4.28) |(b̂, d̂,min(1, εLLs )̂j0, ĵ1)(t)|+ ρ2
∫ t

0
|(b̂, d̂)| dτ +

L
ε
min(1, εLLs)

∫ t

0
|̂j0| dτ

+
LM
ε

∫ t

0
|̂j1| dτ ≤ C|(b̂, d̂,min(1, εLLs)̂j0, ĵ1)(0)|.
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Let us point out that in the case where L2Ls ≈ 1 (even if L ≈ ε in fact) then the same
computation will lead to (4.28), but only for 0 ≤ ρ ≤ c, with c a small enough constant.

4.1.3. The case ε ≪ L . ε1/2 and L2Ls ≈ 1. As the value
√
1 + n−1 will not play any

particular role, we fix some C1 > c in the following computations. We want to get (4.28) for
ρ ∈ [c, C1]. To this end, we introduce ζ0 and ζ1 such that

ζ̂0 := ĵ0 −
√
n

1 + ρ2

nL2M
b̂ and ζ̂1 := ĵ1 −

ρ√
nLM ĵ0.

Then we discover that (̂b, d̂, ζ̂0, ζ̂1) fulfills





∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρ

(
1 +

1

n
(
1 + ρ2

nL2M
)
)
b̂ =

ρ

n3/2
ζ̂0 +

LM
n

ζ̂1,

∂tζ̂0 +
L
ε
ζ̂0 = − ρ

ε
√
n
ζ̂1 −

√
n

ρ

1 + ρ2

nL2M
d̂,

∂tζ̂1 +
L
ε

(
M− ρ2

nL2M

)
ζ̂1 =

ρ√
n εM

(
1 +

ρ2

nL2M

)
ζ̂0.

Let ρ be in [c, C1]. For the first two equations, performing the standard barotropic estimates
(which rely on the use of Uρ defined in (4.43)) leads to

(4.29) |(̂b, d̂)(t)|+
∫ t

0
|(̂b, d̂)| dτ . |(̂b, d̂)(0)| +

∫ t

0
|ζ̂0| dτ + LLs

∫ t

0
|ζ̂1| dτ.

For ζ̂0, it is obvious that

(4.30) |ζ̂0(t)|+
L
ε

∫ t

0
|ζ̂0| dτ ≤ |ζ̂0(0)| +

ρ

ε
√
n

∫ t

0
|ζ̂1| dτ + ρ

√
n

∫ t

0
|d̂| dτ,

and, as our conditions on L and Ls guarantee that ρ ≤
√

n/2LM for small enough ε, we
also have

(4.31) |ζ̂1(t)|+
LM
2ε

∫ t

0
|ζ̂1| dτ ≤ |ζ̂1(0)|+

ρ√
nεM

(
1 +

ρ2

nL2M

)∫ t

0
|d̂| dτ.

Putting together those three inequalities, we readily get for all A,B > 0, observing that
ρ2 ≈ L2M ≈ 1

|(̂b, d̂)(t)|+A
ε

L|ζ̂0(t)|+Bε|ζ̂1(t)|+
∫ t

0
|(̂b, d̂)| dτ +A

∫ t

0
|ζ̂0| dτ +BLM

∫ t

0
|ζ̂1| dτ

. |(̂b, d̂)(0)| +A
ε

L|ζ̂0(0)|+Bε|ζ̂1(0)|+ LM
∫ t

0
|ζ̂1| dτ

+

∫ t

0
|ζ̂0| dτ +

A

L

∫ t

0
|ζ̂1| dτ +A

ε

L

∫ t

0
|d̂| dτ +

B

M

∫ t

0
|ζ̂0| dτ.

It is now clear that if one takes first A large enough (independently of ε) and B much larger,
all the integrals of the r.h.s. may be absorbed by the left-hand side, as M−1 ≪ ρ, and we
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thus get for all ρ ∈ [c, C1]

(4.32) |(̂b, d̂)(t)|+ ε

L|ζ̂0(t)|+ ε|ζ̂1(t)|+
∫ t

0
|(̂b, d̂)| dτ

+

∫ t

0
|ζ̂0| dτ + LM

∫ t

0
|ζ̂1| dτ . |(̂b, d̂)(0)| + ε

L|ζ̂0(0)| + ε|ζ̂1(0)|.

Plugging this new inequality in (4.31), we easily deduce that

|ζ̂1(t)|+
LM
ε

∫ t

0
|ζ̂1| dτ . |ζ̂1(0)|+ L|ζ̂0(0)| +

1

εM|(̂b, d̂)(0)|,

then inserting this information and (4.32) in (4.30), we discover that

|ζ̂0(0)| +
L
ε

∫ t

0
|ζ̂0| dτ . |ζ̂0(0)| + L|ζ̂1(0)|+

(
1 +

1

εLM2

)
|(̂b, d̂)(0)|.

Therefore, putting (4.32) and the above two inequalities together, using that |(̂b, d̂, ζ̂0, ζ̂1)| ≈
|(̂b, d̂, ĵ0, ĵ1)| and assuming in addition that L . ε1/2, we conclude that

(4.33) |(̂b, d̂, εL ĵ0, ĵ1)(t)|+
∫ t

0
|(̂b, d̂)| dτ +

L
ε

∫ t

0
|ζ̂0| dτ +

LLs

ε

∫ t

0
|ζ̂1| dτ

. |(̂b, d̂, εL ĵ0, ĵ1)(0)| for all c ≤ ρ ≤ C1.

Note that due to the expression of ζ̂1, one may replace ζ̂1 with ĵ1 of ĵ1 in the integral.

Still in the case L . ε1/2, we claim that we have the following inequality

(4.34) |ρĵ0(t)|+
L
ε

∫ t

0
|ρζ̂0| dτ . |(̂b, d̂, ρĵ0,

ε

L ĵ0, ĵ1)(0)| for all 0 ≤ ρ ≤ C1,

which turns out to be crucial in the justification of the asymptotics toward (2.9).

Indeed, inequality (4.30) does not require any assumption on ρ and thus implies that

|ρζ̂0(t)|+
L
ε

∫ t

0
|ρζ̂0| dτ ≤ |ρζ̂0(0)| +

ρ2

ε
√
n

∫ t

0
|ζ̂1| dτ + ρ2

√
n

∫ t

0
|d̂| dτ.

For 0 ≤ ρ ≤ c (resp. c ≤ ρ ≤ C1 ), the last term may be bounded according to (4.28) (resp.

(4.33)). Regarding the term with ζ̂1, we notice that

ζ̂1 = ĵ1 +
ρ

LLsM

(
ĵ0√
n
+ b̂

)
,

hence (4.28) and the fact that L2Ls ≈ 1 guarantee that for 0 ≤ ρ ≤ c

ρ2

ε
√
n

∫ t

0
|ζ̂1| dτ . L

(LM
ε

∫ t

0
|̂j1| dτ +

L2

ε

∫ t

0
ρ2 |̂j0 +

√
nb̂| dτ

)

. L(1 + L2

ε )|(̂b, d̂, εLLsĵ0, ĵ1)(0)|.

In the case L . ε1/2, it is obvious that Inequality (4.33) implies that the above inequality is
also true in the range c ≤ ρ ≤ C1, which completes the proof of (4.34).



DIFFUSIVE LIMITS FOR A BAROTROPIC MODEL OF RADIATIVE FLOW 15

4.1.4. The case L ≈ ε and Lsε
2 & 1. We saw that if (4.8) is fulfilled then (4.28) holds true

on some small interval [0, c]. So we have to fill in the gap between c and
√
1 + n−1. As the

value
√
1 + n−1 does not play any particular role, we fix some C1 > c and look for estimates

if ρ ∈ [c, C1]. For simplicity, take L = κε/n (with κ > 1 owing to (4.8)).

Setting ζ̂1 := ĵ1 − 1√
nLMρĵ0 = ĵ1 −

√
n

κεMρĵ0 as before, we observe that

(4.35)





∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρb̂ = ρ
n3/2 ĵ0 +

κεM
n2 ζ̂1,

∂tĵ0 +
(
κ
n + ρ2

κε2M
)
ĵ0 +

ρ√
nε
ζ̂1 =

κ√
n
b̂,

∂tζ̂1 +
(
κM
n − ρ2

κε2M
)
ζ̂1 =

ρ√
n εM

(
1 + ρ2n

κ2ε2M
)
ĵ0 − ρ

εM b̂.

Let us focus on the subsystem corresponding to the first three equations, namely

(4.36)





∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρb̂− ρ
n3/2 ĵ0 = f̂ ,

∂tĵ0 +
(
κ
n + ρ2

κε2M
)
ĵ0 − κ√

n
b̂ = ĝ.

If we have the stronger condition ε2M → ∞ then we rewrite System (4.36) as follows

(4.37)
d

dt




b̂

d̂

ĵ0


+




0 ρ 0
−ρ ρ2 − ρ

n3/2

− κ√
n

0 κ
n






b̂

d̂

ĵ0


 =




0

f̂

− ρ2

κε2M ĵ0 + ĝ


 ·

The eigenvalues of the matrix Mρ in the left-hand side are the roots of the polynomial
−X3 + a1(ρ)X

2 − a2(ρ)X + a3(ρ) with

a1(ρ) =
κ

n
+ ρ2, a2(ρ) =

(
1 +

κ

n

)
ρ2, a3(ρ) =

(
1 +

1

n

)ρ2κ
n

·

According to Routh-Hurwitz criterion, those roots have positive real part if and only if

a1(ρ) > 0,

∣∣∣∣
a1(ρ) 1
a3(ρ) a2(ρ)

∣∣∣∣ > 0 and

∣∣∣∣∣∣

a1(ρ) 1 0
a3(ρ) a2(ρ) a1(ρ)
0 0 a3(ρ)

∣∣∣∣∣∣
> 0.

As a1(ρ) and a3(ρ) are positive, it suffices to check the second condition, that is

a1(ρ)a2(ρ)− a3(ρ) =
(
1 +

κ

n

)
ρ4 +

ρ2κ

n2
(κ− 1) > 0,

and this is indeed the case for all ρ > 0, as κ > 1.

In particular, all the eigenvalues of the matrix Mρ have positive real part if we assume ρ
to belong to the compact set [c, C1]. Therefore (see [7]) there exist two positive constants c2
and C2 depending only on c and C1, so that the matrix Mρ satisfies

∣∣e−tMρ
∣∣ ≤ C2e

−c2t for all t ≥ 0 and ρ ∈ [c, C1].

By taking advantage of Duhamel’s formula, we thus deduce that

|(̂b, d̂, ĵ0)(t)| +
∫ t

0
|(â, d̂, ĵ0)| dτ . |(̂b, d̂, ĵ0)(0)| +

∫ t

0
|(f̂ , ĝ)| dτ +

1

ε2M

∫ t

0
|̂j0| dτ.
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Of course, owing to the assumption ε2M → ∞, the last term of the r.h.s. may be absorbed
by the l.h.s., for ε going to 0. So we get

(4.38) |(̂b, d̂, ĵ0)(t)| +
∫ t

0
|(̂b, d̂, ĵ0)| dτ . |(̂b, d̂, ĵ0)(0)| +

∫ t

0
|(f̂ , ĝ)| dτ.

In the case where ε2M does not go to ∞ then we have to proceed slightly differently. If we
assume (for simplicity) that ε2M tends to some m > 0, then the matrix Mρ in (4.37) has
to be changed in

Nρ =




0 ρ 0
−ρ ρ2 − ρ

n3/2

− κ√
n

0 κ
n + ρ2

κm


 ·

The above analysis based on Routh-Hurwitz theorem still holds as the additional term has
‘the good sign’, and one may conclude, as before, that (4.38) is satisfied for all ρ ∈ [c, C1].

In every case ε2M & 1, resuming to (4.35), Inequality (4.38) allows us to get for all
ρ ∈ [c, C1]

(4.39) |(̂b, d̂, ĵ0)(t)| +
∫ t

0
|(̂b, d̂, ĵ0)| dτ . |(̂b, d̂, ĵ0)(0)| + εM

∫ t

0
|ζ̂1| dτ.

Next, from the equation of ζ̂1, we readily get

|ζ̂1(t)|+M
∫ t

0
|ζ̂1| dτ . |ζ̂1(0)|+ (εM)−1

∫ t

0
|(̂b, ĵ0)| dτ.

Hence, adding up to Inequality (4.39), we conclude that (4.28) is also true for all ρ ∈ [c, C1].
This completes the proof of estimates in the low frequency regime ρ ∈ [0, C1].

4.2. Estimates for middle frequencies.

The case lim infM = +∞. As in the previous paragraph, introduce ζ̂1 := ĵ1 − ρ√
nLM ĵ0.

The system fulfilled by (̂b, d̂, ĵ0, ζ̂1) reads

(4.40)





∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρb̂ = ρ
n3/2 ĵ0 +

LM
n ζ̂1,

∂tĵ0 +
1
ε

(
L+ ρ2

nLM
)
ĵ0 +

ρ√
nε

ζ̂1 =
√
nL

ε b̂,

∂tζ̂1 +
(LM

ε − ρ2

nεLM
)
ζ̂1 =

ρ√
nLMε

(
L+ ρ2

nLM
)
ĵ0 − ρ

εM b̂.

The subsystem corresponding to the first three equations is

(4.41)





∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρb̂− ρ
n3/2 ĵ0 = f̂ ,

∂tĵ0 +
L
ε

(
1 + ρ2

nL2M
)
ĵ0 −

√
nL

ε b̂ = ĝ,

with

(4.42) f̂ =
LM
n

ζ̂1 and ĝ = − ρ√
n ε

ζ̂1.

Assume that (f̂ , ĝ) ≡ (0, 0) for a while and set

(4.43) U2
ρ := 2|(̂b, d̂)|2 − 2ρRe (̂b d̂) + |ρb̂|2.
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On one hand, we have

(4.44)
1

2

d

dt
U2
ρ + ρ2|̂b|2 + ρ2|d̂|2 = ρ

n3/2
Re
(
(2d̂− ρb̂) ĵ0

)
,

and on the other hand,

1

2

d

dt
|̂j0|2 +

L
ε

(
1 +

ρ2

nL2M

)
|̂j0|2 =

√
n
L
ε
Re (̂b ĵ0).

Therefore

1

2

d

dt

(
U2
ρ +

ε

n2L|ρĵ0|2
)
+ ρ2|(̂b, d̂)|2 + ρ2

n2

(
1 +

ρ2

nL2M

)
|̂j0|2 = 2

ρ

n3/2
Re (d̂ ĵ0).

Now, by using the fact that

2
ρ

n3/2
Re (d̂ ĵ0) ≤

1

An
|d̂|2 + Aρ2

n2
|̂j0|2,

and by taking A = 3/4, we conclude that for ρ2 ≥ 16n
3(4n2−1) , we have

d

dt

(
U2
ρ +

ε

n2L|ρĵ0|2
)
+

ρ2

2n2
|(̂b, d̂, ĵ0)|2 ≤ 0,

whence, because 16n
3(4n2−1)

≤ 1 + 1
n , we get for some universal positive constants c0 and C

|(ρb̂, d̂)(t)|+
√

ε

L|ρĵ0(t)| ≤ Ce−c0t

(
|(ρb̂, d̂)(0)| +

√
ε

L|ρĵ0(0)|
)

for ρ ≥
√

1 + n−1·

Resuming to the equation fulfilled by ĵ0 in (4.41), the above inequality implies (still assuming

that f̂ = ĝ = 0) that

L
ε

(
1 +

ρ2

nL2M

)∫ t

0
|ρĵ0| dτ ≤ |ρĵ0(0)|+

√
nL
ε

∫ t

0
|ρb| dτ .

√
L
ε
|ρĵ0(0)| +

L
ε
|(d̂, ρb̂)(0)|,

then plugging this inequality in the equation for d̂, we get in addition

ρ2
∫ t

0
|d̂| dτ . |d̂(0)| + |ρb̂(0)| +

√
ε

L|ρĵ0(0)|.

Repeating the above computations in the case of general source terms f̂ and ĝ, we conclude
that the solution (b, d, j0) to (4.41) satisfies for all ρ ≥

√
1 + n−1, assuming only that L & ε

|(ρb̂, d̂)(t)|+
√

ε

L|ρĵ0(t)|+
∫ t

0
|(ρb̂, ρ2d̂)| dτ +

L
ε

(
1 +

ρ2

nL2M

)∫ t

0
|ρĵ0| dτ

≤ C

(
|(ρb̂, d̂)(0)| +

√
ε

L|ρĵ0(0)|+
∫ t

0

(
|f̂ |+

√
ε

L|ρĝ|
)
dτ

)
·

Resuming to the value of f̂ and ĝ in (4.42), we thus get for ρ ≥
√
1 + n−1 and L & ε

(4.45) |(ρb̂, d̂)(t)|+
√

ε

L|ρĵ0(t)|+
∫ t

0
|(ρb̂, ρ2d̂)| dτ +

L
ε

(
1 +

ρ2

nL2M

)∫ t

0
|ρĵ0| dτ

≤ C

(
|(ρb̂, d̂)(0)| +

√
ε

L|ρĵ0(0)|+
(
LM+

ρ2√
Lε

)∫ t

0
|ζ̂1| dτ

)
·
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Next, it is clear that the equation for ζ̂1 implies that whenever ρ ≤
√

n
2 LM

(4.46) |ζ̂1(t)|+
LM
2ε

∫ t

0
|ζ̂1| dτ ≤ |ζ̂1(0)|+

1√
nεM

(
1+

ρ2

nL2M

)∫ t

0
|ρĵ0| dτ+

1

εM

∫ t

0
|ρb̂| dτ.

Hence, we get if M is large enough and ρ2 ≪ L3/2M2ε1/2

(4.47) |ζ̂1(t)|+
LM
ε

∫ t

0
|ζ̂1| dτ ≤ C

(
|ζ̂1(0)| +

1

εM
(
|(ρb̂, d̂)(0)| +

√
ε

L |ρĵ0(0)|
))

·

Then plugging that inequality in (4.45) implies that

(4.48) |(ρb̂, d̂)(t)|+
√

ε

L|ρĵ0(t)|+ ρ2
∫ t

0
|d̂| dτ +

∫ t

0
|ρb̂| dτ +

L
ε

(
1 +

ρ2

nL2M

)∫ t

0
|ρĵ0| dτ

≤ C

(
|(ρb̂, d̂)(0)| +

√
ε

L|ρĵ0(0)|+
(
ε+

ε1/2ρ2

ML3/2

)
|ζ̂1(0)|

)
,

whenever 1 + 1/n ≤ ρ2 ≪ L3/2M2ε1/2.

Here is another method that gives decay estimates in the range L
√
M ≪ ρ ≪ LM if M

is large enough. From the first two equations of (4.40), we have

(4.49) |(ρb̂, d̂)(t)|+ρ2
∫ t

0
|d̂| dτ +

∫ t

0
|ρb̂| dτ . |(ρb̂, d̂)(0)|+ ρ

n3/2

∫ t

0
|̂j0| dτ +

LM
n

∫ t

0
|ζ̂1| dτ.

The equations for ĵ0 and ζ̂1 give, if ρ ≤
√

n
2 LM

(4.50) |̂j0(t)|+
1

ε

(
L+

ρ2

nLM
) ∫ t

0
|̂j0| dτ ≤ |̂j0(0)|+

ρ√
n ε

∫ t

0
|ζ̂1| dτ +

L√n

ε

∫ t

0
|̂b| dτ,

(4.51) |ζ̂1(t)|+
LM
2ε

∫ t

0
|ζ̂1| dτ ≤ |ζ̂1(0)| +

ρ√
nLMε

(
L+ ρ2

nLM

)∫ t

0
|̂j0| dτ+

ρ

εM

∫ t

0
|̂b| dτ.

Plugging (4.50) in (4.51), we discover if ρ ≪ LM that

(4.52) |ζ̂1(t)|+
LM
4ε

∫ t

0
|ζ̂1| dτ ≤ |ζ̂1(0)|+

ρ

LM|̂j0(0)| +
1

εM

∫ t

0
ρ|̂b| dτ.

Inserting that inequality in (4.49), we conclude that the last term of (4.49) may be absorbed
by the l.h.s. if M is large enough. Now, Inequality (4.50) guarantees that

ρ

n3/2

∫ t

0
|̂j0| dτ ≤ 1√

n

(
ρεLM

nL2M+ ρ2

)
|̂j0(0)|

+

(
ρ2LM

n2L2M+ ρ2n

)∫ t

0
|ζ̂1| dτ +

( L2M
nL2M+ ρ2

)∫ t

0
ρ|̂b| dτ.

Again, resuming to (4.49), we see that the second term in the r.h.s. may be absorbed by the
l.h.s. This is also the case of the last one if ρ2 ≫ L2M. If all those conditions are fulfilled
then we end up if L

√
M ≪ ρ ≤

√
n
2 LM with

(4.53) |(ρb̂, d̂)(t)|+ ρ2
∫ t

0
|d̂| dτ + ρ

∫ t

0
|̂b| dτ + ρ

∫ t

0
|̂j0| dτ

+ LM
∫ t

0
|ζ̂1| dτ . |(ρb̂, d̂)(0)| + εLM

ρ
|̂j0(0)| + ε|ζ̂1(0)|.
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Resuming to (4.50) and (4.52), we thus easily deduce first that

|ζ̂1(t)|+
LM
ε

∫ t

0
|ζ̂1| dτ . |ζ̂1(0)|+ |̂j0(0)| +

1

εM|(ρb̂, d̂)(0)|,

and next that

|̂j0(t)|+
1

ε

(
L+

ρ2

LM
)∫ t

0
|̂j0| dτ . |̂j0(0)| +

ρ

LM|ζ̂1(0)| + L
ερ |(ρb̂, d̂)(0)|.

Our estimates and the definition of ζ1 allow us to change ζ1 to j1 in (4.53). So finally, in
the case εM & 1 we get for some large enough C1 and small enough c independent of ε

(4.54) |(ρb̂, d̂, (1+ εLM
ρ )ĵ0, ĵ1)(t)| +

∫ t

0
|ρb̂| dτ + ρ2

∫ t

0
|d̂| dτ

+ ρ
εLM(1+ εLM

ρ )

∫ t

0
|ρĵ0| dτ +

LM
ε

∫ t

0
|ζ̂1| dτ . |(ρb̂, d̂, (1+ εLM

ρ )ĵ0, ĵ1)(0)|,

whenever C1L
√
M ≤ ρ ≤ cLM.

The case ε2M ≤ 1/2 and L ≫ ε. Let ζ0 := j0 −
√
n b. We start from





∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρb̂ = LM
n ĵ1,

∂tζ̂0 +
L
ε ζ̂0 +

ρ√
n ε

ĵ1 −
√
n ρd̂ = 0,

∂tĵ1 +
LM
ε ĵ1 − ρ√

nε
ζ̂0 − ρ

ε b̂ = 0.

In order to show the exponential decay, we set

(4.55) U2
ρ := 2|̂b|2 + 2|d̂|2 + |ρb̂|2 − 2ρRe (̂bd̂) and J 2

ρ := |ζ̂0|2 + |̂j1|2.
We easily get for all K ≥ 0,

(4.56)
1

2

d

dt

(
U2
ρ +KJ 2

ρ

)
+ ρ2|(̂b, d̂)|2 +K

L
ε

(
|ζ̂0|2 +M|̂j1|2

)

= 2
LM
n

Re (ĵ1 d̂) + ρ

(
K

ε
− LM

n

)
Re (ĵ1 b̂) +K

√
nRe (ρd̂ ζ̂0).

It is thus natural to take K = ε
nLM to cancel out the second term of the r.h.s. For the first

and the last terms, we write that

K
√
nRe

(
ρd̂ ζ̂0

)
≤ 1

4ρ
2|d̂|2 + nK2|̂j0 −

√
n b̂|2,

2LM
n Re (ĵ1 d̂) =

2K
ε Re (ĵ1 d̂) ≤ 2

3ρ
2|d̂|2 + 3K2

2ε2ρ2
|̂j1|2.

Note that the last terms above may be absorbed by the l.h.s. of (4.56) if, say

nK ≤ L
2ε

and
2K

ε
≤ LMρ2.

Given the value of K, the first condition is equivalent to ε2M ≤ 1/2, whereas the second
one means that ρ2n ≥ 2. Under this latter condition, we thus end up with

(4.57)
d

dt

(
U2
ρ +

εLM
n

J 2
ρ

)
+

1

6
ρ2|(̂b, d̂)|2 + L2M

n

(
|ζ̂0|2 +

1

6
M|̂j1|2

)
≤ 0,
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which implies, according to (4.8), the following exponential decay estimate for some small
enough κ > 0

(4.58) U2
ρ (t) + εLMJ 2

ρ (t) ≤ e−κt
(
U2
ρ (0) +

εLM
n

J 2
ρ (0)

)
if ρ ≥

√
2/n.

To exhibit the parabolic decay for d, we introduce ζ̂1 := ĵ1 − (
√
nLM)−1ρĵ0, and get





∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρ
(
1 + 1

n

)
b̂ = LM

n ζ̂1 +
ρ

n3/2 ζ̂0,

∂tζ̂0 +
1
ε

(
L+ ρ2

nLM
)
ζ̂0 +

ρ√
n ε

ζ̂1 =
√
n ρd̂− ρ2√

n εLM b̂,

∂tζ̂1 +
(LM

ε − ρ2

nεLM
)
ζ̂1 =

ρ√
nLMε

(
L+ ρ2

nLM
)
ζ̂0 +

ρ3

nεL2M2 b̂.

We thus have for
√

2/n ≤ ρ ≤
√
n/2LM

∫ t

0
|ρb̂| dτ + ρ2

∫ t

0
|d̂| dτ . |(ρb̂, d̂)(0)| + LM

n

∫ t

0
|ζ̂1| dτ +

ρ

n

∫ t

0
|ζ̂0| dτ,

1

ε

(
L+

ρ2

nLM

)∫ t

0
|ζ̂0| dτ ≤ |ζ̂0(0)|+

ρ√
n ε

∫ t

0
|ζ̂1| dτ +

√
nρ

∫ t

0
|d̂| dτ + ρ√

nεLM

∫ t

0
|ρb̂| dτ,

LM
2ε

∫ t

0
|ζ̂1| dτ ≤ |ζ̂1(0)|+

ρ√
n εLM

(
L+

ρ2

nLM

)∫ t

0
|ζ̂0| dτ +

ρ2

nεL2M2

∫ t

0
|ρb̂| dτ.

Combining the inequalities for ζ̂0 and ζ̂1, we easily get if ρ ≤ cLM with c small enough

LM
∫ t

0
|ζ̂1| dτ . ε|ζ̂1(0)| +

ρ

LM

(
ε|ζ̂0(0)| + ρε

∫ t

0
|d̂| dτ +

ρ

LM

∫ t

0
|ρb̂| dτ

)
,

(
L+

ρ2

LM

)∫ t

0
|ζ̂0| dτ . ε|ζ̂0(0)| +

ρε

LM|ζ̂1(0)| + ρε

∫ t

0
|d̂| dτ +

ρ

LM

∫ t

0
|ρb̂| dτ.

Now, the exponential decay pointed out in (4.58) allows to bound the last terms above, and
we get

LM
∫ t

0
|ζ̂1| dτ . Uρ(0) +

√
εLMJρ(0) +

ε

LM

∫ t

0
|ρ2d̂| dτ,(4.59)

(
L+ ρ2

LM

)∫ t

0
|ζ̂0| dτ . ε|(ζ̂0, ζ̂1)(0)| +

ρ

LM
(
Uρ(0) +

√
εLMJρ(0)

)
+ ρε

∫ t

0
|d̂| dτ,(4.60)

whereas using U2
ρ allows to get directly

ρ2
∫ t

0
|d̂| dτ . |(ρb̂, d̂)(0)| + LM

∫ t

0
|̂j1| dτ.

Using the definition of ĵ1 and, again, Inequality (4.58), we may replace ĵ1 with ζ̂1 as follows

(4.61) ρ2
∫ t

0
|d̂| dτ . Uρ(0) +

√
εLMJρ(0) + LM

∫ t

0
|ζ̂1| dτ +

∫ t

0
|ρζ̂0| dτ.
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Then plugging (4.59) and (4.60) in (4.61) and observing that ε ≪ LM, we get

ρ2
∫ t

0
|d̂| dτ . Uρ(0) +

√
εLMJρ(0)

+
ρLM

L2M+ ρ2

(
ε|(ζ̂0, ζ̂1)(0)| +

ρ

LM
(
Uρ(0) +

√
εLMJρ(0)

)
+ ρε

∫ t

0
|d̂| dτ

)
·

Because we assumed that L ≫ ε, the last term may be absorbed by the l.h.s. Using in
addition that ε2M . 1, we end up with

ρ2
∫ t

0
|d̂| dτ . Uρ(0) +

√
εLMJρ(0).

Then resuming to (4.59), (4.60), we obtain

(4.62) ρ

∫ t

0
|ζ̂0| dτ + LM

∫ t

0
|ζ̂1| dτ . Uρ(0).

Obviously, this inequality implies that

(4.63) LM
∫ t

0
|̂j1| dτ . Uρ(0) +

√
εLMJρ(0) + ε|(ζ̂0, ζ̂1)(0)|.

Of course, we get the same inequality if replacing ζ0 and ζ1 with j0 and j1. So one can
conclude that for

√
2/n ≤ ρ ≤ cLM, we have (4.58) and

(4.64) ρ2
∫ t

0
|d̂| dτ + LM

∫ t

0
|̂j1| dτ + ρ

∫ t

0
|̂j0| dτ . |(ρb̂, d̂)(0)| +

√
εLM|(ĵ0, ĵ1)(0)|.

4.3. High frequencies. We eventually come to the proof of decay estimates for ρ ≥ cLM,
where c is some given positive constant. We shall use that fact that the systems satisfied by
(b, d) and by (j0, j1), respectively, tend to be uncoupled for ρ → +∞. As regards (b, d), the
classical approach for the barotropic Navier-Stokes equation, based on the study of

U2
ρ := 2|(̂b, d̂)|2 − 2ρRe (̂b d̂) + |ρb̂|2,

guarantees, if ρ ≥ c, that

(4.65) |(ρb̂, d̂)(t)| + ρ2
∫ t

0
|d̂| dτ +

∫ t

0
ρ|̂b| dτ . |(ρb̂, d̂)(0)| + LM

n

∫ t

0
|̂j1| dτ.

Next, from the system fulfilled by (ĵ0, ĵ1), we get

1

2

d

dt

(
|̂j0|2 + |̂j1|2

)
+

L
ε
|̂j0|2 +

LM
ε

|̂j1|2 =
√
n
L
ε
Re (̂b ĵ0),

d

dt
Re (ĵ0 ĵ1) +

L
ε
(1 +M)Re (ĵ0 ĵ1) +

ρ

ε
√
n
|̂j1|2 −

ρ

ε
√
n
|̂j0|2 =

√
n
L
ε
Re (̂b ĵ1).

Therefore, for any κ > 0

1

2

d

dt

(
|̂j0|2 + |̂j1|2 −

2κLM
ρ

Re (ĵ0 ĵ1)

)
+
(
1 +

κ√
n
M
)L
ε
|̂j0|2 +

LM
ε

(
1− κ√

n

)
|̂j1|2

=
κL2M
ρε

(1 +M)Re (ĵ0 ĵ1) +
√
n
L
ε
Re
(
b̂
(
ĵ0 −

κLM
ρ

ĵ1

))
·

For ρ ≥ cLM, it is clear that our choosing κ small enough implies that

• the first term of the r.h.s. may be absorbed by the second and third ones of the l.h.s.,
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• we have |̂j0|2 + |̂j1|2 − 2κLM
ρ Re (ĵ0 ĵ1) ≈ |̂j0|2 + |̂j1|2,

• we have
(
1 + κ√

n
M
)L
ε |̂j0|2 +

(
1− κ√

n

)LM
ε |̂j1|2 ≥ κ

2
LM√
nε

(|̂j0|2 + |̂j1|2).

Therefore, we end up with the following inequality

(4.66) ε|(ĵ0, ĵ1)(t)| + LM
∫ t

0
|(ĵ0, ĵ1)| dτ . ε|(ĵ0, ĵ1)(0)| + L

∫ t

0
|̂b| dτ.

Combining with (4.65), we conclude that if

(4.67) ρ ≥ cmax(1,LM) and ρ ≥ CL,

for a large enough constant C then

|(ρb̂, d̂)(t)|+ ρ2
∫ t

0
|d̂| dτ +

∫ t

0
ρ|̂b| dτ . |(ρb̂, d̂, εĵ0, εĵ1)(0)|,(4.68)

|(ĵ0, ĵ1)(t)|+
LM
ε

∫ t

0
|(ĵ0, ĵ1)| dτ .

L
ρε

|(ρb̂, d̂)(0)| + |(ĵ0, ĵ1)(0)|,(4.69)

whence

(4.70) |(ρb̂, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|d̂| dτ +

∫ t

0
ρ|̂b| dτ +

LM
ε

∫ t

0
|(ĵ0, ĵ1)| dτ . |(ρb̂, d̂, ĵ0, ĵ1)(0)|.

The only case where the condition ρ ≥ CL may be stronger than ρ ≥ cLM is when M
is bounded. From our study for small ρ ’s, we must assume that LM & ε−1, and thus cLM
is still much larger than

√
2/n. Therefore, one may take advantage of (4.58) to bound the

r.h.s. of (4.66), and combining with (4.65), we get for ρ ≈ L

(4.71) |(ρb̂, d̂,
√
εLĵ0,

√
εLĵ1)(t)|+ ρ2

∫ t

0
|d̂| dτ +

∫ t

0
ρ|̂b| dτ

+ L
∫ t

0
|(ĵ0, ĵ1)| dτ . |(ρb̂, d̂,

√
εLĵ0,

√
εLĵ1)(0)|.

5. The non-equilibrium diffusion regime

This section is devoted to the study of the so-called non-equilibrium diffusion asymptotics.
Assuming that for some κ > 1 and m > 0, we have

(5.1)
L
ε
→ κ

nν
and L2Ls →

m

ν2
,

we want to prove the convergence of the solutions of (1.6) to those of (2.5) or (2.6) if m < +∞
or m = +∞, respectively, when ε goes to 0.

The first subsection concerns the proof of global existence with ‘uniform’ estimates for the
radiative Navier-Stokes equations (1.6) in the asymptotic (5.1), in the small data case with
critical regularity. Next, still for small critical data, we establish the global existence for the
limit systems (2.5) and (2.6). In the last part of the present section, we combine the uniform
estimates with compactness arguments in order to justify the convergence of (1.6) to (2.5)
or (2.6).
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5.1. Global existence and uniform estimates for (1.6) with L ≈ ε and L2Ls & 1. In
order to get a global-in-time existence statement for (1.6) in the non-equilibrium diffusion
regime, we first put together the estimates that we obtained in the previous section, in
the case L ≈ ε and L2Ls & 1. Even though localizing the linearized equations by means
of Littlewood-Paley operators allows to get essentially optimal estimates for the linearized
equations of (1.6), it is not enough for our purpose, owing to the convection term ~u ·∇b that
may cause a loss of one derivative. The difficulty may be overcome by paralinearizing the
whole system, as explained below. After that, it is easy to prove global in time estimates
for the solutions to (1.6) just by combining the estimates for the paralinearized system, and
standard product laws in Besov spaces to handle the other nonlinear terms.

5.1.1. Linear estimates. Performing the change of variables (4.1) reduces the study to that
of the linear system (4.4).

Low frequencies estimates. Using (4.28), the comment that follows, (4.39) and the fact that

|(̂b, d̂, ĵ0, ĵ1)| ≈ |(b̂, d̂, ĵ0, ĵ1)|, we get for the solution (̂b, d̂, ĵ0, ĵ1) to (4.7),

(5.2) |(̂b, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|(̂b, d̂, ĵ0, ĵ1)| dτ +

∫ t

0
|̂j0| dτ +M

∫ t

0
|̂j1| dτ

≤ C|(̂b, d̂, ĵ0, ĵ1)(0)| for all 0 ≤ ρ ≤ C1,

with1 ĵ0 := ĵ0 −
√
n b̂−√

n ε
L̃ ρd̂ and ĵ1 := ĵ1 − ρ√

n L̃M ĵ0 +
ρb̂

L̃LsM
·

Middle frequencies estimates. If L̃2Ls ≈ 1 then using (4.54), and the definition of ζ̂1 versus

that of ĵ1, we get

(5.3) |(ρb̂, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|(d̂, ĵ0)| dτ + ρ

∫ t

0
|̂b| dτ +M

∫ t

0
|̂j1| dτ

≤ C|(ρb̂, d̂, ĵ0, ĵ1)(0)| for all C1 ≤ ρ ≤ cL̃M.

If L̃2Ls → +∞ then (4.47) and (4.48) ensure that

(5.4) |(ρb̂, d̂, ρĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|d̂| dτ + ρ

∫ t

0
|(̂b, ĵ0)| dτ +M

∫ t

0
|̂j1| dτ

≤ C|(ρb̂, d̂, ρĵ0, ĵ1)(0)| for all
√

1 + n−1 ≤ ρ ≤ εν
√
M,

and, according to (4.54)

(5.5) |(ρb̂, d̂, (1+ ε2νM
ρ )ĵ0, ĵ1)(t)|+

∫ t

0
|ρb̂| dτ + ρ2

∫ t

0
|d̂| dτ

+ (1+ ρ
ε2νM)

∫ t

0
|ρĵ0| dτ +M

∫ t

0
|̂j1| dτ . |(ρb̂, d̂, (1+ ε2νM

ρ )ĵ0, ĵ1)(0)|,

whenever C1εν
√
M ≤ ρ ≤ cενM.

1Note that the last term of j0 given by (4.22) is negligible for ρ . 1 and may thus be omitted.
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Hence

(5.6) |(ρb̂, d̂,max(1,min(ρ, ρ−1ε2νM))ĵ0, ĵ1)(t)| + ρ

∫ t

0
|(̂b,min(1, ρ2

ε2νM)ĵ0)| dτ

+ ρ2
∫ t

0
|d̂| dτ +M

∫ t

0
|̂j1| dτ ≤ C|(ρb̂, d̂,max(1,min(ρ, ρ−1ε2νM))ĵ0, ĵ1)(0)|.

High frequencies estimates. Using (4.70), we have

(5.7) |(ρb̂, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|d̂| dτ + ρ

∫ t

0
|̂b| dτ +M

∫ t

0
|(ĵ0, ĵ1)| dτ

≤ C|(ρb̂, d̂, ĵ0, ĵ1)(0)| for ρ ≥ cL̃M.

For notational simplicity, we shall slightly abusively change c and C1 to 1 in all the
following computations.

Optimal estimates in Besov spaces. If L̃2Ls ≈ 1 then localizing (4.4) with nonzero source

terms f and ~g according to Littlewood-Paley operator ∆̇k, using (4.5) and following the
computations leading to (5.2), (5.3) and (5.7) (combined with Fourier-Plancherel theorem)
we end up for all s ∈ R with2

(5.8) ‖(~u, j0,~j1)(t)‖Ḃs
2,1

+ ‖b(t)‖ℓ,1
Ḃs

2,1

+ ‖b(t)‖h,1
Ḃs+1

2,1

+

∫ t

0
‖~u‖Ḃs+2

2,1
dτ

+

∫ t

0
‖(b, j0,~j1)‖ℓ,1Ḃs+2

2,1

dτ +

∫ t

0
‖b‖h,1

Ḃs+1

2,1

dτ +

∫ t

0
‖j0‖ℓ,1Ḃs

2,1

dτ

+M
∫ t

0
‖~j1‖ℓ,L̃MḂs

2,1

dτ +

∫ t

0
‖j0‖m,1,L̃M

Ḃs+2

2,1

dτ +M
∫ t

0
‖(j0,~j1)‖h,L̃MḂs

2,1

dτ

. ‖(~u, j0,~j1)(0)‖Ḃs
2,1

+ ‖b(0)‖ℓ,1
Ḃs

2,1

+ ‖b(0)‖h,1
Ḃs+1

2,1

+

∫ t

0

(
‖f‖ℓ,1

Ḃs
2,1

+ ‖f‖h,1
Ḃs+1

2,1

+ ‖~g‖Ḃs
2,1

)
dτ,

with

(5.9) j0 := j0 −
√
n b−

√
n
ε

L̃
div ~u and ~j1 := ~j1 +

1
√
n L̃M

∇j0 −
1

L̃LsM
∇b.

According to our previous work in [7], the critical regularity framework corresponds to s =
n/2− 1. Therefore, the following quantities will play an important role

‖(b, ~u, j0,~j1)‖X := ‖b‖ℓ,1
Ḃ

n
2
−1

2,1

+ ‖b‖h,1
Ḃ

n
2
2,1

+ ‖(~u, j0,~j1)‖
Ḃ

n
2
−1

2,1

,

and

‖(b, ~u, j0,~j1)‖Y := sup
t≥0

‖(b, ~u, j0,~j1)(t)‖X +

∫

R+

(
‖b‖ℓ,1

Ḃ
n
2
+1

2,1

+ ‖b‖h,1
Ḃ

n
2
2,1

+ ‖~u‖
Ḃ

n
2
+1

2,1

)
dτ

+

∫

R+

(
M‖~j1‖ℓ,ενM

Ḃ
n
2
−1

2,1

+ ‖j0‖ℓ,1
Ḃ

n
2
−1

2,1

+ ‖j0‖m,1,ενM
Ḃ

n
2
+1

2,1

+M‖(j0,~j1)‖h,ενM
Ḃ

n
2
−1

2,1

)
dτ.

We denote by X and Y the corresponding functional spaces (where time continuity is im-
posed rather than just boundedness) and agree that Y (t) stands for the restriction of Y to
the interval [0, t].

2Further explanations on the method will be supplied to the reader in the next paragraph.
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In the case ε2Ls → +∞, we have to change slightly the definition of the norms ‖ · ‖X and
‖ · ‖Y as the middle frequencies obey (5.6). Consequently, we change ‖ · ‖X to ‖ · ‖X∞

with

‖(b, ~u, j0,~j1)‖X∞
:= ‖b‖ℓ,1

Ḃ
n
2
−1

2,1

+ ‖b‖h,1
Ḃ

n
2
2,1

+ ‖(~u,~j1)‖
Ḃ

n
2
−1

2,1

+‖j0‖ℓ,1
Ḃ

n
2
−1

2,1

+ ‖j0‖h,ενM
Ḃ

n
2
−1

2,1

,+
∑

1≤2k≤εM
2k

n
2 max(1, 2k,min(2−kε2νM))‖∆̇kj0‖L2

and ‖ · ‖Y to

‖(b, ~u, j0,~j1)‖Y∞
:= sup

t≥0
‖(b, ~u, j0,~j1)(t)‖X∞

+

∫

R+

(
‖b‖ℓ,1

Ḃ
n
2
+1

2,1

+ ‖b‖h,1
Ḃ

n
2
2,1

+ ‖~u‖
Ḃ

n
2
+1

2,1

)
dτ

+

∫

R+

(
M‖~j1‖ℓ,ενM

Ḃ
n
2
−1

2,1

+ ‖j0‖ℓ,1
Ḃ

n
2
−1

2,1

+M‖(j0,~j1)‖h,ενM
Ḃ

n
2
−1

2,1

)
dτ

+

∫

R+

∑

1≤2k≤εM
2k

n
2 min(1, 22kε−2ν−1M−1)‖∆̇kj0‖L2dτ.

To prove global estimates for the nonlinear system (1.6), the natural next step would be to
take advantage of (5.8) with s = n/2 − 1 and all the nonlinear terms in the r.h.s. Unfor-
tunately, this does not work for the convection term ~u · ∇b causes a loss of one derivative

(indeed, if b is in Ḃ
n
2

2,1 then ~u · ∇b cannot be smoother than Ḃ
n
2
−1

2,1 ). A nowadays standard

way to overcome the difficulty is to paralinearize (1.6), that is to add to (4.4) the principal
parts of the convection terms. This is the aim of the next paragraph.

5.1.2. The paralinearized system. Before introducing the paralinearized system associated to
(1.6), let us shortly recall the definition of the paraproduct, according to the pioneering paper
[2] by J.-M. Bony. The (homogeneous) paraproduct between two tempered distributions U
and V satisfying (3.1) is given by

TUV :=
∑

k

Ṡk−1U∆̇kV with Ṡk−1 := χ(2k−1D).

We also introduce

T ′
V U :=

∑

k

Ṡk+2V ∆̇kU,

and, observe that, at least formally

UV = TUV + T ′
V U.

To some extent, if U is smooth enough then TUV may be seen as the principal part of the
product UV. This motivates our considering the following system

(5.10)





∂tb+ T~v · ∇b+ div ~u = F,

∂t~u+ T~v · ∇~u− Ã~u+∇b− L̃M
n
~j1 = ~G,

∂tj0 +
1

ε
√
n
div~j1 +

L̃
ε (j0 −

√
n b) = 0,

∂t~j1 +
1

ε
√
n
∇j0 +

L̃M
ε
~j1 = ~0,

where A = µ∆+(λ+µ)∇div , M := 1+Ls, ~v and ~G are given time dependent vector-fields,
and F is a given real valued function.
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Proposition 5.1. For any smooth solution (b, ~u, j0,~j1) we have the following a priori esti-
mate if 0 < m < +∞

‖(b, ~u, j0,~j1)‖Y (t) ≤ C

(
‖(b, ~u, j0,~j1)(0)‖X +

∫ t

0
‖∇~v‖L∞‖(b, ~u, j0,~j1)‖X dτ

+

∫ t

0
‖(∇F, ~G)‖h,1

Ḃ
n
2
−1

2,1

dτ +

∫ t

0
‖(F − T~v · ∇b, ~G− T~v · ∇~u)‖ℓ,1

Ḃ
n
2
−1

2,1

dτ

)
·

A similar inequality holds if m = +∞, with X∞(t) and Y∞(t) instead of X(t) and Y (t).

Proof: Localizing System (5.10) by means of ∆̇k yields

(5.11)





∂t∆̇kb+ ∆̇k(T~v · ∇b) + div ∆̇k~u = ∆̇kF,

∂t∆̇k~u+ ∆̇k(T~v · ∇~u)− Ã∆̇k~u+∇∆̇kb− L̃M
n ∆̇k

~j1 = ∆̇k
~G,

∂t∆̇kj0 +
1

ε
√
n
div ∆̇k

~j1 +
L̃
ε (∆̇kj0 −

√
n∆̇kb) = 0,

∂t∆̇k
~j1 +

1
ε
√
n
∇∆̇kj0 +

L̃M
ε ∆̇k

~j1 = ~0.

The important point is that in order to obtain all the estimates corresponding to ρ ≥ C1,
one only has to resort to combinations between fluid unknowns on one side, and radiative
unknowns, on the other side. This will enable us to use exactly the same energy method for
(5.10) as for (4.4), in the middle and high frequency regimes, without introducing unwanted
parts of convection terms in the inequalities.
1. Low frequencies: 2k ≤ C1.

Including the para-convection terms in the source terms of (5.11) and repeating the compu-
tations leading to (5.2), we get after taking L2 norms and using Fourier-Plancherel theorem

(5.12) ‖∆̇k(b, ~u, j0,~j1)(t)‖L2 + 22k
∫ t

0
‖∆̇k(b, ~u)‖L2 dτ +

∫ t

0
‖∆̇kj0‖L2 dτ

+ νLs

∫ t

0
‖∆̇k

~j1‖L2 dτ . ‖∆̇k(b, ~u, j0,~j1)(0)‖L2

+

∫ t

0
‖∆̇k(F − T~u · ∇b)‖L2 dτ +

∫ t

0
‖∆̇k( ~G− T~u · ∇~u)‖L2 dτ.

2. Medium frequencies: C1 ≤ 2k ≤ cL̃Ls.
Keeping in mind the proof of (5.3), we see that it is suitable to introduce

~ζ1 := ~j1 +
1

√
n L̃M

∇j0.

Now, because we have
{

∂t∆̇kb+ div ∆̇k~u = ∆̇kF,

∂t∆̇k~u− Ã∆̇k~u+∇∆̇kb =
1

n3/2∇∆̇kj0 +
L̃M
n ∆̇k

~ζ1 + ∆̇k
~G,

we easily get by computing

(5.13)
1

2

d

dt

(
2‖(∆̇kb, ∆̇k~u)‖2L2 + ‖∆̇k∇b‖2L2 + 2(∆̇k∇b|∆̇k~u)L2

)
,
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and by using Lemma 4.1 in [7] to handle the para-convection terms, the following inequality
for all 2k ≥ C1

‖(∆̇k∇b, ∆̇k~u)(t)‖L2 + 22k
∫ t

0
‖∆̇k~u‖L2 dτ +

∫ t

0
‖∆̇k∇b‖L2 dτ . ‖(∆̇k∇b, ∆̇k~u)(0)‖L2

+

∫ t

0
‖(∆̇k∇F, ∆̇k

~G)‖L2 dτ +

∫ t

0
‖∇∆̇kj0‖L2 dτ + L̃M

∫ t

0
‖∇∆̇k

~j1‖L2 dτ

+
∑

k′∼k

∫ t

0
‖∇~v‖L∞‖(∆̇k′∇b, ∆̇k′~u)‖L2 dτ.

Then looking at the equations satisfied by ∆̇kj0 and ∆̇k
~ζ1 (in the spirit of (4.40)), we derive

inequalities similar to (4.50) and (4.51) for ‖∆̇kj0‖L2 and ‖∆̇k
~ζ1‖L2 , and thus following the

computations leading to (4.54), we end up in the case m < +∞ with

(5.14) ‖∆̇k(∇b, ~u,∇j0,~j1)(t)‖L2 + 22k
∫ t

0
‖(∆̇k~u, ∆̇kj0)‖L2 dτ +

∫ t

0
‖∆̇k∇b‖L2 dτ

+ νLs

∫ t

0
‖∆̇k

~ζ1‖L2 dτ . ‖∆̇k(∇b, ~u,∇j0,~j1)(0)‖L2 +

∫ t

0
‖∆̇k(∇F, ~G)‖L2 dτ

+
∑

k′∼k

∫ t

0
‖∇~v‖L∞‖∆̇k′(∇b, ~u)‖L2 dτ.

Comparing the definition of ~ζ1 and ~j1, we see that one may replace ~ζ1 with ~j1 above, if

C1 ≤ 2k ≤ cL̃Ls.
The obvious modifications to be done if m = +∞ are left to the reader.

3. High frequencies: 2k ≥ cL̃Ls.
Again, we compute (5.13) to bound the fluid unknowns. In addition, to handle radiative

unknowns, we compute for some small enough κ (see the proof of (4.66)) the following
quantity

1

2

d

dt

(
‖∆̇kj0‖2L2 + ‖∆̇k

~j1‖2L2 − κL̃M 2−2k(∆̇kj0|∆̇kdiv~j1)L2

)
.

Combining the computations leading to (5.7) with Fourier-Plancherel theorem and Lemma
4.1 in [7] eventually yields

‖∆̇k(∇b, ~u, j0,~j1)(t)‖L2+22k
∫ t

0
‖∆̇k~u‖L2 dτ+2k

∫ t

0
‖∆̇kb‖L2 dτ+νLs

∫ t

0
‖(∆̇kj0, ∆̇k

~j1)‖L2 dτ

. ‖∆̇k(∇b, ~u, j0,~j1)(0)‖L2 +

∫ t

0
‖∆̇k(∇F, ~G)‖L2 dτ +

∑

k′∼k

∫ t

0
‖∇~v‖L∞‖∆̇k′(∇b, ~u)‖L2 dτ.

Finally, multiplying (5.12), (5.14) and the above inequality by 2k(
n
2
−1) and summing up over

k completes the proof of the proposition. �

5.1.3. A global existence result. According to the computations of the previous paragraph and
to the change of variables (4.1), it is suitable to introduce the following norms for getting
global solutions with uniform estimates in the case3 m < +∞

‖(b, ~u, j0,~j1)‖Xν
ε
:= ‖b‖ℓ,ν−1

Ḃ
n
2
−1

2,1

+ ν‖b‖h,ν−1

Ḃ
n
2
2,1

+ ‖(~u, j0,~j1)‖
Ḃ

n
2
−1

2,1

,

3Writing out the corresponding definition if m = +∞ is left to the reader.
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and

‖(b, ~u, j0,~j1)‖Y ν
ε
:= sup

t≥0
‖(b, ~u, j0,~j1)(t)‖Xν +

∫

R+

(
ν‖b‖ℓ,ν−1

Ḃ
n
2
+1

2,1

+ ‖b‖h,ν−1

Ḃ
n
2
2,1

+ ν‖~u‖
Ḃ

n
2
+1

2,1

)
dτ

+

∫

R+

(
ν−1M‖~j1‖ℓ,εM

Ḃ
n
2
−1

2,1

+ ν−1‖j0‖ℓ,ν
−1

Ḃ
n
2
−1

2,1

+ ν‖j0‖m,ν−1,εM
Ḃ

n
2
+1

2,1

+ ν−1M‖(j0,~j1)‖h,εM
Ḃ

n
2
−1

2,1

)
dτ,

with j0 := j0 − b− ε
Ldiv ~u and ~j1 := j1 +

1
LM∇j0 − 1

LLsM∇b.

Of course, if (b′, ~u′, j′0,~j
′
1) and (b, ~u, j0,~j1) are interrelated through (4.1) and νL is used

for (b′, ~u′, j′0,~j
′
1) instead of L, then we have

‖(b′, ~u′, j′0,~j′1)‖X1
ε
= ν−1‖(b, ~u, j0,~j1)‖Xν

ε
and ‖(b′, ~u′, j′0,~j′1)‖Y 1

ε
= ν−1‖(b, ~u, j0,~j1)‖Y ν

ε
.

Theorem 5.1. Assume that L ≈ 1, that lim inf ε−1nνL > 1 and that L2Ls ≈ 1. There
exists a positive constant η depending only on µ/ν, n and on the pressure law such that if

ε is small enough and the data (bε0, ~u
ε
0, j

ε
0,0,~j

ε
1,0) satisfy

(5.15) ‖(bε0, ~uε0, jε0,0,~jε1,0)‖Xν
ε
≤ ην,

then System (1.6) admits a unique global solution (bε, ~uε, jε0 ,~j
ε
1) in Y ν

ε . In addition, we have

(5.16) ‖(bε, ~uε, jε0,~jε1)‖Y ν
ε
≤ C‖(bε0, ~uε0, jε0,0,~jε1,0)‖Xν

ε
.

A similar result holds true if L2Ls → +∞.

Proof: Performing the change of variables proposed in (4.1) reduces the proof to the case

ν = 1 (changing L into L̃ := νL). Hence we consider a smooth enough solution to (4.2),
and show that one may close the estimates globally4 under Assumption (5.15).

Let us set U0 := ‖(bε0, ~uε0, jε0,0,~jε1,0)‖X1
ε
and U(t) := ‖(bε, ~uε, jε0 ,~jε1)‖Y 1

ε (t). In what follows,
we drop exponents ε for notational simplicity. Finally, to shorten the presentation, we just
treat the case where L2Ls ≈ 1.

Now applying Proposition 5.1 with ~v = ~u, F := −T ′
∇b · ~u− k1(b)div ~u and

~G := −T ′
∇~u · ~u+ k2(b)Ã~u− k3(b)∇b+

L̃M
n

k4(b)~j1,

yields for all t ≥ 0

(5.17) U(t) ≤ C

(
U0 +

∫ t

0
‖∇~u‖L∞‖(b, ~u, j0,~j1)‖X1

ε
dτ

+

∫ t

0

(
‖F‖

Ḃ
n
2
2,1

+ ‖F − T~u · ∇b‖
Ḃ

n
2
−1

2,1

+ ‖~G‖
Ḃ

n
2
−1

2,1

+ ‖T~u · ∇~u‖
Ḃ

n
2
−1

2,1

)
dτ

)
·

Using standard continuity results for the paraproduct and remainder, and composition esti-
mates leads to

‖T ′
∇b · ~u‖Ḃ n

2
2,1

≤ C‖∇b‖
Ḃ

n
2
−1

2,1

‖~u‖
Ḃ

n
2
+1

2,1

,

‖k1(b)div ~u‖
Ḃ

n
2
2,1

≤ C‖b‖
Ḃ

n
2
2,1

‖div ~u‖
Ḃ

n
2
2,1

.

4Existence follows from spectral truncation as in e.g. [1], Chap. 10, and is thus omitted. As for uniqueness,
we refer to [7].
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Hence we have

(5.18)

∫ t

0
‖F‖

Ḃ
n
2
2,1

dτ ≤ CU2(t).

We also have
‖T~u · ∇~u‖

Ḃ
n
2
−1

2,1

≤ C‖~u‖
Ḃ

n
2
−1

2,1

‖∇~u‖
Ḃ

n
2
2,1

,

‖T ′
∇~u · ~u‖Ḃ n

2
2,1

≤ C‖∇~u‖
Ḃ

n
2
2,1

‖~u‖
Ḃ

n
2
−1

2,1

,

‖k2(b)Ã~u‖
Ḃ

n
2
−1

2,1

≤ C‖b‖
Ḃ

n
2
2,1

‖∇2~u‖
Ḃ

n
2
−1

2,1

,

‖k3(b)∇b‖
Ḃ

n
2
−1

2,1

≤ C‖b‖
Ḃ

n
2
2,1

‖∇b‖
Ḃ

n
2
−1

2,1

.

Bounding L̃Mk4(b)~j1 is slightly more involved as it is not true that the low frequencies of

~j1 are bounded in L1(R+; Ḃ
n
2
−1

2,1 ). However, one may write that

L̃M~j1 = L̃M~jh,L̃M1 + L̃M~jℓ,L̃M1 + L−1
s ∇bℓ,L̃M − n−1/2∇jℓ,L̃M0 .

Therefore

L̃M‖k4(b)~j1‖
L1
t (Ḃ

n
2
−1

2,1 )
. L̃M

(
‖~j1‖h,L̃M

L1
t (Ḃ

n
2
−1

2,1 )
+ ‖~j1‖ℓ,L̃M

L1
t (Ḃ

n
2
−1

2,1 )

)
‖b‖

L∞
t (Ḃ

n
2
2,1)

+‖b‖
L2
t (Ḃ

n
2
2,1)

(
L−1
s ‖∇b‖ℓ,L̃M

L2
t (Ḃ

n
2
−1

2,1 )
+ ‖∇j0‖ℓ,L̃M

L2
t (Ḃ

n
2
−1

2,1 )

)
.

Hence

(5.19)

∫ t

0

(
‖T~u · ∇~u‖

Ḃ
n
2
−1

2,1

+ ‖~G‖
Ḃ

n
2
−1

2,1

)
dτ ≤ CU2(t).

Finally

‖~u · ∇b‖
Ḃ

n
2
−1

2,1

≤C‖~u‖
Ḃ

n
2
2,1

‖∇b‖
Ḃ

n
2
−1

2,1

,

‖k1(b)div ~u‖
Ḃ

n
2
−1

2,1

≤C‖b‖
Ḃ

n
2
2,1

‖div ~u‖
Ḃ

n
2
−1

2,1

.

Therefore, by Cauchy-Schwarz inequality

(5.20)

∫ t

0
‖F − T~u · ∇b‖

Ḃ
n
2
−1

2,1

dτ ≤ CU2(t).

Inserting (5.18), (5.19), (5.20) in (5.17) and remembering that Ḃ
n
2

2,1 →֒ L∞ (to ensure that,

say, |b| ≤ 1/2 if ‖b‖
Ḃ

n
2
2,1

is small enough), we end up with

U(t) ≤ C(U0 + U2(t)) for all t ≥ 0.

By a standard bootstrap argument, we easily deduce that

U(t) ≤ 2CU0 for all t ≥ 0,

provided the data have been chosen so that 4C2U0 ≤ 1. �
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5.2. Study of the limit system. In this paragraph, we prove the existence and uniqueness
of strong (small) solutions with critical regularity for Systems (2.5) and (2.6). We shall give
a common proof that works for both systems.

Before giving the global existence statement, let us introduce the solution space

• If m ∈ (0,+∞) (that is for System (2.5)) then Initial data will be taken in the space
X ν which is the set of triplets (b, ~u, j0) satisfying

‖(b, ~u, j0)‖X ν := ‖b‖ℓ,ν−1

Ḃ
n
2
−1

2,1

+ ν‖b‖h,ν−1

Ḃ
n
2
2,1

+ ‖~u‖
Ḃ

n
2
−1

2,1

+ ν‖j0‖ℓ,ν
−1

Ḃ
n
2
2,1

+ ν−1‖j0‖h,ν
−1

Ḃ
n
2
−2

2,1

< ∞,

and the solution space Yν will be the set of triplets (b, ~u, j0) in Cb(R+;X ν) satisfying

‖(b, ~u, j0)‖Yν := sup
t≥0

‖(b, ~u, j0)(t)‖X ν +

∫

R+

(
‖j0− b‖

Ḃ
n
2
2,1

+ν‖b‖ℓ,ν−1

Ḃ
n
2
+1

2,1

+ν‖~u‖
Ḃ

n
2
+1

2,1

+‖j0‖h,ν
−1

B
n
2
2,1

)
dτ.

• If m = +∞ (that is for System (2.6)), Initial data will be taken in the space X ν
∞

which is the set of triplets (b, ~u, j0) satisfying

‖(b, ~u, j0)‖X ν
∞

:= ‖b‖ℓ,ν−1

Ḃ
n
2
−1

2,1

+ ν‖b‖h,ν−1

Ḃ
n
2
2,1

+ ‖~u‖
Ḃ

n
2
−1

2,1

+ ν‖j0‖
Ḃ

n
2
2,1

< ∞,

and the solution space Yν
∞ will be the set of triplets (b, ~u, j0) in Cb(R+;X ν

∞) satisfying

‖(b, ~u, j0)‖Yν
∞

:= sup
t≥0

‖(b, ~u, j0)(t)‖X ν
∞

+

∫

R+

(
‖j0 − b‖

Ḃ
n
2
2,1

+ ν‖b‖ℓ,ν−1

Ḃ
n
2
+1

2,1

+ ν‖~u‖
Ḃ

n
2
+1

2,1

+ ‖j0‖h,ν
−1

B
n
2
2,1

)
dτ < ∞.

Theorem 5.2. There exist two positive constants c and C so that if

‖(b0, ~u0, j0,0)‖X ν ≤ cν (case m < +∞),(5.21)

or ‖(b0, ~u0, j0,0)‖X ν
∞

≤ cν (case m = +∞),(5.22)

then System (2.5) (resp. (2.6)) admits a unique solution in the space Yν (resp. Yν
∞ ) satis-

fying in addition,

‖(b, ~u, j0)‖Yν ≤ C‖(b0, ~u0, j0,0)‖X ν if m < +∞,(5.23)

‖(b, ~u, j0)‖Yν
∞

≤ C‖(b0, ~u0, j0,0)‖X ν
∞

if m = +∞·(5.24)

Proof: Set κ̃ := κ/n and m̃ := mn. As usual, it is enough to treat the case ν = 1 as
performing the change of unknowns

(b, u, j0)(t, x) = (̃b, ũ, j̃0)(ν
−1t, ν−1x),

gives Systems (2.5) or (2.6) for (̃b, ũ, j̃0) with ν = 1 and Ã := A/ν and, obviously

‖(b, u, j0)(t)‖X ν = ν‖(̃b, ũ, j̃0)(ν−1t)‖X 1 and ‖(b, u, j0)‖Yν = ν‖(̃b, ũ, j̃0)‖Y1 .

Let us start with the study of the linearized equations with no source term, namely

(5.25)





∂tb+ div ~u = 0,

∂t~u− Ã~u+∇b+ n−1∇j0 = ~0,

∂tj0 + κ̃(j0 − m̃−1∆j0 − b) = 0.

The divergence-free part P~u of the velocity satisfies

∂tP~u− µ∆P~u = ~0,
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while the coupling between b, d := Λ−1div ~u and j0 is described by

(5.26)





∂tb+ Λd = 0,

∂td−∆d− Λb− n−1Λj0 = 0,

∂tj0 + κ̃(j0 − m̃−1∆j0 − b) = 0.

Note that the stability of a similar system has already been established in the previous section
for κ > 1 (or, equivalently, κ̃ > 1/n).

Linear estimates for low frequencies. We introduce ζ0 := j0 − b− κ̃−1Λd and notice that




∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2
(
1− 1

κ̃n

)
d̂−

(
1 + 1

n

)
ρb̂ = 1

nρζ̂0,

∂tζ̂0 +
(
κ̃+ ( κ̃

m̃ + 1
κ̃n)ρ

2
)
ζ̂0 = −

((
1 + 1

n

)
1
κ̃ + κ̃

m̃

)
ρ2b̂+

((
1− 1

κ̃n

)
1
κ̃ − 1

m̃

)
ρ3d̂.

On one hand, because κ̃n > 1, the method described in the appendix (see in particular (B.7))
allows to write that, omitting the dependence with respect to κ̃

|(̂b, d̂)(t)| + ρ2
∫ t

0
|(̂b, d̂)| dτ . |(̂b, d̂)(0)| + ρ

∫ t

0
|ζ̂0| dτ.

On the other hand, the last equation directly gives

|ζ̂0(t)|+
(
κ̃+ (

κ̃

m̃
+

1

κ̃n
)ρ2
)∫ t

0
|ζ̂0| dτ ≤ |ζ̂0(0)|+ C

(
1 +

1

m

)
ρ2
∫ t

0
|(̂b, ρd̂)| dτ.

Hence plugging the second inequality in the first one

|(̂b, d̂)(t)|+ρ2
∫ t

0
|(̂b, d̂)| dτ . |(̂b, d̂)(0)|+ ρ

1+(1+m−1)ρ2

(
|ζ̂0(0)|+(1+m−1)ρ2

∫ t

0
|(̂b, ρd̂)| dτ

)
·

It is clear that the last term may be absorbed by the integral of the l.h.s. if ρ ≪ m
1+m · Hence

we eventually get for some small enough ρℓ > 0

(5.27) |(̂b, d̂, ρζ̂0)(t)|+ ρ2
∫ t

0
|(̂b, d̂)| dτ +

∫ t

0
|ρζ̂0| dτ . |(̂b, d̂, ρζ̂0)(0)| if ρ ≤

( m

1 +m

)
ρℓ.

Linear estimates for high frequencies. We set δ := d− Λ−1b and notice that




∂tb̂+ b̂ = −ρδ̂,

∂tδ̂ + (ρ2 − 1)δ̂ = ρ−1b̂+ n−1ρĵ0,

∂tĵ0 + κ̃
(
1 + ρ2

m̃

)
ĵ0 = κ̃b̂.

Therefore

|δ̂(t)|+ (ρ2 − 1)

∫ t

0
|δ̂| dτ ≤ |δ̂(0)|+ ρ−1

∫ t

0
|̂b| dτ +

1

n

∫ t

0
ρ|̂j0| dτ.

At the same time

|̂b(t)|+
∫ t

0
|̂b| dτ ≤ |̂b(0)|+ ρ

∫ t

0
|δ̂| dτ,

|̂j0(t)|+ κ̃
(
1 +

ρ2

m̃

) ∫ t

0
|̂j0| dτ ≤ |̂j0(0)|+ κ̃

∫ t

0
|̂b| dτ.
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Hence

|δ̂(t)|+ (ρ2 − 1)

∫ t

0
|δ̂| dτ ≤ |δ̂(0)| +

(1
ρ
+

ρ

n

)
|̂b(0)|

+
( n−1κ̃−1

1+m̃−1ρ2

)
ρ|̂j0(0)| +

(
1 +

ρ2

n(1 + m̃−1ρ2)

)∫ t

0
|δ̂| dτ.

Therefore there exists a constant ρh depending only on m and n (with n ≥ 2 if m = +∞)
such that for ρ ≥ ρh, we have

(5.28) |(ρb̂, δ̂)(t)| +min(ρ,mρ−1)|̂j0(t)|+ ρ

∫ t

0
|(̂b, ĵ0)| dτ + ρ2

∫ t

0
|δ̂| dτ . |(ρb̂, δ̂, ρĵ0)(0)|.

Of course, one may replace δ with d in (5.28).

Linear estimates for medium frequencies. The stability argument used just below (4.37)
allows to write that there exist two constants c and C depending continuously on 1/m, such
that if ρ ∈ [ m

m+1ρℓ, ρh] then

(5.29) |(̂b, d̂, ĵ0)(t)| ≤ Ce−ct|(̂b, d̂, ĵ0)(0)|.

Estimates for the paralinearized system. The previous steps allow us to get handy estimates
for the following paralinearized version of System (2.6)

(5.30)





∂tb+ T~v · ∇b+ div ~u = F,

∂t~u+ T~v · ∇~u− Ã~u+∇b+ n−1∇j0 = ~G,

∂tj0 + κ̃(j0 − m̃−1∆j0 − b) = 0.

More precisely, following the steps leading to (5.27), (5.28) and (5.29), introducing ζ0 :=
j0 − b− κ̃−1div ~u, and arguing as in Subsection 5.1.2 we end up with5

(5.31) ‖j0(t)‖ℓ,1
Ḃ

n
2
2,1

+ ‖(b, ~u)(t)‖ℓ,1
Ḃ

n
2
−1

2,1

+

∫ t

0

(
‖j0 − b‖ℓ,1

Ḃ
n
2
2,1

+ ‖(b, ~u)‖ℓ,1
Ḃ

n
2
+1

2,1

)
dτ

. ‖j0(0)‖ℓ,1
Ḃ

n
2
2,1

+ ‖(b, ~u)(0)‖ℓ,1
Ḃ

n
2
−1

2,1

+

∫ t

0

(
‖F − T~v · ∇b‖ℓ,1

Ḃ
n
2
−1

2,1

+ ‖~G− T~v · ∇~u‖ℓ,1
Ḃ

n
2
−1

2,1

)
dτ.

For high frequencies, we get, in the case m = +∞

(5.32) ‖(b, j0)(t)‖h,1
Ḃ

n
2
2,1

+ ‖~u(t)‖h,1
Ḃ

n
2
−1

2,1

+

∫ t

0

(
‖(b, j0)‖h,1

Ḃ
n
2
2,1

+ ‖~u‖h,1
Ḃ

n
2
+1

2,1

)
dτ

. ‖(b, j0)(0)‖h,1
Ḃ

n
2
2,1

+ ‖~u(0)‖h,1
Ḃ

n
2
−1

2,1

+

∫ t

0

(
‖F‖h,1

Ḃ
n
2
2,1

+ ‖~G‖h,1
Ḃ

n
2
−1

2,1

)
dτ

+

∫ t

0
‖∇~v‖L∞

(
‖(b, j0)‖

Ḃ
n
2
2,1

+ ‖~u‖
Ḃ

n
2
−1

2,1

)
dτ,

5Here we do not track the dependency with respect to m.
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and if 0 < m < +∞

(5.33) ‖b(t)‖h,1
Ḃ

n
2
2,1

+ ‖j0(t)‖h,1
Ḃ

n
2
−2

2,1

+ ‖~u(t)‖h,1
Ḃ

n
2
−1

2,1

+

∫ t

0

(
‖(b, j0)‖h,1

Ḃ
n
2
2,1

+ ‖~u‖h,1
Ḃ

n
2
+1

2,1

)
dτ

. ‖b(0)‖h,1
Ḃ

n
2
2,1

+ ‖j0(0)‖h,1
Ḃ

n
2
−2

2,1

+ ‖~u(0)‖h,1
Ḃ

n
2
−1

2,1

+

∫ t

0

(
‖F‖h,1

Ḃ
n
2
2,1

+ ‖~G‖h,1
Ḃ

n
2
−1

2,1

)
dτ

+

∫ t

0
‖∇~v‖L∞

(
‖b‖

Ḃ
n
2
2,1

+ ‖j0‖h
Ḃ

n
2
−2

2,1

+ ‖~u‖
Ḃ

n
2
−1

2,1

)
dτ.

Proof of existence. We only establish global-in-time a priori bounds in the space Y1 or Y1
∞

for the solutions to (2.5) or (2.6) with data satisfying (5.21) or (5.22). Our proof is based on
(5.31), (5.32) and (5.33) with ~v = ~u

F = −T ′
∇b · ~v − k1(b)div ~u and ~G = −T ′

∇~u · ~u+ k2(b)Ã~u− k3(b)∇b− n−1k4(b)∇j0.

Bounding ‖F − T~v · ∇b‖ℓ,1
Ḃ

n
2
−1

2,1

and ‖F‖h,1
Ḃ

n
2
2,1

relies on (5.18) and (5.20). As regards ~G, the

computations that we did in the proof of Theorem 5.1 ensure that the first three terms may
be bounded as in (5.19). To handle the last term, k4(b)∇j0, in the case6 m < +∞ we use
the decomposition

k4(b)∇j0 = k4(b)∇b+ k4(b)∇(j0 − b).

The first term may be bounded quadratically exactly as k3(b)∇b. As for the last term, we
may write

‖k4(b)∇(j0 − b)‖
L1
t (Ḃ

n
2
2,1)

. ‖b‖
L∞
t (Ḃ

n
2
2,1)

‖∇(j0 − b)‖
L1
t (Ḃ

n
2
−1

2,1 )
,

hence it is also bounded by C‖(b, ~u, j0)‖2Y1(t).

This enables to conclude that we do have for all t ∈ R+

‖(b, ~u, j0)‖Y1(t) ≤ C
(
‖(b, ~u, j0)(0)‖X 1 + ‖(b, ~u, j0)‖2Y1(t)

)
.

This obviously yields (5.24) if (5.22) is fulfilled.

Proof of uniqueness. It works the same as for the standard barotropic Navier-Stokes equa-
tions: we look at the system satisfied by the difference (δb, δ~u, δj0) between two solutions
(b1, ~u1, j10) and (b2, ~u2, j20) of (2.5), namely (denoting Ki = 1 + ki for i = 1, 2, 3, 4)




∂tδb+ ~u2 · ∇δb = −δ~u · ∇b1 + (K1(b
1)−K1(b

2))div ~u2 −K1(b
1)div δ~u,

∂tδ~u+ ~u2 ·∇δ~u+ δ~u·∇~u1 − (K2(b
2)−K2(b

1))A~u2 −K2(b
1)Aδ~u+ (K3(b

2)−K3(b
1))∇b2

+K3(b
1)∇δb+ n−1(K4(b

2)−K4(b
1))∇j10 + n−1K4(b

2)∇δj0 = ~0,

∂tδj0 + κ̃
(
δj0 − δb− 1

m̃∆δj0
)
= 0.

Now, exactly as for the barotropic Navier-Stokes equations, it is possible to bound δb, δ~u
and δj0 just resorting to basic estimates for the transport and heat equations. However,
the hyperbolic nature of the first equation forces us to estimate (δb, δ~u, δj0) with one less
derivative, namely in

L∞(0, T ; Ḃ
n
2
−1

2,1 )×
(
L∞(0, T ; Ḃ

n
2
−2

2,1 ) ∩ L1(0, T ; Ḃ
n
2

2,1)
)n × L1(0, T ; Ḃ

n
2
−1

2,1 ).

In dimension n = 3 combining estimates for the transport and the heat equation allows to
get uniqueness on a small time interval, then on the whole R+ by induction. In dimension

6The case m = +∞ does not require that decomposition.
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n = 2, this is slightly more involved as some product laws do not work correctly if estimating
(δb, δ~u, δj0) in the above space (some regularity exponents become too negative). Nevertheless
this may be overcome by combining logarithmic interpolation and Osgood lemma (see e.g.
[6] for more details). This completes the proof of the theorem. �

Remark 5.1. If 0 < m < +∞ then one may alternately assume that j0 is in Ḃ
n
2

2,1. Taking
advantage of the parabolic smoothing given by the equation for j0, it is not difficult to get a
solution (b, ~u, j0) with

m̃

∫

R+

‖j0‖
Ḃ

n
2
+2

2,1

≤ C
(
‖b0‖

Ḃ
n
2
−1

2,1

+ ν‖b0‖
Ḃ

n
2
2,1

+ ‖~u0‖
Ḃ

n
2
−1

2,1

+ ‖j0‖
Ḃ

n
2
2,1

)
·

5.3. Weak convergence. Here we justify the weak convergence of (1.6) to (2.5) or (2.6)
under the assumption that lim inf ε2Ls > 0 and that L tends to κε

nν for some κ > 1.

Theorem 5.3. Let the family of data (bε0, ~u
ε
0, j

ε
0,0,~j

ε
1,0)0<ε<1 satisfy Condition (5.15). As-

sume in addition that

(5.34) L2Lsν
2 → m ∈ (0,+∞] and

nνL
ε

→ κ ∈ (1,+∞).

Then the global solution (bε, ~uε, jε0 ,~j
ε
1) given by Theorem 5.1 satisfies

~jε1 → ~0 in L1(R+; Ḃ
n
2
−1

2,1 + Ḃ
n
2

2,1),

and, if (bε0, ~u
ε
0, j

ε
0,0) ⇀ (b0, ~u0, j0,0) then (bε, ~uε, jε0) converges weakly to the unique solution

(b, ~u, j0) of (2.5) supplemented with initial data (b0, ~u0, j0,0).

Proof: From (5.16) we gather that

(~jε1)
ℓ,LM = O(M−1) and (~jε1)

h,LM = O(M−1) in L1(R+; Ḃ
n
2
−1

2,1 ).

Therefore, taking advantage of the boundedness of the low frequencies of ∇bε and ∇jε0 in

L1(R+; Ḃ
n
2

2,1), and of the fact that

~jε1 =~jε1 −
1

LM∇jε0 +
1

LLsM
∇bε,

we get

(5.35) ~jε1 = O(ε) in L1(R+; Ḃ
n
2
−1

2,1 + Ḃ
n
2

2,1).

Next, we observe that (5.16) implies that (bε) and (~uε) are bounded in L∞(R+; Ḃ
n
2
−1

2,1 ∩
Ḃ

n
2

2,1) ∩ L1(R+; Ḃ
n
2
+1

2,1 + Ḃ
n
2

2,1) and L∞(R+; Ḃ
n
2
−1

2,1 ) ∩ L1(R+; Ḃ
n
2
+1

2,1 ), respectively. Note that

this implies that ~uε is bounded in L2(R+; Ḃ
n
2

2,1). Because

∂tb
ε = −~uε · ∇bε − k1(b

ε)div ~uε,

and the product maps Ḃ
n
2
−1

2,1 × Ḃ
n
2

2,1 in Ḃ
n
2
−1

2,1 , we thus get in addition that ∂tb
ε is bounded in

L2(R+; Ḃ
n
2
−1

2,1 ), and thus (bε) is bounded in C 1

2 (R+; Ḃ
n
2
−1

2,1 ). Interpolating with the bound in

Cb(R+; Ḃ
n
2

2,1), we thus have (bε) bounded in C α
2 (R+; Ḃ

n
2
−α

2,1 ) for all α ∈ [0, 1]. Then combining
locally compact Besov embeddings and Ascoli theorem allows to conclude that there exists b
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in L∞(R+; Ḃ
n
2
−1

2,1 ∩ Ḃ
n
2

2,1) ∩L1(R+; Ḃ
n
2
+1

2,1 + Ḃ
n
2

2,1) and a sequence (εk)k∈N going to 0 so that,

for all φ ∈ S and all α ∈ (0, 1]

(5.36) φ bεk −→ φ b in L∞
loc(R+; Ḃ

n
2
−α

2,1 ).

From (5.16), we readily get for some sequence (εk)k∈N tending to 0

(5.37) ~uεk ⇀ ~u in L∞(R+; Ḃ
n
2
−1

2,1 ) ∩ L1(R+; Ḃ
n
2
+1

2,1 ) weak *,

which, combined with (5.36) is clearly enough to pass to the limit in the mass equation.

Next, we see that (5.16) implies that (jε0) is bounded in L∞(R+; Ḃ
n
2
−1

2,1 ). Hence there exists

j0 ∈ L∞(R+; Ḃ
n
2
−1

2,1 ) and a sequence (εk)k∈N going to 0 so that

jεk0 ⇀ j0 in L∞(R+; Ḃ
n
2
−1

2,1 ) weak *.

Because

(5.38)
1

ε
div~jε1 = −L

ε

(
1

L2(1 + Ls)

)
∆jε0 −

1

L(1 + Ls)
∂tdiv~j

ε
1 ,

and (5.35) implies that ∂t~j
ε
1 → 0 in the sense of distributions, we deduce that

1

ε
div~jε1 → − κν

nm
∆j0 in S ′.

Note that the right-hand side is 0 if m = +∞. Therefore (b, j0) satisfies the third line of
(2.5) (case m < +∞) or (2.6) (case m = +∞).

Let us finally pass to the limit in the second equation of (1.6). The main difficulty is
that, owing to the radiative term which is only bounded in a L1 -in-time type space (namely

L1(R+; Ḃ
n
2
−1

2,1 ) or so), one cannot take advantage of some suitable bound of ∂t~u
ε so as to

glean some equicontinuity and then resort to Ascoli theorem. To overcome this, we use the
fact that, owing to (5.38)

∂t

(
~uε +

ε

n
(1 + k4(b

ε))~jε1

)
= −~uε · ∇~uε + (1 + k2(b

ε))A~uε

−(1 + k3(b
ε))∇bε − 1

n
(1 + k4(b

ε))∇jε0 +
ε

n
k′4(b

ε)∂tb
ε~jε1 .

Now, because (~uε) is bounded in the space L∞(R+; Ḃ
n
2
−1

2,1 ) ∩ L2(R+; Ḃ
n
2

2,1), (jε0) is bounded

in L∞(R+; Ḃ
n
2
−1

2,1 ) and (bε) is bounded in (L2 ∩ L∞)(R+; Ḃ
n
2

2,1), product laws in Besov

spaces ensure that the first four terms of the r.h.s. are bounded in L2(R+; Ḃ
n
2
−2

2,1 ) (only

in L2(R+; Ḃ
n
2
−2

2,∞ ) if n = 2). The same property holds true for the last term for (∂tb
ε) is

bounded in L2(R+; Ḃ
n
2
−1

2,1 ) and (~jε1) is bounded in L∞(R+; Ḃ
n
2
−1

2,1 ). Using locally compact
Besov embedding and Ascoli theorem, one can now conclude that there exists some ~v in

L∞(R+; Ḃ
n
2
−1

2,1 ) so that for all φ in S and α ∈ (0, 1), we have, up to extraction

φ
(
~uε +

ε

n
(1 + k4(b

ε))~jε1

)
−→ φ~v in L∞

loc(R+; Ḃ
n
2
−1−α

2,1 ).

Of course, combining with (5.35), we discover that ~v = ~u. Hence we also have

φ~uε −→ φ~v in L∞
loc(R+Ḃ

n
2
−1−α

2,1 ) for all φ ∈ S.
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It is now easy to conclude that the second line of (2.5) is fulfilled by (b, ~u, j0).

Finally, that the whole family (bε, ~uε, jε0) (and not only subsequences) converges to (b, ~u, j0)
stems from the fact that the solution to (2.5) or (2.6) is unique. �

Remark 5.2. It is also possible to justify the strong convergence of the solutions of (1.6) to
(2.5) or (2.6) using (5.35) and performing the difference between (bε, ~uε, jε0) and the solution
(b, ~u, j0) to the limit system. Again, taking advantage of the decay properties of jε1 is crucial.
Note however that, exactly as in the proof of uniqueness, owing to the hyperbolic nature of the
density equation, one cannot prove the strong convergence in the solution space. There is a
loss of one derivative that may be partially compensated by combining with uniform estimates.
As we do not think this approach to bring much compared to weak compactness, we leave the
details to the reader.

6. The equilibrium diffusion regime

This section is devoted to the mathematical justification of the equilibrium diffusion regime
given by (2.10). To avoid useless technicality, we focus on the case where

(6.1) L → +∞ and εLM ≈ 1.

6.1. Linear estimates. Let us gather the estimates we proved for (4.7) for the above asymp-
totics in Section 4.

Regarding low frequencies, one may combine (4.20) and (4.21) to get

(6.2) |(̂b, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|(̂b, d̂)| dτ +

L̃
ε

∫ t

0
|j0| dτ +

L̃M
ε

∫ t

0
|j1| dτ

≤ C|(̂b, d̂, ĵ0, ĵ1)(0)| for 0 ≤ ρ ≤
√

1 + n−1,

with L̃ := νL, ĵ0 := ĵ0 −
√
nb̂−√

n ε
L̃ρd̂ and ĵ1 = ĵ1 − ρ

L̃M b̂.

For middle frequencies, we have according to (4.58) and (4.64)

(6.3) |(ρb̂, d̂, ĵ0, ĵ1)(t)|+
∫ t

0
|ρb̂| dτ + ρ2

∫ t

0
|d̂| dτ + ρ

∫ t

0
|̂j0| dτ + L̃M

∫ t

0
|̂j1| dτ

≤ C|(ρb̂, d̂, ĵ0, ĵ1)(0)| for
√

2/n ≤ ρ ≤ cL̃M,

and (4.70) gives, if M is large enough

(6.4) |(ρb̂, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|d̂| dτ + ρ

∫ t

0
|̂b| dτ +

L̃M
ε

∫ t

0
|(ĵ0, ĵ1)| dτ

≤ C|(ρb̂, d̂, ĵ0, ĵ1)(0)| for ρ ≥ cL̃M.

If M is bounded then we must assume that ρ ≥ C1L̃M for some C1 > c. However, we have

(4.71) and M bounded implies that εL̃ ≈ 1. Therefore (6.3) is satisfied up to ρ ≤ C1L̃M.
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For the whole system (4.4) with nonzero source terms f and ~g , we thus obtain (taking
slightly abusively c = C1 = 1 for notational simplicity)

(6.5) ‖(~u, j0,~j1)(t)‖Ḃs
2,1

+ ‖b(t)‖ℓ,1
Ḃs

2,1

+ ‖b(t)‖h,1
Ḃs+1

2,1

+

∫ t

0
‖~u‖Ḃs+2

2,1
dτ +

L̃
ε

∫ t

0
‖j0‖ℓ,1Ḃs

2,1

dτ

+
L̃M
ε

∫ t

0
‖~j1‖ℓ,1Ḃs

2,1

dτ +

∫ t

0
‖(b, j0,~j1)‖ℓ,1Ḃs+2

2,1

dτ +

∫ t

0
‖j0‖m,1,L̃M

Ḃs+1

2,1

dτ + L̃M
∫ t

0
‖~j1‖m,1,L̃M

Ḃs
2,1

dτ

+

∫ t

0
‖b‖h,1

Ḃs+1

2,1

dτ +
L̃M
ε

∫ t

0
‖(j0,~j1)‖h,L̃MḂs

2,1

dτ . ‖(~u, j0,~j1)(0)‖Ḃs
2,1

+ ‖b(0)‖ℓ,1
Ḃs

2,1

+ ‖b(0)‖h,1
Ḃs+1

2,1

+

∫ t

0

(
‖f‖ℓ,1

Ḃs
2,1

+ ‖f‖h,1
Ḃs+1

2,1

+ ‖~g‖Ḃs
2,1

)
dτ,

with

j0 := j0 −
√
nb−

√
n
ε

L̃
div ~u and ~j1 = ~j1 +

1

L̃M
∇b.

Back to the original variables, that linear analysis induces us to introduce the following norms

‖(b, ~u, j0,~j1)‖X̃ν
ε
:= ‖b‖ℓ,ν−1

Ḃ
n
2
−1

2,1

+ ν‖b‖h,ν−1

Ḃ
n
2
2,1

+ ‖~u‖
Ḃ

n
2
−1

2,1

+ ‖(j0,~j1)‖
Ḃ

n
2
−1

2,1

and

‖(b, ~u, j0,~j1)‖Ỹ ν
ε
:= sup

t≥0
‖(b, ~u, j0,~j1)(t)‖X̃ν

ε
+ ν

∫

R+

(
‖(b, j0,~j1)‖ℓ,ν

−1

Ḃ
n
2
+1

2,1

+ ‖~u‖
Ḃ

n
2
+1

2,1

)
dτ

+

∫

R+

(
‖b‖h,ν−1

Ḃ
n
2
2,1

+
LM
ε

‖~j1‖ℓ,ν
−1

Ḃ
n
2
−1

2,1

+
L
ε
‖j0‖ℓ,ν

−1

Ḃ
n
2
−1

2,1

)
dτ

+

∫

R+

(
‖j0‖m,ν−1,LM

Ḃ
n
2
2,1

+ LM‖~j1‖m,ν−1,LM
Ḃ

n
2
−1

2,1

+
LM
ε

‖(j0,~j1)‖h,LM
Ḃ

n
2
−1

2,1

)
dτ,

with j0 := j0 − b− ε
Ldiv ~u and ~j1 := ~j1 +

1
LM∇b.

We denote by X̃ν
ε and Ỹ ν

ε the corresponding functional spaces (where time continuity is
imposed rather than just boundedness). Of course, we still have

‖(b′, ~u′, j′0,~j′1)‖X̃1
ε
= ν−1‖(b, ~u, j0,~j1)‖X̃ν

ε
and ‖(b′, ~u′, j′0,~j′1)‖Ỹ 1

ε
= ν−1‖(b, ~u, j0,~j1)‖Ỹ ν

ε
,

through the change of variables (4.1), if we replace L by L̃ in the left-hand side.

6.2. The paralinearized equations. In the equilibrium diffusion limit case the estimates
for the paralinearized system

(6.6)





∂tb+ T~v · ∇b+ div ~u = F,

∂t~u+ T~v · ∇~u−A~u+∇b− L(1+Ls)
n

~j1 = ~G,

∂tj0 +
div~j1
nε + L

ε (j0 − b) = 0,

∂t~j1 +
∇j0
ε + L(1+Ls)

ε
~j1 = ~0.

recast as follows
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Proposition 6.1. For any smooth solution (b, ~u, j0,~j1) we have the following a priori esti-
mate for (5.10)

‖(b, ~u, j0,~j1)‖Ỹ ν
ε (t)

≤ C

(
‖(b, ~u, j0,~j1)(0)‖X̃1

ε
+

∫ t

0
‖∇~v‖L∞‖(b, ~u, j0,~j1)‖X̃ν

ε
dτ

+

∫ t

0
‖(∇F, ~G)‖h,1

Ḃ
n
2
−1

2,1

dτ+

∫ t

0
‖(F−T~v ·∇b, ~G−T~v ·∇~u)‖ℓ,1

Ḃ
n
2
−1

2,1

dτ+

∫ t

0
‖T~v ·∇b−F‖m,1,L̃M

Ḃ
n
2
−1

2,1

dτ

)
·

Proof: Except in the middle frequencies range, the proof goes along the lines of the
corresponding result in the non-equilibrium case. Still assuming that ν = 1 and replacing

L with L̃ = νL then, working directly on the localized paralinearized system (6.6), and
combining Inequalities (6.2) to (6.4) with estimates for the para-convection terms gives
1. Low frequencies: 2k ≤ C1.

‖∆̇k(b, ~u, j0,~j1)(t)‖L2 + 22k
∫ t

0
‖∆̇k(b, ~u, j0,~j1)‖L2 dτ +

L̃M
ε

∫ t

0
‖∆̇k

~j1‖L2 dτ

+
L̃
ε

∫ t

0
‖∆̇kj0‖L2 dτ . ‖∆̇k(b, ~u, j0,~j1)(0)‖L2

+

∫ t

0
‖∆̇k(F − T~v · ∇b)‖L2 dτ +

∫ t

0
‖∆̇k( ~G− T~v · ∇~u)‖L2 dτ.

2. Medium frequencies: C1 ≤ 2k ≤ cL̃M.
One has to keep in mind that in order to derive (6.3) from (4.58) and (4.64), one has to

consider the system that is fulfilled by (b, ~u, ζ0,~j1) with ζ0 := j0−
√
n b. In particular, a part

of the the paraconvection term of b enters in the equation for ζ0 as we have

∂tζ0 +
L̃
ε
ζ0 +

1

ε
√
n
div~j1 −

√
ndiv ~u =

√
n(T~v · ∇b− F ).

Therefore, following the computations leading to (4.58) and (4.64), and using Lemma 4.1 in
[7] to bound the convection terms coming from the equations for b and ~u, we end up with

‖∆̇k(∇b, ~u, j0,~j1)(t)‖L2 + 22k
∫ t

0
‖∆̇k~u‖L2 dτ + 2k

∫ t

0
‖(∆̇kb, ∆̇kj0)‖L2 dτ

+L(1 + Ls)

∫ t

0
‖∆̇k

~j1‖L2 dτ . ‖∆̇k(∇b, ~u, j0,~j1)(0)‖L2 +

∫ t

0
‖∆̇k(∇F, ~G)‖L2 dτ

+

∫ t

0
‖∆̇k(T~v · ∇b− F )‖L2 dτ +

∑

k′∼k

∫ t

0
‖∇~v‖L∞‖∆̇k′(∇b, ~u)‖L2 dτ.

3. High frequencies: 2k ≥ cL̃M. We get

‖∆̇k(∇b, ~u, j0,~j1)(t)‖L2 +

∫ t

0

(
22k∆̇k~u‖L2 + 2k‖∆̇kb‖L2

)
dτ + L̃Mε

∫ t

0
‖∆̇k(j0,~j1)‖L2 dτ

. ‖∆̇k(∇b, ~u, j0,~j1)(0)‖L2 +

∫ t

0
‖∆̇k(∇F, ~G)‖L2 dτ

+
∑

k′∼k

∫ t

0
‖∇~v‖L∞‖∆̇k′(∇b, ~u)‖L2 dτ.

Putting together all those inequalities completes the proof. �
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6.3. A global existence result. Our global existence result with uniform estimates reads

Theorem 6.1. There exists a positive constant η depending only on µ/ν, n and on the

pressure law such that if ε ∈ (0, 1) and the data (bε0, ~u
ε
0, j

ε
0,0,

~jε1,0) satisfy

(6.7) ‖(bε0, ~uε0, jε0,0,~jε1,0)‖X̃ν
ε
≤ ην,

then System (1.6) admits a unique global solution (bε, ~uε, jε0 ,~j
ε
1) in Ỹ ν

ε . In addition, we have

(6.8) ‖(bε, ~uε, jε0,~jε1)‖Ỹ ν
ε
≤ C‖(bε0, ~uε0, jε0,0,~jε1,0)‖X̃ν

ε
.

The proof relies on Proposition 6.1. Note in particular that the ‘new’ last term in the
estimate of (6.1) does not entail a loss of derivative as we simply have

‖T~v · ∇b− F‖m,1,L̃M
L1
t (Ḃ

n
2
−1

2,1 )
≤ ‖~v · ∇b‖

L1
t (Ḃ

n
2
−1

2,1 )
. ‖~v‖

L2
t (Ḃ

n
2
2,1)

‖b‖
L2
t (Ḃ

n
2
2,1)

.

The rest of the proof works exactly the same as in the non-equilibrium case. �

6.4. Weak convergence. Here we justify weak convergence to (2.10) when assumption (6.1)
is fulfilled.

Theorem 6.2. Let the family of data (bε0, ~u
ε
0, j

ε
0,0,

~jε1,0)0<ε<1 satisfy (6.7). Then the global

solution (bε, ~uε, jε0,~j
ε
1) in Ỹ ν

ε given by Theorem 6.1 satisfies

~jε1 → ~0 in L1(R+; Ḃ
n
2
−1

2,1 + Ḃ
n
2

2,1),

and if (bε0, ~u
ε
0) ⇀ (b0, ~u0) then (bε, ~uε, jε0) converges weakly to (b, ~u, b) where (b, ~u) stands for

the unique solution of

(6.9)

{
∂tb+ ~u · ∇b+ k1(b)div ~u = 0,

∂t~u+ ~u · ∇~u− k2(b)A~u+
(
k3(b) + n−1k4(b)

)
∇b = ~0.

supplemented with initial data (b0, ~u0).

Proof: Let ~jε1 = ~jε1 +
∇bε

LM · From (6.8), we have

LM
ε

‖~jε1‖ℓ,ν
−1

L1(R+;Ḃ
n
2
−1

2,1 )
+ ν‖∇bε‖ℓ,ν−1

L1(R+;Ḃ
n
2
2,1)

+ LM‖~jε1‖h,ν
−1

L1(R+;Ḃ
n
2
−1

2,1 )
≤ Cην.

Hence, given (6.1), we deduce that

(6.10) ~jε1 = O(ε) in L1(R+; Ḃ
n
2
−1

2,1 +Ḃ
n
2

2,1).

Using the equation of ~jε1 , this gives

(6.11) ∇jε0 + L(1 + Ls)~j
ε
1 → 0 in the sense of distributions.

As in the non-equilibrium case, (6.8) implies that the families (bε) and (~uε) are bounded in

L∞(R+; Ḃ
n
2
−1

2,1 ∩Ḃ
n
2

2,1)∩L1(R+; Ḃ
n
2
+1

2,1 +Ḃ
n
2

2,1) and L∞(R+; Ḃ
n
2
−1

2,1 )∩L1(R+; Ḃ
n
2
+1

2,1 ), respectively.

Hence (∂tb
ε) is bounded in L2(R+; Ḃ

n
2
−1

2,1 ) and we can thus deduce that there exists b in

L∞(R+; Ḃ
n
2
−1

2,1 ∩ Ḃ
n
2

2,1)∩L1(R+; Ḃ
n
2
+1

2,1 + Ḃ
n
2

2,1) and a sequence (εk)k∈N going to 0 so that, for

all φ ∈ S and all α ∈ (0, 1]

(6.12) φ bεk −→ φ b in L∞(R+; Ḃ
n
2
−α

2,1 ).

For (~uε), we still have the weak convergence result given by (5.37), which suffices to pass to
the limit in the mass equation.
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Next, we observe that (6.8) implies that (jε0) is bounded in L1(R+; Ḃ
n
2
−1

2,1 +Ḃ
n
2
+1

2,1 ). Hence,

there exists a sequence (εk)k∈N going to 0 so that jεk0 ⇀ j0 in the sense of distributions.
Moreover, we have

jε0 − bε = −L−1n−1div~jε1 − εL−1∂tj
ε
0 .

Remembering (6.10) and (6.1), we see that the first term of the r.h.s. is O(ε) in a suitable
space. The second one also tends to 0 in the sense of distributions as εL−1 → 0. Hence

(6.13) j0 = b.

In order to pass to the limit in the velocity equation, we proceed as in the non-equilibrium
case. First we use (5.37) and next, the fact that

∂t

(
~uε +

ε

n
k4(b

ε)~jε1

)
= −~uε · ∇~uε + k2(b

ε)A~uε − k3(b
ε)∇bε +

ε

n
k′4(b

ε)∂tb
ε~jε1 −

1

n
k4(b

ε)∇jε0.

Taking advantage of (6.8) and of product laws in Besov spaces, we readily obtain that the

four first terms of the r.h.s. are bounded in L2(R+; Ḃ
n
2
−2

2,1 ) (or only in L2(R+; Ḃ
n
2
−2

2,∞ ) if

n = 2). To handle the last term, we observe that according to (6.8), ∇jε0 is bounded in

L∞(R+; Ḃ
n
2
−2

2,1 ) hence the term k4(b
ε)∇jε0 is bounded in L∞(R+; Ḃ

n
2
−2

2,1 ) (or L∞(R+; Ḃ
n
2
−2

2,∞ )

if n = 2).

As in the non-equilibrium case, it is now easy to conclude that there exists some ~v in

L∞(R+; Ḃ
n
2
−1

2,1 ) so that for all φ in S and α ∈ (0, 1), we have

φ
(
~uεk +

εk

n
~jεk1

)
−→ φ~v in L∞

loc(R+; Ḃ
n
2
−1−α

2,1 ).

Of course, combining with (6.10), this implies that ~v = ~u, and (b, ~u) thus satisfies the second
line of (6.9).

Finally, that the whole family (bε, ~uε, jε0,
~jε1) converges to (b, ~u, b,~0) stems from the fact

that the solution to (6.9) is unique (note that it is just the standard barotropic Navier-Stokes
equations with a modified but still stable pressure law). �

7. The Poisson diffusion regime

This section is devoted to the study of the asymptotics regime where

(7.1) ε ≪ L . ε1/2 and L2Ls ≈ 1.

According to the formal computations of Section 2, we expect the solutions of (1.6) to tend
to those of the Navier-Stokes-Poisson sytem (2.9).

The general scheme of the proof that we here propose is the same as in the study of the
other asymptotics: we first perform a fine analysis of the linearized equations so as to check
the long-time stability and exhibit the quantities that are likely to be bounded uniformly
when ε → 0, then tackle the proof of the global existence. We rapidly justify that the limit
system is globally well-posed in a functional framework that is consistent with the analysis
we used for (1.6), and eventually take advantage of compactness arguments so as to prove
the expected convergence result. As in the other regimes, the fact that the limit system has
a unique solution will guarantee that the whole family of solutions to (1.6) converges to the
solution to (2.9).
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7.1. Linear analysis of (1.6) in the Poisson regime (7.1). We here gather the estimates

for (4.7) that have been obtained in Section 4. Recall that L̃ := νL.

Small frequencies. Using (4.28), (4.33), (4.34) and the fact that |(̂b, d̂, ĵ0, ĵ1)| ≈ |(b̂, d̂, ĵ0, ĵ1)|
and that the last term in the original definition of ĵ0 in (4.22) has a negligible contribution

with respect to ĵ1, we get

(7.2) |(̂b, d̂, ε
L̃
ĵ0, ρĵ0, ĵ1)(t)|+ ρ2

∫ t

0
|(̂b, d̂, ĵ0, ĵ1)| dτ +

∫ t

0
|̂j0| dτ +

L̃
ε

∫ t

0
|ρζ̂0|

+
L̃M
ε

∫ t

0
|̂j1| dτ ≤ C|(̂b, d̂, ε

L̃
ĵ0, ρĵ0, ĵ1)(0)| for all 0 ≤ ρ ≤ C1,

with ĵ0 := ĵ0 −
√
n b̂−√

n ε
L̃ρd̂, ζ̂0 := ĵ0 −

√
n

1+ ρ2

nL̃2M

b̂ and ĵ1 := ĵ1 − ρ√
n L̃M ĵ0 +

ρb̂

L̃LsM
·

Middle frequencies. Combining (4.54) and the definition of ζ̂1 versus that of ĵ1, we get

(7.3) |(ρb̂, d̂, ĵ0, ĵ1)(t)|+ ρ

∫ t

0
|̂b| dτ + ρ2

∫ t

0
|d̂| dτ + ρ2

L̃
ε

∫ t

0
|̂j0| dτ

+
L̃M
ε

∫ t

0
|̂j1| dτ . |(ρb̂, d̂, ĵ0, ĵ1)(0)| for C1 ≤ ρ ≤ cL̃M.

Large frequencies. Finally, using (4.70), we have

(7.4) |(ρb̂, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|d̂| dτ + ρ

∫ t

0
|̂b| dτ +

L̃M
ε

∫ t

0
|(ĵ0, ĵ1)| dτ

≤ C|(ρb̂, d̂, ĵ0, ĵ1)(0)| for ρ ≥ cL̃M.

Therefore, localizing (4.4) (with nonzero source terms f and ~g ) according to Littlewood-

Paley operator ∆̇k, using (4.5), following the computations leading to the above three in-
equalities and using Fourier-Plancherel theorem, we end up with the following inequality for
all s ∈ R

(7.5) ‖(~u,~j1)(t)‖Ḃs
2,1

+ ‖b(t)‖ℓ,1
Ḃs

2,1

+ ‖b(t)‖h,1
Ḃs+1

2,1

+
ε

L̃
‖j0(t)‖ℓ,1Ḃs

2,1

+ ‖j0(t)‖ℓ,1Ḃs+1

2,1

+ ‖j0(t)‖h,1Ḃs
2,1

+

∫ t

0
‖~u‖Ḃs+2

2,1
dτ +

∫ t

0
‖(b, j0,~j1)‖ℓ,1Ḃs+2

2,1

dτ +
L̃
ε

∫ t

0
‖ζ0‖ℓ,1Ḃs+1

2,1

dτ +

∫ t

0
‖j0‖ℓ,1Ḃs

2,1

dτ

+
L̃M
ε

∫ t

0
‖~j1‖ℓ,L̃MḂs

2,1

dτ +
L̃
ε

∫ t

0
‖j0‖m,1,L̃M

Ḃs+2

2,1

+

∫ t

0
‖b‖h,1

Ḃs+1

2,1

dτ +
L̃M
ε

∫ t

0
‖(j0,~j1)‖h,L̃MḂs

2,1

dτ

. ‖(~u,~j1)(0)‖Ḃs
2,1

+ ‖b(0)‖ℓ,1
Ḃs

2,1

+ ‖b(0)‖h,1
Ḃs+1

2,1

+
ε

L̃
‖j0(0)‖ℓ,1Ḃs

2,1

+ ‖j0(0)‖ℓ,1Ḃs+1

2,1

+ ‖j0(0)‖h,1Ḃs
2,1

+

∫ t

0

(
‖f‖ℓ,1

Ḃs
2,1

+ ‖f‖h,1
Ḃs+1

2,1

+ ‖~g‖Ḃs
2,1

)
dτ,

with j0 := j0 −
√
n b−√

n ε
L̃ div ~u,

ζ0 := j0 −
√
n
(
Id− 1

nL̃2M
∆
)−1

b and ~j1 := ~j1 +
1

√
n L̃M

∇j0 −
1

L̃LsM
∇b.
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As in the previous sections, owing to the convection term in the equation for b, the above
inequality does not allow to prove the global existence for (1.6), and one has to consider the
paralinearized system (5.10). Adapting the proof of Proposition 5.1, we get the following

Proposition 7.1. If the coefficients L, Ls and ε fulfill (7.1) then for any smooth solution

(b, ~u, j0,~j1) to (5.10), one has the following inequality

‖(b, ~u, j0,~j1)(t)‖Y̌ ν
ε (t) ≤ C

(
‖(b, ~u, j0,~j1)(0)‖X̌ν

ε
+

∫ t

0
‖∇~v‖L∞‖(b, ~u, j0,~j1)‖X̌ν

ε
dτ

+

∫ t

0
‖(∇F, ~G)‖h,1

Ḃ
n
2
−1

2,1

dτ +

∫ t

0
‖(F − T~v · ∇b, ~G− T~v · ∇~u)‖ℓ,1

Ḃ
n
2
−1

2,1

dτ

)
,

with

‖(b, ~u, j0,~j1)‖X̌ν
ε
:= ‖(~u,~j1)‖

Ḃ
n
2
−1

2,1

+‖b‖ℓ,ν−1

Ḃ
n
2
−1

2,1

+ν‖b‖h,ν−1

Ḃ
n
2
2,1

+
ε

Lν ‖j0‖
ℓ,ν−1

Ḃ
n
2
−1

2,1

+ν‖j0‖ℓ,ν
−1

Ḃ
n
2
2,1

+‖j0‖h,ν
−1

Ḃ
n
2
−1

2,1

,

and

‖(b, ~u, j0,~j1)(t)‖Y̌ ν
ε (t) := sup

0≤τ≤t
‖(b, ~u, j0,~j1)(τ)‖X̌ν

ε

+ν

∫ t

0

(
‖~u‖

Ḃ
n
2
+1

2,1

+ ‖(b,~j1)‖ℓ,ν
−1

Ḃ
n
2
+1

2,1

+ Lν
ε ‖j0‖m,ν−1,LM

Ḃ
n
2
+1

2,1

)
dτ +

L
ε

∫ t

0
‖ζ0‖ℓ,ν

−1

Ḃ
n
2
2,1

dτ

+ν−1

∫ t

0
‖j0‖ℓ,ν

−1

Ḃ
n
2
−1

2,1

dτ +
LM
ε

∫ t

0
‖~j1‖ℓ,LM

Ḃ
n
2
−1

2,1

dτ +

∫ t

0
‖b‖h,1

Ḃ
n
2
2,1

dτ +
LM
ε

∫ t

0
‖(j0,~j1)‖h,LM

Ḃ
n
2
−1

2,1

dτ.

Above, we set

j0 := j0− b− ε

Ldiv ~u, ζ0 := j0−
(
Id− 1

nL2M∆

)−1

b and ~j1 := ~j1+
1

LM∇j0−
1

LLsM
∇b.

7.2. Uniform global well-posedness in the Poisson regime. In this paragraph, we
sketch the proof of the following global existence result.

Theorem 7.1. There exists a positive constant η depending only on µ/ν, n and on the
pressure law such that if ε ∈ (0, 1) and if the coefficients L and Ls fulfill (7.1) then any data

(bε0, ~u
ε
0, j

ε
0,0,~j

ε
1,0) satisfying

(7.6) ‖(bε0, ~uε0, jε0,0,~jε1,0)‖X̌ν
ε
≤ ην,

generates a unique global solution (bε, ~uε, jε0,~j
ε
1) in Y̌ ν

ε to System (1.6).
Furthermore, we have

(7.7) ‖(bε, ~uε, jε0,~jε1)‖Y̌ ν
ε
≤ C‖(bε0, ~uε0, jε0,0,~jε1,0)‖X̌ν

ε
.

Proof. Assuming with no loss of generality that ν = 1, the proof relies on Proposition 7.1
with, dropping the indices ε for better readability, ~v = ~u

F := −T ′
∇b · ~u− k1(b)div ~u and ~G := −T ′

∇~u · ~u+ k2(b)Ã~u− k3(b)∇b+
LM
n

k4(b)~j1.

Let us just explain how to handle the last term, as it cannot be bounded exactly as in the

proof of Theorems 5.1 or 6.1 due to the difference between the spaces Y̌ ν
ε and Ỹ ν

ε . We use
the fact that

LM~j1 = LM~j1 + L−1
s ∇b−∇j0,
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and thus

LMk4(b)~j1 = LMk4(b)(~j
h,LM
1 +~jℓ,LM1 ) + L−1

s k4(b)∇bℓ,LM − k4(b)∇jℓ,LM0 .

It is clear that

‖k4(b)~jh,LM1 ‖
L1(Ḃ

n
2
−1

2,1 )
. ‖b‖

L∞(Ḃ
n
2
2,1)

‖~jh,LM1 ‖
L1(Ḃ

n
2
−1

2,1 )
. (LM)−1‖(b, ~u, j0,~j1)‖Y̌ 1

ε
,

that the second term in the r.h.s. may be bounded in the same way, and that the third one
can be bounded as the pressure term k3(b)∇b. For the last term, one just has to observe that
the definition of ‖ · ‖Y̌ 1

ε
guarantees that

(7.8) ‖∇j0‖ℓ,LM
L1(Ḃ

n
2
2,1)

. ‖(b, ~u, j0,~j1)‖Y̌ 1
ε
,

and that

‖k4(b)‖
L∞(Ḃ

n
2
2,1)

. ‖b‖
L∞(Ḃ

n
2
2,1)

.

The rest of the proof is standard, and thus left to the reader. �

7.3. Study of the limit system. We introduce the following norms

‖(b, ~u, j0)‖X̌ ν := ‖b‖ℓ,ν−1

Ḃ
n
2
−1

2,1

+ ν‖b‖h,ν−1

Ḃ
n
2
2,1

+ ‖~u‖
Ḃ

n
2
−1

2,1

+ ‖j0‖ℓ,ν
−1

Ḃ
n
2
−1

2,1

+ ν3‖j0‖h,ν
−1

Ḃ
n
2
+2

2,1

,

and

‖(b, ~u, j0)‖Y̌ν := sup
t≥0

‖(b, ~u, j0)(t)‖X̌ ν

+ν

∫

R+

(
‖(b, j0)‖ℓ,ν

−1

Ḃ
n
2
+1

2,1

+ ‖~u‖
Ḃ

n
2
+1

2,1

)
dt+

∫

R+

(
‖b‖h,ν−1

Ḃ
n
2
2,1

+ ν2‖j0‖h,ν
−1

Ḃ
n
2
+2

2,1

)
dt.

Theorem 7.2. Let the data (b0, ~u0, j0,0) satisfy for a small enough constant c > 0

(7.9) ‖b0‖ℓ,ν
−1

Ḃ
n
2
−1

2,1

+ ν‖b0‖h,ν
−1

Ḃ
n
2
2,1

+ ‖~u0‖
Ḃ

n
2
−1

2,1

≤ cν,

and the compatibility condition

j0,0 −
ν2

nm
∆j0,0 = b0.

Then System (2.9) admits a unique global solution (b, ~u, j0) in the space Y̌ν , satisfying in
addition for a large enough constant C independent of ν

(7.10) ‖(b, ~u, j0)‖Y̌ν ≤ C
(
‖b0‖ℓ,ν

−1

Ḃ
n
2
−1

2,1

+ ν‖b0‖h,ν
−1

Ḃ
n
2
2,1

+ ‖~u0‖
Ḃ

n
2
−1

2,1

)
.

Proof. We just sketch the proof as it is very similar to the standard one for the barotropic
Navier-Stokes equations. As usual, it suffices to treat the case ν = 1.

The first step is to analyse the linearized system

(7.11)





∂tb+ div ~u = f,

∂t~u− Ã~u+∇b+ 1
n∇j0 = g,

(
Id− 1

nm∆
)
j0 = b.
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To this end, we set d = (−∆)−1/2div ~u and observe that in the Fourier space, (̂b, d̂) fulfills
the following ODE if f = g = 0

{
∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρaρb̂ = 0

with ρ := |ξ| and aρ := 1 + m
ρ2+nm

· Of course, j0 may be computed from b by the relation

ĵ0 =
nm

ρ2 + nm
b̂.

Introducing the following Lyapunov and diffusion functionals

L2
ρ = 2aρ |̂b|2 + 2|d̂|2 + |ρb̂|2 − 2Re (ρb̂d̂) and H2

ρ = ρ2(aρ |̂b|2 + |d̂|2),
we see that

1

2

d

dt
L2
ρ +H2

ρ = 0.

Because we have a±1
ρ ≤ c0 for some c0 independent of ρ, one can thus conclude exactly as

in the standard barotropic case that for all t ≥ 0 and ρ ≥ 0

|(̂b, ρb̂, d̂)(t)|+min(1, ρ)

∫ t

0
|ρb̂| dτ + ρ2

∫ t

0
|d̂| dτ . |(̂b, ρb̂, d̂)(0)|.

Back to (7.11), one may combine Fourier-Plancherel theorem and Duhamel formula to get
the following estimate for all s ∈ R

‖(b,∇b, ~u)(t)‖Ḃs
2,1

+ ‖j0(t)‖Ḃs
2,1∩Ḃ

s+3

2,1
+

∫ t

0

(
‖~u‖Ḃs+2

2,1
+ ‖(b, j0)‖ℓ,1Ḃs+2

2,1

)
dτ

+

∫ t

0

(
‖b‖h,1

Ḃs+1

2,1

+ ‖j0‖h,1Ḃs+3

2,1

)
dτ ≤ C

(
‖(b0,∇b0, ~u0)‖Ḃs

2,1
+

∫ t

0
‖(f,∇f, g)‖Ḃs

2,1
dτ

)
.

However, because of the convection term in the equation for b, this does not allow to prove
estimates for the nonlinear system (2.9). Therefore, mimicking the standard approach for
the compressible Navier-Stokes equation we ‘paralinearize’ the system and get the following
result

Proposition 7.2. The solutions to the following paralinearized system




∂tb+ T~v · ∇~u+ div ~u = f,

∂t~u+ T~v · ∇~u− Ã~u+∇b+ 1
n∇j0 = ~g,

(
Id− 1

nm∆
)
j0 = b.

fulfill the following a priori estimate

‖(b,∇b, ~u)(t)‖Ḃs
2,1

+ ‖j0(t)‖Ḃs
2,1∩Ḃ

s+3

2,1
+

∫ t

0

(
‖~u‖Ḃs+2

2,1
+ ‖(b, j0)‖ℓ,1Ḃs+2

2,1

)
dτ

+

∫ t

0

(
‖b‖h,1

Ḃs+1

2,1

+ ‖j0‖h,1Ḃs+3

2,1

)
dτ ≤ C

(
‖(b0,∇b0, ~u0)‖Ḃs

2,1
+

∫ t

0
‖(f,∇f, g)‖Ḃs

2,1
dτ

+

∫ t

0
‖∇~v‖L∞‖(b,∇b, ~u)‖Ḃs

2,1
dτ

)
.
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Now, in order to estimate the solutions of the nonlinear system (2.9), it suffices to apply
the above proposition with ~v = ~u

f = −T ′
~u · ∇b− k1(b)div ~u and ~g = −T ′

~u · ∇~u+ k2(b)Ã~u− k3(b)∇b− n−1k4(b)∇j0.

All the terms but the last one of ~g are already present in the barotropic Navier-Stokes
equations, and may be bounded quadratically in terms of ‖(b, ~u, j0)‖Y̌1 . Now, we have

‖k4(b)∇j0‖
Ḃ

n
2
−1

2,1

. ‖b‖
Ḃ

n
2
2,1

‖j0‖
Ḃ

n
2
2,1

,

hence
‖k4(b)∇j0‖

L1
t (Ḃ

n
2
−1

2,1 )
. ‖b‖

L2
t (Ḃ

n
2
2,1)

(
‖j0‖ℓ,1

L2
t (Ḃ

n
2
2,1)

+ ‖j0‖h,1
L2
t (Ḃ

n
2
+2

2,1 )

)
,

and one can thus conclude that whenever the solution (b, ~u, j0) exists we have

‖(b, ~u, j0)‖Y̌1(t) ≤ C
(
‖b0‖

Ḃ
n
2
−1

2,1 ∩Ḃ
n
2
2,1

+ ‖~u0‖
Ḃ

n
2
−1

2,1

+ ‖(b, ~u, j0)‖2Y̌1(t)

)
,

which allows to get (7.10) if (7.9) is fulfilled with a small enough c. �

7.4. Weak convergence. Here we justify weak convergence to (2.9) when assumption (7.1)
is fulfilled and, in addition

(7.12) ν2L2Ls → m ∈ (0,+∞).

Theorem 7.3. Let the family of data (bε0, ~u
ε
0, j

ε
0,0,~j

ε
1,0)0<ε<1 satisfy (7.6). Then the global

solution (bε, ~uε, jε0,~j
ε
1) in Y̌ ν

ε given by Theorem 7.1 satisfies

(7.13) ~jε1 = O(L) in L1(R+; Ḃ
n
2
−1

2,1 + Ḃ
n
2

2,1),

and, up to extraction, (bε, ~uε, jε0) converges weakly to some solution (b, ~u, j0) in Y̌ν of System
(2.9) when ε goes to 0.

If in addition

(7.14) (bε0, ~u
ε
0, j

ε
0,0) ⇀ (b0, ~u0, j0,0) with − ν2∆j0,0 + nm(j0,0 − b0) = 0,

then the whole family (bε, ~uε, jε0) converges to the unique solution (b, ~u, j0) corresponding to
the initial data (b0, ~u0, j0,0), given by Theorem 7.2.

Proof: Let us first prove (7.13). From (7.7), we already know that (~jε1)
ℓ,LM and (~jε1)

h,LM

are O(εL) in L1(R+; Ḃ
n
2
−1

2,1 ). Now, we have

~jε1 =~jε1 −
1

LLs
∇jε0 +

1

LLsM
∇bε.

It is easy to see that the last term is O(L3) in L1(R+; Ḃ
n
2

2,1 + Ḃ
n
2
−1

2,1 ), and that, according

to (7.8) and L2Ls ≈ 1, the last but one term is O(L) in L1(R+; Ḃ
n
2

2,1), which completes the

proof of (7.13).

Next, let us turn our attention to the convergence of jε0 . First, (7.7) and the definition of

‖ · ‖Y̌ ν
ε

ensure that (jε0)
h,LM is bounded in, say, L2(R+; Ḃ

n
2
−1

2,1 ). Next, using the bound for

the middle frequencies of j0 and for the low frequencies of ζ0, we discover that (jε0)
ℓ,LM is

bounded in L2(R+; Ḃ
n
2

2,1). Hence, up to an omitted extraction

(7.15) jε0 ⇀ j0 weak ∗ in L2(R+; Ḃ
n
2
−1

2,1 + Ḃ
n
2

2,1).
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Now, taking the divergence of the equation of ~jε1 , then using the equation of jε0 gives

(7.16) ∆jε0 = −L(1 + Ls)
(
nL(bε − jε0)− εn∂tj

ε
0

)
− ε∂tdiv j

ε
1.

Given (7.13), one can assert that the last term tends to 0 in the sense of distributions. We
also know that, up to an omitted extraction, jε0 → j0 in the sense of distributions, hence
given that L(1 + Ls)ε → 0, the term with ∂tj

ε
0 also tends to 0. Finally, exactly as in the

cases treated before, (bε) is bounded in L∞(R+; Ḃ
n
2
−1

2,1 ∩ Ḃ
n
2

2,1) hence weakly converges to

some b ∈ L∞(R+; Ḃ
n
2
−1

2,1 ∩ Ḃ
n
2

2,1). As (7.12) has been assumed, passing to the limit in (7.16)
gives

ν2∆j0 = −nm
(
b− j0).

Passing to the limit in the equation of b goes along the lines of the non-equilibrium case

we notice that (∂tb
ε) is bounded in L2(R+; Ḃ

n
2
−1

2,1 ) and we thus have, up to an omitted
extraction

(7.17) φ bε −→ φ b in L∞(R+; Ḃ
n
2
−α

2,1 ) for all α ∈ (0, 1).

As (7.7) also implies that (~uε) is bounded in L∞(R+; Ḃ
n
2
−1

2,1 )∩L1(R+; Ḃ
n
2
+1

2,1 ), we have ~uε ⇀ ~u

weakly * in that space, which is enough to justify the first equation of (2.9).

In order to pass to the limit in the velocity equation, we use again the fact that

∂t

(
~uε +

ε

n
k4(b

ε)~jε1

)
= −~uε · ∇~uε + k2(b

ε)A~uε − k3(b
ε)∇bε +

ε

n
k′4(b

ε)∂tb
ε~jε1 −

1

n
k4(b

ε)∇jε0.

As in the other asymptotic regimes, the first four terms of the r.h.s. are bounded in

L2(R+; Ḃ
n
2
−2

2,1 ) (or in L2(R+; Ḃ
n
2
−2

2,∞ ) if n = 2). To handle the last term, we observe that

according to (7.7) and (7.15), (∇jε0) is bounded in L2(R+; Ḃ
n
2
−2

2,1 + Ḃ
n
2
−1

2,1 ). Because (bε) is

bounded in L∞(R+; Ḃ
n
2
−1

2,1 ∩ Ḃ
n
2

2,1), this implies that k4(b
ε)∇jε0 is bounded in L2(R+; Ḃ

n
2
−2

2,1 )

(or L2(R+; Ḃ
n
2
−2

2,∞ ) if n = 2), and thus ∂t
(
~uε + ε

n k4(b
ε)~jε1

)
is bounded in the same space.

As in the already studied cases, we conclude that there exists some ~u in L∞(R+; Ḃ
n
2
−1

2,1 )

so that for all φ in S and α ∈ (0, 1), we have

φ
(
~uε +

ε

n
~jε1

)
−→ φ~u in L∞

loc(R+; Ḃ
n
2
−1−α

2,1 ).

Finally, in the case where (7.14) is fulfilled, the limit system (2.9) supplemented with initial
data (b0, ~u0, j0,0) possesses a unique solution (b, ~u, j0) given by Theorem 7.2, and the whole
family (bε, ~uε, jε0) thus converges to (b, ~u, j0). �

Appendix A. Estimates for a toy linear differential equation

The appendix is devoted to the proof of decay estimates for the solutions to systems of
ODEs of the form

(E) ∂tU +A0U + ρ (A1 +B1)U + ρ2A2U = 0,

where ρ is a nonnegative parameter, and A0, A1, B1 and A2 are given N × N matrices.
We have in mind System (4.7) in which case, after suitable change of unknowns (see (A.4)),
A0 is a degenerate nonnegative diagonal matrix, A2 has nonnegative eigenvalues and A1 is
skewsymmetric up to some positive diagonal symmetrizer.
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A.1. A general approach. The basic idea is to set V := (I + ρP )U where P is a suitable
matrix, so as to eliminate the bad first order term ρB1U. Now, whenever (I+ρP ) is invertible,
the equation for V reads

∂tV +A0V + ρ
(
A1 +B1 + [P,A0]

)
V + ρ2

(
[A0, P ]P + [P,A1] + [P,B1] +A2

)
V

+ρ3(I + ρP )
(
(A1 +B1)P

2 −A0P
3 −A2P

)
(I + ρP )−1V = 0.

Therefore, if one can find some matrix P so that

(A.1) [A0, P ] = B1,

then we have

(A.2) ∂tV +A0V + ρA1V + ρ2 (A2 + PB1 + [P,A1])V = ρ3(I + ρP )A3 (I + ρP )−1V,

where A3 := (PA0 −A1)P
2 +A2P.

The gain is clear as the matrix B1 now appears at order 2 instead of order 1. Hence the
system for V is more likely to be tractable for small enough ρ as we shall see below.

A.2. Application to the linearized system for barotropic radiative flows. The sys-
tem we are interested in reads

(A.3)
d

dt




â

d̂

ĵ0
ĵ1


+




0 ρ 0 0
−ρ ρ2 0 −ς
−η 0 β αρ
0 0 −αρ γ







â

d̂

ĵ0
ĵ1


 =




0
0
0
0


 ,

where all the coefficients of the matrix are positive.

To bound the solutions of (A.3) for small enough ρ (under some stability condition that
we will discover below), we propose two different approaches, the first one being appropriate
to handle the case where β and γ are of the same order of magnitude, and the second one,
to the case where β/γ ≪ 1 or γ/β ≪ 1 (of course only γ ≥ β is relevant as far as (4.7) is
concerned).

A.2.1. First approach. Making the change of unknown

(A.4) U :=




1 0 0 0
0 1 0 ς

γ

− η
β 0 1 0

0 0 0 1







â

d̂

ĵ0
ĵ1


 ,

and setting α̃ := α+ ςη
βγ , we see that U satisfies a system of type (E) with

A0 :=




0 0 0 0
0 0 0 0
0 0 β 0
0 0 0 γ


 , A1 :=




0 1 0 0
−1− αςη

βγ 0 0 0

0 0 0 α̃
0 0 −α 0


 ,

B1 := −




0 0 0 ς
γ

0 0 ας
γ 0

0 η
β 0 0

αη
β 0 0 0


 and A2 :=




0 0 0 0
0 1 0 − ς

γ

0 0 0 0
0 0 0 0


 ·
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Note that the above matrices may be written in block form as follows

B1 =

(
0 B1

1

B2
1 0

)
, A0 =

(
0 0
0 ∆

)
, A1 =

(
A1

1 0
0 A2

1

)
, P =

(
P 11 P 12

P 21 P 22

)
·

Computing the commutator

(A.5) [A0, P ] =

(
0 −P 12∆

∆P 21 [∆, P 22]

)
,

we see (A.1) is satisfied if

P 11 := 0, P 22 := 0, P 12 := −B1
1∆

−1, P 21 := ∆−1B2
1 .

In other words

(A.6) P =




0 0 0 ς
γ2

0 0 ας
βγ 0

0 − η
β2 0 0

−αη
βγ 0 0 0


 ,

which, remembering (A.4), corresponds to the following change of unknowns

(A.7) V =




b̂

d̂

ĵ0

ĵ1


 :=




1 0 0 ς
γ2 ρ

−αςη
β2γ

ρ 1 ας
βγ ρ

ς
γ

− η
β − η

β2ρ 1 − ςη
β2γρ

−αη
βγρ 0 0 1







â

d̂

ĵ0
ĵ1


 ·

Note that the determinant of the matrix (I + ρP ) is
(
1 +

αςη

β3γ
ρ2
)(

1 +
αςη

βγ3
ρ2
)
,

and is thus of order 1 whenever ρ satisfies the smallness condition

(A.8) ρ2 .
βγ

αςη
min(β2, γ2).

In order to go further in the estimates of V, we compute

PB1 =

(
−B1

1∆
−1B2

1 0
0 ∆−1B2

1B
1
1

)
=




−αςη
βγ2 0 0 0

0 −αςη
β2γ 0 0

0 0 αςη
β2γ

0

0 0 0 αςη
βγ2


 and

[P,A1] =

(
0 −B1

1∆
−1A2

1 +A1
1B

1
1∆

−1

∆−1B2
1A

1
1 −A2

1∆
−1B2

1 0

)

=




0 0 −ας
γ ( 1β+

1
γ ) 0

0 0 0 αα̃ς
βγ + ς

γ2 (1+
αςη
βγ )

αα̃η
βγ + η

β2 (1+
αςη
βγ ) 0 0 0

0 −αη
β ( 1β+

1
γ ) 0 0


 ·
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Finally, A3 := (PA0 −A1)P
2 +A2P reads

(A.9) A3 =
αςη

βγ




0 1
β2 0 − ς

γ3

1
γ − 1

γ2

(
1+ αςη

βγ

)
0 1

η − ας
β2γ

0

0 0 0 α̃
γ2

0 0 − α
β2 0


 ·

Therefore, resuming to (A.2), we conclude that

d

dt
V +A0V + ρA1V + ρ2

(
PB1 +A2

)
V = ρ2[A1, P ]V +O(ρ3).

Of course, the remainder term O(ρ3) strongly depends on the coefficients of the system.
We shall see below that the structure of [A1, P ] will enable us to treat ρ2[A1, P ] and the
nondiagonal term of A2 as small error terms as well.

Let us focus on the system satisfied by (b̂, d̂) for a while. We have

(A.10)
d

dt

(
b̂

d̂

)
+ ρ

(
0 1

−1− αςη
βγ 0

)(
b̂

d̂

)
+ ρ2

(
−αςη

βγ2 0

0 1− αςη
β2γ

)(
b̂

d̂

)

= ρ2

(
ας
γ ( 1β + 1

γ ) 0

0 ςν
γ − αα̃ς

βγ − ς
γ2 (1 +

αςη
βγ )

)(
ĵ0

ĵ1

)
+O(ρ3).

For small enough ρ, optimal estimates may be proved by taking advantage of the results of

Appendix B. Indeed, denoting by F̂ρ the r.h.s. of (A.10), we see from (B.6) that if we set

U2
ρ :=

(
1 +

αςη

βγ

)
|b̂|2 + |d̂|2 − ρ

(
1 +

αςη

βγ

(1
γ
− 1

β

))
Re (b̂ d̂),

then, under the following necessary and sufficient stability condition

(A.11) ν̃ := 1− αςη

βγ

(
1

β
+

1

γ

)
> 0,

we have (see (B.4) and (B.5))

(A.12) Uρ ≈ |(b̂, d̂)| and
d

dt
U2
ρ +

ν̃

3
ρ2U2

ρ . Uρ|F̂ρ|,

whenever

(A.13) ρ ≤

√
1 + αςη

βγ

1 + αςη
βγ ( 1γ − 1

β )
·

So finally, we get for some appropriate constant C = C(α, β, γ, ς, η)

|(b̂, d̂)(t)|+ ν̃ρ2
∫ t

0
|(b̂, d̂)| dτ ≤ C

(
|(b̂, d̂)(0)| + ρ2

∫ t

0
|(̂j0, ĵ1)| dτ + ρ3

∫ t

0
|(b̂, d̂, ĵ0, ĵ1)| dτ

)
,

which, if ρ ≪ ν̃, may be simplified into

(A.14) |(b̂, d̂)(t)| + ν̃ρ2
∫ t

0
|(b̂, d̂)| dτ ≤ C

(
|(b̂, d̂)(0)| + ρ2

∫ t

0
|(̂j0, ĵ1)| dτ

)
·
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The modified radiative modes j0 and j1 fulfill

(A.15)
d

dt

(
ĵ0

ĵ1

)
+ ρ

(
0 α̃
−α 0

)(
ĵ0

ĵ1

)
+

(
β + αςη

β2γ
ρ2 0

0 γ + αςη
βγ2ρ

2

)(
ĵ0

ĵ1

)

= ρ2

(
−αα̃η

βγ − η
β2 (1 +

αςη
βγ ) 0

0 αη
β ( 1β + 1

γ )

)(
b̂

d̂

)
+O(ρ3).

Therefore we easily get

1

2

d

dt

(
|̂j0|2 +

α̃

α
|̂j1|2

)
+

(
β +

αςη

β2γ
ρ2
)
|̂j0|2 +

α̃

α

(
γ +

αςη

βγ2
ρ2
)
|̂j1|2

≤ C
(
ρ2|(b̂, d̂)|+ ρ3|(b̂, d̂, ĵ0, ĵ1)|

)
.

Then, integrating and assuming that ρ ≪ 1 yields

(A.16) (|(̂j0, ĵ1)(t)|+min(β, γ)

∫ t

0
|(̂j0, ĵ1)| dτ ≤ C

(
|(̂j0, ĵ1)(0)| + ρ2

∫ t

0
|(b̂, d̂)| dτ

)
·

Combining with (A.14), we can conclude that there exists some positive constants ρ0 and C
depending only on (α, β, γ, ς, η) so that for all

(A.17) 0 ≤ ρ ≤ min(1, ν̃) ρ0,

we have

(A.18) |(b̂, d̂)(t)| + ν̃|(̂j0, ĵ1)(t)|+ ν̃ρ2
∫ t

0
|(b̂, d̂)| dτ + ν̃min(β, γ)

∫ t

0
|(̂j0, ĵ1)| dτ

≤ C
(
|(b̂, d̂)(0)| + ν̃|(̂j0, ĵ1)(0)|

)
.

A.2.2. Second approach. In the case where β and γ are not of the same order of magnitude,
Inequality (A.18) is not fully satisfactory, first because we would like to have a control on

β
∫ t
0 |̂j0| dτ and γ

∫ t
0 |̂j1| dτ rather than just on min(β, γ)

∫ t
0 |(̂j0, ĵ1)| dτ and, second, because

the range for which (A.18) holds true tends to shrink to 0 if β ≪ γ or γ ≪ β.
In this paragraph, we propose another approach to handle (A.3) in the case β 6= γ, still

based on rewriting the system in the form (A.2), but with a different definition of A1 and
B1 (A0 and A2 being unchanged). More precisely, we now set

A1 :=




0 1 0 0
−1− αςη

βγ 0 0 0

0 0 0 0
0 0 0 0


 and B1 :=




0 0 0 − ς
γ

0 0 −ας
γ 0

0 − η
β 0 α̃

−αη
β 0 −α 0


 ·

Then writing the matrices coming into play in block form, we see according to (A.5), that a
possible choice for P is

P 11 := 0, P 12 := −B1
1∆

−1, P 21 := ∆−1B2
1 , P 22 :=

1

β−γ

(
0 α̃
α 0

)
with α̃ := α+

εη

βγ
·
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With this new definition of P, we have

PB1 =




−αςη
βγ2 0 −ας

γ2 0

0 −αςη
β2γ 0 αα̃ς

βγ
αα̃η

β(γ−β)0 0 αςη
β2γ

+ αα̃
γ−β 0

0 αη
β(γ−β) 0 αςη

βγ2 + αα̃
β−γ




and [P,A1] =




0 0 −ας
βγ 0

0 0 0 ς
γ2

(
1+ αςη

βγ

)
η
β2

(
1+ αςη

βγ

)
0 0 0

0 −αη
βγ 0 0


 ·

Therefore setting

(A.19) V =




b̂

d̂

ĵ0

ĵ1


 :=




1 0 0 ς
γ2 ρ

−αςη
β2γ

ρ 1 ας
βγ ρ

ς
γ

− η
β − η

β2ρ 1
(

α̃
β−γ − ςη

β2γ

)
ρ

αη
γ(γ−β)ρ 0 α

β−γρ 1







â

d̂

ĵ0
ĵ1


 ,

it is clear that working with (â, d̂, ĵ0, ĵ1) or (b̂, d̂, ĵ0, ĵ1) is equivalent whenever

ρ ≤ C|γ − β|,
for some positive constant C depending continuously on the coefficients of the system.

Putting together the previous computations, we see that V fulfills

d

dt
V +




−αςη
βγ2ρ

2 0 0 0

0
(
1− αςη

β2γ

)
ρ2 0 0

0 0 β+(αςηβ2γ + αα̃
γ−β )ρ

2 0

0 0 0 γ+
(αςη
βγ2 +

αα̃
β−γ

)
ρ2


V

+ρ




0 1 0 0
−1− αςη

βγ 0 0 0

0 0 0 0
0 0 0 0


V

= ρ2




0 0 ας
γ

(
1
β+

1
γ

)
0

0 0 0 ς
γ − αα̃ς

βγ − ς
γ2

(
1+ αςη

βγ

)
αα̃η

β(β−γ) −
η
β2

(
1+ αςη

βγ

)
0 0 0

0 αη
γ(β−γ) 0 0




+ρ3(I + ρP )A3(I + ρP )−1V,

with A3 := (PA0 −A1)P
2 +A2P satisfying |A3| ≤ C

(
1 + |γ − β|−3

)
.

Next, arguing exactly as to handle (A.10), we discover that under the stability condition
(A.11) and for ρ satisfying (A.13) (and of course also ρ ≤ c|β − γ|3 ), we have

(A.20) |(b̂, d̂)(t)| + ν̃ρ2
∫ t

0
|(b̂, d̂)| dτ ≤ C

(
|(b̂, d̂)(0)|

+ ρ2
∫ t

0
|(̂j0, ĵ1)| dτ + ρ3

(
1 +

1

|γ − β|3
)∫ t

0
|(b̂, d̂, ĵ0, ĵ1)| dτ

)
·
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Now, in contrast with the first method, we can bound ĵ0 and ĵ1 independently from one

another from the equation satisfied by ĵ0, we readily get

(A.21) |̂j0(t)|+
(
β +

αςη

β2γ
ρ2
)∫ t

0
|̂j0| dτ ≤ |̂j0(0)|+

Cρ2

|β − γ|

∫ t

0
|b̂| dτ

+ Cρ3
(
1 +

1

|γ − β|3
)∫ t

0
|(b̂, d̂, ĵ0, ĵ1)| dτ,

while ĵ1 satisfies

(A.22) |̂j1(t)|+
(
γ +

(αςη
βγ2

+
αα̃

β − γ

)
ρ2
)∫ t

0
|̂j1| dτ ≤ |̂j1(0)|+

Cρ2

|β − γ|

∫ t

0
|d̂| dτ

+ Cρ3
(
1 +

1

|γ − β|3
)∫ t

0
|(b̂, d̂, ĵ0, ĵ1)| dτ.

Putting inequalities (A.20), (A.21) and (A.22) together, it is now easy to conclude that

(A.23) |(b̂, d̂)(t)| + ν̃|γ − β||(̂j0, ĵ1)(t)|+ ν̃ρ2
∫ t

0
|(b̂, d̂)| dτ

+ ν̃|γ − β|
(
β

∫ t

0
|̂j0| dτ + γ

∫ t

0
|̂j1| dτ

)
≤ C

(
|(b̂, d̂)(0)| + ν̃|γ − β||(̂j0, ĵ1)(0)|

)
,

if, for some small enough constant c depending continuously on α, β, γ and ς, we have

(A.24) ρ ≤ cmin

(
1, ν̃, |γ − β|2, ν̃|γ − β|3

)
·

Appendix B. Optimal decay estimates for a toy system

For the reader convenience, we here recall some results that have been obtained in our
recent work [8] for the following linear system of ordinary differential equations

(B.1)

{
∂tX + aρY − bρ2X = A,
∂tY − cρX + dρ2Y = B.

Above, ρ stands for a given nonnegative small parameter and a, b, c and d are four real
numbers satisfying the stability condition

(B.2) a > 0, c > 0 and d− b > 0.

Routine computations show that the following Lyapunov functional L2
ρ := c|X|2 + a|Y |2 −

ρ(d+ b)Re (XȲ ) satisfies the relation

(B.3)
1

2

d

dt
L2
ρ +

(
d− b

2

)
ρ2
(
c|X|2 + a|Y |2

)
+

(
b2 − d2

2

)
ρ3Re (XȲ )

= Re
(
cAX̄ + aBȲ − ρ(b+d)(BX̄+AȲ )

)
.

Now, observe that whenever ρ ≤
√
ac

|b+d| , we have
∣∣∣∣
(
b2 − d2

2

)
ρ3Re (XȲ )

∣∣∣∣ ≤
(
d− b

4

)
ρ2
(
c|X|2 + a|Y |2

)
,

and

(B.4)
1

2

(
c|X|2 + a|Y |2

)
≤ L2

ρ ≤ 3

2

(
c|X|2 + a|Y |2

)
,



DIFFUSIVE LIMITS FOR A BAROTROPIC MODEL OF RADIATIVE FLOW 53

which leads if A ≡ B ≡ 0 to

(B.5)
d

dt
L2
ρ +

(
d− b

3

)
L2
ρ ≤ 0,

and thus

(B.6) Lρ(t) ≤ e−(d−b
6

)ρ2tLρ(0).

Combining with (B.4) and Duhamel’s formula, we deduce that for general source terms A
and B we have

(B.7)
√

c|X(t)|2 + a|Y (t)|2 ≤
√
3 e−(d−b

6
)ρ2t

(√
c|X(0)|2 + a|Y (0)|2

+

∫ t

0
e(

d−b
6

)τ
√

c|A|2 + a|B|2 dτ
)
·
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